Root/kernel/futex.c

1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
57#include <linux/signal.h>
58#include <linux/module.h>
59#include <linux/magic.h>
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
63#include <asm/futex.h>
64
65#include "rtmutex_common.h"
66
67int __read_mostly futex_cmpxchg_enabled;
68
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71/*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75#define FLAGS_SHARED 0x01
76#define FLAGS_CLOCKRT 0x02
77#define FLAGS_HAS_TIMEOUT 0x04
78
79/*
80 * Priority Inheritance state:
81 */
82struct futex_pi_state {
83    /*
84     * list of 'owned' pi_state instances - these have to be
85     * cleaned up in do_exit() if the task exits prematurely:
86     */
87    struct list_head list;
88
89    /*
90     * The PI object:
91     */
92    struct rt_mutex pi_mutex;
93
94    struct task_struct *owner;
95    atomic_t refcount;
96
97    union futex_key key;
98};
99
100/**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
102 * @list: priority-sorted list of tasks waiting on this futex
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116 * The order of wakeup is always to make the first condition true, then
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
121 */
122struct futex_q {
123    struct plist_node list;
124
125    struct task_struct *task;
126    spinlock_t *lock_ptr;
127    union futex_key key;
128    struct futex_pi_state *pi_state;
129    struct rt_mutex_waiter *rt_waiter;
130    union futex_key *requeue_pi_key;
131    u32 bitset;
132};
133
134static const struct futex_q futex_q_init = {
135    /* list gets initialized in queue_me()*/
136    .key = FUTEX_KEY_INIT,
137    .bitset = FUTEX_BITSET_MATCH_ANY
138};
139
140/*
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
144 */
145struct futex_hash_bucket {
146    spinlock_t lock;
147    struct plist_head chain;
148};
149
150static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152/*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155static struct futex_hash_bucket *hash_futex(union futex_key *key)
156{
157    u32 hash = jhash2((u32*)&key->both.word,
158              (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159              key->both.offset);
160    return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161}
162
163/*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166static inline int match_futex(union futex_key *key1, union futex_key *key2)
167{
168    return (key1 && key2
169        && key1->both.word == key2->both.word
170        && key1->both.ptr == key2->both.ptr
171        && key1->both.offset == key2->both.offset);
172}
173
174/*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179static void get_futex_key_refs(union futex_key *key)
180{
181    if (!key->both.ptr)
182        return;
183
184    switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185    case FUT_OFF_INODE:
186        ihold(key->shared.inode);
187        break;
188    case FUT_OFF_MMSHARED:
189        atomic_inc(&key->private.mm->mm_count);
190        break;
191    }
192}
193
194/*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198static void drop_futex_key_refs(union futex_key *key)
199{
200    if (!key->both.ptr) {
201        /* If we're here then we tried to put a key we failed to get */
202        WARN_ON_ONCE(1);
203        return;
204    }
205
206    switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207    case FUT_OFF_INODE:
208        iput(key->shared.inode);
209        break;
210    case FUT_OFF_MMSHARED:
211        mmdrop(key->private.mm);
212        break;
213    }
214}
215
216/**
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
221 *
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
224 *
225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
228 *
229 * lock_page() might sleep, the caller should not hold a spinlock.
230 */
231static int
232get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233{
234    unsigned long address = (unsigned long)uaddr;
235    struct mm_struct *mm = current->mm;
236    struct page *page, *page_head;
237    int err;
238
239    /*
240     * The futex address must be "naturally" aligned.
241     */
242    key->both.offset = address % PAGE_SIZE;
243    if (unlikely((address % sizeof(u32)) != 0))
244        return -EINVAL;
245    address -= key->both.offset;
246
247    /*
248     * PROCESS_PRIVATE futexes are fast.
249     * As the mm cannot disappear under us and the 'key' only needs
250     * virtual address, we dont even have to find the underlying vma.
251     * Note : We do have to check 'uaddr' is a valid user address,
252     * but access_ok() should be faster than find_vma()
253     */
254    if (!fshared) {
255        if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256            return -EFAULT;
257        key->private.mm = mm;
258        key->private.address = address;
259        get_futex_key_refs(key);
260        return 0;
261    }
262
263again:
264    err = get_user_pages_fast(address, 1, 1, &page);
265    if (err < 0)
266        return err;
267
268#ifdef CONFIG_TRANSPARENT_HUGEPAGE
269    page_head = page;
270    if (unlikely(PageTail(page))) {
271        put_page(page);
272        /* serialize against __split_huge_page_splitting() */
273        local_irq_disable();
274        if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275            page_head = compound_head(page);
276            /*
277             * page_head is valid pointer but we must pin
278             * it before taking the PG_lock and/or
279             * PG_compound_lock. The moment we re-enable
280             * irqs __split_huge_page_splitting() can
281             * return and the head page can be freed from
282             * under us. We can't take the PG_lock and/or
283             * PG_compound_lock on a page that could be
284             * freed from under us.
285             */
286            if (page != page_head) {
287                get_page(page_head);
288                put_page(page);
289            }
290            local_irq_enable();
291        } else {
292            local_irq_enable();
293            goto again;
294        }
295    }
296#else
297    page_head = compound_head(page);
298    if (page != page_head) {
299        get_page(page_head);
300        put_page(page);
301    }
302#endif
303
304    lock_page(page_head);
305    if (!page_head->mapping) {
306        unlock_page(page_head);
307        put_page(page_head);
308        goto again;
309    }
310
311    /*
312     * Private mappings are handled in a simple way.
313     *
314     * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315     * it's a read-only handle, it's expected that futexes attach to
316     * the object not the particular process.
317     */
318    if (PageAnon(page_head)) {
319        key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320        key->private.mm = mm;
321        key->private.address = address;
322    } else {
323        key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324        key->shared.inode = page_head->mapping->host;
325        key->shared.pgoff = page_head->index;
326    }
327
328    get_futex_key_refs(key);
329
330    unlock_page(page_head);
331    put_page(page_head);
332    return 0;
333}
334
335static inline void put_futex_key(union futex_key *key)
336{
337    drop_futex_key_refs(key);
338}
339
340/**
341 * fault_in_user_writeable() - Fault in user address and verify RW access
342 * @uaddr: pointer to faulting user space address
343 *
344 * Slow path to fixup the fault we just took in the atomic write
345 * access to @uaddr.
346 *
347 * We have no generic implementation of a non-destructive write to the
348 * user address. We know that we faulted in the atomic pagefault
349 * disabled section so we can as well avoid the #PF overhead by
350 * calling get_user_pages() right away.
351 */
352static int fault_in_user_writeable(u32 __user *uaddr)
353{
354    struct mm_struct *mm = current->mm;
355    int ret;
356
357    down_read(&mm->mmap_sem);
358    ret = get_user_pages(current, mm, (unsigned long)uaddr,
359                 1, 1, 0, NULL, NULL);
360    up_read(&mm->mmap_sem);
361
362    return ret < 0 ? ret : 0;
363}
364
365/**
366 * futex_top_waiter() - Return the highest priority waiter on a futex
367 * @hb: the hash bucket the futex_q's reside in
368 * @key: the futex key (to distinguish it from other futex futex_q's)
369 *
370 * Must be called with the hb lock held.
371 */
372static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373                    union futex_key *key)
374{
375    struct futex_q *this;
376
377    plist_for_each_entry(this, &hb->chain, list) {
378        if (match_futex(&this->key, key))
379            return this;
380    }
381    return NULL;
382}
383
384static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
385{
386    u32 curval;
387
388    pagefault_disable();
389    curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
390    pagefault_enable();
391
392    return curval;
393}
394
395static int get_futex_value_locked(u32 *dest, u32 __user *from)
396{
397    int ret;
398
399    pagefault_disable();
400    ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
401    pagefault_enable();
402
403    return ret ? -EFAULT : 0;
404}
405
406
407/*
408 * PI code:
409 */
410static int refill_pi_state_cache(void)
411{
412    struct futex_pi_state *pi_state;
413
414    if (likely(current->pi_state_cache))
415        return 0;
416
417    pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
418
419    if (!pi_state)
420        return -ENOMEM;
421
422    INIT_LIST_HEAD(&pi_state->list);
423    /* pi_mutex gets initialized later */
424    pi_state->owner = NULL;
425    atomic_set(&pi_state->refcount, 1);
426    pi_state->key = FUTEX_KEY_INIT;
427
428    current->pi_state_cache = pi_state;
429
430    return 0;
431}
432
433static struct futex_pi_state * alloc_pi_state(void)
434{
435    struct futex_pi_state *pi_state = current->pi_state_cache;
436
437    WARN_ON(!pi_state);
438    current->pi_state_cache = NULL;
439
440    return pi_state;
441}
442
443static void free_pi_state(struct futex_pi_state *pi_state)
444{
445    if (!atomic_dec_and_test(&pi_state->refcount))
446        return;
447
448    /*
449     * If pi_state->owner is NULL, the owner is most probably dying
450     * and has cleaned up the pi_state already
451     */
452    if (pi_state->owner) {
453        raw_spin_lock_irq(&pi_state->owner->pi_lock);
454        list_del_init(&pi_state->list);
455        raw_spin_unlock_irq(&pi_state->owner->pi_lock);
456
457        rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
458    }
459
460    if (current->pi_state_cache)
461        kfree(pi_state);
462    else {
463        /*
464         * pi_state->list is already empty.
465         * clear pi_state->owner.
466         * refcount is at 0 - put it back to 1.
467         */
468        pi_state->owner = NULL;
469        atomic_set(&pi_state->refcount, 1);
470        current->pi_state_cache = pi_state;
471    }
472}
473
474/*
475 * Look up the task based on what TID userspace gave us.
