Root/kernel/auditsc.c

1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <asm/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/module.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70
71#include "audit.h"
72
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_cap_data {
90    kernel_cap_t permitted;
91    kernel_cap_t inheritable;
92    union {
93        unsigned int fE; /* effective bit of a file capability */
94        kernel_cap_t effective; /* effective set of a process */
95    };
96};
97
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104    const char *name;
105    int name_len; /* number of name's characters to log */
106    unsigned name_put; /* call __putname() for this name */
107    unsigned long ino;
108    dev_t dev;
109    umode_t mode;
110    uid_t uid;
111    gid_t gid;
112    dev_t rdev;
113    u32 osid;
114    struct audit_cap_data fcap;
115    unsigned int fcap_ver;
116};
117
118struct audit_aux_data {
119    struct audit_aux_data *next;
120    int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
128struct audit_aux_data_execve {
129    struct audit_aux_data d;
130    int argc;
131    int envc;
132    struct mm_struct *mm;
133};
134
135struct audit_aux_data_pids {
136    struct audit_aux_data d;
137    pid_t target_pid[AUDIT_AUX_PIDS];
138    uid_t target_auid[AUDIT_AUX_PIDS];
139    uid_t target_uid[AUDIT_AUX_PIDS];
140    unsigned int target_sessionid[AUDIT_AUX_PIDS];
141    u32 target_sid[AUDIT_AUX_PIDS];
142    char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143    int pid_count;
144};
145
146struct audit_aux_data_bprm_fcaps {
147    struct audit_aux_data d;
148    struct audit_cap_data fcap;
149    unsigned int fcap_ver;
150    struct audit_cap_data old_pcap;
151    struct audit_cap_data new_pcap;
152};
153
154struct audit_aux_data_capset {
155    struct audit_aux_data d;
156    pid_t pid;
157    struct audit_cap_data cap;
158};
159
160struct audit_tree_refs {
161    struct audit_tree_refs *next;
162    struct audit_chunk *c[31];
163};
164
165/* The per-task audit context. */
166struct audit_context {
167    int dummy; /* must be the first element */
168    int in_syscall; /* 1 if task is in a syscall */
169    enum audit_state state, current_state;
170    unsigned int serial; /* serial number for record */
171    int major; /* syscall number */
172    struct timespec ctime; /* time of syscall entry */
173    unsigned long argv[4]; /* syscall arguments */
174    long return_code;/* syscall return code */
175    u64 prio;
176    int return_valid; /* return code is valid */
177    int name_count;
178    struct audit_names names[AUDIT_NAMES];
179    char * filterkey; /* key for rule that triggered record */
180    struct path pwd;
181    struct audit_context *previous; /* For nested syscalls */
182    struct audit_aux_data *aux;
183    struct audit_aux_data *aux_pids;
184    struct sockaddr_storage *sockaddr;
185    size_t sockaddr_len;
186                /* Save things to print about task_struct */
187    pid_t pid, ppid;
188    uid_t uid, euid, suid, fsuid;
189    gid_t gid, egid, sgid, fsgid;
190    unsigned long personality;
191    int arch;
192
193    pid_t target_pid;
194    uid_t target_auid;
195    uid_t target_uid;
196    unsigned int target_sessionid;
197    u32 target_sid;
198    char target_comm[TASK_COMM_LEN];
199
200    struct audit_tree_refs *trees, *first_trees;
201    struct list_head killed_trees;
202    int tree_count;
203
204    int type;
205    union {
206        struct {
207            int nargs;
208            long args[6];
209        } socketcall;
210        struct {
211            uid_t uid;
212            gid_t gid;
213            mode_t mode;
214            u32 osid;
215            int has_perm;
216            uid_t perm_uid;
217            gid_t perm_gid;
218            mode_t perm_mode;
219            unsigned long qbytes;
220        } ipc;
221        struct {
222            mqd_t mqdes;
223            struct mq_attr mqstat;
224        } mq_getsetattr;
225        struct {
226            mqd_t mqdes;
227            int sigev_signo;
228        } mq_notify;
229        struct {
230            mqd_t mqdes;
231            size_t msg_len;
232            unsigned int msg_prio;
233            struct timespec abs_timeout;
234        } mq_sendrecv;
235        struct {
236            int oflag;
237            mode_t mode;
238            struct mq_attr attr;
239        } mq_open;
240        struct {
241            pid_t pid;
242            struct audit_cap_data cap;
243        } capset;
244        struct {
245            int fd;
246            int flags;
247        } mmap;
248    };
249    int fds[2];
250
251#if AUDIT_DEBUG
252    int put_count;
253    int ino_count;
254#endif
255};
256
257static inline int open_arg(int flags, int mask)
258{
259    int n = ACC_MODE(flags);
260    if (flags & (O_TRUNC | O_CREAT))
261        n |= AUDIT_PERM_WRITE;
262    return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
267    unsigned n;
268    if (unlikely(!ctx))
269        return 0;
270    n = ctx->major;
271
272    switch (audit_classify_syscall(ctx->arch, n)) {
273    case 0: /* native */
274        if ((mask & AUDIT_PERM_WRITE) &&
275             audit_match_class(AUDIT_CLASS_WRITE, n))
276            return 1;
277        if ((mask & AUDIT_PERM_READ) &&
278             audit_match_class(AUDIT_CLASS_READ, n))
279            return 1;
280        if ((mask & AUDIT_PERM_ATTR) &&
281             audit_match_class(AUDIT_CLASS_CHATTR, n))
282            return 1;
283        return 0;
284    case 1: /* 32bit on biarch */
285        if ((mask & AUDIT_PERM_WRITE) &&
286             audit_match_class(AUDIT_CLASS_WRITE_32, n))
287            return 1;
288        if ((mask & AUDIT_PERM_READ) &&
289             audit_match_class(AUDIT_CLASS_READ_32, n))
290            return 1;
291        if ((mask & AUDIT_PERM_ATTR) &&
292             audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293            return 1;
294        return 0;
295    case 2: /* open */
296        return mask & ACC_MODE(ctx->argv[1]);
297    case 3: /* openat */
298        return mask & ACC_MODE(ctx->argv[2]);
299    case 4: /* socketcall */
300        return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301    case 5: /* execve */
302        return mask & AUDIT_PERM_EXEC;
303    default:
304        return 0;
305    }
306}
307
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310    unsigned index = which & ~S_IFMT;
311    mode_t mode = which & S_IFMT;
312
313    if (unlikely(!ctx))
314        return 0;
315
316    if (index >= ctx->name_count)
317        return 0;
318    if (ctx->names[index].ino == -1)
319        return 0;
320    if ((ctx->names[index].mode ^ mode) & S_IFMT)
321        return 0;
322    return 1;
323}
324
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
336static void audit_set_auditable(struct audit_context *ctx)
337{
338    if (!ctx->prio) {
339        ctx->prio = 1;
340        ctx->current_state = AUDIT_RECORD_CONTEXT;
341    }
342}
343
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346    struct audit_tree_refs *p = ctx->trees;
347    int left = ctx->tree_count;
348    if (likely(left)) {
349        p->c[--left] = chunk;
350        ctx->tree_count = left;
351        return 1;
352    }
353    if (!p)
354        return 0;
355    p = p->next;
356    if (p) {
357        p->c[30] = chunk;
358        ctx->trees = p;
359        ctx->tree_count = 30;
360        return 1;
361    }
362    return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367    struct audit_tree_refs *p = ctx->trees;
368    ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369    if (!ctx->trees) {
370        ctx->trees = p;
371        return 0;
372    }
373    if (p)
374        p->next = ctx->trees;
375    else
376        ctx->first_trees = ctx->trees;
377    ctx->tree_count = 31;
378    return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383              struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386    struct audit_tree_refs *q;
387    int n;
388    if (!p) {
389        /* we started with empty chain */
390        p = ctx->first_trees;
391        count = 31;
392        /* if the very first allocation has failed, nothing to do */
393        if (!p)
394            return;
395    }
396    n = count;
397    for (q = p; q != ctx->trees; q = q->next, n = 31) {
398        while (n--) {
399            audit_put_chunk(q->c[n]);
400            q->c[n] = NULL;
401        }
402    }
403    while (n-- > ctx->tree_count) {
404        audit_put_chunk(q->c[n]);
405        q->c[n] = NULL;
406    }
407    ctx->trees = p;
408    ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414    struct audit_tree_refs *p, *q;
415    for (p = ctx->first_trees; p; p = q) {
416        q = p->next;
417        kfree(p);
418    }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424    struct audit_tree_refs *p;
425    int n;
426    if (!tree)
427        return 0;
428    /* full ones */
429    for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430        for (n = 0; n < 31; n++)
431            if (audit_tree_match(p->c[n], tree))
432                return 1;
433    }
434    /* partial */
435    if (p) {
436        for (n = ctx->tree_count; n < 31; n++)
437            if (audit_tree_match(p->c[n], tree))
438                return 1;
439    }
440#endif
441    return 0;
442}
443
444/* Determine if any context name data matches a rule's watch data */
445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise. */
447static int audit_filter_rules(struct task_struct *tsk,
448                  struct audit_krule *rule,
449                  struct audit_context *ctx,
450                  struct audit_names *name,
451                  enum audit_state *state)
452{
453    const struct cred *cred = get_task_cred(tsk);
454    int i, j, need_sid = 1;
455    u32 sid;
456
457    for (i = 0; i < rule->field_count; i++) {
