Root/
1 | /* |
2 | * linux/kernel/hrtimer.c |
3 | * |
4 | * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
5 | * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
6 | * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner |
7 | * |
8 | * High-resolution kernel timers |
9 | * |
10 | * In contrast to the low-resolution timeout API implemented in |
11 | * kernel/timer.c, hrtimers provide finer resolution and accuracy |
12 | * depending on system configuration and capabilities. |
13 | * |
14 | * These timers are currently used for: |
15 | * - itimers |
16 | * - POSIX timers |
17 | * - nanosleep |
18 | * - precise in-kernel timing |
19 | * |
20 | * Started by: Thomas Gleixner and Ingo Molnar |
21 | * |
22 | * Credits: |
23 | * based on kernel/timer.c |
24 | * |
25 | * Help, testing, suggestions, bugfixes, improvements were |
26 | * provided by: |
27 | * |
28 | * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel |
29 | * et. al. |
30 | * |
31 | * For licencing details see kernel-base/COPYING |
32 | */ |
33 | |
34 | #include <linux/cpu.h> |
35 | #include <linux/module.h> |
36 | #include <linux/percpu.h> |
37 | #include <linux/hrtimer.h> |
38 | #include <linux/notifier.h> |
39 | #include <linux/syscalls.h> |
40 | #include <linux/kallsyms.h> |
41 | #include <linux/interrupt.h> |
42 | #include <linux/tick.h> |
43 | #include <linux/seq_file.h> |
44 | #include <linux/err.h> |
45 | #include <linux/debugobjects.h> |
46 | #include <linux/sched.h> |
47 | #include <linux/timer.h> |
48 | |
49 | #include <asm/uaccess.h> |
50 | |
51 | #include <trace/events/timer.h> |
52 | |
53 | /* |
54 | * The timer bases: |
55 | * |
56 | * Note: If we want to add new timer bases, we have to skip the two |
57 | * clock ids captured by the cpu-timers. We do this by holding empty |
58 | * entries rather than doing math adjustment of the clock ids. |
59 | * This ensures that we capture erroneous accesses to these clock ids |
60 | * rather than moving them into the range of valid clock id's. |
61 | */ |
62 | DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = |
63 | { |
64 | |
65 | .clock_base = |
66 | { |
67 | { |
68 | .index = CLOCK_REALTIME, |
69 | .get_time = &ktime_get_real, |
70 | .resolution = KTIME_LOW_RES, |
71 | }, |
72 | { |
73 | .index = CLOCK_MONOTONIC, |
74 | .get_time = &ktime_get, |
75 | .resolution = KTIME_LOW_RES, |
76 | }, |
77 | } |
78 | }; |
79 | |
80 | /* |
81 | * Get the coarse grained time at the softirq based on xtime and |
82 | * wall_to_monotonic. |
83 | */ |
84 | static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) |
85 | { |
86 | ktime_t xtim, tomono; |
87 | struct timespec xts, tom; |
88 | unsigned long seq; |
89 | |
90 | do { |
91 | seq = read_seqbegin(&xtime_lock); |
92 | xts = __current_kernel_time(); |
93 | tom = __get_wall_to_monotonic(); |
94 | } while (read_seqretry(&xtime_lock, seq)); |
95 | |
96 | xtim = timespec_to_ktime(xts); |
97 | tomono = timespec_to_ktime(tom); |
98 | base->clock_base[CLOCK_REALTIME].softirq_time = xtim; |
99 | base->clock_base[CLOCK_MONOTONIC].softirq_time = |
100 | ktime_add(xtim, tomono); |
101 | } |
102 | |
103 | /* |
104 | * Functions and macros which are different for UP/SMP systems are kept in a |
105 | * single place |
106 | */ |
107 | #ifdef CONFIG_SMP |
108 | |
109 | /* |
110 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
111 | * means that all timers which are tied to this base via timer->base are |
112 | * locked, and the base itself is locked too. |
113 | * |
114 | * So __run_timers/migrate_timers can safely modify all timers which could |
115 | * be found on the lists/queues. |
116 | * |
117 | * When the timer's base is locked, and the timer removed from list, it is |
118 | * possible to set timer->base = NULL and drop the lock: the timer remains |
119 | * locked. |
120 | */ |
121 | static |
122 | struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, |
123 | unsigned long *flags) |
124 | { |
125 | struct hrtimer_clock_base *base; |
126 | |
127 | for (;;) { |
128 | base = timer->base; |
129 | if (likely(base != NULL)) { |
130 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
131 | if (likely(base == timer->base)) |
132 | return base; |
133 | /* The timer has migrated to another CPU: */ |
134 | raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); |
135 | } |
136 | cpu_relax(); |
137 | } |
138 | } |
139 | |
140 | |
141 | /* |
142 | * Get the preferred target CPU for NOHZ |
143 | */ |
144 | static int hrtimer_get_target(int this_cpu, int pinned) |
145 | { |
146 | #ifdef CONFIG_NO_HZ |
147 | if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) |
148 | return get_nohz_timer_target(); |
149 | #endif |
150 | return this_cpu; |
151 | } |
152 | |
153 | /* |
154 | * With HIGHRES=y we do not migrate the timer when it is expiring |
155 | * before the next event on the target cpu because we cannot reprogram |
156 | * the target cpu hardware and we would cause it to fire late. |
157 | * |
158 | * Called with cpu_base->lock of target cpu held. |
159 | */ |
160 | static int |
161 | hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) |
162 | { |
163 | #ifdef CONFIG_HIGH_RES_TIMERS |
164 | ktime_t expires; |
165 | |
166 | if (!new_base->cpu_base->hres_active) |
167 | return 0; |
168 | |
169 | expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); |
170 | return expires.tv64 <= new_base->cpu_base->expires_next.tv64; |
171 | #else |
172 | return 0; |
173 | #endif |
174 | } |
175 | |
176 | /* |
177 | * Switch the timer base to the current CPU when possible. |
178 | */ |
179 | static inline struct hrtimer_clock_base * |
180 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, |
181 | int pinned) |
182 | { |
183 | struct hrtimer_clock_base *new_base; |
184 | struct hrtimer_cpu_base *new_cpu_base; |
185 | int this_cpu = smp_processor_id(); |
186 | int cpu = hrtimer_get_target(this_cpu, pinned); |
187 | |
188 | again: |
189 | new_cpu_base = &per_cpu(hrtimer_bases, cpu); |
190 | new_base = &new_cpu_base->clock_base[base->index]; |
191 | |
192 | if (base != new_base) { |
193 | /* |
194 | * We are trying to move timer to new_base. |
195 | * However we can't change timer's base while it is running, |
196 | * so we keep it on the same CPU. No hassle vs. reprogramming |
197 | * the event source in the high resolution case. The softirq |
198 | * code will take care of this when the timer function has |
199 | * completed. There is no conflict as we hold the lock until |
200 | * the timer is enqueued. |
201 | */ |
202 | if (unlikely(hrtimer_callback_running(timer))) |
203 | return base; |
204 | |
205 | /* See the comment in lock_timer_base() */ |
206 | timer->base = NULL; |
207 | raw_spin_unlock(&base->cpu_base->lock); |
208 | raw_spin_lock(&new_base->cpu_base->lock); |
209 | |
210 | if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { |
211 | cpu = this_cpu; |
212 | raw_spin_unlock(&new_base->cpu_base->lock); |
213 | raw_spin_lock(&base->cpu_base->lock); |
214 | timer->base = base; |
215 | goto again; |
216 | } |
217 | timer->base = new_base; |
218 | } |
219 | return new_base; |
220 | } |
221 | |
222 | #else /* CONFIG_SMP */ |
223 | |
224 | static inline struct hrtimer_clock_base * |
225 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
226 | { |
227 | struct hrtimer_clock_base *base = timer->base; |
228 | |
229 | raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); |