476 * We dont trust it.
477 */
478static struct task_struct * futex_find_get_task(pid_t pid)
479{
480    struct task_struct *p;
481
482    rcu_read_lock();
483    p = find_task_by_vpid(pid);
484    if (p)
485        get_task_struct(p);
486
487    rcu_read_unlock();
488
489    return p;
490}
491
492/*
493 * This task is holding PI mutexes at exit time => bad.
494 * Kernel cleans up PI-state, but userspace is likely hosed.
495 * (Robust-futex cleanup is separate and might save the day for userspace.)
496 */
497void exit_pi_state_list(struct task_struct *curr)
498{
499    struct list_head *next, *head = &curr->pi_state_list;
500    struct futex_pi_state *pi_state;
501    struct futex_hash_bucket *hb;
502    union futex_key key = FUTEX_KEY_INIT;
503
504    if (!futex_cmpxchg_enabled)
505        return;
506    /*
507     * We are a ZOMBIE and nobody can enqueue itself on
508     * pi_state_list anymore, but we have to be careful
509     * versus waiters unqueueing themselves:
510     */
511    raw_spin_lock_irq(&curr->pi_lock);
512    while (!list_empty(head)) {
513
514        next = head->next;
515        pi_state = list_entry(next, struct futex_pi_state, list);
516        key = pi_state->key;
517        hb = hash_futex(&key);
518        raw_spin_unlock_irq(&curr->pi_lock);
519
520        spin_lock(&hb->lock);
521
522        raw_spin_lock_irq(&curr->pi_lock);
523        /*
524         * We dropped the pi-lock, so re-check whether this
525         * task still owns the PI-state:
526         */
527        if (head->next != next) {
528            spin_unlock(&hb->lock);
529            continue;
530        }
531
532        WARN_ON(pi_state->owner != curr);
533        WARN_ON(list_empty(&pi_state->list));
534        list_del_init(&pi_state->list);
535        pi_state->owner = NULL;
536        raw_spin_unlock_irq(&curr->pi_lock);
537
538        rt_mutex_unlock(&pi_state->pi_mutex);
539
540        spin_unlock(&hb->lock);
541
542        raw_spin_lock_irq(&curr->pi_lock);
543    }
544    raw_spin_unlock_irq(&curr->pi_lock);
545}
546
547static int
548lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
549        union futex_key *key, struct futex_pi_state **ps)
550{
551    struct futex_pi_state *pi_state = NULL;
552    struct futex_q *this, *next;
553    struct plist_head *head;
554    struct task_struct *p;
555    pid_t pid = uval & FUTEX_TID_MASK;
556
557    head = &hb->chain;
558
559    plist_for_each_entry_safe(this, next, head, list) {
560        if (match_futex(&this->key, key)) {
561            /*
562             * Another waiter already exists - bump up
563             * the refcount and return its pi_state:
564             */
565            pi_state = this->pi_state;
566            /*
567             * Userspace might have messed up non-PI and PI futexes
568             */
569            if (unlikely(!pi_state))
570                return -EINVAL;
571
572            WARN_ON(!atomic_read(&pi_state->refcount));
573
574            /*
575             * When pi_state->owner is NULL then the owner died
576             * and another waiter is on the fly. pi_state->owner
577             * is fixed up by the task which acquires
578             * pi_state->rt_mutex.
579             *
580             * We do not check for pid == 0 which can happen when
581             * the owner died and robust_list_exit() cleared the
582             * TID.
583             */
584            if (pid && pi_state->owner) {
585                /*
586                 * Bail out if user space manipulated the
587                 * futex value.
588                 */
589                if (pid != task_pid_vnr(pi_state->owner))
590                    return -EINVAL;
591            }
592
593            atomic_inc(&pi_state->refcount);
594            *ps = pi_state;
595
596            return 0;
597        }
598    }
599
600    /*
601     * We are the first waiter - try to look up the real owner and attach
602     * the new pi_state to it, but bail out when TID = 0
603     */
604    if (!pid)
605        return -ESRCH;
606    p = futex_find_get_task(pid);
607    if (!p)
608        return -ESRCH;
609
610    /*
611     * We need to look at the task state flags to figure out,
612     * whether the task is exiting. To protect against the do_exit
613     * change of the task flags, we do this protected by
614     * p->pi_lock:
615     */
616    raw_spin_lock_irq(&p->pi_lock);
617    if (unlikely(p->flags & PF_EXITING)) {
618        /*
619         * The task is on the way out. When PF_EXITPIDONE is
620         * set, we know that the task has finished the
621         * cleanup:
622         */
623        int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
624
625        raw_spin_unlock_irq(&p->pi_lock);
626        put_task_struct(p);
627        return ret;
628    }
629
630    pi_state = alloc_pi_state();
631
632    /*
633     * Initialize the pi_mutex in locked state and make 'p'
634     * the owner of it:
635     */
636    rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
637
638    /* Store the key for possible exit cleanups: */
639    pi_state->key = *key;
640
641    WARN_ON(!list_empty(&pi_state->list));
642    list_add(&pi_state->list, &p->pi_state_list);
643    pi_state->owner = p;
644    raw_spin_unlock_irq(&p->pi_lock);
645
646    put_task_struct(p);
647
648    *ps = pi_state;
649
650    return 0;
651}
652
653/**
654 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
655 * @uaddr: the pi futex user address
656 * @hb: the pi futex hash bucket
657 * @key: the futex key associated with uaddr and hb
658 * @ps: the pi_state pointer where we store the result of the
659 * lookup
660 * @task: the task to perform the atomic lock work for. This will
661 * be "current" except in the case of requeue pi.
662 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
663 *
664 * Returns:
665 * 0 - ready to wait
666 * 1 - acquired the lock
667 * <0 - error
668 *
669 * The hb->lock and futex_key refs shall be held by the caller.
670 */
671static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
672                union futex_key *key,
673                struct futex_pi_state **ps,
674                struct task_struct *task, int set_waiters)
675{
676    int lock_taken, ret, ownerdied = 0;
677    u32 uval, newval, curval;
678
679retry:
680    ret = lock_taken = 0;
681
682    /*
683     * To avoid races, we attempt to take the lock here again
684     * (by doing a 0 -> TID atomic cmpxchg), while holding all
685     * the locks. It will most likely not succeed.
686     */
687    newval = task_pid_vnr(task);
688    if (set_waiters)
689        newval |= FUTEX_WAITERS;
690
691    curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
692
693    if (unlikely(curval == -EFAULT))
694        return -EFAULT;
695
696    /*
697     * Detect deadlocks.
698     */
699    if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
700        return -EDEADLK;
701
702    /*
703     * Surprise - we got the lock. Just return to userspace:
704     */
705    if (unlikely(!curval))
706        return 1;
707
708    uval = curval;
709
710    /*
711     * Set the FUTEX_WAITERS flag, so the owner will know it has someone
712     * to wake at the next unlock.
713     */
714    newval = curval | FUTEX_WAITERS;
715
716    /*
717     * There are two cases, where a futex might have no owner (the
718     * owner TID is 0): OWNER_DIED. We take over the futex in this
719     * case. We also do an unconditional take over, when the owner
720     * of the futex died.
721     *
722     * This is safe as we are protected by the hash bucket lock !
723     */
724    if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
725        /* Keep the OWNER_DIED bit */
726        newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
727        ownerdied = 0;
728        lock_taken = 1;
729    }
730
731    curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
732
733    if (unlikely(curval == -EFAULT))
734        return -EFAULT;
735    if (unlikely(curval != uval))
736        goto retry;
737
738    /*
739     * We took the lock due to owner died take over.
740     */
741    if (unlikely(lock_taken))
742        return 1;
743
744    /*
745     * We dont have the lock. Look up the PI state (or create it if
746     * we are the first waiter):
747     */
748    ret = lookup_pi_state(uval, hb, key, ps);
749
750    if (unlikely(ret)) {
751        switch (ret) {
752        case -ESRCH:
753            /*
754             * No owner found for this futex. Check if the
755             * OWNER_DIED bit is set to figure out whether
756             * this is a robust futex or not.
757             */
758            if (get_futex_value_locked(&curval, uaddr))
759                return -EFAULT;
760
761            /*
762             * We simply start over in case of a robust
763             * futex. The code above will take the futex
764             * and return happy.
765             */
766            if (curval & FUTEX_OWNER_DIED) {
767                ownerdied = 1;
768                goto retry;
769            }
770        default:
771            break;
772        }
773    }
774
775    return ret;
776}
777
778/*
779 * The hash bucket lock must be held when this is called.
780 * Afterwards, the futex_q must not be accessed.
781 */
782static void wake_futex(struct futex_q *q)
783{
784    struct task_struct *p = q->task;
785
786    /*
787     * We set q->lock_ptr = NULL _before_ we wake up the task. If
788     * a non-futex wake up happens on another CPU then the task
789     * might exit and p would dereference a non-existing task
790     * struct. Prevent this by holding a reference on p across the
791     * wake up.
792     */
793    get_task_struct(p);
794
795    plist_del(&q->list, &q->list.plist);
796    /*
797     * The waiting task can free the futex_q as soon as
798     * q->lock_ptr = NULL is written, without taking any locks. A
799     * memory barrier is required here to prevent the following
800     * store to lock_ptr from getting ahead of the plist_del.