458        struct audit_field *f = &rule->fields[i];
459        int result = 0;
460
461        switch (f->type) {
462        case AUDIT_PID:
463            result = audit_comparator(tsk->pid, f->op, f->val);
464            break;
465        case AUDIT_PPID:
466            if (ctx) {
467                if (!ctx->ppid)
468                    ctx->ppid = sys_getppid();
469                result = audit_comparator(ctx->ppid, f->op, f->val);
470            }
471            break;
472        case AUDIT_UID:
473            result = audit_comparator(cred->uid, f->op, f->val);
474            break;
475        case AUDIT_EUID:
476            result = audit_comparator(cred->euid, f->op, f->val);
477            break;
478        case AUDIT_SUID:
479            result = audit_comparator(cred->suid, f->op, f->val);
480            break;
481        case AUDIT_FSUID:
482            result = audit_comparator(cred->fsuid, f->op, f->val);
483            break;
484        case AUDIT_GID:
485            result = audit_comparator(cred->gid, f->op, f->val);
486            break;
487        case AUDIT_EGID:
488            result = audit_comparator(cred->egid, f->op, f->val);
489            break;
490        case AUDIT_SGID:
491            result = audit_comparator(cred->sgid, f->op, f->val);
492            break;
493        case AUDIT_FSGID:
494            result = audit_comparator(cred->fsgid, f->op, f->val);
495            break;
496        case AUDIT_PERS:
497            result = audit_comparator(tsk->personality, f->op, f->val);
498            break;
499        case AUDIT_ARCH:
500            if (ctx)
501                result = audit_comparator(ctx->arch, f->op, f->val);
502            break;
503
504        case AUDIT_EXIT:
505            if (ctx && ctx->return_valid)
506                result = audit_comparator(ctx->return_code, f->op, f->val);
507            break;
508        case AUDIT_SUCCESS:
509            if (ctx && ctx->return_valid) {
510                if (f->val)
511                    result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
512                else
513                    result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
514            }
515            break;
516        case AUDIT_DEVMAJOR:
517            if (name)
518                result = audit_comparator(MAJOR(name->dev),
519                              f->op, f->val);
520            else if (ctx) {
521                for (j = 0; j < ctx->name_count; j++) {
522                    if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
523                        ++result;
524                        break;
525                    }
526                }
527            }
528            break;
529        case AUDIT_DEVMINOR:
530            if (name)
531                result = audit_comparator(MINOR(name->dev),
532                              f->op, f->val);
533            else if (ctx) {
534                for (j = 0; j < ctx->name_count; j++) {
535                    if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
536                        ++result;
537                        break;
538                    }
539                }
540            }
541            break;
542        case AUDIT_INODE:
543            if (name)
544                result = (name->ino == f->val);
545            else if (ctx) {
546                for (j = 0; j < ctx->name_count; j++) {
547                    if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
548                        ++result;
549                        break;
550                    }
551                }
552            }
553            break;
554        case AUDIT_WATCH:
555            if (name)
556                result = audit_watch_compare(rule->watch, name->ino, name->dev);
557            break;
558        case AUDIT_DIR:
559            if (ctx)
560                result = match_tree_refs(ctx, rule->tree);
561            break;
562        case AUDIT_LOGINUID:
563            result = 0;
564            if (ctx)
565                result = audit_comparator(tsk->loginuid, f->op, f->val);
566            break;
567        case AUDIT_SUBJ_USER:
568        case AUDIT_SUBJ_ROLE:
569        case AUDIT_SUBJ_TYPE:
570        case AUDIT_SUBJ_SEN:
571        case AUDIT_SUBJ_CLR:
572            /* NOTE: this may return negative values indicating
573               a temporary error. We simply treat this as a
574               match for now to avoid losing information that
575               may be wanted. An error message will also be
576               logged upon error */
577            if (f->lsm_rule) {
578                if (need_sid) {
579                    security_task_getsecid(tsk, &sid);
580                    need_sid = 0;
581                }
582                result = security_audit_rule_match(sid, f->type,
583                                                  f->op,
584                                                  f->lsm_rule,
585                                                  ctx);
586            }
587            break;
588        case AUDIT_OBJ_USER:
589        case AUDIT_OBJ_ROLE:
590        case AUDIT_OBJ_TYPE:
591        case AUDIT_OBJ_LEV_LOW:
592        case AUDIT_OBJ_LEV_HIGH:
593            /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
594               also applies here */
595            if (f->lsm_rule) {
596                /* Find files that match */
597                if (name) {
598                    result = security_audit_rule_match(
599                               name->osid, f->type, f->op,
600                               f->lsm_rule, ctx);
601                } else if (ctx) {
602                    for (j = 0; j < ctx->name_count; j++) {
603                        if (security_audit_rule_match(
604                              ctx->names[j].osid,
605                              f->type, f->op,
606                              f->lsm_rule, ctx)) {
607                            ++result;
608                            break;
609                        }
610                    }
611                }
612                /* Find ipc objects that match */
613                if (!ctx || ctx->type != AUDIT_IPC)
614                    break;
615                if (security_audit_rule_match(ctx->ipc.osid,
616                                  f->type, f->op,
617                                  f->lsm_rule, ctx))
618                    ++result;
619            }
620            break;
621        case AUDIT_ARG0:
622        case AUDIT_ARG1:
623        case AUDIT_ARG2:
624        case AUDIT_ARG3:
625            if (ctx)
626                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
627            break;
628        case AUDIT_FILTERKEY:
629            /* ignore this field for filtering */
630            result = 1;
631            break;
632        case AUDIT_PERM:
633            result = audit_match_perm(ctx, f->val);
634            break;
635        case AUDIT_FILETYPE:
636            result = audit_match_filetype(ctx, f->val);
637            break;
638        }
639
640        if (!result) {
641            put_cred(cred);
642            return 0;
643        }
644    }
645
646    if (ctx) {
647        if (rule->prio <= ctx->prio)
648            return 0;
649        if (rule->filterkey) {
650            kfree(ctx->filterkey);
651            ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
652        }
653        ctx->prio = rule->prio;
654    }
655    switch (rule->action) {
656    case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
657    case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
658    }
659    put_cred(cred);
660    return 1;
661}
662
663/* At process creation time, we can determine if system-call auditing is
664 * completely disabled for this task. Since we only have the task
665 * structure at this point, we can only check uid and gid.
666 */
667static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
668{
669    struct audit_entry *e;
670    enum audit_state state;
671
672    rcu_read_lock();
673    list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
674        if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
675            if (state == AUDIT_RECORD_CONTEXT)
676                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
677            rcu_read_unlock();
678            return state;
679        }
680    }
681    rcu_read_unlock();
682    return AUDIT_BUILD_CONTEXT;
683}
684
685/* At syscall entry and exit time, this filter is called if the
686 * audit_state is not low enough that auditing cannot take place, but is
687 * also not high enough that we already know we have to write an audit
688 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
689 */
690static enum audit_state audit_filter_syscall(struct task_struct *tsk,
691                         struct audit_context *ctx,
692                         struct list_head *list)
693{
694    struct audit_entry *e;
695    enum audit_state state;
696
697    if (audit_pid && tsk->tgid == audit_pid)
698        return AUDIT_DISABLED;
699
700    rcu_read_lock();
701    if (!list_empty(list)) {
702        int word = AUDIT_WORD(ctx->major);
703        int bit = AUDIT_BIT(ctx->major);
704
705        list_for_each_entry_rcu(e, list, list) {
706            if ((e->rule.mask[word] & bit) == bit &&
707                audit_filter_rules(tsk, &e->rule, ctx, NULL,
708                           &state)) {
709                rcu_read_unlock();
710                ctx->current_state = state;
711                return state;
712            }
713        }
714    }
715    rcu_read_unlock();
716    return AUDIT_BUILD_CONTEXT;
717}
718
719/* At syscall exit time, this filter is called if any audit_names[] have been
720 * collected during syscall processing. We only check rules in sublists at hash
721 * buckets applicable to the inode numbers in audit_names[].
722 * Regarding audit_state, same rules apply as for audit_filter_syscall().