230 | |
231 | return base; |
232 | } |
233 | |
234 | # define switch_hrtimer_base(t, b, p) (b) |
235 | |
236 | #endif /* !CONFIG_SMP */ |
237 | |
238 | /* |
239 | * Functions for the union type storage format of ktime_t which are |
240 | * too large for inlining: |
241 | */ |
242 | #if BITS_PER_LONG < 64 |
243 | # ifndef CONFIG_KTIME_SCALAR |
244 | /** |
245 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable |
246 | * @kt: addend |
247 | * @nsec: the scalar nsec value to add |
248 | * |
249 | * Returns the sum of kt and nsec in ktime_t format |
250 | */ |
251 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) |
252 | { |
253 | ktime_t tmp; |
254 | |
255 | if (likely(nsec < NSEC_PER_SEC)) { |
256 | tmp.tv64 = nsec; |
257 | } else { |
258 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); |
259 | |
260 | tmp = ktime_set((long)nsec, rem); |
261 | } |
262 | |
263 | return ktime_add(kt, tmp); |
264 | } |
265 | |
266 | EXPORT_SYMBOL_GPL(ktime_add_ns); |
267 | |
268 | /** |
269 | * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable |
270 | * @kt: minuend |
271 | * @nsec: the scalar nsec value to subtract |
272 | * |
273 | * Returns the subtraction of @nsec from @kt in ktime_t format |
274 | */ |
275 | ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) |
276 | { |
277 | ktime_t tmp; |
278 | |
279 | if (likely(nsec < NSEC_PER_SEC)) { |
280 | tmp.tv64 = nsec; |
281 | } else { |
282 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); |
283 | |
284 | tmp = ktime_set((long)nsec, rem); |
285 | } |
286 | |
287 | return ktime_sub(kt, tmp); |
288 | } |
289 | |
290 | EXPORT_SYMBOL_GPL(ktime_sub_ns); |
291 | # endif /* !CONFIG_KTIME_SCALAR */ |
292 | |
293 | /* |
294 | * Divide a ktime value by a nanosecond value |
295 | */ |
296 | u64 ktime_divns(const ktime_t kt, s64 div) |
297 | { |
298 | u64 dclc; |
299 | int sft = 0; |
300 | |
301 | dclc = ktime_to_ns(kt); |
302 | /* Make sure the divisor is less than 2^32: */ |
303 | while (div >> 32) { |
304 | sft++; |
305 | div >>= 1; |
306 | } |
307 | dclc >>= sft; |
308 | do_div(dclc, (unsigned long) div); |
309 | |
310 | return dclc; |
311 | } |
312 | #endif /* BITS_PER_LONG >= 64 */ |
313 | |
314 | /* |
315 | * Add two ktime values and do a safety check for overflow: |
316 | */ |
317 | ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) |
318 | { |
319 | ktime_t res = ktime_add(lhs, rhs); |
320 | |
321 | /* |
322 | * We use KTIME_SEC_MAX here, the maximum timeout which we can |
323 | * return to user space in a timespec: |
324 | */ |
325 | if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) |
326 | res = ktime_set(KTIME_SEC_MAX, 0); |
327 | |
328 | return res; |
329 | } |
330 | |
331 | EXPORT_SYMBOL_GPL(ktime_add_safe); |
332 | |
333 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
334 | |
335 | static struct debug_obj_descr hrtimer_debug_descr; |
336 | |
337 | /* |
338 | * fixup_init is called when: |
339 | * - an active object is initialized |
340 | */ |
341 | static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) |
342 | { |
343 | struct hrtimer *timer = addr; |
344 | |
345 | switch (state) { |
346 | case ODEBUG_STATE_ACTIVE: |
347 | hrtimer_cancel(timer); |
348 | debug_object_init(timer, &hrtimer_debug_descr); |
349 | return 1; |
350 | default: |
351 | return 0; |
352 | } |
353 | } |
354 | |
355 | /* |
356 | * fixup_activate is called when: |
357 | * - an active object is activated |
358 | * - an unknown object is activated (might be a statically initialized object) |
359 | */ |
360 | static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) |
361 | { |
362 | switch (state) { |
363 | |
364 | case ODEBUG_STATE_NOTAVAILABLE: |
365 | WARN_ON_ONCE(1); |
366 | return 0; |
367 | |
368 | case ODEBUG_STATE_ACTIVE: |
369 | WARN_ON(1); |
370 | |
371 | default: |
372 | return 0; |
373 | } |
374 | } |
375 | |
376 | /* |
377 | * fixup_free is called when: |
378 | * - an active object is freed |
379 | */ |
380 | static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) |
381 | { |
382 | struct hrtimer *timer = addr; |
383 | |
384 | switch (state) { |
385 | case ODEBUG_STATE_ACTIVE: |
386 | hrtimer_cancel(timer); |
387 | debug_object_free(timer, &hrtimer_debug_descr); |
388 | return 1; |
389 | default: |
390 | return 0; |
391 | } |
392 | } |
393 | |
394 | static struct debug_obj_descr hrtimer_debug_descr = { |
395 | .name = "hrtimer", |
396 | .fixup_init = hrtimer_fixup_init, |
397 | .fixup_activate = hrtimer_fixup_activate, |
398 | .fixup_free = hrtimer_fixup_free, |
399 | }; |
400 | |
401 | static inline void debug_hrtimer_init(struct hrtimer *timer) |
402 | { |
403 | debug_object_init(timer, &hrtimer_debug_descr); |
404 | } |
405 | |
406 | static inline void debug_hrtimer_activate(struct hrtimer *timer) |
407 | { |
408 | debug_object_activate(timer, &hrtimer_debug_descr); |
409 | } |
410 | |
411 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) |
412 | { |
413 | debug_object_deactivate(timer, &hrtimer_debug_descr); |
414 | } |
415 | |
416 | static inline void debug_hrtimer_free(struct hrtimer *timer) |
417 | { |
418 | debug_object_free(timer, &hrtimer_debug_descr); |
419 | } |
420 | |
421 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
422 | enum hrtimer_mode mode); |
423 | |
424 | void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, |
425 | enum hrtimer_mode mode) |
426 | { |
427 | debug_object_init_on_stack(timer, &hrtimer_debug_descr); |
428 | __hrtimer_init(timer, clock_id, mode); |
429 | } |
430 | EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); |
431 | |
432 | void destroy_hrtimer_on_stack(struct hrtimer *timer) |
433 | { |
434 | debug_object_free(timer, &hrtimer_debug_descr); |
435 | } |
436 | |
437 | #else |
438 | static inline void debug_hrtimer_init(struct hrtimer *timer) { } |
439 | static inline void debug_hrtimer_activate(struct hrtimer *timer) { } |
440 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
441 | #endif |
442 | |
443 | static inline void |
444 | debug_init(struct hrtimer *timer, clockid_t clockid, |
445 | enum hrtimer_mode mode) |
446 | { |
447 | debug_hrtimer_init(timer); |
448 | trace_hrtimer_init(timer, clockid, mode); |
449 | } |
450 | |
451 | static inline void debug_activate(struct hrtimer *timer) |
452 | { |
453 | debug_hrtimer_activate(timer); |
454 | trace_hrtimer_start(timer); |
455 | } |
456 | |
457 | static inline void debug_deactivate(struct hrtimer *timer) |
458 | { |
459 | debug_hrtimer_deactivate(timer); |
460 | trace_hrtimer_cancel(timer); |
461 | } |
462 | |
463 | /* High resolution timer related functions */ |
464 | #ifdef CONFIG_HIGH_RES_TIMERS |
465 | |
466 | /* |
467 | * High resolution timer enabled ? |
468 | */ |
469 | static int hrtimer_hres_enabled __read_mostly = 1; |
470 | |
471 | /* |
472 | * Enable / Disable high resolution mode |
473 | */ |
474 | static int __init setup_hrtimer_hres(char *str) |
475 | { |
476 | if (!strcmp(str, "off")) |
477 | hrtimer_hres_enabled = 0; |
478 | else if (!strcmp(str, "on")) |
479 | hrtimer_hres_enabled = 1; |
480 | else |
481 | return 0; |
482 | return 1; |
483 | } |
484 | |
485 | __setup("highres=", setup_hrtimer_hres); |
486 | |
487 | /* |
488 | * hrtimer_high_res_enabled - query, if the highres mode is enabled |
489 | */ |
490 | static inline int hrtimer_is_hres_enabled(void) |
491 | { |
492 | return hrtimer_hres_enabled; |