801     */
802    smp_wmb();
803    q->lock_ptr = NULL;
804
805    wake_up_state(p, TASK_NORMAL);
806    put_task_struct(p);
807}
808
809static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
810{
811    struct task_struct *new_owner;
812    struct futex_pi_state *pi_state = this->pi_state;
813    u32 curval, newval;
814
815    if (!pi_state)
816        return -EINVAL;
817
818    /*
819     * If current does not own the pi_state then the futex is
820     * inconsistent and user space fiddled with the futex value.
821     */
822    if (pi_state->owner != current)
823        return -EINVAL;
824
825    raw_spin_lock(&pi_state->pi_mutex.wait_lock);
826    new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
827
828    /*
829     * It is possible that the next waiter (the one that brought
830     * this owner to the kernel) timed out and is no longer
831     * waiting on the lock.
832     */
833    if (!new_owner)
834        new_owner = this->task;
835
836    /*
837     * We pass it to the next owner. (The WAITERS bit is always
838     * kept enabled while there is PI state around. We must also
839     * preserve the owner died bit.)
840     */
841    if (!(uval & FUTEX_OWNER_DIED)) {
842        int ret = 0;
843
844        newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
845
846        curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
847
848        if (curval == -EFAULT)
849            ret = -EFAULT;
850        else if (curval != uval)
851            ret = -EINVAL;
852        if (ret) {
853            raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
854            return ret;
855        }
856    }
857
858    raw_spin_lock_irq(&pi_state->owner->pi_lock);
859    WARN_ON(list_empty(&pi_state->list));
860    list_del_init(&pi_state->list);
861    raw_spin_unlock_irq(&pi_state->owner->pi_lock);
862
863    raw_spin_lock_irq(&new_owner->pi_lock);
864    WARN_ON(!list_empty(&pi_state->list));
865    list_add(&pi_state->list, &new_owner->pi_state_list);
866    pi_state->owner = new_owner;
867    raw_spin_unlock_irq(&new_owner->pi_lock);
868
869    raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
870    rt_mutex_unlock(&pi_state->pi_mutex);
871
872    return 0;
873}
874
875static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
876{
877    u32 oldval;
878
879    /*
880     * There is no waiter, so we unlock the futex. The owner died
881     * bit has not to be preserved here. We are the owner:
882     */
883    oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
884
885    if (oldval == -EFAULT)
886        return oldval;
887    if (oldval != uval)
888        return -EAGAIN;
889
890    return 0;
891}
892
893/*
894 * Express the locking dependencies for lockdep:
895 */
896static inline void
897double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
898{
899    if (hb1 <= hb2) {
900        spin_lock(&hb1->lock);
901        if (hb1 < hb2)
902            spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
903    } else { /* hb1 > hb2 */
904        spin_lock(&hb2->lock);
905        spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
906    }
907}
908
909static inline void
910double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
911{
912    spin_unlock(&hb1->lock);
913    if (hb1 != hb2)
914        spin_unlock(&hb2->lock);
915}
916
917/*
918 * Wake up waiters matching bitset queued on this futex (uaddr).
919 */
920static int
921futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
922{
923    struct futex_hash_bucket *hb;
924    struct futex_q *this, *next;
925    struct plist_head *head;
926    union futex_key key = FUTEX_KEY_INIT;
927    int ret;
928
929    if (!bitset)
930        return -EINVAL;
931
932    ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
933    if (unlikely(ret != 0))
934        goto out;
935
936    hb = hash_futex(&key);
937    spin_lock(&hb->lock);
938    head = &hb->chain;
939
940    plist_for_each_entry_safe(this, next, head, list) {
941        if (match_futex (&this->key, &key)) {
942            if (this->pi_state || this->rt_waiter) {
943                ret = -EINVAL;
944                break;
945            }
946
947            /* Check if one of the bits is set in both bitsets */
948            if (!(this->bitset & bitset))
949                continue;
950
951            wake_futex(this);
952            if (++ret >= nr_wake)
953                break;
954        }
955    }
956
957    spin_unlock(&hb->lock);
958    put_futex_key(&key);
959out:
960    return ret;
961}
962
963/*
964 * Wake up all waiters hashed on the physical page that is mapped
965 * to this virtual address:
966 */
967static int
968futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
969          int nr_wake, int nr_wake2, int op)
970{
971    union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
972    struct futex_hash_bucket *hb1, *hb2;
973    struct plist_head *head;
974    struct futex_q *this, *next;
975    int ret, op_ret;
976
977retry:
978    ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
979    if (unlikely(ret != 0))
980        goto out;
981    ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
982    if (unlikely(ret != 0))
983        goto out_put_key1;
984
985    hb1 = hash_futex(&key1);
986    hb2 = hash_futex(&key2);
987
988retry_private:
989    double_lock_hb(hb1, hb2);
990    op_ret = futex_atomic_op_inuser(op, uaddr2);
991    if (unlikely(op_ret < 0)) {
992
993        double_unlock_hb(hb1, hb2);
994
995#ifndef CONFIG_MMU
996        /*
997         * we don't get EFAULT from MMU faults if we don't have an MMU,
998         * but we might get them from range checking
999         */
1000        ret = op_ret;
1001        goto out_put_keys;
1002#endif
1003
1004        if (unlikely(op_ret != -EFAULT)) {
1005            ret = op_ret;
1006            goto out_put_keys;
1007        }
1008
1009        ret = fault_in_user_writeable(uaddr2);
1010        if (ret)
1011            goto out_put_keys;
1012
1013        if (!(flags & FLAGS_SHARED))
1014            goto retry_private;
1015
1016        put_futex_key(&key2);
1017        put_futex_key(&key1);
1018        goto retry;
1019    }
1020
1021    head = &hb1->chain;
1022
1023    plist_for_each_entry_safe(this, next, head, list) {
1024        if (match_futex (&this->key, &key1)) {
1025            wake_futex(this);
1026            if (++ret >= nr_wake)
1027                break;
1028        }
1029    }
1030
1031    if (op_ret > 0) {
1032        head = &hb2->chain;
1033
1034        op_ret = 0;
1035        plist_for_each_entry_safe(this, next, head, list) {
1036            if (match_futex (&this->key, &key2)) {
1037                wake_futex(this);
1038                if (++op_ret >= nr_wake2)
1039                    break;
1040            }
1041        }
1042        ret += op_ret;
1043    }
1044
1045    double_unlock_hb(hb1, hb2);
1046out_put_keys:
1047    put_futex_key(&key2);
1048out_put_key1:
1049    put_futex_key(&key1);
1050out:
1051    return ret;
1052}
1053
1054/**
1055 * requeue_futex() - Requeue a futex_q from one hb to another
1056 * @q: the futex_q to requeue
1057 * @hb1: the source hash_bucket
1058 * @hb2: the target hash_bucket
1059 * @key2: the new key for the requeued futex_q
1060 */
1061static inline
1062void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1063           struct futex_hash_bucket *hb2, union futex_key *key2)
1064{
1065
1066    /*
1067     * If key1 and key2 hash to the same bucket, no need to
1068     * requeue.
1069     */
1070    if (likely(&hb1->chain != &hb2->chain)) {
1071        plist_del(&q->list, &hb1->chain);
1072        plist_add(&q->list, &hb2->chain);
1073        q->lock_ptr = &hb2->lock;
1074#ifdef CONFIG_DEBUG_PI_LIST
1075        q->list.plist.spinlock = &hb2->lock;
1076#endif
1077    }
1078    get_futex_key_refs(key2);
1079    q->key = *key2;
1080}
1081
1082/**
1083 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1084 * @q: the futex_q
1085 * @key: the key of the requeue target futex
1086 * @hb: the hash_bucket of the requeue target futex
1087 *
1088 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1089 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1090 * to the requeue target futex so the waiter can detect the wakeup on the right
1091 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1092 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1093 * to protect access to the pi_state to fixup the owner later. Must be called
1094 * with both q->lock_ptr and hb->lock held.
1095 */
1096static inline
1097void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1098               struct futex_hash_bucket *hb)
1099{
1100    get_futex_key_refs(key);
1101    q->key = *key;
1102
1103    WARN_ON(plist_node_empty(&q->list));
1104    plist_del(&q->list, &q->list.plist);
1105
1106    WARN_ON(!q->rt_waiter);
1107    q->rt_waiter = NULL;
1108
1109    q->lock_ptr = &hb->lock;
1110#ifdef CONFIG_DEBUG_PI_LIST
1111    q->list.plist.spinlock = &hb->lock;
1112#endif
1113
1114    wake_up_state(q->task, TASK_NORMAL);
1115}
1116
1117/**
1118 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1119 * @pifutex: the user address of the to futex
1120 * @hb1: the from futex hash bucket, must be locked by the caller
1121 * @hb2: the to futex hash bucket, must be locked by the caller
1122 * @key1: the from futex key
1123 * @key2: the to futex key
1124 * @ps: address to store the pi_state pointer
1125 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1126 *
1127 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1128 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1129 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1130 * hb1 and hb2 must be held by the caller.
1131 *
1132 * Returns:
1133 * 0 - failed to acquire the lock atomicly
1134 * 1 - acquired the lock
1135 * <0 - error
1136 */
1137static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1138                 struct futex_hash_bucket *hb1,
1139                 struct futex_hash_bucket *hb2,
1140                 union futex_key *key1, union futex_key *key2,
1141                 struct futex_pi_state **ps, int set_waiters)
1142{
1143    struct futex_q *top_waiter = NULL;
1144    u32 curval;
1145    int ret;
1146
1147    if (get_futex_value_locked(&curval, pifutex))
1148        return -EFAULT;
1149
1150    /*
1151     * Find the top_waiter and determine if there are additional waiters.