723 */
724void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
725{
726    int i;
727    struct audit_entry *e;
728    enum audit_state state;
729
730    if (audit_pid && tsk->tgid == audit_pid)
731        return;
732
733    rcu_read_lock();
734    for (i = 0; i < ctx->name_count; i++) {
735        int word = AUDIT_WORD(ctx->major);
736        int bit = AUDIT_BIT(ctx->major);
737        struct audit_names *n = &ctx->names[i];
738        int h = audit_hash_ino((u32)n->ino);
739        struct list_head *list = &audit_inode_hash[h];
740
741        if (list_empty(list))
742            continue;
743
744        list_for_each_entry_rcu(e, list, list) {
745            if ((e->rule.mask[word] & bit) == bit &&
746                audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
747                rcu_read_unlock();
748                ctx->current_state = state;
749                return;
750            }
751        }
752    }
753    rcu_read_unlock();
754}
755
756static inline struct audit_context *audit_get_context(struct task_struct *tsk,
757                              int return_valid,
758                              long return_code)
759{
760    struct audit_context *context = tsk->audit_context;
761
762    if (likely(!context))
763        return NULL;
764    context->return_valid = return_valid;
765
766    /*
767     * we need to fix up the return code in the audit logs if the actual
768     * return codes are later going to be fixed up by the arch specific
769     * signal handlers
770     *
771     * This is actually a test for:
772     * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
773     * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
774     *
775     * but is faster than a bunch of ||
776     */
777    if (unlikely(return_code <= -ERESTARTSYS) &&
778        (return_code >= -ERESTART_RESTARTBLOCK) &&
779        (return_code != -ENOIOCTLCMD))
780        context->return_code = -EINTR;
781    else
782        context->return_code = return_code;
783
784    if (context->in_syscall && !context->dummy) {
785        audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
786        audit_filter_inodes(tsk, context);
787    }
788
789    tsk->audit_context = NULL;
790    return context;
791}
792
793static inline void audit_free_names(struct audit_context *context)
794{
795    int i;
796
797#if AUDIT_DEBUG == 2
798    if (context->put_count + context->ino_count != context->name_count) {
799        printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
800               " name_count=%d put_count=%d"
801               " ino_count=%d [NOT freeing]\n",
802               __FILE__, __LINE__,
803               context->serial, context->major, context->in_syscall,
804               context->name_count, context->put_count,
805               context->ino_count);
806        for (i = 0; i < context->name_count; i++) {
807            printk(KERN_ERR "names[%d] = %p = %s\n", i,
808                   context->names[i].name,
809                   context->names[i].name ?: "(null)");
810        }
811        dump_stack();
812        return;
813    }
814#endif
815#if AUDIT_DEBUG
816    context->put_count = 0;
817    context->ino_count = 0;
818#endif
819
820    for (i = 0; i < context->name_count; i++) {
821        if (context->names[i].name && context->names[i].name_put)
822            __putname(context->names[i].name);
823    }
824    context->name_count = 0;
825    path_put(&context->pwd);
826    context->pwd.dentry = NULL;
827    context->pwd.mnt = NULL;
828}
829
830static inline void audit_free_aux(struct audit_context *context)
831{
832    struct audit_aux_data *aux;
833
834    while ((aux = context->aux)) {
835        context->aux = aux->next;
836        kfree(aux);
837    }
838    while ((aux = context->aux_pids)) {
839        context->aux_pids = aux->next;
840        kfree(aux);
841    }
842}
843
844static inline void audit_zero_context(struct audit_context *context,
845                      enum audit_state state)
846{
847    memset(context, 0, sizeof(*context));
848    context->state = state;
849    context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
850}
851
852static inline struct audit_context *audit_alloc_context(enum audit_state state)
853{
854    struct audit_context *context;
855
856    if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
857        return NULL;
858    audit_zero_context(context, state);
859    INIT_LIST_HEAD(&context->killed_trees);
860    return context;
861}
862
863/**
864 * audit_alloc - allocate an audit context block for a task
865 * @tsk: task
866 *
867 * Filter on the task information and allocate a per-task audit context
868 * if necessary. Doing so turns on system call auditing for the
869 * specified task. This is called from copy_process, so no lock is
870 * needed.
871 */
872int audit_alloc(struct task_struct *tsk)
873{
874    struct audit_context *context;
875    enum audit_state state;
876    char *key = NULL;
877
878    if (likely(!audit_ever_enabled))
879        return 0; /* Return if not auditing. */
880
881    state = audit_filter_task(tsk, &key);
882    if (likely(state == AUDIT_DISABLED))
883        return 0;
884
885    if (!(context = audit_alloc_context(state))) {
886        kfree(key);
887        audit_log_lost("out of memory in audit_alloc");
888        return -ENOMEM;
889    }
890    context->filterkey = key;
891
892    tsk->audit_context = context;
893    set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
894    return 0;
895}
896
897static inline void audit_free_context(struct audit_context *context)
898{
899    struct audit_context *previous;
900    int count = 0;
901
902    do {
903        previous = context->previous;
904        if (previous || (count && count < 10)) {
905            ++count;
906            printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
907                   " freeing multiple contexts (%d)\n",
908                   context->serial, context->major,
909                   context->name_count, count);
910        }
911        audit_free_names(context);
912        unroll_tree_refs(context, NULL, 0);
913        free_tree_refs(context);
914        audit_free_aux(context);
915        kfree(context->filterkey);
916        kfree(context->sockaddr);
917        kfree(context);
918        context = previous;
919    } while (context);
920    if (count >= 10)
921        printk(KERN_ERR "audit: freed %d contexts\n", count);
922}
923
924void audit_log_task_context(struct audit_buffer *ab)
925{
926    char *ctx = NULL;
927    unsigned len;
928    int error;
929    u32 sid;
930
931    security_task_getsecid(current, &sid);
932    if (!sid)
933        return;
934
935    error = security_secid_to_secctx(sid, &ctx, &len);
936    if (error) {
937        if (error != -EINVAL)
938            goto error_path;
939        return;
940    }
941
942    audit_log_format(ab, " subj=%s", ctx);
943    security_release_secctx(ctx, len);
944    return;
945
946error_path:
947    audit_panic("error in audit_log_task_context");
948    return;
949}
950
951EXPORT_SYMBOL(audit_log_task_context);
952
953static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
954{
955    char name[sizeof(tsk->comm)];
956    struct mm_struct *mm = tsk->mm;
957    struct vm_area_struct *vma;
958
959    /* tsk == current */
960
961    get_task_comm(name, tsk);
962    audit_log_format(ab, " comm=");
963    audit_log_untrustedstring(ab, name);
964
965    if (mm) {
966        down_read(&mm->mmap_sem);
967        vma = mm->mmap;
968        while (vma) {
969            if ((vma->vm_flags & VM_EXECUTABLE) &&
970                vma->vm_file) {
971                audit_log_d_path(ab, "exe=",
972                         &vma->vm_file->f_path);
973                break;
974            }
975            vma = vma->vm_next;
976        }
977        up_read(&mm->mmap_sem);
978    }
979    audit_log_task_context(ab);
980}
981
982static int audit_log_pid_context(struct audit_context *context, pid_t pid,
983                 uid_t auid, uid_t uid, unsigned int sessionid,
984                 u32 sid, char *comm)
985{
986    struct audit_buffer *ab;
987    char *ctx = NULL;
988    u32 len;
989    int rc = 0;
990
991    ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
992    if (!ab)
993        return rc;
994
995    audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
996             uid, sessionid);
997    if (security_secid_to_secctx(sid, &ctx, &len)) {
998        audit_log_format(ab, " obj=(none)");
999        rc = 1;
1000    } else {
1001        audit_log_format(ab, " obj=%s", ctx);
1002        security_release_secctx(ctx, len);
1003    }
1004    audit_log_format(ab, " ocomm=");
1005    audit_log_untrustedstring(ab, comm);
1006    audit_log_end(ab);
1007
1008    return rc;
1009}
1010
1011/*
1012 * to_send and len_sent accounting are very loose estimates. We aren't
1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014 * within about 500 bytes (next page boundry)
1015 *
1016 * why snprintf? an int is up to 12 digits long. if we just assumed when
1017 * logging that a[%d]= was going to be 16 characters long we would be wasting
1018 * space in every audit message. In one 7500 byte message we can log up to
1019 * about 1000 min size arguments. That comes down to about 50% waste of space
1020 * if we didn't do the snprintf to find out how long arg_num_len was.
1021 */
1022static int audit_log_single_execve_arg(struct audit_context *context,
1023                    struct audit_buffer **ab,
1024                    int arg_num,
1025                    size_t *len_sent,
1026                    const char __user *p,
1027                    char *buf)
1028{
1029    char arg_num_len_buf[12];
1030    const char __user *tmp_p = p;
1031    /* how many digits are in arg_num? 5 is the length of ' a=""' */
1032    size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1033    size_t len, len_left, to_send;
1034    size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035    unsigned int i, has_cntl = 0, too_long = 0;
1036    int ret;
1037
1038    /* strnlen_user includes the null we don't want to send */
1039    len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1040
1041    /*
1042     * We just created this mm, if we can't find the strings
1043     * we just copied into it something is _very_ wrong. Similar
1044     * for strings that are too long, we should not have created
1045     * any.
1046     */
1047    if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1048        WARN_ON(1);
1049        send_sig(SIGKILL, current, 0);
1050        return -1;
1051    }
1052
1053    /* walk the whole argument looking for non-ascii chars */
1054    do {
1055        if (len_left > MAX_EXECVE_AUDIT_LEN)
1056            to_send = MAX_EXECVE_AUDIT_LEN;
1057        else
1058            to_send = len_left;
1059        ret = copy_from_user(buf, tmp_p, to_send);
1060        /*
1061         * There is no reason for this copy to be short. We just
1062         * copied them here, and the mm hasn't been exposed to user-
1063         * space yet.