493 | } |
494 | |
495 | /* |
496 | * Is the high resolution mode active ? |
497 | */ |
498 | static inline int hrtimer_hres_active(void) |
499 | { |
500 | return __this_cpu_read(hrtimer_bases.hres_active); |
501 | } |
502 | |
503 | /* |
504 | * Reprogram the event source with checking both queues for the |
505 | * next event |
506 | * Called with interrupts disabled and base->lock held |
507 | */ |
508 | static void |
509 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) |
510 | { |
511 | int i; |
512 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
513 | ktime_t expires, expires_next; |
514 | |
515 | expires_next.tv64 = KTIME_MAX; |
516 | |
517 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
518 | struct hrtimer *timer; |
519 | struct timerqueue_node *next; |
520 | |
521 | next = timerqueue_getnext(&base->active); |
522 | if (!next) |
523 | continue; |
524 | timer = container_of(next, struct hrtimer, node); |
525 | |
526 | expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
527 | /* |
528 | * clock_was_set() has changed base->offset so the |
529 | * result might be negative. Fix it up to prevent a |
530 | * false positive in clockevents_program_event() |
531 | */ |
532 | if (expires.tv64 < 0) |
533 | expires.tv64 = 0; |
534 | if (expires.tv64 < expires_next.tv64) |
535 | expires_next = expires; |
536 | } |
537 | |
538 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) |
539 | return; |
540 | |
541 | cpu_base->expires_next.tv64 = expires_next.tv64; |
542 | |
543 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
544 | tick_program_event(cpu_base->expires_next, 1); |
545 | } |
546 | |
547 | /* |
548 | * Shared reprogramming for clock_realtime and clock_monotonic |
549 | * |
550 | * When a timer is enqueued and expires earlier than the already enqueued |
551 | * timers, we have to check, whether it expires earlier than the timer for |
552 | * which the clock event device was armed. |
553 | * |
554 | * Called with interrupts disabled and base->cpu_base.lock held |
555 | */ |
556 | static int hrtimer_reprogram(struct hrtimer *timer, |
557 | struct hrtimer_clock_base *base) |
558 | { |
559 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
560 | ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); |
561 | int res; |
562 | |
563 | WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); |
564 | |
565 | /* |
566 | * When the callback is running, we do not reprogram the clock event |
567 | * device. The timer callback is either running on a different CPU or |
568 | * the callback is executed in the hrtimer_interrupt context. The |
569 | * reprogramming is handled either by the softirq, which called the |
570 | * callback or at the end of the hrtimer_interrupt. |
571 | */ |
572 | if (hrtimer_callback_running(timer)) |
573 | return 0; |
574 | |
575 | /* |
576 | * CLOCK_REALTIME timer might be requested with an absolute |
577 | * expiry time which is less than base->offset. Nothing wrong |
578 | * about that, just avoid to call into the tick code, which |
579 | * has now objections against negative expiry values. |
580 | */ |
581 | if (expires.tv64 < 0) |
582 | return -ETIME; |
583 | |
584 | if (expires.tv64 >= cpu_base->expires_next.tv64) |
585 | return 0; |
586 | |
587 | /* |
588 | * If a hang was detected in the last timer interrupt then we |
589 | * do not schedule a timer which is earlier than the expiry |
590 | * which we enforced in the hang detection. We want the system |
591 | * to make progress. |
592 | */ |
593 | if (cpu_base->hang_detected) |
594 | return 0; |
595 | |
596 | /* |
597 | * Clockevents returns -ETIME, when the event was in the past. |
598 | */ |
599 | res = tick_program_event(expires, 0); |
600 | if (!IS_ERR_VALUE(res)) |
601 | cpu_base->expires_next = expires; |
602 | return res; |
603 | } |
604 | |
605 | |
606 | /* |
607 | * Retrigger next event is called after clock was set |
608 | * |
609 | * Called with interrupts disabled via on_each_cpu() |
610 | */ |
611 | static void retrigger_next_event(void *arg) |
612 | { |
613 | struct hrtimer_cpu_base *base; |
614 | struct timespec realtime_offset, wtm; |
615 | unsigned long seq; |
616 | |
617 | if (!hrtimer_hres_active()) |
618 | return; |
619 | |
620 | do { |
621 | seq = read_seqbegin(&xtime_lock); |
622 | wtm = __get_wall_to_monotonic(); |
623 | } while (read_seqretry(&xtime_lock, seq)); |
624 | set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec); |
625 | |
626 | base = &__get_cpu_var(hrtimer_bases); |
627 | |
628 | /* Adjust CLOCK_REALTIME offset */ |
629 | raw_spin_lock(&base->lock); |
630 | base->clock_base[CLOCK_REALTIME].offset = |
631 | timespec_to_ktime(realtime_offset); |
632 | |
633 | hrtimer_force_reprogram(base, 0); |
634 | raw_spin_unlock(&base->lock); |
635 | } |
636 | |
637 | /* |
638 | * Clock realtime was set |
639 | * |
640 | * Change the offset of the realtime clock vs. the monotonic |
641 | * clock. |
642 | * |
643 | * We might have to reprogram the high resolution timer interrupt. On |
644 | * SMP we call the architecture specific code to retrigger _all_ high |
645 | * resolution timer interrupts. On UP we just disable interrupts and |
646 | * call the high resolution interrupt code. |
647 | */ |
648 | void clock_was_set(void) |
649 | { |
650 | /* Retrigger the CPU local events everywhere */ |
651 | on_each_cpu(retrigger_next_event, NULL, 1); |
652 | } |
653 | |
654 | /* |
655 | * During resume we might have to reprogram the high resolution timer |
656 | * interrupt (on the local CPU): |
657 | */ |
658 | void hres_timers_resume(void) |
659 | { |
660 | WARN_ONCE(!irqs_disabled(), |
661 | KERN_INFO "hres_timers_resume() called with IRQs enabled!"); |
662 | |
663 | retrigger_next_event(NULL); |
664 | } |
665 | |
666 | /* |
667 | * Initialize the high resolution related parts of cpu_base |
668 | */ |
669 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) |
670 | { |
671 | base->expires_next.tv64 = KTIME_MAX; |
672 | base->hres_active = 0; |
673 | } |
674 | |
675 | /* |
676 | * Initialize the high resolution related parts of a hrtimer |
677 | */ |
678 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) |
679 | { |
680 | } |
681 | |
682 | |
683 | /* |
684 | * When High resolution timers are active, try to reprogram. Note, that in case |
685 | * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry |
686 | * check happens. The timer gets enqueued into the rbtree. The reprogramming |
687 | * and expiry check is done in the hrtimer_interrupt or in the softirq. |
688 | */ |
689 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
690 | struct hrtimer_clock_base *base, |
691 | int wakeup) |
692 | { |
693 | if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) { |
694 | if (wakeup) { |
695 | raw_spin_unlock(&base->cpu_base->lock); |
696 | raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
697 | raw_spin_lock(&base->cpu_base->lock); |
698 | } else |
699 | __raise_softirq_irqoff(HRTIMER_SOFTIRQ); |
700 | |
701 | return 1; |
702 | } |
703 | |
704 | return 0; |
705 | } |
706 | |
707 | /* |
708 | * Switch to high resolution mode |
709 | */ |
710 | static int hrtimer_switch_to_hres(void) |
711 | { |
712 | int cpu = smp_processor_id(); |
713 | struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); |
714 | unsigned long flags; |
715 | |
716 | if (base->hres_active) |
717 | return 1; |