1152     * If the caller intends to requeue more than 1 waiter to pifutex,
1153     * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1154     * as we have means to handle the possible fault. If not, don't set
1155     * the bit unecessarily as it will force the subsequent unlock to enter
1156     * the kernel.
1157     */
1158    top_waiter = futex_top_waiter(hb1, key1);
1159
1160    /* There are no waiters, nothing for us to do. */
1161    if (!top_waiter)
1162        return 0;
1163
1164    /* Ensure we requeue to the expected futex. */
1165    if (!match_futex(top_waiter->requeue_pi_key, key2))
1166        return -EINVAL;
1167
1168    /*
1169     * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1170     * the contended case or if set_waiters is 1. The pi_state is returned
1171     * in ps in contended cases.
1172     */
1173    ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1174                   set_waiters);
1175    if (ret == 1)
1176        requeue_pi_wake_futex(top_waiter, key2, hb2);
1177
1178    return ret;
1179}
1180
1181/**
1182 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1183 * @uaddr1: source futex user address
1184 * @flags: futex flags (FLAGS_SHARED, etc.)
1185 * @uaddr2: target futex user address
1186 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1187 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1188 * @cmpval: @uaddr1 expected value (or %NULL)
1189 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1190 * pi futex (pi to pi requeue is not supported)
1191 *
1192 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1193 * uaddr2 atomically on behalf of the top waiter.
1194 *
1195 * Returns:
1196 * >=0 - on success, the number of tasks requeued or woken
1197 * <0 - on error
1198 */
1199static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1200             u32 __user *uaddr2, int nr_wake, int nr_requeue,
1201             u32 *cmpval, int requeue_pi)
1202{
1203    union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1204    int drop_count = 0, task_count = 0, ret;
1205    struct futex_pi_state *pi_state = NULL;
1206    struct futex_hash_bucket *hb1, *hb2;
1207    struct plist_head *head1;
1208    struct futex_q *this, *next;
1209    u32 curval2;
1210
1211    if (requeue_pi) {
1212        /*
1213         * requeue_pi requires a pi_state, try to allocate it now
1214         * without any locks in case it fails.
1215         */
1216        if (refill_pi_state_cache())
1217            return -ENOMEM;
1218        /*
1219         * requeue_pi must wake as many tasks as it can, up to nr_wake
1220         * + nr_requeue, since it acquires the rt_mutex prior to
1221         * returning to userspace, so as to not leave the rt_mutex with
1222         * waiters and no owner. However, second and third wake-ups
1223         * cannot be predicted as they involve race conditions with the
1224         * first wake and a fault while looking up the pi_state. Both
1225         * pthread_cond_signal() and pthread_cond_broadcast() should
1226         * use nr_wake=1.
1227         */
1228        if (nr_wake != 1)
1229            return -EINVAL;
1230    }
1231
1232retry:
1233    if (pi_state != NULL) {
1234        /*
1235         * We will have to lookup the pi_state again, so free this one
1236         * to keep the accounting correct.
1237         */
1238        free_pi_state(pi_state);
1239        pi_state = NULL;
1240    }
1241
1242    ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1243    if (unlikely(ret != 0))
1244        goto out;
1245    ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1246    if (unlikely(ret != 0))
1247        goto out_put_key1;
1248
1249    hb1 = hash_futex(&key1);
1250    hb2 = hash_futex(&key2);
1251
1252retry_private:
1253    double_lock_hb(hb1, hb2);
1254
1255    if (likely(cmpval != NULL)) {
1256        u32 curval;
1257
1258        ret = get_futex_value_locked(&curval, uaddr1);
1259
1260        if (unlikely(ret)) {
1261            double_unlock_hb(hb1, hb2);
1262
1263            ret = get_user(curval, uaddr1);
1264            if (ret)
1265                goto out_put_keys;
1266
1267            if (!(flags & FLAGS_SHARED))
1268                goto retry_private;
1269
1270            put_futex_key(&key2);
1271            put_futex_key(&key1);
1272            goto retry;
1273        }
1274        if (curval != *cmpval) {
1275            ret = -EAGAIN;
1276            goto out_unlock;
1277        }
1278    }
1279
1280    if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1281        /*
1282         * Attempt to acquire uaddr2 and wake the top waiter. If we
1283         * intend to requeue waiters, force setting the FUTEX_WAITERS
1284         * bit. We force this here where we are able to easily handle
1285         * faults rather in the requeue loop below.
1286         */
1287        ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1288                         &key2, &pi_state, nr_requeue);
1289
1290        /*
1291         * At this point the top_waiter has either taken uaddr2 or is
1292         * waiting on it. If the former, then the pi_state will not
1293         * exist yet, look it up one more time to ensure we have a
1294         * reference to it.
1295         */
1296        if (ret == 1) {
1297            WARN_ON(pi_state);
1298            drop_count++;
1299            task_count++;
1300            ret = get_futex_value_locked(&curval2, uaddr2);
1301            if (!ret)
1302                ret = lookup_pi_state(curval2, hb2, &key2,
1303                              &pi_state);
1304        }
1305
1306        switch (ret) {
1307        case 0:
1308            break;
1309        case -EFAULT:
1310            double_unlock_hb(hb1, hb2);
1311            put_futex_key(&key2);
1312            put_futex_key(&key1);
1313            ret = fault_in_user_writeable(uaddr2);
1314            if (!ret)
1315                goto retry;
1316            goto out;
1317        case -EAGAIN:
1318            /* The owner was exiting, try again. */
1319            double_unlock_hb(hb1, hb2);
1320            put_futex_key(&key2);
1321            put_futex_key(&key1);
1322            cond_resched();
1323            goto retry;
1324        default:
1325            goto out_unlock;
1326        }
1327    }
1328
1329    head1 = &hb1->chain;
1330    plist_for_each_entry_safe(this, next, head1, list) {
1331        if (task_count - nr_wake >= nr_requeue)
1332            break;
1333
1334        if (!match_futex(&this->key, &key1))
1335            continue;
1336
1337        /*
1338         * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1339         * be paired with each other and no other futex ops.
1340         */
1341        if ((requeue_pi && !this->rt_waiter) ||
1342            (!requeue_pi && this->rt_waiter)) {
1343            ret = -EINVAL;
1344            break;
1345        }
1346
1347        /*
1348         * Wake nr_wake waiters. For requeue_pi, if we acquired the
1349         * lock, we already woke the top_waiter. If not, it will be
1350         * woken by futex_unlock_pi().
1351         */
1352        if (++task_count <= nr_wake && !requeue_pi) {
1353            wake_futex(this);
1354            continue;
1355        }
1356
1357        /* Ensure we requeue to the expected futex for requeue_pi. */
1358        if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1359            ret = -EINVAL;
1360            break;
1361        }
1362
1363        /*
1364         * Requeue nr_requeue waiters and possibly one more in the case
1365         * of requeue_pi if we couldn't acquire the lock atomically.
1366         */
1367        if (requeue_pi) {
1368            /* Prepare the waiter to take the rt_mutex. */
1369            atomic_inc(&pi_state->refcount);
1370            this->pi_state = pi_state;
1371            ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1372                            this->rt_waiter,
1373                            this->task, 1);
1374            if (ret == 1) {
1375                /* We got the lock. */
1376                requeue_pi_wake_futex(this, &key2, hb2);
1377                drop_count++;
1378                continue;
1379            } else if (ret) {
1380                /* -EDEADLK */
1381                this->pi_state = NULL;
1382                free_pi_state(pi_state);
1383                goto out_unlock;
1384            }
1385        }
1386        requeue_futex(this, hb1, hb2, &key2);
1387        drop_count++;
1388    }
1389
1390out_unlock:
1391    double_unlock_hb(hb1, hb2);
1392
1393    /*
1394     * drop_futex_key_refs() must be called outside the spinlocks. During
1395     * the requeue we moved futex_q's from the hash bucket at key1 to the
1396     * one at key2 and updated their key pointer. We no longer need to
1397     * hold the references to key1.
1398     */
1399    while (--drop_count >= 0)
1400        drop_futex_key_refs(&key1);
1401
1402out_put_keys:
1403    put_futex_key(&key2);
1404out_put_key1:
1405    put_futex_key(&key1);
1406out:
1407    if (pi_state != NULL)
1408        free_pi_state(pi_state);
1409    return ret ? ret : task_count;
1410}
1411
1412/* The key must be already stored in q->key. */
1413static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1414    __acquires(&hb->lock)
1415{
1416    struct futex_hash_bucket *hb;
1417
1418    hb = hash_futex(&q->key);
1419    q->lock_ptr = &hb->lock;
1420
1421    spin_lock(&hb->lock);
1422    return hb;
1423}
1424
1425static inline void
1426queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1427    __releases(&hb->lock)
1428{
1429    spin_unlock(&hb->lock);
1430}
1431
1432/**
1433 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1434 * @q: The futex_q to enqueue
1435 * @hb: The destination hash bucket
1436 *
1437 * The hb->lock must be held by the caller, and is released here. A call to
1438 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1439 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1440 * or nothing if the unqueue is done as part of the wake process and the unqueue
1441 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1442 * an example).
1443 */
1444static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1445    __releases(&hb->lock)
1446{
1447    int prio;
1448
1449    /*
1450     * The priority used to register this element is
1451     * - either the real thread-priority for the real-time threads
1452     * (i.e. threads with a priority lower than MAX_RT_PRIO)
1453     * - or MAX_RT_PRIO for non-RT threads.
1454     * Thus, all RT-threads are woken first in priority order, and
1455     * the others are woken last, in FIFO order.