1064         */
1065        if (ret) {
1066            WARN_ON(1);
1067            send_sig(SIGKILL, current, 0);
1068            return -1;
1069        }
1070        buf[to_send] = '\0';
1071        has_cntl = audit_string_contains_control(buf, to_send);
1072        if (has_cntl) {
1073            /*
1074             * hex messages get logged as 2 bytes, so we can only
1075             * send half as much in each message
1076             */
1077            max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1078            break;
1079        }
1080        len_left -= to_send;
1081        tmp_p += to_send;
1082    } while (len_left > 0);
1083
1084    len_left = len;
1085
1086    if (len > max_execve_audit_len)
1087        too_long = 1;
1088
1089    /* rewalk the argument actually logging the message */
1090    for (i = 0; len_left > 0; i++) {
1091        int room_left;
1092
1093        if (len_left > max_execve_audit_len)
1094            to_send = max_execve_audit_len;
1095        else
1096            to_send = len_left;
1097
1098        /* do we have space left to send this argument in this ab? */
1099        room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1100        if (has_cntl)
1101            room_left -= (to_send * 2);
1102        else
1103            room_left -= to_send;
1104        if (room_left < 0) {
1105            *len_sent = 0;
1106            audit_log_end(*ab);
1107            *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108            if (!*ab)
1109                return 0;
1110        }
1111
1112        /*
1113         * first record needs to say how long the original string was
1114         * so we can be sure nothing was lost.
1115         */
1116        if ((i == 0) && (too_long))
1117            audit_log_format(*ab, " a%d_len=%zu", arg_num,
1118                     has_cntl ? 2*len : len);
1119
1120        /*
1121         * normally arguments are small enough to fit and we already
1122         * filled buf above when we checked for control characters
1123         * so don't bother with another copy_from_user
1124         */
1125        if (len >= max_execve_audit_len)
1126            ret = copy_from_user(buf, p, to_send);
1127        else
1128            ret = 0;
1129        if (ret) {
1130            WARN_ON(1);
1131            send_sig(SIGKILL, current, 0);
1132            return -1;
1133        }
1134        buf[to_send] = '\0';
1135
1136        /* actually log it */
1137        audit_log_format(*ab, " a%d", arg_num);
1138        if (too_long)
1139            audit_log_format(*ab, "[%d]", i);
1140        audit_log_format(*ab, "=");
1141        if (has_cntl)
1142            audit_log_n_hex(*ab, buf, to_send);
1143        else
1144            audit_log_string(*ab, buf);
1145
1146        p += to_send;
1147        len_left -= to_send;
1148        *len_sent += arg_num_len;
1149        if (has_cntl)
1150            *len_sent += to_send * 2;
1151        else
1152            *len_sent += to_send;
1153    }
1154    /* include the null we didn't log */
1155    return len + 1;
1156}
1157
1158static void audit_log_execve_info(struct audit_context *context,
1159                  struct audit_buffer **ab,
1160                  struct audit_aux_data_execve *axi)
1161{
1162    int i;
1163    size_t len, len_sent = 0;
1164    const char __user *p;
1165    char *buf;
1166
1167    if (axi->mm != current->mm)
1168        return; /* execve failed, no additional info */
1169
1170    p = (const char __user *)axi->mm->arg_start;
1171
1172    audit_log_format(*ab, "argc=%d", axi->argc);
1173
1174    /*
1175     * we need some kernel buffer to hold the userspace args. Just
1176     * allocate one big one rather than allocating one of the right size
1177     * for every single argument inside audit_log_single_execve_arg()
1178     * should be <8k allocation so should be pretty safe.
1179     */
1180    buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1181    if (!buf) {
1182        audit_panic("out of memory for argv string\n");
1183        return;
1184    }
1185
1186    for (i = 0; i < axi->argc; i++) {
1187        len = audit_log_single_execve_arg(context, ab, i,
1188                          &len_sent, p, buf);
1189        if (len <= 0)
1190            break;
1191        p += len;
1192    }
1193    kfree(buf);
1194}
1195
1196static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1197{
1198    int i;
1199
1200    audit_log_format(ab, " %s=", prefix);
1201    CAP_FOR_EACH_U32(i) {
1202        audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1203    }
1204}
1205
1206static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1207{
1208    kernel_cap_t *perm = &name->fcap.permitted;
1209    kernel_cap_t *inh = &name->fcap.inheritable;
1210    int log = 0;
1211
1212    if (!cap_isclear(*perm)) {
1213        audit_log_cap(ab, "cap_fp", perm);
1214        log = 1;
1215    }
1216    if (!cap_isclear(*inh)) {
1217        audit_log_cap(ab, "cap_fi", inh);
1218        log = 1;
1219    }
1220
1221    if (log)
1222        audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1223}
1224
1225static void show_special(struct audit_context *context, int *call_panic)
1226{
1227    struct audit_buffer *ab;
1228    int i;
1229
1230    ab = audit_log_start(context, GFP_KERNEL, context->type);
1231    if (!ab)
1232        return;
1233
1234    switch (context->type) {
1235    case AUDIT_SOCKETCALL: {
1236        int nargs = context->socketcall.nargs;
1237        audit_log_format(ab, "nargs=%d", nargs);
1238        for (i = 0; i < nargs; i++)
1239            audit_log_format(ab, " a%d=%lx", i,
1240                context->socketcall.args[i]);
1241        break; }
1242    case AUDIT_IPC: {
1243        u32 osid = context->ipc.osid;
1244
1245        audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1246             context->ipc.uid, context->ipc.gid, context->ipc.mode);
1247        if (osid) {
1248            char *ctx = NULL;
1249            u32 len;
1250            if (security_secid_to_secctx(osid, &ctx, &len)) {
1251                audit_log_format(ab, " osid=%u", osid);
1252                *call_panic = 1;
1253            } else {
1254                audit_log_format(ab, " obj=%s", ctx);
1255                security_release_secctx(ctx, len);
1256            }
1257        }
1258        if (context->ipc.has_perm) {
1259            audit_log_end(ab);
1260            ab = audit_log_start(context, GFP_KERNEL,
1261                         AUDIT_IPC_SET_PERM);
1262            audit_log_format(ab,
1263                "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1264                context->ipc.qbytes,
1265                context->ipc.perm_uid,
1266                context->ipc.perm_gid,
1267                context->ipc.perm_mode);
1268            if (!ab)
1269                return;
1270        }
1271        break; }
1272    case AUDIT_MQ_OPEN: {
1273        audit_log_format(ab,
1274            "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1275            "mq_msgsize=%ld mq_curmsgs=%ld",
1276            context->mq_open.oflag, context->mq_open.mode,
1277            context->mq_open.attr.mq_flags,
1278            context->mq_open.attr.mq_maxmsg,
1279            context->mq_open.attr.mq_msgsize,
1280            context->mq_open.attr.mq_curmsgs);
1281        break; }
1282    case AUDIT_MQ_SENDRECV: {
1283        audit_log_format(ab,
1284            "mqdes=%d msg_len=%zd msg_prio=%u "
1285            "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1286            context->mq_sendrecv.mqdes,
1287            context->mq_sendrecv.msg_len,
1288            context->mq_sendrecv.msg_prio,
1289            context->mq_sendrecv.abs_timeout.tv_sec,
1290            context->mq_sendrecv.abs_timeout.tv_nsec);
1291        break; }
1292    case AUDIT_MQ_NOTIFY: {
1293        audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1294                context->mq_notify.mqdes,
1295                context->mq_notify.sigev_signo);
1296        break; }
1297    case AUDIT_MQ_GETSETATTR: {
1298        struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1299        audit_log_format(ab,
1300            "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1301            "mq_curmsgs=%ld ",
1302            context->mq_getsetattr.mqdes,
1303            attr->mq_flags, attr->mq_maxmsg,
1304            attr->mq_msgsize, attr->mq_curmsgs);
1305        break; }
1306    case AUDIT_CAPSET: {
1307        audit_log_format(ab, "pid=%d", context->capset.pid);
1308        audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1309        audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1310        audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1311        break; }
1312    case AUDIT_MMAP: {
1313        audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1314                 context->mmap.flags);
1315        break; }
1316    }
1317    audit_log_end(ab);
1318}
1319
1320static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1321{
1322    const struct cred *cred;
1323    int i, call_panic = 0;
1324    struct audit_buffer *ab;
1325    struct audit_aux_data *aux;
1326    const char *tty;
1327
1328    /* tsk == current */
1329    context->pid = tsk->pid;
1330    if (!context->ppid)
1331        context->ppid = sys_getppid();
1332    cred = current_cred();
1333    context->uid = cred->uid;
1334    context->gid = cred->gid;
1335    context->euid = cred->euid;
1336    context->suid = cred->suid;
1337    context->fsuid = cred->fsuid;
1338    context->egid = cred->egid;
1339    context->sgid = cred->sgid;
1340    context->fsgid = cred->fsgid;
1341    context->personality = tsk->personality;
1342
1343    ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1344    if (!ab)
1345        return; /* audit_panic has been called */
1346    audit_log_format(ab, "arch=%x syscall=%d",
1347             context->arch, context->major);
1348    if (context->personality != PER_LINUX)
1349        audit_log_format(ab, " per=%lx", context->personality);
1350    if (context->return_valid)
1351        audit_log_format(ab, " success=%s exit=%ld",
1352                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1353                 context->return_code);
1354
1355    spin_lock_irq(&tsk->sighand->siglock);
1356    if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1357        tty = tsk->signal->tty->name;
1358    else
1359        tty = "(none)";
1360    spin_unlock_irq(&tsk->sighand->siglock);
1361
1362    audit_log_format(ab,
1363          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1364          " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1365          " euid=%u suid=%u fsuid=%u"
1366          " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1367          context->argv[0],
1368          context->argv[1],
1369          context->argv[2],
1370          context->argv[3],
1371          context->name_count,
1372          context->ppid,
1373          context->pid,
1374          tsk->loginuid,
1375          context->uid,
1376          context->gid,
1377          context->euid, context->suid, context->fsuid,
1378          context->egid, context->sgid, context->fsgid, tty,
1379          tsk->sessionid);
1380
1381
1382    audit_log_task_info(ab, tsk);
1383    audit_log_key(ab, context->filterkey);