718 | |
719 | local_irq_save(flags); |
720 | |
721 | if (tick_init_highres()) { |
722 | local_irq_restore(flags); |
723 | printk(KERN_WARNING "Could not switch to high resolution " |
724 | "mode on CPU %d\n", cpu); |
725 | return 0; |
726 | } |
727 | base->hres_active = 1; |
728 | base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES; |
729 | base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES; |
730 | |
731 | tick_setup_sched_timer(); |
732 | |
733 | /* "Retrigger" the interrupt to get things going */ |
734 | retrigger_next_event(NULL); |
735 | local_irq_restore(flags); |
736 | return 1; |
737 | } |
738 | |
739 | #else |
740 | |
741 | static inline int hrtimer_hres_active(void) { return 0; } |
742 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
743 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
744 | static inline void |
745 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } |
746 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
747 | struct hrtimer_clock_base *base, |
748 | int wakeup) |
749 | { |
750 | return 0; |
751 | } |
752 | static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } |
753 | static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { } |
754 | |
755 | #endif /* CONFIG_HIGH_RES_TIMERS */ |
756 | |
757 | static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) |
758 | { |
759 | #ifdef CONFIG_TIMER_STATS |
760 | if (timer->start_site) |
761 | return; |
762 | timer->start_site = __builtin_return_address(0); |
763 | memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); |
764 | timer->start_pid = current->pid; |
765 | #endif |
766 | } |
767 | |
768 | static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) |
769 | { |
770 | #ifdef CONFIG_TIMER_STATS |
771 | timer->start_site = NULL; |
772 | #endif |
773 | } |
774 | |
775 | static inline void timer_stats_account_hrtimer(struct hrtimer *timer) |
776 | { |
777 | #ifdef CONFIG_TIMER_STATS |
778 | if (likely(!timer_stats_active)) |
779 | return; |
780 | timer_stats_update_stats(timer, timer->start_pid, timer->start_site, |
781 | timer->function, timer->start_comm, 0); |
782 | #endif |
783 | } |
784 | |
785 | /* |
786 | * Counterpart to lock_hrtimer_base above: |
787 | */ |
788 | static inline |
789 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
790 | { |
791 | raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); |
792 | } |
793 | |
794 | /** |
795 | * hrtimer_forward - forward the timer expiry |
796 | * @timer: hrtimer to forward |
797 | * @now: forward past this time |
798 | * @interval: the interval to forward |
799 | * |
800 | * Forward the timer expiry so it will expire in the future. |
801 | * Returns the number of overruns. |
802 | */ |
803 | u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) |
804 | { |
805 | u64 orun = 1; |
806 | ktime_t delta; |
807 | |
808 | delta = ktime_sub(now, hrtimer_get_expires(timer)); |
809 | |
810 | if (delta.tv64 < 0) |
811 | return 0; |
812 | |
813 | if (interval.tv64 < timer->base->resolution.tv64) |
814 | interval.tv64 = timer->base->resolution.tv64; |
815 | |
816 | if (unlikely(delta.tv64 >= interval.tv64)) { |
817 | s64 incr = ktime_to_ns(interval); |
818 | |
819 | orun = ktime_divns(delta, incr); |
820 | hrtimer_add_expires_ns(timer, incr * orun); |
821 | if (hrtimer_get_expires_tv64(timer) > now.tv64) |
822 | return orun; |
823 | /* |
824 | * This (and the ktime_add() below) is the |
825 | * correction for exact: |
826 | */ |
827 | orun++; |
828 | } |
829 | hrtimer_add_expires(timer, interval); |
830 | |
831 | return orun; |
832 | } |
833 | EXPORT_SYMBOL_GPL(hrtimer_forward); |
834 | |
835 | /* |
836 | * enqueue_hrtimer - internal function to (re)start a timer |
837 | * |
838 | * The timer is inserted in expiry order. Insertion into the |
839 | * red black tree is O(log(n)). Must hold the base lock. |
840 | * |
841 | * Returns 1 when the new timer is the leftmost timer in the tree. |
842 | */ |
843 | static int enqueue_hrtimer(struct hrtimer *timer, |
844 | struct hrtimer_clock_base *base) |
845 | { |
846 | debug_activate(timer); |
847 | |
848 | timerqueue_add(&base->active, &timer->node); |
849 | |
850 | /* |
851 | * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the |
852 | * state of a possibly running callback. |
853 | */ |
854 | timer->state |= HRTIMER_STATE_ENQUEUED; |
855 | |
856 | return (&timer->node == base->active.next); |
857 | } |
858 | |
859 | /* |
860 | * __remove_hrtimer - internal function to remove a timer |
861 | * |
862 | * Caller must hold the base lock. |
863 | * |
864 | * High resolution timer mode reprograms the clock event device when the |
865 | * timer is the one which expires next. The caller can disable this by setting |
866 | * reprogram to zero. This is useful, when the context does a reprogramming |
867 | * anyway (e.g. timer interrupt) |
868 | */ |
869 | static void __remove_hrtimer(struct hrtimer *timer, |
870 | struct hrtimer_clock_base *base, |
871 | unsigned long newstate, int reprogram) |
872 | { |
873 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
874 | goto out; |
875 | |
876 | if (&timer->node == timerqueue_getnext(&base->active)) { |
877 | #ifdef CONFIG_HIGH_RES_TIMERS |
878 | /* Reprogram the clock event device. if enabled */ |
879 | if (reprogram && hrtimer_hres_active()) { |
880 | ktime_t expires; |
881 | |
882 | expires = ktime_sub(hrtimer_get_expires(timer), |
883 | base->offset); |
884 | if (base->cpu_base->expires_next.tv64 == expires.tv64) |
885 | hrtimer_force_reprogram(base->cpu_base, 1); |
886 | } |
887 | #endif |
888 | } |
889 | timerqueue_del(&base->active, &timer->node); |
890 | out: |
891 | timer->state = newstate; |
892 | } |
893 | |
894 | /* |
895 | * remove hrtimer, called with base lock held |
896 | */ |
897 | static inline int |
898 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) |
899 | { |
900 | if (hrtimer_is_queued(timer)) { |
901 | unsigned long state; |
902 | int reprogram; |
903 | |
904 | /* |
905 | * Remove the timer and force reprogramming when high |
906 | * resolution mode is active and the timer is on the current |
907 | * CPU. If we remove a timer on another CPU, reprogramming is |
908 | * skipped. The interrupt event on this CPU is fired and |
909 | * reprogramming happens in the interrupt handler. This is a |
910 | * rare case and less expensive than a smp call. |
911 | */ |
912 | debug_deactivate(timer); |
913 | timer_stats_hrtimer_clear_start_info(timer); |
914 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
915 | /* |
916 | * We must preserve the CALLBACK state flag here, |
917 | * otherwise we could move the timer base in |
918 | * switch_hrtimer_base. |
919 | */ |
920 | state = timer->state & HRTIMER_STATE_CALLBACK; |
921 | __remove_hrtimer(timer, base, state, reprogram); |
922 | return 1; |
923 | } |
924 | return 0; |
925 | } |
926 | |
927 | int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
928 | unsigned long delta_ns, const enum hrtimer_mode mode, |
929 | int wakeup) |
930 | { |
931 | struct hrtimer_clock_base *base, *new_base; |
932 | unsigned long flags; |
933 | int ret, leftmost; |
934 | |
935 | base = lock_hrtimer_base(timer, &flags); |
936 | |
937 | /* Remove an active timer from the queue: */ |
938 | ret = remove_hrtimer(timer, base); |
939 | |
940 | /* Switch the timer base, if necessary: */ |