1456     */
1457    prio = min(current->normal_prio, MAX_RT_PRIO);
1458
1459    plist_node_init(&q->list, prio);
1460#ifdef CONFIG_DEBUG_PI_LIST
1461    q->list.plist.spinlock = &hb->lock;
1462#endif
1463    plist_add(&q->list, &hb->chain);
1464    q->task = current;
1465    spin_unlock(&hb->lock);
1466}
1467
1468/**
1469 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1470 * @q: The futex_q to unqueue
1471 *
1472 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1473 * be paired with exactly one earlier call to queue_me().
1474 *
1475 * Returns:
1476 * 1 - if the futex_q was still queued (and we removed unqueued it)
1477 * 0 - if the futex_q was already removed by the waking thread
1478 */
1479static int unqueue_me(struct futex_q *q)
1480{
1481    spinlock_t *lock_ptr;
1482    int ret = 0;
1483
1484    /* In the common case we don't take the spinlock, which is nice. */
1485retry:
1486    lock_ptr = q->lock_ptr;
1487    barrier();
1488    if (lock_ptr != NULL) {
1489        spin_lock(lock_ptr);
1490        /*
1491         * q->lock_ptr can change between reading it and
1492         * spin_lock(), causing us to take the wrong lock. This
1493         * corrects the race condition.
1494         *
1495         * Reasoning goes like this: if we have the wrong lock,
1496         * q->lock_ptr must have changed (maybe several times)
1497         * between reading it and the spin_lock(). It can
1498         * change again after the spin_lock() but only if it was
1499         * already changed before the spin_lock(). It cannot,
1500         * however, change back to the original value. Therefore
1501         * we can detect whether we acquired the correct lock.
1502         */
1503        if (unlikely(lock_ptr != q->lock_ptr)) {
1504            spin_unlock(lock_ptr);
1505            goto retry;
1506        }
1507        WARN_ON(plist_node_empty(&q->list));
1508        plist_del(&q->list, &q->list.plist);
1509
1510        BUG_ON(q->pi_state);
1511
1512        spin_unlock(lock_ptr);
1513        ret = 1;
1514    }
1515
1516    drop_futex_key_refs(&q->key);
1517    return ret;
1518}
1519
1520/*
1521 * PI futexes can not be requeued and must remove themself from the
1522 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1523 * and dropped here.
1524 */
1525static void unqueue_me_pi(struct futex_q *q)
1526    __releases(q->lock_ptr)
1527{
1528    WARN_ON(plist_node_empty(&q->list));
1529    plist_del(&q->list, &q->list.plist);
1530
1531    BUG_ON(!q->pi_state);
1532    free_pi_state(q->pi_state);
1533    q->pi_state = NULL;
1534
1535    spin_unlock(q->lock_ptr);
1536}
1537
1538/*
1539 * Fixup the pi_state owner with the new owner.
1540 *
1541 * Must be called with hash bucket lock held and mm->sem held for non
1542 * private futexes.
1543 */
1544static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1545                struct task_struct *newowner)
1546{
1547    u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1548    struct futex_pi_state *pi_state = q->pi_state;
1549    struct task_struct *oldowner = pi_state->owner;
1550    u32 uval, curval, newval;
1551    int ret;
1552
1553    /* Owner died? */
1554    if (!pi_state->owner)
1555        newtid |= FUTEX_OWNER_DIED;
1556
1557    /*
1558     * We are here either because we stole the rtmutex from the
1559     * pending owner or we are the pending owner which failed to
1560     * get the rtmutex. We have to replace the pending owner TID
1561     * in the user space variable. This must be atomic as we have
1562     * to preserve the owner died bit here.
1563     *
1564     * Note: We write the user space value _before_ changing the pi_state
1565     * because we can fault here. Imagine swapped out pages or a fork
1566     * that marked all the anonymous memory readonly for cow.
1567     *
1568     * Modifying pi_state _before_ the user space value would
1569     * leave the pi_state in an inconsistent state when we fault
1570     * here, because we need to drop the hash bucket lock to
1571     * handle the fault. This might be observed in the PID check
1572     * in lookup_pi_state.
1573     */
1574retry:
1575    if (get_futex_value_locked(&uval, uaddr))
1576        goto handle_fault;
1577
1578    while (1) {
1579        newval = (uval & FUTEX_OWNER_DIED) | newtid;
1580
1581        curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1582
1583        if (curval == -EFAULT)
1584            goto handle_fault;
1585        if (curval == uval)
1586            break;
1587        uval = curval;
1588    }
1589
1590    /*
1591     * We fixed up user space. Now we need to fix the pi_state
1592     * itself.
1593     */
1594    if (pi_state->owner != NULL) {
1595        raw_spin_lock_irq(&pi_state->owner->pi_lock);
1596        WARN_ON(list_empty(&pi_state->list));
1597        list_del_init(&pi_state->list);
1598        raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1599    }
1600
1601    pi_state->owner = newowner;
1602
1603    raw_spin_lock_irq(&newowner->pi_lock);
1604    WARN_ON(!list_empty(&pi_state->list));
1605    list_add(&pi_state->list, &newowner->pi_state_list);
1606    raw_spin_unlock_irq(&newowner->pi_lock);
1607    return 0;
1608
1609    /*
1610     * To handle the page fault we need to drop the hash bucket
1611     * lock here. That gives the other task (either the pending
1612     * owner itself or the task which stole the rtmutex) the
1613     * chance to try the fixup of the pi_state. So once we are
1614     * back from handling the fault we need to check the pi_state
1615     * after reacquiring the hash bucket lock and before trying to
1616     * do another fixup. When the fixup has been done already we
1617     * simply return.
1618     */
1619handle_fault:
1620    spin_unlock(q->lock_ptr);
1621
1622    ret = fault_in_user_writeable(uaddr);
1623
1624    spin_lock(q->lock_ptr);
1625
1626    /*
1627     * Check if someone else fixed it for us:
1628     */
1629    if (pi_state->owner != oldowner)
1630        return 0;
1631
1632    if (ret)
1633        return ret;
1634
1635    goto retry;
1636}
1637
1638static long futex_wait_restart(struct restart_block *restart);
1639
1640/**
1641 * fixup_owner() - Post lock pi_state and corner case management
1642 * @uaddr: user address of the futex
1643 * @q: futex_q (contains pi_state and access to the rt_mutex)
1644 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1645 *
1646 * After attempting to lock an rt_mutex, this function is called to cleanup
1647 * the pi_state owner as well as handle race conditions that may allow us to
1648 * acquire the lock. Must be called with the hb lock held.
1649 *
1650 * Returns:
1651 * 1 - success, lock taken
1652 * 0 - success, lock not taken
1653 * <0 - on error (-EFAULT)
1654 */
1655static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1656{
1657    struct task_struct *owner;
1658    int ret = 0;
1659
1660    if (locked) {
1661        /*
1662         * Got the lock. We might not be the anticipated owner if we
1663         * did a lock-steal - fix up the PI-state in that case:
1664         */
1665        if (q->pi_state->owner != current)
1666            ret = fixup_pi_state_owner(uaddr, q, current);
1667        goto out;
1668    }
1669
1670    /*
1671     * Catch the rare case, where the lock was released when we were on the
1672     * way back before we locked the hash bucket.
1673     */
1674    if (q->pi_state->owner == current) {
1675        /*
1676         * Try to get the rt_mutex now. This might fail as some other
1677         * task acquired the rt_mutex after we removed ourself from the
1678         * rt_mutex waiters list.
1679         */
1680        if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1681            locked = 1;
1682            goto out;
1683        }
1684
1685        /*
1686         * pi_state is incorrect, some other task did a lock steal and
1687         * we returned due to timeout or signal without taking the
1688         * rt_mutex. Too late. We can access the rt_mutex_owner without
1689         * locking, as the other task is now blocked on the hash bucket
1690         * lock. Fix the state up.
1691         */
1692        owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1693        ret = fixup_pi_state_owner(uaddr, q, owner);
1694        goto out;
1695    }
1696
1697    /*
1698     * Paranoia check. If we did not take the lock, then we should not be
1699     * the owner, nor the pending owner, of the rt_mutex.
1700     */
1701    if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1702        printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1703                "pi-state %p\n", ret,
1704                q->pi_state->pi_mutex.owner,
1705                q->pi_state->owner);
1706
1707out:
1708    return ret ? ret : locked;
1709}
1710
1711/**
1712 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1713 * @hb: the futex hash bucket, must be locked by the caller
1714 * @q: the futex_q to queue up on
1715 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1716 */
1717static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1718                struct hrtimer_sleeper *timeout)
1719{
1720    /*
1721     * The task state is guaranteed to be set before another task can
1722     * wake it. set_current_state() is implemented using set_mb() and
1723     * queue_me() calls spin_unlock() upon completion, both serializing
1724     * access to the hash list and forcing another memory barrier.
1725     */
1726    set_current_state(TASK_INTERRUPTIBLE);
1727    queue_me(q, hb);
1728
1729    /* Arm the timer */
1730    if (timeout) {
1731        hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1732        if (!hrtimer_active(&timeout->timer))
1733            timeout->task = NULL;
1734    }
1735
1736    /*
1737     * If we have been removed from the hash list, then another task
1738     * has tried to wake us, and we can skip the call to schedule().
1739     */
1740    if (likely(!plist_node_empty(&q->list))) {
1741        /*
1742         * If the timer has already expired, current will already be
1743         * flagged for rescheduling. Only call schedule if there
1744         * is no timeout, or if it has yet to expire.
1745         */
1746        if (!timeout || timeout->task)
1747            schedule();
1748    }
1749    __set_current_state(TASK_RUNNING);
1750}
1751
1752/**
1753 * futex_wait_setup() - Prepare to wait on a futex
1754 * @uaddr: the futex userspace address
1755 * @val: the expected value
1756 * @flags: futex flags (FLAGS_SHARED, etc.)