1384    audit_log_end(ab);
1385
1386    for (aux = context->aux; aux; aux = aux->next) {
1387
1388        ab = audit_log_start(context, GFP_KERNEL, aux->type);
1389        if (!ab)
1390            continue; /* audit_panic has been called */
1391
1392        switch (aux->type) {
1393
1394        case AUDIT_EXECVE: {
1395            struct audit_aux_data_execve *axi = (void *)aux;
1396            audit_log_execve_info(context, &ab, axi);
1397            break; }
1398
1399        case AUDIT_BPRM_FCAPS: {
1400            struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1401            audit_log_format(ab, "fver=%x", axs->fcap_ver);
1402            audit_log_cap(ab, "fp", &axs->fcap.permitted);
1403            audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1404            audit_log_format(ab, " fe=%d", axs->fcap.fE);
1405            audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1406            audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1407            audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1408            audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1409            audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1410            audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1411            break; }
1412
1413        }
1414        audit_log_end(ab);
1415    }
1416
1417    if (context->type)
1418        show_special(context, &call_panic);
1419
1420    if (context->fds[0] >= 0) {
1421        ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1422        if (ab) {
1423            audit_log_format(ab, "fd0=%d fd1=%d",
1424                    context->fds[0], context->fds[1]);
1425            audit_log_end(ab);
1426        }
1427    }
1428
1429    if (context->sockaddr_len) {
1430        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1431        if (ab) {
1432            audit_log_format(ab, "saddr=");
1433            audit_log_n_hex(ab, (void *)context->sockaddr,
1434                    context->sockaddr_len);
1435            audit_log_end(ab);
1436        }
1437    }
1438
1439    for (aux = context->aux_pids; aux; aux = aux->next) {
1440        struct audit_aux_data_pids *axs = (void *)aux;
1441
1442        for (i = 0; i < axs->pid_count; i++)
1443            if (audit_log_pid_context(context, axs->target_pid[i],
1444                          axs->target_auid[i],
1445                          axs->target_uid[i],
1446                          axs->target_sessionid[i],
1447                          axs->target_sid[i],
1448                          axs->target_comm[i]))
1449                call_panic = 1;
1450    }
1451
1452    if (context->target_pid &&
1453        audit_log_pid_context(context, context->target_pid,
1454                  context->target_auid, context->target_uid,
1455                  context->target_sessionid,
1456                  context->target_sid, context->target_comm))
1457            call_panic = 1;
1458
1459    if (context->pwd.dentry && context->pwd.mnt) {
1460        ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1461        if (ab) {
1462            audit_log_d_path(ab, "cwd=", &context->pwd);
1463            audit_log_end(ab);
1464        }
1465    }
1466    for (i = 0; i < context->name_count; i++) {
1467        struct audit_names *n = &context->names[i];
1468
1469        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1470        if (!ab)
1471            continue; /* audit_panic has been called */
1472
1473        audit_log_format(ab, "item=%d", i);
1474
1475        if (n->name) {
1476            switch(n->name_len) {
1477            case AUDIT_NAME_FULL:
1478                /* log the full path */
1479                audit_log_format(ab, " name=");
1480                audit_log_untrustedstring(ab, n->name);
1481                break;
1482            case 0:
1483                /* name was specified as a relative path and the
1484                 * directory component is the cwd */
1485                audit_log_d_path(ab, "name=", &context->pwd);
1486                break;
1487            default:
1488                /* log the name's directory component */
1489                audit_log_format(ab, " name=");
1490                audit_log_n_untrustedstring(ab, n->name,
1491                                n->name_len);
1492            }
1493        } else
1494            audit_log_format(ab, " name=(null)");
1495
1496        if (n->ino != (unsigned long)-1) {
1497            audit_log_format(ab, " inode=%lu"
1498                     " dev=%02x:%02x mode=%#o"
1499                     " ouid=%u ogid=%u rdev=%02x:%02x",
1500                     n->ino,
1501                     MAJOR(n->dev),
1502                     MINOR(n->dev),
1503                     n->mode,
1504                     n->uid,
1505                     n->gid,
1506                     MAJOR(n->rdev),
1507                     MINOR(n->rdev));
1508        }
1509        if (n->osid != 0) {
1510            char *ctx = NULL;
1511            u32 len;
1512            if (security_secid_to_secctx(
1513                n->osid, &ctx, &len)) {
1514                audit_log_format(ab, " osid=%u", n->osid);
1515                call_panic = 2;
1516            } else {
1517                audit_log_format(ab, " obj=%s", ctx);
1518                security_release_secctx(ctx, len);
1519            }
1520        }
1521
1522        audit_log_fcaps(ab, n);
1523
1524        audit_log_end(ab);
1525    }
1526
1527    /* Send end of event record to help user space know we are finished */
1528    ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1529    if (ab)
1530        audit_log_end(ab);
1531    if (call_panic)
1532        audit_panic("error converting sid to string");
1533}
1534
1535/**
1536 * audit_free - free a per-task audit context
1537 * @tsk: task whose audit context block to free
1538 *
1539 * Called from copy_process and do_exit
1540 */
1541void audit_free(struct task_struct *tsk)
1542{
1543    struct audit_context *context;
1544
1545    context = audit_get_context(tsk, 0, 0);
1546    if (likely(!context))
1547        return;
1548
1549    /* Check for system calls that do not go through the exit
1550     * function (e.g., exit_group), then free context block.
1551     * We use GFP_ATOMIC here because we might be doing this
1552     * in the context of the idle thread */
1553    /* that can happen only if we are called from do_exit() */
1554    if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1555        audit_log_exit(context, tsk);
1556    if (!list_empty(&context->killed_trees))
1557        audit_kill_trees(&context->killed_trees);
1558
1559    audit_free_context(context);
1560}
1561
1562/**
1563 * audit_syscall_entry - fill in an audit record at syscall entry
1564 * @arch: architecture type
1565 * @major: major syscall type (function)
1566 * @a1: additional syscall register 1
1567 * @a2: additional syscall register 2
1568 * @a3: additional syscall register 3
1569 * @a4: additional syscall register 4
1570 *
1571 * Fill in audit context at syscall entry. This only happens if the
1572 * audit context was created when the task was created and the state or
1573 * filters demand the audit context be built. If the state from the
1574 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1575 * then the record will be written at syscall exit time (otherwise, it
1576 * will only be written if another part of the kernel requests that it
1577 * be written).
1578 */
1579void audit_syscall_entry(int arch, int major,
1580             unsigned long a1, unsigned long a2,
1581             unsigned long a3, unsigned long a4)
1582{
1583    struct task_struct *tsk = current;
1584    struct audit_context *context = tsk->audit_context;
1585    enum audit_state state;
1586
1587    if (unlikely(!context))
1588        return;
1589
1590    /*
1591     * This happens only on certain architectures that make system
1592     * calls in kernel_thread via the entry.S interface, instead of
1593     * with direct calls. (If you are porting to a new
1594     * architecture, hitting this condition can indicate that you
1595     * got the _exit/_leave calls backward in entry.S.)
1596     *
1597     * i386 no
1598     * x86_64 no
1599     * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1600     *
1601     * This also happens with vm86 emulation in a non-nested manner
1602     * (entries without exits), so this case must be caught.
1603     */
1604    if (context->in_syscall) {
1605        struct audit_context *newctx;
1606
1607#if AUDIT_DEBUG
1608        printk(KERN_ERR
1609               "audit(:%d) pid=%d in syscall=%d;"
1610               " entering syscall=%d\n",
1611               context->serial, tsk->pid, context->major, major);
1612#endif
1613        newctx = audit_alloc_context(context->state);
1614        if (newctx) {
1615            newctx->previous = context;
1616            context = newctx;
1617            tsk->audit_context = newctx;
1618        } else {
1619            /* If we can't alloc a new context, the best we
1620             * can do is to leak memory (any pending putname
1621             * will be lost). The only other alternative is
1622             * to abandon auditing. */
1623            audit_zero_context(context, context->state);
1624        }
1625    }
1626    BUG_ON(context->in_syscall || context->name_count);
1627
1628    if (!audit_enabled)
1629        return;
1630
1631    context->arch = arch;
1632    context->major = major;
1633    context->argv[0] = a1;
1634    context->argv[1] = a2;
1635    context->argv[2] = a3;
1636    context->argv[3] = a4;
1637
1638    state = context->state;
1639    context->dummy = !audit_n_rules;
1640    if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1641        context->prio = 0;
1642        state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1643    }
1644    if (likely(state == AUDIT_DISABLED))
1645        return;
1646
1647    context->serial = 0;
1648    context->ctime = CURRENT_TIME;
1649    context->in_syscall = 1;
1650    context->current_state = state;
1651    context->ppid = 0;
1652}
1653
1654void audit_finish_fork(struct task_struct *child)
1655{
1656    struct audit_context *ctx = current->audit_context;
1657    struct audit_context *p = child->audit_context;
1658    if (!p || !ctx)
1659        return;
1660    if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1661        return;
1662    p->arch = ctx->arch;
1663    p->major = ctx->major;
1664    memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1665    p->ctime = ctx->ctime;
1666    p->dummy = ctx->dummy;
1667    p->in_syscall = ctx->in_syscall;
1668    p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1669    p->ppid = current->pid;
1670    p->prio = ctx->prio;
1671    p->current_state = ctx->current_state;
1672}
1673
1674/**
1675 * audit_syscall_exit - deallocate audit context after a system call
1676 * @valid: success/failure flag
1677 * @return_code: syscall return value
1678 *
1679 * Tear down after system call. If the audit context has been marked as
1680 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1681 * filtering, or because some other part of the kernel write an audit
1682 * message), then write out the syscall information. In call cases,
1683 * free the names stored from getname().