941 | new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); |
942 | |
943 | if (mode & HRTIMER_MODE_REL) { |
944 | tim = ktime_add_safe(tim, new_base->get_time()); |
945 | /* |
946 | * CONFIG_TIME_LOW_RES is a temporary way for architectures |
947 | * to signal that they simply return xtime in |
948 | * do_gettimeoffset(). In this case we want to round up by |
949 | * resolution when starting a relative timer, to avoid short |
950 | * timeouts. This will go away with the GTOD framework. |
951 | */ |
952 | #ifdef CONFIG_TIME_LOW_RES |
953 | tim = ktime_add_safe(tim, base->resolution); |
954 | #endif |
955 | } |
956 | |
957 | hrtimer_set_expires_range_ns(timer, tim, delta_ns); |
958 | |
959 | timer_stats_hrtimer_set_start_info(timer); |
960 | |
961 | leftmost = enqueue_hrtimer(timer, new_base); |
962 | |
963 | /* |
964 | * Only allow reprogramming if the new base is on this CPU. |
965 | * (it might still be on another CPU if the timer was pending) |
966 | * |
967 | * XXX send_remote_softirq() ? |
968 | */ |
969 | if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)) |
970 | hrtimer_enqueue_reprogram(timer, new_base, wakeup); |
971 | |
972 | unlock_hrtimer_base(timer, &flags); |
973 | |
974 | return ret; |
975 | } |
976 | |
977 | /** |
978 | * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU |
979 | * @timer: the timer to be added |
980 | * @tim: expiry time |
981 | * @delta_ns: "slack" range for the timer |
982 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) |
983 | * |
984 | * Returns: |
985 | * 0 on success |
986 | * 1 when the timer was active |
987 | */ |
988 | int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, |
989 | unsigned long delta_ns, const enum hrtimer_mode mode) |
990 | { |
991 | return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); |
992 | } |
993 | EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); |
994 | |
995 | /** |
996 | * hrtimer_start - (re)start an hrtimer on the current CPU |
997 | * @timer: the timer to be added |
998 | * @tim: expiry time |
999 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) |
1000 | * |
1001 | * Returns: |
1002 | * 0 on success |
1003 | * 1 when the timer was active |
1004 | */ |
1005 | int |
1006 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) |
1007 | { |
1008 | return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); |
1009 | } |
1010 | EXPORT_SYMBOL_GPL(hrtimer_start); |
1011 | |
1012 | |
1013 | /** |
1014 | * hrtimer_try_to_cancel - try to deactivate a timer |
1015 | * @timer: hrtimer to stop |
1016 | * |
1017 | * Returns: |
1018 | * 0 when the timer was not active |
1019 | * 1 when the timer was active |
1020 | * -1 when the timer is currently excuting the callback function and |
1021 | * cannot be stopped |
1022 | */ |
1023 | int hrtimer_try_to_cancel(struct hrtimer *timer) |
1024 | { |
1025 | struct hrtimer_clock_base *base; |
1026 | unsigned long flags; |
1027 | int ret = -1; |
1028 | |
1029 | base = lock_hrtimer_base(timer, &flags); |
1030 | |
1031 | if (!hrtimer_callback_running(timer)) |
1032 | ret = remove_hrtimer(timer, base); |
1033 | |
1034 | unlock_hrtimer_base(timer, &flags); |
1035 | |
1036 | return ret; |
1037 | |
1038 | } |
1039 | EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); |
1040 | |
1041 | /** |
1042 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
1043 | * @timer: the timer to be cancelled |
1044 | * |
1045 | * Returns: |
1046 | * 0 when the timer was not active |
1047 | * 1 when the timer was active |
1048 | */ |
1049 | int hrtimer_cancel(struct hrtimer *timer) |
1050 | { |
1051 | for (;;) { |
1052 | int ret = hrtimer_try_to_cancel(timer); |
1053 | |
1054 | if (ret >= 0) |
1055 | return ret; |
1056 | cpu_relax(); |
1057 | } |
1058 | } |
1059 | EXPORT_SYMBOL_GPL(hrtimer_cancel); |
1060 | |
1061 | /** |
1062 | * hrtimer_get_remaining - get remaining time for the timer |
1063 | * @timer: the timer to read |
1064 | */ |
1065 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) |
1066 | { |
1067 | unsigned long flags; |
1068 | ktime_t rem; |
1069 | |
1070 | lock_hrtimer_base(timer, &flags); |
1071 | rem = hrtimer_expires_remaining(timer); |
1072 | unlock_hrtimer_base(timer, &flags); |
1073 | |
1074 | return rem; |
1075 | } |
1076 | EXPORT_SYMBOL_GPL(hrtimer_get_remaining); |
1077 | |
1078 | #ifdef CONFIG_NO_HZ |
1079 | /** |
1080 | * hrtimer_get_next_event - get the time until next expiry event |
1081 | * |
1082 | * Returns the delta to the next expiry event or KTIME_MAX if no timer |
1083 | * is pending. |
1084 | */ |
1085 | ktime_t hrtimer_get_next_event(void) |
1086 | { |
1087 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1088 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
1089 | ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; |
1090 | unsigned long flags; |
1091 | int i; |
1092 | |
1093 | raw_spin_lock_irqsave(&cpu_base->lock, flags); |
1094 | |
1095 | if (!hrtimer_hres_active()) { |
1096 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
1097 | struct hrtimer *timer; |
1098 | struct timerqueue_node *next; |
1099 | |
1100 | next = timerqueue_getnext(&base->active); |
1101 | if (!next) |
1102 | continue; |
1103 | |
1104 | timer = container_of(next, struct hrtimer, node); |
1105 | delta.tv64 = hrtimer_get_expires_tv64(timer); |
1106 | delta = ktime_sub(delta, base->get_time()); |
1107 | if (delta.tv64 < mindelta.tv64) |
1108 | mindelta.tv64 = delta.tv64; |
1109 | } |
1110 | } |
1111 | |
1112 | raw_spin_unlock_irqrestore(&cpu_base->lock, flags); |
1113 | |
1114 | if (mindelta.tv64 < 0) |
1115 | mindelta.tv64 = 0; |
1116 | return mindelta; |
1117 | } |
1118 | #endif |
1119 | |
1120 | static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1121 | enum hrtimer_mode mode) |
1122 | { |
1123 | struct hrtimer_cpu_base *cpu_base; |
1124 | |
1125 | memset(timer, 0, sizeof(struct hrtimer)); |
1126 | |
1127 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
1128 | |
1129 | if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) |
1130 | clock_id = CLOCK_MONOTONIC; |
1131 | |
1132 | timer->base = &cpu_base->clock_base[clock_id]; |
1133 | hrtimer_init_timer_hres(timer); |
1134 | timerqueue_init(&timer->node); |
1135 | |
1136 | #ifdef CONFIG_TIMER_STATS |
1137 | timer->start_site = NULL; |
1138 | timer->start_pid = -1; |
1139 | memset(timer->start_comm, 0, TASK_COMM_LEN); |
1140 | #endif |
1141 | } |
1142 | |
1143 | /** |
1144 | * hrtimer_init - initialize a timer to the given clock |
1145 | * @timer: the timer to be initialized |
1146 | * @clock_id: the clock to be used |
1147 | * @mode: timer mode abs/rel |
1148 | */ |
1149 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1150 | enum hrtimer_mode mode) |
1151 | { |
1152 | debug_init(timer, clock_id, mode); |
1153 | __hrtimer_init(timer, clock_id, mode); |
1154 | } |
1155 | EXPORT_SYMBOL_GPL(hrtimer_init); |
1156 | |
1157 | /** |
1158 | * hrtimer_get_res - get the timer resolution for a clock |
1159 | * @which_clock: which clock to query |
1160 | * @tp: pointer to timespec variable to store the resolution |
1161 | * |
1162 | * Store the resolution of the clock selected by @which_clock in the |
1163 | * variable pointed to by @tp. |
1164 | */ |
1165 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) |
1166 | { |
1167 | struct hrtimer_cpu_base *cpu_base; |
1168 | |
1169 | cpu_base = &__raw_get_cpu_var(hrtimer_bases); |