1757 * @q: the associated futex_q
1758 * @hb: storage for hash_bucket pointer to be returned to caller
1759 *
1760 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1761 * compare it with the expected value. Handle atomic faults internally.
1762 * Return with the hb lock held and a q.key reference on success, and unlocked
1763 * with no q.key reference on failure.
1764 *
1765 * Returns:
1766 * 0 - uaddr contains val and hb has been locked
1767 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1768 */
1769static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1770               struct futex_q *q, struct futex_hash_bucket **hb)
1771{
1772    u32 uval;
1773    int ret;
1774
1775    /*
1776     * Access the page AFTER the hash-bucket is locked.
1777     * Order is important:
1778     *
1779     * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1780     * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1781     *
1782     * The basic logical guarantee of a futex is that it blocks ONLY
1783     * if cond(var) is known to be true at the time of blocking, for
1784     * any cond. If we queued after testing *uaddr, that would open
1785     * a race condition where we could block indefinitely with
1786     * cond(var) false, which would violate the guarantee.
1787     *
1788     * A consequence is that futex_wait() can return zero and absorb
1789     * a wakeup when *uaddr != val on entry to the syscall. This is
1790     * rare, but normal.
1791     */
1792retry:
1793    ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1794    if (unlikely(ret != 0))
1795        return ret;
1796
1797retry_private:
1798    *hb = queue_lock(q);
1799
1800    ret = get_futex_value_locked(&uval, uaddr);
1801
1802    if (ret) {
1803        queue_unlock(q, *hb);
1804
1805        ret = get_user(uval, uaddr);
1806        if (ret)
1807            goto out;
1808
1809        if (!(flags & FLAGS_SHARED))
1810            goto retry_private;
1811
1812        put_futex_key(&q->key);
1813        goto retry;
1814    }
1815
1816    if (uval != val) {
1817        queue_unlock(q, *hb);
1818        ret = -EWOULDBLOCK;
1819    }
1820
1821out:
1822    if (ret)
1823        put_futex_key(&q->key);
1824    return ret;
1825}
1826
1827static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1828              ktime_t *abs_time, u32 bitset)
1829{
1830    struct hrtimer_sleeper timeout, *to = NULL;
1831    struct restart_block *restart;
1832    struct futex_hash_bucket *hb;
1833    struct futex_q q = futex_q_init;
1834    int ret;
1835
1836    if (!bitset)
1837        return -EINVAL;
1838    q.bitset = bitset;
1839
1840    if (abs_time) {
1841        to = &timeout;
1842
1843        hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1844                      CLOCK_REALTIME : CLOCK_MONOTONIC,
1845                      HRTIMER_MODE_ABS);
1846        hrtimer_init_sleeper(to, current);
1847        hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1848                         current->timer_slack_ns);
1849    }
1850
1851retry:
1852    /*
1853     * Prepare to wait on uaddr. On success, holds hb lock and increments
1854     * q.key refs.
1855     */
1856    ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1857    if (ret)
1858        goto out;
1859
1860    /* queue_me and wait for wakeup, timeout, or a signal. */
1861    futex_wait_queue_me(hb, &q, to);
1862
1863    /* If we were woken (and unqueued), we succeeded, whatever. */
1864    ret = 0;
1865    /* unqueue_me() drops q.key ref */
1866    if (!unqueue_me(&q))
1867        goto out;
1868    ret = -ETIMEDOUT;
1869    if (to && !to->task)
1870        goto out;
1871
1872    /*
1873     * We expect signal_pending(current), but we might be the
1874     * victim of a spurious wakeup as well.
1875     */
1876    if (!signal_pending(current))
1877        goto retry;
1878
1879    ret = -ERESTARTSYS;
1880    if (!abs_time)
1881        goto out;
1882
1883    restart = &current_thread_info()->restart_block;
1884    restart->fn = futex_wait_restart;
1885    restart->futex.uaddr = uaddr;
1886    restart->futex.val = val;
1887    restart->futex.time = abs_time->tv64;
1888    restart->futex.bitset = bitset;
1889    restart->futex.flags = flags;
1890
1891    ret = -ERESTART_RESTARTBLOCK;
1892
1893out:
1894    if (to) {
1895        hrtimer_cancel(&to->timer);
1896        destroy_hrtimer_on_stack(&to->timer);
1897    }
1898    return ret;
1899}
1900
1901
1902static long futex_wait_restart(struct restart_block *restart)
1903{
1904    u32 __user *uaddr = restart->futex.uaddr;
1905    ktime_t t, *tp = NULL;
1906
1907    if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1908        t.tv64 = restart->futex.time;
1909        tp = &t;
1910    }
1911    restart->fn = do_no_restart_syscall;
1912
1913    return (long)futex_wait(uaddr, restart->futex.flags,
1914                restart->futex.val, tp, restart->futex.bitset);
1915}
1916
1917
1918/*
1919 * Userspace tried a 0 -> TID atomic transition of the futex value
1920 * and failed. The kernel side here does the whole locking operation:
1921 * if there are waiters then it will block, it does PI, etc. (Due to
1922 * races the kernel might see a 0 value of the futex too.)
1923 */
1924static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1925             ktime_t *time, int trylock)
1926{
1927    struct hrtimer_sleeper timeout, *to = NULL;
1928    struct futex_hash_bucket *hb;
1929    struct futex_q q = futex_q_init;
1930    int res, ret;
1931
1932    if (refill_pi_state_cache())
1933        return -ENOMEM;
1934
1935    if (time) {
1936        to = &timeout;
1937        hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1938                      HRTIMER_MODE_ABS);
1939        hrtimer_init_sleeper(to, current);
1940        hrtimer_set_expires(&to->timer, *time);
1941    }
1942
1943retry:
1944    ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1945    if (unlikely(ret != 0))
1946        goto out;
1947
1948retry_private:
1949    hb = queue_lock(&q);
1950
1951    ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1952    if (unlikely(ret)) {
1953        switch (ret) {
1954        case 1:
1955            /* We got the lock. */
1956            ret = 0;
1957            goto out_unlock_put_key;
1958        case -EFAULT:
1959            goto uaddr_faulted;
1960        case -EAGAIN:
1961            /*
1962             * Task is exiting and we just wait for the
1963             * exit to complete.
1964             */
1965            queue_unlock(&q, hb);
1966            put_futex_key(&q.key);
1967            cond_resched();
1968            goto retry;
1969        default:
1970            goto out_unlock_put_key;
1971        }
1972    }
1973
1974    /*
1975     * Only actually queue now that the atomic ops are done:
1976     */
1977    queue_me(&q, hb);
1978
1979    WARN_ON(!q.pi_state);
1980    /*
1981     * Block on the PI mutex:
1982     */
1983    if (!trylock)
1984        ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1985    else {
1986        ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1987        /* Fixup the trylock return value: */
1988        ret = ret ? 0 : -EWOULDBLOCK;
1989    }
1990
1991    spin_lock(q.lock_ptr);
1992    /*
1993     * Fixup the pi_state owner and possibly acquire the lock if we
1994     * haven't already.
1995     */
1996    res = fixup_owner(uaddr, &q, !ret);
1997    /*
1998     * If fixup_owner() returned an error, proprogate that. If it acquired
1999     * the lock, clear our -ETIMEDOUT or -EINTR.
2000     */
2001    if (res)
2002        ret = (res < 0) ? res : 0;
2003
2004    /*
2005     * If fixup_owner() faulted and was unable to handle the fault, unlock
2006     * it and return the fault to userspace.
2007     */
2008    if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2009        rt_mutex_unlock(&q.pi_state->pi_mutex);
2010
2011    /* Unqueue and drop the lock */
2012    unqueue_me_pi(&q);
2013
2014    goto out_put_key;
2015
2016out_unlock_put_key:
2017    queue_unlock(&q, hb);
2018
2019out_put_key:
2020    put_futex_key(&q.key);
2021out:
2022    if (to)
2023        destroy_hrtimer_on_stack(&to->timer);
2024    return ret != -EINTR ? ret : -ERESTARTNOINTR;
2025
2026uaddr_faulted:
2027    queue_unlock(&q, hb);
2028
2029    ret = fault_in_user_writeable(uaddr);
2030    if (ret)
2031        goto out_put_key;
2032
2033    if (!(flags & FLAGS_SHARED))
2034        goto retry_private;
2035
2036    put_futex_key(&q.key);
2037    goto retry;
2038}
2039
2040/*
2041 * Userspace attempted a TID -> 0 atomic transition, and failed.
2042 * This is the in-kernel slowpath: we look up the PI state (if any),
2043 * and do the rt-mutex unlock.