1684 */
1685void audit_syscall_exit(int valid, long return_code)
1686{
1687    struct task_struct *tsk = current;
1688    struct audit_context *context;
1689
1690    context = audit_get_context(tsk, valid, return_code);
1691
1692    if (likely(!context))
1693        return;
1694
1695    if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1696        audit_log_exit(context, tsk);
1697
1698    context->in_syscall = 0;
1699    context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1700
1701    if (!list_empty(&context->killed_trees))
1702        audit_kill_trees(&context->killed_trees);
1703
1704    if (context->previous) {
1705        struct audit_context *new_context = context->previous;
1706        context->previous = NULL;
1707        audit_free_context(context);
1708        tsk->audit_context = new_context;
1709    } else {
1710        audit_free_names(context);
1711        unroll_tree_refs(context, NULL, 0);
1712        audit_free_aux(context);
1713        context->aux = NULL;
1714        context->aux_pids = NULL;
1715        context->target_pid = 0;
1716        context->target_sid = 0;
1717        context->sockaddr_len = 0;
1718        context->type = 0;
1719        context->fds[0] = -1;
1720        if (context->state != AUDIT_RECORD_CONTEXT) {
1721            kfree(context->filterkey);
1722            context->filterkey = NULL;
1723        }
1724        tsk->audit_context = context;
1725    }
1726}
1727
1728static inline void handle_one(const struct inode *inode)
1729{
1730#ifdef CONFIG_AUDIT_TREE
1731    struct audit_context *context;
1732    struct audit_tree_refs *p;
1733    struct audit_chunk *chunk;
1734    int count;
1735    if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1736        return;
1737    context = current->audit_context;
1738    p = context->trees;
1739    count = context->tree_count;
1740    rcu_read_lock();
1741    chunk = audit_tree_lookup(inode);
1742    rcu_read_unlock();
1743    if (!chunk)
1744        return;
1745    if (likely(put_tree_ref(context, chunk)))
1746        return;
1747    if (unlikely(!grow_tree_refs(context))) {
1748        printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1749        audit_set_auditable(context);
1750        audit_put_chunk(chunk);
1751        unroll_tree_refs(context, p, count);
1752        return;
1753    }
1754    put_tree_ref(context, chunk);
1755#endif
1756}
1757
1758static void handle_path(const struct dentry *dentry)
1759{
1760#ifdef CONFIG_AUDIT_TREE
1761    struct audit_context *context;
1762    struct audit_tree_refs *p;
1763    const struct dentry *d, *parent;
1764    struct audit_chunk *drop;
1765    unsigned long seq;
1766    int count;
1767
1768    context = current->audit_context;
1769    p = context->trees;
1770    count = context->tree_count;
1771retry:
1772    drop = NULL;
1773    d = dentry;
1774    rcu_read_lock();
1775    seq = read_seqbegin(&rename_lock);
1776    for(;;) {
1777        struct inode *inode = d->d_inode;
1778        if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1779            struct audit_chunk *chunk;
1780            chunk = audit_tree_lookup(inode);
1781            if (chunk) {
1782                if (unlikely(!put_tree_ref(context, chunk))) {
1783                    drop = chunk;
1784                    break;
1785                }
1786            }
1787        }
1788        parent = d->d_parent;
1789        if (parent == d)
1790            break;
1791        d = parent;
1792    }
1793    if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1794        rcu_read_unlock();
1795        if (!drop) {
1796            /* just a race with rename */
1797            unroll_tree_refs(context, p, count);
1798            goto retry;
1799        }
1800        audit_put_chunk(drop);
1801        if (grow_tree_refs(context)) {
1802            /* OK, got more space */
1803            unroll_tree_refs(context, p, count);
1804            goto retry;
1805        }
1806        /* too bad */
1807        printk(KERN_WARNING
1808            "out of memory, audit has lost a tree reference\n");
1809        unroll_tree_refs(context, p, count);
1810        audit_set_auditable(context);
1811        return;
1812    }
1813    rcu_read_unlock();
1814#endif
1815}
1816
1817/**
1818 * audit_getname - add a name to the list
1819 * @name: name to add
1820 *
1821 * Add a name to the list of audit names for this context.
1822 * Called from fs/namei.c:getname().
1823 */
1824void __audit_getname(const char *name)
1825{
1826    struct audit_context *context = current->audit_context;
1827
1828    if (IS_ERR(name) || !name)
1829        return;
1830
1831    if (!context->in_syscall) {
1832#if AUDIT_DEBUG == 2
1833        printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1834               __FILE__, __LINE__, context->serial, name);
1835        dump_stack();
1836#endif
1837        return;
1838    }
1839    BUG_ON(context->name_count >= AUDIT_NAMES);
1840    context->names[context->name_count].name = name;
1841    context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1842    context->names[context->name_count].name_put = 1;
1843    context->names[context->name_count].ino = (unsigned long)-1;
1844    context->names[context->name_count].osid = 0;
1845    ++context->name_count;
1846    if (!context->pwd.dentry)
1847        get_fs_pwd(current->fs, &context->pwd);
1848}
1849
1850/* audit_putname - intercept a putname request
1851 * @name: name to intercept and delay for putname
1852 *
1853 * If we have stored the name from getname in the audit context,
1854 * then we delay the putname until syscall exit.
1855 * Called from include/linux/fs.h:putname().
1856 */
1857void audit_putname(const char *name)
1858{
1859    struct audit_context *context = current->audit_context;
1860
1861    BUG_ON(!context);
1862    if (!context->in_syscall) {
1863#if AUDIT_DEBUG == 2
1864        printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1865               __FILE__, __LINE__, context->serial, name);
1866        if (context->name_count) {
1867            int i;
1868            for (i = 0; i < context->name_count; i++)
1869                printk(KERN_ERR "name[%d] = %p = %s\n", i,
1870                       context->names[i].name,
1871                       context->names[i].name ?: "(null)");
1872        }
1873#endif
1874        __putname(name);
1875    }
1876#if AUDIT_DEBUG
1877    else {
1878        ++context->put_count;
1879        if (context->put_count > context->name_count) {
1880            printk(KERN_ERR "%s:%d(:%d): major=%d"
1881                   " in_syscall=%d putname(%p) name_count=%d"
1882                   " put_count=%d\n",
1883                   __FILE__, __LINE__,
1884                   context->serial, context->major,
1885                   context->in_syscall, name, context->name_count,
1886                   context->put_count);
1887            dump_stack();
1888        }
1889    }
1890#endif
1891}
1892
1893static int audit_inc_name_count(struct audit_context *context,
1894                const struct inode *inode)
1895{
1896    if (context->name_count >= AUDIT_NAMES) {
1897        if (inode)
1898            printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1899                   "dev=%02x:%02x, inode=%lu\n",
1900                   MAJOR(inode->i_sb->s_dev),
1901                   MINOR(inode->i_sb->s_dev),
1902                   inode->i_ino);
1903
1904        else
1905            printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1906        return 1;
1907    }
1908    context->name_count++;
1909#if AUDIT_DEBUG
1910    context->ino_count++;
1911#endif
1912    return 0;
1913}
1914
1915
1916static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1917{
1918    struct cpu_vfs_cap_data caps;
1919    int rc;
1920
1921    memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1922    memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1923    name->fcap.fE = 0;
1924    name->fcap_ver = 0;
1925
1926    if (!dentry)
1927        return 0;
1928
1929    rc = get_vfs_caps_from_disk(dentry, &caps);
1930    if (rc)
1931        return rc;
1932
1933    name->fcap.permitted = caps.permitted;
1934    name->fcap.inheritable = caps.inheritable;
1935    name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1936    name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1937
1938    return 0;
1939}
1940
1941
1942/* Copy inode data into an audit_names. */
1943static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1944                 const struct inode *inode)
1945{
1946    name->ino = inode->i_ino;
1947    name->dev = inode->i_sb->s_dev;
1948    name->mode = inode->i_mode;
1949    name->uid = inode->i_uid;
1950    name->gid = inode->i_gid;
1951    name->rdev = inode->i_rdev;
1952    security_inode_getsecid(inode, &name->osid);
1953    audit_copy_fcaps(name, dentry);
1954}
1955
1956/**
1957 * audit_inode - store the inode and device from a lookup
1958 * @name: name being audited
1959 * @dentry: dentry being audited
1960 *
1961 * Called from fs/namei.c:path_lookup().