1170 | *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution); |
1171 | |
1172 | return 0; |
1173 | } |
1174 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
1175 | |
1176 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
1177 | { |
1178 | struct hrtimer_clock_base *base = timer->base; |
1179 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
1180 | enum hrtimer_restart (*fn)(struct hrtimer *); |
1181 | int restart; |
1182 | |
1183 | WARN_ON(!irqs_disabled()); |
1184 | |
1185 | debug_deactivate(timer); |
1186 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1187 | timer_stats_account_hrtimer(timer); |
1188 | fn = timer->function; |
1189 | |
1190 | /* |
1191 | * Because we run timers from hardirq context, there is no chance |
1192 | * they get migrated to another cpu, therefore its safe to unlock |
1193 | * the timer base. |
1194 | */ |
1195 | raw_spin_unlock(&cpu_base->lock); |
1196 | trace_hrtimer_expire_entry(timer, now); |
1197 | restart = fn(timer); |
1198 | trace_hrtimer_expire_exit(timer); |
1199 | raw_spin_lock(&cpu_base->lock); |
1200 | |
1201 | /* |
1202 | * Note: We clear the CALLBACK bit after enqueue_hrtimer and |
1203 | * we do not reprogramm the event hardware. Happens either in |
1204 | * hrtimer_start_range_ns() or in hrtimer_interrupt() |
1205 | */ |
1206 | if (restart != HRTIMER_NORESTART) { |
1207 | BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); |
1208 | enqueue_hrtimer(timer, base); |
1209 | } |
1210 | |
1211 | WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); |
1212 | |
1213 | timer->state &= ~HRTIMER_STATE_CALLBACK; |
1214 | } |
1215 | |
1216 | #ifdef CONFIG_HIGH_RES_TIMERS |
1217 | |
1218 | /* |
1219 | * High resolution timer interrupt |
1220 | * Called with interrupts disabled |
1221 | */ |
1222 | void hrtimer_interrupt(struct clock_event_device *dev) |
1223 | { |
1224 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1225 | struct hrtimer_clock_base *base; |
1226 | ktime_t expires_next, now, entry_time, delta; |
1227 | int i, retries = 0; |
1228 | |
1229 | BUG_ON(!cpu_base->hres_active); |
1230 | cpu_base->nr_events++; |
1231 | dev->next_event.tv64 = KTIME_MAX; |
1232 | |
1233 | entry_time = now = ktime_get(); |
1234 | retry: |
1235 | expires_next.tv64 = KTIME_MAX; |
1236 | |
1237 | raw_spin_lock(&cpu_base->lock); |
1238 | /* |
1239 | * We set expires_next to KTIME_MAX here with cpu_base->lock |
1240 | * held to prevent that a timer is enqueued in our queue via |
1241 | * the migration code. This does not affect enqueueing of |
1242 | * timers which run their callback and need to be requeued on |
1243 | * this CPU. |
1244 | */ |
1245 | cpu_base->expires_next.tv64 = KTIME_MAX; |
1246 | |
1247 | base = cpu_base->clock_base; |
1248 | |
1249 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
1250 | ktime_t basenow; |
1251 | struct timerqueue_node *node; |
1252 | |
1253 | basenow = ktime_add(now, base->offset); |
1254 | |
1255 | while ((node = timerqueue_getnext(&base->active))) { |
1256 | struct hrtimer *timer; |
1257 | |
1258 | timer = container_of(node, struct hrtimer, node); |
1259 | |
1260 | /* |
1261 | * The immediate goal for using the softexpires is |
1262 | * minimizing wakeups, not running timers at the |
1263 | * earliest interrupt after their soft expiration. |
1264 | * This allows us to avoid using a Priority Search |
1265 | * Tree, which can answer a stabbing querry for |
1266 | * overlapping intervals and instead use the simple |
1267 | * BST we already have. |
1268 | * We don't add extra wakeups by delaying timers that |
1269 | * are right-of a not yet expired timer, because that |
1270 | * timer will have to trigger a wakeup anyway. |
1271 | */ |
1272 | |
1273 | if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { |
1274 | ktime_t expires; |
1275 | |
1276 | expires = ktime_sub(hrtimer_get_expires(timer), |
1277 | base->offset); |
1278 | if (expires.tv64 < expires_next.tv64) |
1279 | expires_next = expires; |
1280 | break; |
1281 | } |
1282 | |
1283 | __run_hrtimer(timer, &basenow); |
1284 | } |
1285 | base++; |
1286 | } |
1287 | |
1288 | /* |
1289 | * Store the new expiry value so the migration code can verify |
1290 | * against it. |
1291 | */ |
1292 | cpu_base->expires_next = expires_next; |
1293 | raw_spin_unlock(&cpu_base->lock); |
1294 | |
1295 | /* Reprogramming necessary ? */ |
1296 | if (expires_next.tv64 == KTIME_MAX || |
1297 | !tick_program_event(expires_next, 0)) { |
1298 | cpu_base->hang_detected = 0; |
1299 | return; |
1300 | } |
1301 | |
1302 | /* |
1303 | * The next timer was already expired due to: |
1304 | * - tracing |
1305 | * - long lasting callbacks |
1306 | * - being scheduled away when running in a VM |
1307 | * |
1308 | * We need to prevent that we loop forever in the hrtimer |
1309 | * interrupt routine. We give it 3 attempts to avoid |
1310 | * overreacting on some spurious event. |
1311 | */ |
1312 | now = ktime_get(); |
1313 | cpu_base->nr_retries++; |
1314 | if (++retries < 3) |
1315 | goto retry; |
1316 | /* |
1317 | * Give the system a chance to do something else than looping |
1318 | * here. We stored the entry time, so we know exactly how long |
1319 | * we spent here. We schedule the next event this amount of |
1320 | * time away. |
1321 | */ |
1322 | cpu_base->nr_hangs++; |
1323 | cpu_base->hang_detected = 1; |
1324 | delta = ktime_sub(now, entry_time); |
1325 | if (delta.tv64 > cpu_base->max_hang_time.tv64) |
1326 | cpu_base->max_hang_time = delta; |
1327 | /* |
1328 | * Limit it to a sensible value as we enforce a longer |
1329 | * delay. Give the CPU at least 100ms to catch up. |
1330 | */ |
1331 | if (delta.tv64 > 100 * NSEC_PER_MSEC) |
1332 | expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); |
1333 | else |
1334 | expires_next = ktime_add(now, delta); |
1335 | tick_program_event(expires_next, 1); |
1336 | printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", |
1337 | ktime_to_ns(delta)); |
1338 | } |
1339 | |
1340 | /* |
1341 | * local version of hrtimer_peek_ahead_timers() called with interrupts |
1342 | * disabled. |
1343 | */ |
1344 | static void __hrtimer_peek_ahead_timers(void) |
1345 | { |
1346 | struct tick_device *td; |
1347 | |
1348 | if (!hrtimer_hres_active()) |
1349 | return; |
1350 | |
1351 | td = &__get_cpu_var(tick_cpu_device); |
1352 | if (td && td->evtdev) |
1353 | hrtimer_interrupt(td->evtdev); |
1354 | } |
1355 | |
1356 | /** |
1357 | * hrtimer_peek_ahead_timers -- run soft-expired timers now |
1358 | * |
1359 | * hrtimer_peek_ahead_timers will peek at the timer queue of |
1360 | * the current cpu and check if there are any timers for which |
1361 | * the soft expires time has passed. If any such timers exist, |
1362 | * they are run immediately and then removed from the timer queue. |
1363 | * |
1364 | */ |
1365 | void hrtimer_peek_ahead_timers(void) |
1366 | { |
1367 | unsigned long flags; |
1368 | |
1369 | local_irq_save(flags); |
1370 | __hrtimer_peek_ahead_timers(); |
1371 | local_irq_restore(flags); |
1372 | } |
1373 | |
1374 | static void run_hrtimer_softirq(struct softirq_action *h) |
1375 | { |
1376 | hrtimer_peek_ahead_timers(); |
1377 | } |
1378 | |
1379 | #else /* CONFIG_HIGH_RES_TIMERS */ |
1380 | |
1381 | static inline void __hrtimer_peek_ahead_timers(void) { } |
1382 | |
1383 | #endif /* !CONFIG_HIGH_RES_TIMERS */ |
1384 | |
1385 | /* |