2044 */
2045static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2046{
2047    struct futex_hash_bucket *hb;
2048    struct futex_q *this, *next;
2049    u32 uval;
2050    struct plist_head *head;
2051    union futex_key key = FUTEX_KEY_INIT;
2052    int ret;
2053
2054retry:
2055    if (get_user(uval, uaddr))
2056        return -EFAULT;
2057    /*
2058     * We release only a lock we actually own:
2059     */
2060    if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2061        return -EPERM;
2062
2063    ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2064    if (unlikely(ret != 0))
2065        goto out;
2066
2067    hb = hash_futex(&key);
2068    spin_lock(&hb->lock);
2069
2070    /*
2071     * To avoid races, try to do the TID -> 0 atomic transition
2072     * again. If it succeeds then we can return without waking
2073     * anyone else up:
2074     */
2075    if (!(uval & FUTEX_OWNER_DIED))
2076        uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
2077
2078
2079    if (unlikely(uval == -EFAULT))
2080        goto pi_faulted;
2081    /*
2082     * Rare case: we managed to release the lock atomically,
2083     * no need to wake anyone else up:
2084     */
2085    if (unlikely(uval == task_pid_vnr(current)))
2086        goto out_unlock;
2087
2088    /*
2089     * Ok, other tasks may need to be woken up - check waiters
2090     * and do the wakeup if necessary:
2091     */
2092    head = &hb->chain;
2093
2094    plist_for_each_entry_safe(this, next, head, list) {
2095        if (!match_futex (&this->key, &key))
2096            continue;
2097        ret = wake_futex_pi(uaddr, uval, this);
2098        /*
2099         * The atomic access to the futex value
2100         * generated a pagefault, so retry the
2101         * user-access and the wakeup:
2102         */
2103        if (ret == -EFAULT)
2104            goto pi_faulted;
2105        goto out_unlock;
2106    }
2107    /*
2108     * No waiters - kernel unlocks the futex:
2109     */
2110    if (!(uval & FUTEX_OWNER_DIED)) {
2111        ret = unlock_futex_pi(uaddr, uval);
2112        if (ret == -EFAULT)
2113            goto pi_faulted;
2114    }
2115
2116out_unlock:
2117    spin_unlock(&hb->lock);
2118    put_futex_key(&key);
2119
2120out:
2121    return ret;
2122
2123pi_faulted:
2124    spin_unlock(&hb->lock);
2125    put_futex_key(&key);
2126
2127    ret = fault_in_user_writeable(uaddr);
2128    if (!ret)
2129        goto retry;
2130
2131    return ret;
2132}
2133
2134/**
2135 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2136 * @hb: the hash_bucket futex_q was original enqueued on
2137 * @q: the futex_q woken while waiting to be requeued
2138 * @key2: the futex_key of the requeue target futex
2139 * @timeout: the timeout associated with the wait (NULL if none)
2140 *
2141 * Detect if the task was woken on the initial futex as opposed to the requeue
2142 * target futex. If so, determine if it was a timeout or a signal that caused
2143 * the wakeup and return the appropriate error code to the caller. Must be
2144 * called with the hb lock held.
2145 *
2146 * Returns
2147 * 0 - no early wakeup detected
2148 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2149 */
2150static inline
2151int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2152                   struct futex_q *q, union futex_key *key2,
2153                   struct hrtimer_sleeper *timeout)
2154{
2155    int ret = 0;
2156
2157    /*
2158     * With the hb lock held, we avoid races while we process the wakeup.
2159     * We only need to hold hb (and not hb2) to ensure atomicity as the
2160     * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2161     * It can't be requeued from uaddr2 to something else since we don't
2162     * support a PI aware source futex for requeue.
2163     */
2164    if (!match_futex(&q->key, key2)) {
2165        WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2166        /*
2167         * We were woken prior to requeue by a timeout or a signal.
2168         * Unqueue the futex_q and determine which it was.
2169         */
2170        plist_del(&q->list, &q->list.plist);
2171
2172        /* Handle spurious wakeups gracefully */
2173        ret = -EWOULDBLOCK;
2174        if (timeout && !timeout->task)
2175            ret = -ETIMEDOUT;
2176        else if (signal_pending(current))
2177            ret = -ERESTARTNOINTR;
2178    }
2179    return ret;
2180}
2181
2182/**
2183 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2184 * @uaddr: the futex we initially wait on (non-pi)
2185 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2186 * the same type, no requeueing from private to shared, etc.
2187 * @val: the expected value of uaddr
2188 * @abs_time: absolute timeout
2189 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2190 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2191 * @uaddr2: the pi futex we will take prior to returning to user-space
2192 *
2193 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2194 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2195 * complete the acquisition of the rt_mutex prior to returning to userspace.
2196 * This ensures the rt_mutex maintains an owner when it has waiters; without
2197 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2198 * need to.
2199 *
2200 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2201 * via the following:
2202 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2203 * 2) wakeup on uaddr2 after a requeue
2204 * 3) signal
2205 * 4) timeout
2206 *
2207 * If 3, cleanup and return -ERESTARTNOINTR.
2208 *
2209 * If 2, we may then block on trying to take the rt_mutex and return via:
2210 * 5) successful lock
2211 * 6) signal
2212 * 7) timeout
2213 * 8) other lock acquisition failure
2214 *
2215 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2216 *
2217 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2218 *
2219 * Returns:
2220 * 0 - On success
2221 * <0 - On error
2222 */
2223static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2224                 u32 val, ktime_t *abs_time, u32 bitset,
2225                 u32 __user *uaddr2)
2226{
2227    struct hrtimer_sleeper timeout, *to = NULL;
2228    struct rt_mutex_waiter rt_waiter;
2229    struct rt_mutex *pi_mutex = NULL;
2230    struct futex_hash_bucket *hb;
2231    union futex_key key2 = FUTEX_KEY_INIT;
2232    struct futex_q q = futex_q_init;
2233    int res, ret;
2234
2235    if (!bitset)
2236        return -EINVAL;
2237
2238    if (abs_time) {
2239        to = &timeout;
2240        hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2241                      CLOCK_REALTIME : CLOCK_MONOTONIC,
2242                      HRTIMER_MODE_ABS);
2243        hrtimer_init_sleeper(to, current);
2244        hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2245                         current->timer_slack_ns);
2246    }
2247
2248    /*
2249     * The waiter is allocated on our stack, manipulated by the requeue
2250     * code while we sleep on uaddr.
2251     */
2252    debug_rt_mutex_init_waiter(&rt_waiter);
2253    rt_waiter.task = NULL;
2254
2255    ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2256    if (unlikely(ret != 0))
2257        goto out;
2258
2259    q.bitset = bitset;
2260    q.rt_waiter = &rt_waiter;
2261    q.requeue_pi_key = &key2;
2262
2263    /*
2264     * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2265     * count.
2266     */
2267    ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2268    if (ret)
2269        goto out_key2;
2270
2271    /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2272    futex_wait_queue_me(hb, &q, to);
2273
2274    spin_lock(&hb->lock);
2275    ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2276    spin_unlock(&hb->lock);
2277    if (ret)
2278        goto out_put_keys;
2279
2280    /*
2281     * In order for us to be here, we know our q.key == key2, and since
2282     * we took the hb->lock above, we also know that futex_requeue() has
2283     * completed and we no longer have to concern ourselves with a wakeup
2284     * race with the atomic proxy lock acquisition by the requeue code. The
2285     * futex_requeue dropped our key1 reference and incremented our key2
2286     * reference count.
2287     */
2288
2289    /* Check if the requeue code acquired the second futex for us. */
2290    if (!q.rt_waiter) {
2291        /*
2292         * Got the lock. We might not be the anticipated owner if we
2293         * did a lock-steal - fix up the PI-state in that case.
2294         */
2295        if (q.pi_state && (q.pi_state->owner != current)) {
2296            spin_lock(q.lock_ptr);
2297            ret = fixup_pi_state_owner(uaddr2, &q, current);
2298            spin_unlock(q.lock_ptr);
2299        }
2300    } else {
2301        /*
2302         * We have been woken up by futex_unlock_pi(), a timeout, or a
2303         * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2304         * the pi_state.
2305         */
2306        WARN_ON(!&q.pi_state);
2307        pi_mutex = &q.pi_state->pi_mutex;
2308        ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2309        debug_rt_mutex_free_waiter(&rt_waiter);
2310
2311        spin_lock(q.lock_ptr);
2312        /*
2313         * Fixup the pi_state owner and possibly acquire the lock if we
2314         * haven't already.
2315         */
2316        res = fixup_owner(uaddr2, &q, !ret);
2317        /*
2318         * If fixup_owner() returned an error, proprogate that. If it
2319         * acquired the lock, clear -ETIMEDOUT or -EINTR.
2320         */
2321        if (res)
2322            ret = (res < 0) ? res : 0;
2323
2324        /* Unqueue and drop the lock. */
2325        unqueue_me_pi(&q);
2326    }
2327
2328    /*
2329     * If fixup_pi_state_owner() faulted and was unable to handle the
2330     * fault, unlock the rt_mutex and return the fault to userspace.
2331     */
2332    if (ret == -EFAULT) {
2333        if (rt_mutex_owner(pi_mutex) == current)
2334            rt_mutex_unlock(pi_mutex);
2335    } else if (ret == -EINTR) {
2336        /*
2337         * We've already been requeued, but cannot restart by calling
2338         * futex_lock_pi() directly. We could restart this syscall, but
2339         * it would detect that the user space "val" changed and return
2340         * -EWOULDBLOCK. Save the overhead of the restart and return
2341         * -EWOULDBLOCK directly.
2342         */
2343        ret = -EWOULDBLOCK;
2344    }
2345
2346out_put_keys:
2347    put_futex_key(&q.key);
2348out_key2:
2349    put_futex_key(&key2);
2350
2351out:
2352    if (to) {
2353        hrtimer_cancel(&to->timer);
2354        destroy_hrtimer_on_stack(&to->timer);
2355    }
2356    return ret;
2357}
2358
2359/*
2360 * Support for robust futexes: the kernel cleans up held futexes at
2361 * thread exit time.
2362 *
2363 * Implementation: user-space maintains a per-thread list of locks it
2364 * is holding. Upon do_exit(), the kernel carefully walks this list,
2365 * and marks all locks that are owned by this thread with the
2366 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2367 * always manipulated with the lock held, so the list is private and
2368 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2369 * field, to allow the kernel to clean up if the thread dies after
2370 * acquiring the lock, but just before it could have added itself to
2371 * the list. There can only be one such pending lock.