1962 */
1963void __audit_inode(const char *name, const struct dentry *dentry)
1964{
1965    int idx;
1966    struct audit_context *context = current->audit_context;
1967    const struct inode *inode = dentry->d_inode;
1968
1969    if (!context->in_syscall)
1970        return;
1971    if (context->name_count
1972        && context->names[context->name_count-1].name
1973        && context->names[context->name_count-1].name == name)
1974        idx = context->name_count - 1;
1975    else if (context->name_count > 1
1976         && context->names[context->name_count-2].name
1977         && context->names[context->name_count-2].name == name)
1978        idx = context->name_count - 2;
1979    else {
1980        /* FIXME: how much do we care about inodes that have no
1981         * associated name? */
1982        if (audit_inc_name_count(context, inode))
1983            return;
1984        idx = context->name_count - 1;
1985        context->names[idx].name = NULL;
1986    }
1987    handle_path(dentry);
1988    audit_copy_inode(&context->names[idx], dentry, inode);
1989}
1990
1991/**
1992 * audit_inode_child - collect inode info for created/removed objects
1993 * @dentry: dentry being audited
1994 * @parent: inode of dentry parent
1995 *
1996 * For syscalls that create or remove filesystem objects, audit_inode
1997 * can only collect information for the filesystem object's parent.
1998 * This call updates the audit context with the child's information.
1999 * Syscalls that create a new filesystem object must be hooked after
2000 * the object is created. Syscalls that remove a filesystem object
2001 * must be hooked prior, in order to capture the target inode during
2002 * unsuccessful attempts.
2003 */
2004void __audit_inode_child(const struct dentry *dentry,
2005             const struct inode *parent)
2006{
2007    int idx;
2008    struct audit_context *context = current->audit_context;
2009    const char *found_parent = NULL, *found_child = NULL;
2010    const struct inode *inode = dentry->d_inode;
2011    const char *dname = dentry->d_name.name;
2012    int dirlen = 0;
2013
2014    if (!context->in_syscall)
2015        return;
2016
2017    if (inode)
2018        handle_one(inode);
2019
2020    /* parent is more likely, look for it first */
2021    for (idx = 0; idx < context->name_count; idx++) {
2022        struct audit_names *n = &context->names[idx];
2023
2024        if (!n->name)
2025            continue;
2026
2027        if (n->ino == parent->i_ino &&
2028            !audit_compare_dname_path(dname, n->name, &dirlen)) {
2029            n->name_len = dirlen; /* update parent data in place */
2030            found_parent = n->name;
2031            goto add_names;
2032        }
2033    }
2034
2035    /* no matching parent, look for matching child */
2036    for (idx = 0; idx < context->name_count; idx++) {
2037        struct audit_names *n = &context->names[idx];
2038
2039        if (!n->name)
2040            continue;
2041
2042        /* strcmp() is the more likely scenario */
2043        if (!strcmp(dname, n->name) ||
2044             !audit_compare_dname_path(dname, n->name, &dirlen)) {
2045            if (inode)
2046                audit_copy_inode(n, NULL, inode);
2047            else
2048                n->ino = (unsigned long)-1;
2049            found_child = n->name;
2050            goto add_names;
2051        }
2052    }
2053
2054add_names:
2055    if (!found_parent) {
2056        if (audit_inc_name_count(context, parent))
2057            return;
2058        idx = context->name_count - 1;
2059        context->names[idx].name = NULL;
2060        audit_copy_inode(&context->names[idx], NULL, parent);
2061    }
2062
2063    if (!found_child) {
2064        if (audit_inc_name_count(context, inode))
2065            return;
2066        idx = context->name_count - 1;
2067
2068        /* Re-use the name belonging to the slot for a matching parent
2069         * directory. All names for this context are relinquished in
2070         * audit_free_names() */
2071        if (found_parent) {
2072            context->names[idx].name = found_parent;
2073            context->names[idx].name_len = AUDIT_NAME_FULL;
2074            /* don't call __putname() */
2075            context->names[idx].name_put = 0;
2076        } else {
2077            context->names[idx].name = NULL;
2078        }
2079
2080        if (inode)
2081            audit_copy_inode(&context->names[idx], NULL, inode);
2082        else
2083            context->names[idx].ino = (unsigned long)-1;
2084    }
2085}
2086EXPORT_SYMBOL_GPL(__audit_inode_child);
2087
2088/**
2089 * auditsc_get_stamp - get local copies of audit_context values
2090 * @ctx: audit_context for the task
2091 * @t: timespec to store time recorded in the audit_context
2092 * @serial: serial value that is recorded in the audit_context
2093 *
2094 * Also sets the context as auditable.
2095 */
2096int auditsc_get_stamp(struct audit_context *ctx,
2097               struct timespec *t, unsigned int *serial)
2098{
2099    if (!ctx->in_syscall)
2100        return 0;
2101    if (!ctx->serial)
2102        ctx->serial = audit_serial();
2103    t->tv_sec = ctx->ctime.tv_sec;
2104    t->tv_nsec = ctx->ctime.tv_nsec;
2105    *serial = ctx->serial;
2106    if (!ctx->prio) {
2107        ctx->prio = 1;
2108        ctx->current_state = AUDIT_RECORD_CONTEXT;
2109    }
2110    return 1;
2111}
2112
2113/* global counter which is incremented every time something logs in */
2114static atomic_t session_id = ATOMIC_INIT(0);
2115
2116/**
2117 * audit_set_loginuid - set a task's audit_context loginuid
2118 * @task: task whose audit context is being modified
2119 * @loginuid: loginuid value
2120 *
2121 * Returns 0.
2122 *
2123 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2124 */
2125int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2126{
2127    unsigned int sessionid = atomic_inc_return(&session_id);
2128    struct audit_context *context = task->audit_context;
2129
2130    if (context && context->in_syscall) {
2131        struct audit_buffer *ab;
2132
2133        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2134        if (ab) {
2135            audit_log_format(ab, "login pid=%d uid=%u "
2136                "old auid=%u new auid=%u"
2137                " old ses=%u new ses=%u",
2138                task->pid, task_uid(task),
2139                task->loginuid, loginuid,
2140                task->sessionid, sessionid);
2141            audit_log_end(ab);
2142        }
2143    }
2144    task->sessionid = sessionid;
2145    task->loginuid = loginuid;
2146    return 0;
2147}
2148
2149/**
2150 * __audit_mq_open - record audit data for a POSIX MQ open
2151 * @oflag: open flag
2152 * @mode: mode bits
2153 * @attr: queue attributes
2154 *
2155 */
2156void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2157{
2158    struct audit_context *context = current->audit_context;
2159
2160    if (attr)
2161        memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2162    else
2163        memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2164
2165    context->mq_open.oflag = oflag;
2166    context->mq_open.mode = mode;
2167
2168    context->type = AUDIT_MQ_OPEN;
2169}
2170
2171/**
2172 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2173 * @mqdes: MQ descriptor
2174 * @msg_len: Message length
2175 * @msg_prio: Message priority
2176 * @abs_timeout: Message timeout in absolute time
2177 *
2178 */
2179void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2180            const struct timespec *abs_timeout)
2181{
2182    struct audit_context *context = current->audit_context;
2183    struct timespec *p = &context->mq_sendrecv.abs_timeout;
2184
2185    if (abs_timeout)
2186        memcpy(p, abs_timeout, sizeof(struct timespec));
2187    else
2188        memset(p, 0, sizeof(struct timespec));
2189
2190    context->mq_sendrecv.mqdes = mqdes;
2191    context->mq_sendrecv.msg_len = msg_len;
2192    context->mq_sendrecv.msg_prio = msg_prio;
2193
2194    context->type = AUDIT_MQ_SENDRECV;
2195}
2196
2197/**
2198 * __audit_mq_notify - record audit data for a POSIX MQ notify
2199 * @mqdes: MQ descriptor
2200 * @notification: Notification event
2201 *
2202 */
2203
2204void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2205{
2206    struct audit_context *context = current->audit_context;
2207
2208    if (notification)
2209        context->mq_notify.sigev_signo = notification->sigev_signo;
2210    else
2211        context->mq_notify.sigev_signo = 0;
2212
2213    context->mq_notify.mqdes = mqdes;
2214    context->type = AUDIT_MQ_NOTIFY;
2215}
2216
2217/**
2218 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2219 * @mqdes: MQ descriptor
2220 * @mqstat: MQ flags
2221 *
2222 */
2223void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2224{
2225    struct audit_context *context = current->audit_context;
2226    context->mq_getsetattr.mqdes = mqdes;
2227    context->mq_getsetattr.mqstat = *mqstat;
2228    context->type = AUDIT_MQ_GETSETATTR;
2229}
2230
2231/**
2232 * audit_ipc_obj - record audit data for ipc object
2233 * @ipcp: ipc permissions
2234 *
2235 */
2236void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2237{
2238    struct audit_context *context = current->audit_context;
2239    context->ipc.uid = ipcp->uid;
2240    context->ipc.gid = ipcp->gid;
2241    context->ipc.mode = ipcp->mode;
2242    context->ipc.has_perm = 0;
2243    security_ipc_getsecid(ipcp, &context->ipc.osid);
2244    context->type = AUDIT_IPC;
2245}
2246
2247/**
2248 * audit_ipc_set_perm - record audit data for new ipc permissions
2249 * @qbytes: msgq bytes
2250 * @uid: msgq user id
2251 * @gid: msgq group id
2252 * @mode: msgq mode (permissions)
2253 *
2254 * Called only after audit_ipc_obj().