1386 | * Called from timer softirq every jiffy, expire hrtimers: |
1387 | * |
1388 | * For HRT its the fall back code to run the softirq in the timer |
1389 | * softirq context in case the hrtimer initialization failed or has |
1390 | * not been done yet. |
1391 | */ |
1392 | void hrtimer_run_pending(void) |
1393 | { |
1394 | if (hrtimer_hres_active()) |
1395 | return; |
1396 | |
1397 | /* |
1398 | * This _is_ ugly: We have to check in the softirq context, |
1399 | * whether we can switch to highres and / or nohz mode. The |
1400 | * clocksource switch happens in the timer interrupt with |
1401 | * xtime_lock held. Notification from there only sets the |
1402 | * check bit in the tick_oneshot code, otherwise we might |
1403 | * deadlock vs. xtime_lock. |
1404 | */ |
1405 | if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) |
1406 | hrtimer_switch_to_hres(); |
1407 | } |
1408 | |
1409 | /* |
1410 | * Called from hardirq context every jiffy |
1411 | */ |
1412 | void hrtimer_run_queues(void) |
1413 | { |
1414 | struct timerqueue_node *node; |
1415 | struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); |
1416 | struct hrtimer_clock_base *base; |
1417 | int index, gettime = 1; |
1418 | |
1419 | if (hrtimer_hres_active()) |
1420 | return; |
1421 | |
1422 | for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { |
1423 | base = &cpu_base->clock_base[index]; |
1424 | if (!timerqueue_getnext(&base->active)) |
1425 | continue; |
1426 | |
1427 | if (gettime) { |
1428 | hrtimer_get_softirq_time(cpu_base); |
1429 | gettime = 0; |
1430 | } |
1431 | |
1432 | raw_spin_lock(&cpu_base->lock); |
1433 | |
1434 | while ((node = timerqueue_getnext(&base->active))) { |
1435 | struct hrtimer *timer; |
1436 | |
1437 | timer = container_of(node, struct hrtimer, node); |
1438 | if (base->softirq_time.tv64 <= |
1439 | hrtimer_get_expires_tv64(timer)) |
1440 | break; |
1441 | |
1442 | __run_hrtimer(timer, &base->softirq_time); |
1443 | } |
1444 | raw_spin_unlock(&cpu_base->lock); |
1445 | } |
1446 | } |
1447 | |
1448 | /* |
1449 | * Sleep related functions: |
1450 | */ |
1451 | static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) |
1452 | { |
1453 | struct hrtimer_sleeper *t = |
1454 | container_of(timer, struct hrtimer_sleeper, timer); |
1455 | struct task_struct *task = t->task; |
1456 | |
1457 | t->task = NULL; |
1458 | if (task) |
1459 | wake_up_process(task); |
1460 | |
1461 | return HRTIMER_NORESTART; |
1462 | } |
1463 | |
1464 | void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) |
1465 | { |
1466 | sl->timer.function = hrtimer_wakeup; |
1467 | sl->task = task; |
1468 | } |
1469 | EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); |
1470 | |
1471 | static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) |
1472 | { |
1473 | hrtimer_init_sleeper(t, current); |
1474 | |
1475 | do { |
1476 | set_current_state(TASK_INTERRUPTIBLE); |
1477 | hrtimer_start_expires(&t->timer, mode); |
1478 | if (!hrtimer_active(&t->timer)) |
1479 | t->task = NULL; |
1480 | |
1481 | if (likely(t->task)) |
1482 | schedule(); |
1483 | |
1484 | hrtimer_cancel(&t->timer); |
1485 | mode = HRTIMER_MODE_ABS; |
1486 | |
1487 | } while (t->task && !signal_pending(current)); |
1488 | |
1489 | __set_current_state(TASK_RUNNING); |
1490 | |
1491 | return t->task == NULL; |
1492 | } |
1493 | |
1494 | static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) |
1495 | { |
1496 | struct timespec rmt; |
1497 | ktime_t rem; |
1498 | |
1499 | rem = hrtimer_expires_remaining(timer); |
1500 | if (rem.tv64 <= 0) |
1501 | return 0; |
1502 | rmt = ktime_to_timespec(rem); |
1503 | |
1504 | if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) |
1505 | return -EFAULT; |
1506 | |
1507 | return 1; |
1508 | } |
1509 | |
1510 | long __sched hrtimer_nanosleep_restart(struct restart_block *restart) |
1511 | { |
1512 | struct hrtimer_sleeper t; |
1513 | struct timespec __user *rmtp; |
1514 | int ret = 0; |
1515 | |
1516 | hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, |
1517 | HRTIMER_MODE_ABS); |
1518 | hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); |
1519 | |
1520 | if (do_nanosleep(&t, HRTIMER_MODE_ABS)) |
1521 | goto out; |
1522 | |
1523 | rmtp = restart->nanosleep.rmtp; |
1524 | if (rmtp) { |
1525 | ret = update_rmtp(&t.timer, rmtp); |
1526 | if (ret <= 0) |
1527 | goto out; |
1528 | } |
1529 | |
1530 | /* The other values in restart are already filled in */ |
1531 | ret = -ERESTART_RESTARTBLOCK; |
1532 | out: |
1533 | destroy_hrtimer_on_stack(&t.timer); |
1534 | return ret; |
1535 | } |
1536 | |
1537 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
1538 | const enum hrtimer_mode mode, const clockid_t clockid) |
1539 | { |
1540 | struct restart_block *restart; |
1541 | struct hrtimer_sleeper t; |
1542 | int ret = 0; |
1543 | unsigned long slack; |
1544 | |
1545 | slack = current->timer_slack_ns; |
1546 | if (rt_task(current)) |
1547 | slack = 0; |
1548 | |
1549 | hrtimer_init_on_stack(&t.timer, clockid, mode); |
1550 | hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); |
1551 | if (do_nanosleep(&t, mode)) |
1552 | goto out; |
1553 | |
1554 | /* Absolute timers do not update the rmtp value and restart: */ |
1555 | if (mode == HRTIMER_MODE_ABS) { |
1556 | ret = -ERESTARTNOHAND; |
1557 | goto out; |
1558 | } |
1559 | |
1560 | if (rmtp) { |
1561 | ret = update_rmtp(&t.timer, rmtp); |
1562 | if (ret <= 0) |
1563 | goto out; |
1564 | } |
1565 | |
1566 | restart = ¤t_thread_info()->restart_block; |
1567 | restart->fn = hrtimer_nanosleep_restart; |
1568 | restart->nanosleep.index = t.timer.base->index; |
1569 | restart->nanosleep.rmtp = rmtp; |
1570 | restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); |
1571 | |
1572 | ret = -ERESTART_RESTARTBLOCK; |
1573 | out: |
1574 | destroy_hrtimer_on_stack(&t.timer); |
1575 | return ret; |
1576 | } |
1577 | |
1578 | SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, |
1579 | struct timespec __user *, rmtp) |
1580 | { |
1581 | struct timespec tu; |
1582 | |
1583 | if (copy_from_user(&tu, rqtp, sizeof(tu))) |
1584 | return -EFAULT; |
1585 | |
1586 | if (!timespec_valid(&tu)) |
1587 | return -EINVAL; |
1588 | |
1589 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); |
1590 | } |
1591 | |
1592 | /* |
1593 | * Functions related to boot-time initialization: |
1594 | */ |
1595 | static void __cpuinit init_hrtimers_cpu(int cpu) |
1596 | { |
1597 | struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); |
1598 | int i; |
1599 | |
1600 | raw_spin_lock_init(&cpu_base->lock); |
1601 | |
1602 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
1603 | cpu_base->clock_base[i].cpu_base = cpu_base; |
1604 | timerqueue_init_head(&cpu_base->clock_base[i].active); |
1605 | } |
1606 | |
1607 | hrtimer_init_hres(cpu_base); |
1608 | } |
1609 | |
1610 | #ifdef CONFIG_HOTPLUG_CPU |
1611 | |
1612 | static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, |
1613 | struct hrtimer_clock_base *new_base) |
1614 | { |
1615 | struct hrtimer *timer; |
1616 | struct timerqueue_node *node; |
1617 | |
1618 | while ((node = timerqueue_getnext(&old_base->active))) { |
1619 | timer = container_of(node, struct hrtimer, node); |
1620 | BUG_ON(hrtimer_callback_running(timer)); |
1621 | debug_deactivate(timer); |
1622 | |
1623 | /* |
1624 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
1625 | * timer could be seen as !active and just vanish away |