2372 */
2373
2374/**
2375 * sys_set_robust_list() - Set the robust-futex list head of a task
2376 * @head: pointer to the list-head
2377 * @len: length of the list-head, as userspace expects
2378 */
2379SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2380        size_t, len)
2381{
2382    if (!futex_cmpxchg_enabled)
2383        return -ENOSYS;
2384    /*
2385     * The kernel knows only one size for now:
2386     */
2387    if (unlikely(len != sizeof(*head)))
2388        return -EINVAL;
2389
2390    current->robust_list = head;
2391
2392    return 0;
2393}
2394
2395/**
2396 * sys_get_robust_list() - Get the robust-futex list head of a task
2397 * @pid: pid of the process [zero for current task]
2398 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2399 * @len_ptr: pointer to a length field, the kernel fills in the header size
2400 */
2401SYSCALL_DEFINE3(get_robust_list, int, pid,
2402        struct robust_list_head __user * __user *, head_ptr,
2403        size_t __user *, len_ptr)
2404{
2405    struct robust_list_head __user *head;
2406    unsigned long ret;
2407    const struct cred *cred = current_cred(), *pcred;
2408
2409    if (!futex_cmpxchg_enabled)
2410        return -ENOSYS;
2411
2412    if (!pid)
2413        head = current->robust_list;
2414    else {
2415        struct task_struct *p;
2416
2417        ret = -ESRCH;
2418        rcu_read_lock();
2419        p = find_task_by_vpid(pid);
2420        if (!p)
2421            goto err_unlock;
2422        ret = -EPERM;
2423        pcred = __task_cred(p);
2424        if (cred->euid != pcred->euid &&
2425            cred->euid != pcred->uid &&
2426            !capable(CAP_SYS_PTRACE))
2427            goto err_unlock;
2428        head = p->robust_list;
2429        rcu_read_unlock();
2430    }
2431
2432    if (put_user(sizeof(*head), len_ptr))
2433        return -EFAULT;
2434    return put_user(head, head_ptr);
2435
2436err_unlock:
2437    rcu_read_unlock();
2438
2439    return ret;
2440}
2441
2442/*
2443 * Process a futex-list entry, check whether it's owned by the
2444 * dying task, and do notification if so:
2445 */
2446int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2447{
2448    u32 uval, nval, mval;
2449
2450retry:
2451    if (get_user(uval, uaddr))
2452        return -1;
2453
2454    if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2455        /*
2456         * Ok, this dying thread is truly holding a futex
2457         * of interest. Set the OWNER_DIED bit atomically
2458         * via cmpxchg, and if the value had FUTEX_WAITERS
2459         * set, wake up a waiter (if any). (We have to do a
2460         * futex_wake() even if OWNER_DIED is already set -
2461         * to handle the rare but possible case of recursive
2462         * thread-death.) The rest of the cleanup is done in
2463         * userspace.
2464         */
2465        mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2466        nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2467
2468        if (nval == -EFAULT)
2469            return -1;
2470
2471        if (nval != uval)
2472            goto retry;
2473
2474        /*
2475         * Wake robust non-PI futexes here. The wakeup of
2476         * PI futexes happens in exit_pi_state():
2477         */
2478        if (!pi && (uval & FUTEX_WAITERS))
2479            futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2480    }
2481    return 0;
2482}
2483
2484/*
2485 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2486 */
2487static inline int fetch_robust_entry(struct robust_list __user **entry,
2488                     struct robust_list __user * __user *head,
2489                     unsigned int *pi)
2490{
2491    unsigned long uentry;
2492
2493    if (get_user(uentry, (unsigned long __user *)head))
2494        return -EFAULT;
2495
2496    *entry = (void __user *)(uentry & ~1UL);
2497    *pi = uentry & 1;
2498
2499    return 0;
2500}
2501
2502/*
2503 * Walk curr->robust_list (very carefully, it's a userspace list!)
2504 * and mark any locks found there dead, and notify any waiters.
2505 *
2506 * We silently return on any sign of list-walking problem.
2507 */
2508void exit_robust_list(struct task_struct *curr)
2509{
2510    struct robust_list_head __user *head = curr->robust_list;
2511    struct robust_list __user *entry, *next_entry, *pending;
2512    unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2513    unsigned int uninitialized_var(next_pi);
2514    unsigned long futex_offset;
2515    int rc;
2516
2517    if (!futex_cmpxchg_enabled)
2518        return;
2519
2520    /*
2521     * Fetch the list head (which was registered earlier, via
2522     * sys_set_robust_list()):
2523     */
2524    if (fetch_robust_entry(&entry, &head->list.next, &pi))
2525        return;
2526    /*
2527     * Fetch the relative futex offset:
2528     */
2529    if (get_user(futex_offset, &head->futex_offset))
2530        return;
2531    /*
2532     * Fetch any possibly pending lock-add first, and handle it
2533     * if it exists:
2534     */
2535    if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2536        return;
2537
2538    next_entry = NULL; /* avoid warning with gcc */
2539    while (entry != &head->list) {
2540        /*
2541         * Fetch the next entry in the list before calling
2542         * handle_futex_death:
2543         */
2544        rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2545        /*
2546         * A pending lock might already be on the list, so
2547         * don't process it twice:
2548         */
2549        if (entry != pending)
2550            if (handle_futex_death((void __user *)entry + futex_offset,
2551                        curr, pi))
2552                return;
2553        if (rc)
2554            return;
2555        entry = next_entry;
2556        pi = next_pi;
2557        /*
2558         * Avoid excessively long or circular lists:
2559         */
2560        if (!--limit)
2561            break;
2562
2563        cond_resched();
2564    }
2565
2566    if (pending)
2567        handle_futex_death((void __user *)pending + futex_offset,
2568                   curr, pip);
2569}
2570
2571long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2572        u32 __user *uaddr2, u32 val2, u32 val3)
2573{
2574    int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2575    unsigned int flags = 0;
2576
2577    if (!(op & FUTEX_PRIVATE_FLAG))
2578        flags |= FLAGS_SHARED;
2579
2580    if (op & FUTEX_CLOCK_REALTIME) {
2581        flags |= FLAGS_CLOCKRT;
2582        if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2583            return -ENOSYS;
2584    }
2585
2586    switch (cmd) {
2587    case FUTEX_WAIT:
2588        val3 = FUTEX_BITSET_MATCH_ANY;
2589    case FUTEX_WAIT_BITSET:
2590        ret = futex_wait(uaddr, flags, val, timeout, val3);
2591        break;
2592    case FUTEX_WAKE:
2593        val3 = FUTEX_BITSET_MATCH_ANY;
2594    case FUTEX_WAKE_BITSET:
2595        ret = futex_wake(uaddr, flags, val, val3);
2596        break;
2597    case FUTEX_REQUEUE:
2598        ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2599        break;
2600    case FUTEX_CMP_REQUEUE:
2601        ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2602        break;
2603    case FUTEX_WAKE_OP:
2604        ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2605        break;
2606    case FUTEX_LOCK_PI:
2607        if (futex_cmpxchg_enabled)
2608            ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2609        break;
2610    case FUTEX_UNLOCK_PI:
2611        if (futex_cmpxchg_enabled)
2612            ret = futex_unlock_pi(uaddr, flags);
2613        break;
2614    case FUTEX_TRYLOCK_PI:
2615        if (futex_cmpxchg_enabled)
2616            ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2617        break;
2618    case FUTEX_WAIT_REQUEUE_PI:
2619        val3 = FUTEX_BITSET_MATCH_ANY;
2620        ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2621                        uaddr2);
2622        break;
2623    case FUTEX_CMP_REQUEUE_PI:
2624        ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2625        break;
2626    default:
2627        ret = -ENOSYS;
2628    }
2629    return ret;
2630}
2631
2632
2633SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2634        struct timespec __user *, utime, u32 __user *, uaddr2,
2635        u32, val3)
2636{
2637    struct timespec ts;
2638    ktime_t t, *tp = NULL;
2639    u32 val2 = 0;
2640    int cmd = op & FUTEX_CMD_MASK;
2641
2642    if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2643              cmd == FUTEX_WAIT_BITSET ||
2644              cmd == FUTEX_WAIT_REQUEUE_PI)) {
2645        if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2646            return -EFAULT;
2647        if (!timespec_valid(&ts))
2648            return -EINVAL;
2649
2650        t = timespec_to_ktime(ts);
2651        if (cmd == FUTEX_WAIT)
2652            t = ktime_add_safe(ktime_get(), t);
2653        tp = &t;
2654    }
2655    /*
2656     * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2657     * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2658     */
2659    if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2660        cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2661        val2 = (u32) (unsigned long) utime;
2662
2663    return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2664}
2665
2666static int __init futex_init(void)
2667{
2668    u32 curval;
2669    int i;
2670
2671    /*
2672     * This will fail and we want it. Some arch implementations do
2673     * runtime detection of the futex_atomic_cmpxchg_inatomic()
2674     * functionality. We want to know that before we call in any
2675     * of the complex code paths. Also we want to prevent
2676     * registration of robust lists in that case. NULL is
2677     * guaranteed to fault and we get -EFAULT on functional
2678     * implementation, the non-functional ones will return
2679     * -ENOSYS.
2680     */
2681    curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2682    if (curval == -EFAULT)
2683        futex_cmpxchg_enabled = 1;
2684
2685    for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2686        plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2687        spin_lock_init(&futex_queues[i].lock);
2688    }
2689
2690    return 0;
2691}
2692__initcall(futex_init);
2693

Archive Download this file



interactive