2255 */
2256void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2257{
2258    struct audit_context *context = current->audit_context;
2259
2260    context->ipc.qbytes = qbytes;
2261    context->ipc.perm_uid = uid;
2262    context->ipc.perm_gid = gid;
2263    context->ipc.perm_mode = mode;
2264    context->ipc.has_perm = 1;
2265}
2266
2267int audit_bprm(struct linux_binprm *bprm)
2268{
2269    struct audit_aux_data_execve *ax;
2270    struct audit_context *context = current->audit_context;
2271
2272    if (likely(!audit_enabled || !context || context->dummy))
2273        return 0;
2274
2275    ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2276    if (!ax)
2277        return -ENOMEM;
2278
2279    ax->argc = bprm->argc;
2280    ax->envc = bprm->envc;
2281    ax->mm = bprm->mm;
2282    ax->d.type = AUDIT_EXECVE;
2283    ax->d.next = context->aux;
2284    context->aux = (void *)ax;
2285    return 0;
2286}
2287
2288
2289/**
2290 * audit_socketcall - record audit data for sys_socketcall
2291 * @nargs: number of args
2292 * @args: args array
2293 *
2294 */
2295void audit_socketcall(int nargs, unsigned long *args)
2296{
2297    struct audit_context *context = current->audit_context;
2298
2299    if (likely(!context || context->dummy))
2300        return;
2301
2302    context->type = AUDIT_SOCKETCALL;
2303    context->socketcall.nargs = nargs;
2304    memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2305}
2306
2307/**
2308 * __audit_fd_pair - record audit data for pipe and socketpair
2309 * @fd1: the first file descriptor
2310 * @fd2: the second file descriptor
2311 *
2312 */
2313void __audit_fd_pair(int fd1, int fd2)
2314{
2315    struct audit_context *context = current->audit_context;
2316    context->fds[0] = fd1;
2317    context->fds[1] = fd2;
2318}
2319
2320/**
2321 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2322 * @len: data length in user space
2323 * @a: data address in kernel space
2324 *
2325 * Returns 0 for success or NULL context or < 0 on error.
2326 */
2327int audit_sockaddr(int len, void *a)
2328{
2329    struct audit_context *context = current->audit_context;
2330
2331    if (likely(!context || context->dummy))
2332        return 0;
2333
2334    if (!context->sockaddr) {
2335        void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2336        if (!p)
2337            return -ENOMEM;
2338        context->sockaddr = p;
2339    }
2340
2341    context->sockaddr_len = len;
2342    memcpy(context->sockaddr, a, len);
2343    return 0;
2344}
2345
2346void __audit_ptrace(struct task_struct *t)
2347{
2348    struct audit_context *context = current->audit_context;
2349
2350    context->target_pid = t->pid;
2351    context->target_auid = audit_get_loginuid(t);
2352    context->target_uid = task_uid(t);
2353    context->target_sessionid = audit_get_sessionid(t);
2354    security_task_getsecid(t, &context->target_sid);
2355    memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2356}
2357
2358/**
2359 * audit_signal_info - record signal info for shutting down audit subsystem
2360 * @sig: signal value
2361 * @t: task being signaled
2362 *
2363 * If the audit subsystem is being terminated, record the task (pid)
2364 * and uid that is doing that.
2365 */
2366int __audit_signal_info(int sig, struct task_struct *t)
2367{
2368    struct audit_aux_data_pids *axp;
2369    struct task_struct *tsk = current;
2370    struct audit_context *ctx = tsk->audit_context;
2371    uid_t uid = current_uid(), t_uid = task_uid(t);
2372
2373    if (audit_pid && t->tgid == audit_pid) {
2374        if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2375            audit_sig_pid = tsk->pid;
2376            if (tsk->loginuid != -1)
2377                audit_sig_uid = tsk->loginuid;
2378            else
2379                audit_sig_uid = uid;
2380            security_task_getsecid(tsk, &audit_sig_sid);
2381        }
2382        if (!audit_signals || audit_dummy_context())
2383            return 0;
2384    }
2385
2386    /* optimize the common case by putting first signal recipient directly
2387     * in audit_context */
2388    if (!ctx->target_pid) {
2389        ctx->target_pid = t->tgid;
2390        ctx->target_auid = audit_get_loginuid(t);
2391        ctx->target_uid = t_uid;
2392        ctx->target_sessionid = audit_get_sessionid(t);
2393        security_task_getsecid(t, &ctx->target_sid);
2394        memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2395        return 0;
2396    }
2397
2398    axp = (void *)ctx->aux_pids;
2399    if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2400        axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2401        if (!axp)
2402            return -ENOMEM;
2403
2404        axp->d.type = AUDIT_OBJ_PID;
2405        axp->d.next = ctx->aux_pids;
2406        ctx->aux_pids = (void *)axp;
2407    }
2408    BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2409
2410    axp->target_pid[axp->pid_count] = t->tgid;
2411    axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2412    axp->target_uid[axp->pid_count] = t_uid;
2413    axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2414    security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2415    memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2416    axp->pid_count++;
2417
2418    return 0;
2419}
2420
2421/**
2422 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2423 * @bprm: pointer to the bprm being processed
2424 * @new: the proposed new credentials
2425 * @old: the old credentials
2426 *
2427 * Simply check if the proc already has the caps given by the file and if not
2428 * store the priv escalation info for later auditing at the end of the syscall
2429 *
2430 * -Eric
2431 */
2432int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2433               const struct cred *new, const struct cred *old)
2434{
2435    struct audit_aux_data_bprm_fcaps *ax;
2436    struct audit_context *context = current->audit_context;
2437    struct cpu_vfs_cap_data vcaps;
2438    struct dentry *dentry;
2439
2440    ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2441    if (!ax)
2442        return -ENOMEM;
2443
2444    ax->d.type = AUDIT_BPRM_FCAPS;
2445    ax->d.next = context->aux;
2446    context->aux = (void *)ax;
2447
2448    dentry = dget(bprm->file->f_dentry);
2449    get_vfs_caps_from_disk(dentry, &vcaps);
2450    dput(dentry);
2451
2452    ax->fcap.permitted = vcaps.permitted;
2453    ax->fcap.inheritable = vcaps.inheritable;
2454    ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2455    ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2456
2457    ax->old_pcap.permitted = old->cap_permitted;
2458    ax->old_pcap.inheritable = old->cap_inheritable;
2459    ax->old_pcap.effective = old->cap_effective;
2460
2461    ax->new_pcap.permitted = new->cap_permitted;
2462    ax->new_pcap.inheritable = new->cap_inheritable;
2463    ax->new_pcap.effective = new->cap_effective;
2464    return 0;
2465}
2466
2467/**
2468 * __audit_log_capset - store information about the arguments to the capset syscall
2469 * @pid: target pid of the capset call
2470 * @new: the new credentials
2471 * @old: the old (current) credentials
2472 *
2473 * Record the aguments userspace sent to sys_capset for later printing by the
2474 * audit system if applicable
2475 */
2476void __audit_log_capset(pid_t pid,
2477               const struct cred *new, const struct cred *old)
2478{
2479    struct audit_context *context = current->audit_context;
2480    context->capset.pid = pid;
2481    context->capset.cap.effective = new->cap_effective;
2482    context->capset.cap.inheritable = new->cap_effective;
2483    context->capset.cap.permitted = new->cap_permitted;
2484    context->type = AUDIT_CAPSET;
2485}
2486
2487void __audit_mmap_fd(int fd, int flags)
2488{
2489    struct audit_context *context = current->audit_context;
2490    context->mmap.fd = fd;
2491    context->mmap.flags = flags;
2492    context->type = AUDIT_MMAP;
2493}
2494
2495/**
2496 * audit_core_dumps - record information about processes that end abnormally
2497 * @signr: signal value
2498 *
2499 * If a process ends with a core dump, something fishy is going on and we
2500 * should record the event for investigation.
2501 */
2502void audit_core_dumps(long signr)
2503{
2504    struct audit_buffer *ab;
2505    u32 sid;
2506    uid_t auid = audit_get_loginuid(current), uid;
2507    gid_t gid;
2508    unsigned int sessionid = audit_get_sessionid(current);
2509
2510    if (!audit_enabled)
2511        return;
2512
2513    if (signr == SIGQUIT) /* don't care for those */
2514        return;
2515
2516    ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2517    current_uid_gid(&uid, &gid);
2518    audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2519             auid, uid, gid, sessionid);
2520    security_task_getsecid(current, &sid);
2521    if (sid) {
2522        char *ctx = NULL;
2523        u32 len;
2524
2525        if (security_secid_to_secctx(sid, &ctx, &len))
2526            audit_log_format(ab, " ssid=%u", sid);
2527        else {
2528            audit_log_format(ab, " subj=%s", ctx);
2529            security_release_secctx(ctx, len);
2530        }
2531    }
2532    audit_log_format(ab, " pid=%d comm=", current->pid);
2533    audit_log_untrustedstring(ab, current->comm);
2534    audit_log_format(ab, " sig=%ld", signr);
2535    audit_log_end(ab);
2536}
2537
2538struct list_head *audit_killed_trees(void)
2539{
2540    struct audit_context *ctx = current->audit_context;
2541    if (likely(!ctx || !ctx->in_syscall))
2542        return NULL;
2543    return &ctx->killed_trees;
2544}
2545

Archive Download this file



interactive