1626 | * under us on another CPU |
1627 | */ |
1628 | __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); |
1629 | timer->base = new_base; |
1630 | /* |
1631 | * Enqueue the timers on the new cpu. This does not |
1632 | * reprogram the event device in case the timer |
1633 | * expires before the earliest on this CPU, but we run |
1634 | * hrtimer_interrupt after we migrated everything to |
1635 | * sort out already expired timers and reprogram the |
1636 | * event device. |
1637 | */ |
1638 | enqueue_hrtimer(timer, new_base); |
1639 | |
1640 | /* Clear the migration state bit */ |
1641 | timer->state &= ~HRTIMER_STATE_MIGRATE; |
1642 | } |
1643 | } |
1644 | |
1645 | static void migrate_hrtimers(int scpu) |
1646 | { |
1647 | struct hrtimer_cpu_base *old_base, *new_base; |
1648 | int i; |
1649 | |
1650 | BUG_ON(cpu_online(scpu)); |
1651 | tick_cancel_sched_timer(scpu); |
1652 | |
1653 | local_irq_disable(); |
1654 | old_base = &per_cpu(hrtimer_bases, scpu); |
1655 | new_base = &__get_cpu_var(hrtimer_bases); |
1656 | /* |
1657 | * The caller is globally serialized and nobody else |
1658 | * takes two locks at once, deadlock is not possible. |
1659 | */ |
1660 | raw_spin_lock(&new_base->lock); |
1661 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
1662 | |
1663 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { |
1664 | migrate_hrtimer_list(&old_base->clock_base[i], |
1665 | &new_base->clock_base[i]); |
1666 | } |
1667 | |
1668 | raw_spin_unlock(&old_base->lock); |
1669 | raw_spin_unlock(&new_base->lock); |
1670 | |
1671 | /* Check, if we got expired work to do */ |
1672 | __hrtimer_peek_ahead_timers(); |
1673 | local_irq_enable(); |
1674 | } |
1675 | |
1676 | #endif /* CONFIG_HOTPLUG_CPU */ |
1677 | |
1678 | static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, |
1679 | unsigned long action, void *hcpu) |
1680 | { |
1681 | int scpu = (long)hcpu; |
1682 | |
1683 | switch (action) { |
1684 | |
1685 | case CPU_UP_PREPARE: |
1686 | case CPU_UP_PREPARE_FROZEN: |
1687 | init_hrtimers_cpu(scpu); |
1688 | break; |
1689 | |
1690 | #ifdef CONFIG_HOTPLUG_CPU |
1691 | case CPU_DYING: |
1692 | case CPU_DYING_FROZEN: |
1693 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); |
1694 | break; |
1695 | case CPU_DEAD: |
1696 | case CPU_DEAD_FROZEN: |
1697 | { |
1698 | clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); |
1699 | migrate_hrtimers(scpu); |
1700 | break; |
1701 | } |
1702 | #endif |
1703 | |
1704 | default: |
1705 | break; |
1706 | } |
1707 | |
1708 | return NOTIFY_OK; |
1709 | } |
1710 | |
1711 | static struct notifier_block __cpuinitdata hrtimers_nb = { |
1712 | .notifier_call = hrtimer_cpu_notify, |
1713 | }; |
1714 | |
1715 | void __init hrtimers_init(void) |
1716 | { |
1717 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, |
1718 | (void *)(long)smp_processor_id()); |
1719 | register_cpu_notifier(&hrtimers_nb); |
1720 | #ifdef CONFIG_HIGH_RES_TIMERS |
1721 | open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); |
1722 | #endif |
1723 | } |
1724 | |
1725 | /** |
1726 | * schedule_hrtimeout_range_clock - sleep until timeout |
1727 | * @expires: timeout value (ktime_t) |
1728 | * @delta: slack in expires timeout (ktime_t) |
1729 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
1730 | * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME |
1731 | */ |
1732 | int __sched |
1733 | schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, |
1734 | const enum hrtimer_mode mode, int clock) |
1735 | { |
1736 | struct hrtimer_sleeper t; |
1737 | |
1738 | /* |
1739 | * Optimize when a zero timeout value is given. It does not |
1740 | * matter whether this is an absolute or a relative time. |
1741 | */ |
1742 | if (expires && !expires->tv64) { |
1743 | __set_current_state(TASK_RUNNING); |
1744 | return 0; |
1745 | } |
1746 | |
1747 | /* |
1748 | * A NULL parameter means "infinite" |
1749 | */ |
1750 | if (!expires) { |
1751 | schedule(); |
1752 | __set_current_state(TASK_RUNNING); |
1753 | return -EINTR; |
1754 | } |
1755 | |
1756 | hrtimer_init_on_stack(&t.timer, clock, mode); |
1757 | hrtimer_set_expires_range_ns(&t.timer, *expires, delta); |
1758 | |
1759 | hrtimer_init_sleeper(&t, current); |
1760 | |
1761 | hrtimer_start_expires(&t.timer, mode); |
1762 | if (!hrtimer_active(&t.timer)) |
1763 | t.task = NULL; |
1764 | |
1765 | if (likely(t.task)) |
1766 | schedule(); |
1767 | |
1768 | hrtimer_cancel(&t.timer); |
1769 | destroy_hrtimer_on_stack(&t.timer); |
1770 | |
1771 | __set_current_state(TASK_RUNNING); |
1772 | |
1773 | return !t.task ? 0 : -EINTR; |
1774 | } |
1775 | |
1776 | /** |
1777 | * schedule_hrtimeout_range - sleep until timeout |
1778 | * @expires: timeout value (ktime_t) |
1779 | * @delta: slack in expires timeout (ktime_t) |
1780 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
1781 | * |
1782 | * Make the current task sleep until the given expiry time has |
1783 | * elapsed. The routine will return immediately unless |
1784 | * the current task state has been set (see set_current_state()). |
1785 | * |
1786 | * The @delta argument gives the kernel the freedom to schedule the |
1787 | * actual wakeup to a time that is both power and performance friendly. |
1788 | * The kernel give the normal best effort behavior for "@expires+@delta", |
1789 | * but may decide to fire the timer earlier, but no earlier than @expires. |
1790 | * |
1791 | * You can set the task state as follows - |
1792 | * |
1793 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
1794 | * pass before the routine returns. |
1795 | * |
1796 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
1797 | * delivered to the current task. |
1798 | * |
1799 | * The current task state is guaranteed to be TASK_RUNNING when this |
1800 | * routine returns. |
1801 | * |
1802 | * Returns 0 when the timer has expired otherwise -EINTR |
1803 | */ |
1804 | int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, |
1805 | const enum hrtimer_mode mode) |
1806 | { |
1807 | return schedule_hrtimeout_range_clock(expires, delta, mode, |
1808 | CLOCK_MONOTONIC); |
1809 | } |
1810 | EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); |
1811 | |
1812 | /** |
1813 | * schedule_hrtimeout - sleep until timeout |
1814 | * @expires: timeout value (ktime_t) |
1815 | * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL |
1816 | * |
1817 | * Make the current task sleep until the given expiry time has |
1818 | * elapsed. The routine will return immediately unless |
1819 | * the current task state has been set (see set_current_state()). |
1820 | * |
1821 | * You can set the task state as follows - |
1822 | * |
1823 | * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to |
1824 | * pass before the routine returns. |
1825 | * |
1826 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
1827 | * delivered to the current task. |
1828 | * |
1829 | * The current task state is guaranteed to be TASK_RUNNING when this |
1830 | * routine returns. |
1831 | * |
1832 | * Returns 0 when the timer has expired otherwise -EINTR |
1833 | */ |
1834 | int __sched schedule_hrtimeout(ktime_t *expires, |
1835 | const enum hrtimer_mode mode) |
1836 | { |
1837 | return schedule_hrtimeout_range(expires, 0, mode); |
1838 | } |
1839 | EXPORT_SYMBOL_GPL(schedule_hrtimeout); |
1840 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9