Root/
1 | /* |
2 | * kexec.c - kexec system call |
3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> |
4 | * |
5 | * This source code is licensed under the GNU General Public License, |
6 | * Version 2. See the file COPYING for more details. |
7 | */ |
8 | |
9 | #include <linux/capability.h> |
10 | #include <linux/mm.h> |
11 | #include <linux/file.h> |
12 | #include <linux/slab.h> |
13 | #include <linux/fs.h> |
14 | #include <linux/kexec.h> |
15 | #include <linux/mutex.h> |
16 | #include <linux/list.h> |
17 | #include <linux/highmem.h> |
18 | #include <linux/syscalls.h> |
19 | #include <linux/reboot.h> |
20 | #include <linux/ioport.h> |
21 | #include <linux/hardirq.h> |
22 | #include <linux/elf.h> |
23 | #include <linux/elfcore.h> |
24 | #include <generated/utsrelease.h> |
25 | #include <linux/utsname.h> |
26 | #include <linux/numa.h> |
27 | #include <linux/suspend.h> |
28 | #include <linux/device.h> |
29 | #include <linux/freezer.h> |
30 | #include <linux/pm.h> |
31 | #include <linux/cpu.h> |
32 | #include <linux/console.h> |
33 | #include <linux/vmalloc.h> |
34 | #include <linux/swap.h> |
35 | #include <linux/kmsg_dump.h> |
36 | |
37 | #include <asm/page.h> |
38 | #include <asm/uaccess.h> |
39 | #include <asm/io.h> |
40 | #include <asm/system.h> |
41 | #include <asm/sections.h> |
42 | |
43 | /* Per cpu memory for storing cpu states in case of system crash. */ |
44 | note_buf_t __percpu *crash_notes; |
45 | |
46 | /* vmcoreinfo stuff */ |
47 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
48 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
49 | size_t vmcoreinfo_size; |
50 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); |
51 | |
52 | /* Location of the reserved area for the crash kernel */ |
53 | struct resource crashk_res = { |
54 | .name = "Crash kernel", |
55 | .start = 0, |
56 | .end = 0, |
57 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM |
58 | }; |
59 | |
60 | int kexec_should_crash(struct task_struct *p) |
61 | { |
62 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
63 | return 1; |
64 | return 0; |
65 | } |
66 | |
67 | /* |
68 | * When kexec transitions to the new kernel there is a one-to-one |
69 | * mapping between physical and virtual addresses. On processors |
70 | * where you can disable the MMU this is trivial, and easy. For |
71 | * others it is still a simple predictable page table to setup. |
72 | * |
73 | * In that environment kexec copies the new kernel to its final |
74 | * resting place. This means I can only support memory whose |
75 | * physical address can fit in an unsigned long. In particular |
76 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. |
77 | * If the assembly stub has more restrictive requirements |
78 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be |
79 | * defined more restrictively in <asm/kexec.h>. |
80 | * |
81 | * The code for the transition from the current kernel to the |
82 | * the new kernel is placed in the control_code_buffer, whose size |
83 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
84 | * page of memory is necessary, but some architectures require more. |
85 | * Because this memory must be identity mapped in the transition from |
86 | * virtual to physical addresses it must live in the range |
87 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily |
88 | * modifiable. |
89 | * |
90 | * The assembly stub in the control code buffer is passed a linked list |
91 | * of descriptor pages detailing the source pages of the new kernel, |
92 | * and the destination addresses of those source pages. As this data |
93 | * structure is not used in the context of the current OS, it must |
94 | * be self-contained. |
95 | * |
96 | * The code has been made to work with highmem pages and will use a |
97 | * destination page in its final resting place (if it happens |
98 | * to allocate it). The end product of this is that most of the |
99 | * physical address space, and most of RAM can be used. |
100 | * |
101 | * Future directions include: |
102 | * - allocating a page table with the control code buffer identity |
103 | * mapped, to simplify machine_kexec and make kexec_on_panic more |
104 | * reliable. |
105 | */ |
106 | |
107 | /* |
108 | * KIMAGE_NO_DEST is an impossible destination address..., for |
109 | * allocating pages whose destination address we do not care about. |
110 | */ |
111 | #define KIMAGE_NO_DEST (-1UL) |
112 | |
113 | static int kimage_is_destination_range(struct kimage *image, |
114 | unsigned long start, unsigned long end); |
115 | static struct page *kimage_alloc_page(struct kimage *image, |
116 | gfp_t gfp_mask, |
117 | unsigned long dest); |
118 | |
119 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, |
120 | unsigned long nr_segments, |
121 | struct kexec_segment __user *segments) |
122 | { |
123 | size_t segment_bytes; |
124 | struct kimage *image; |
125 | unsigned long i; |
126 | int result; |
127 | |
128 | /* Allocate a controlling structure */ |
129 | result = -ENOMEM; |
130 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
131 | if (!image) |
132 | goto out; |
133 | |
134 | image->head = 0; |
135 | image->entry = &image->head; |
136 | image->last_entry = &image->head; |
137 | image->control_page = ~0; /* By default this does not apply */ |
138 | image->start = entry; |
139 | image->type = KEXEC_TYPE_DEFAULT; |
140 | |
141 | /* Initialize the list of control pages */ |
142 | INIT_LIST_HEAD(&image->control_pages); |
143 | |
144 | /* Initialize the list of destination pages */ |
145 | INIT_LIST_HEAD(&image->dest_pages); |
146 | |
147 | /* Initialize the list of unuseable pages */ |
148 | INIT_LIST_HEAD(&image->unuseable_pages); |
149 | |
150 | /* Read in the segments */ |
151 | image->nr_segments = nr_segments; |
152 | segment_bytes = nr_segments * sizeof(*segments); |
153 | result = copy_from_user(image->segment, segments, segment_bytes); |
154 | if (result) { |
155 | result = -EFAULT; |
156 | goto out; |
157 | } |
158 | |
159 | /* |
160 | * Verify we have good destination addresses. The caller is |
161 | * responsible for making certain we don't attempt to load |
162 | * the new image into invalid or reserved areas of RAM. This |
163 | * just verifies it is an address we can use. |
164 | * |
165 | * Since the kernel does everything in page size chunks ensure |
166 | * the destination addresses are page aligned. Too many |
167 | * special cases crop of when we don't do this. The most |
168 | * insidious is getting overlapping destination addresses |
169 | * simply because addresses are changed to page size |
170 | * granularity. |
171 | */ |
172 | result = -EADDRNOTAVAIL; |
173 | for (i = 0; i < nr_segments; i++) { |
174 | unsigned long mstart, mend; |
175 | |
176 | mstart = image->segment[i].mem; |
177 | mend = mstart + image->segment[i].memsz; |
178 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) |
179 | goto out; |
180 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) |
181 | goto out; |
182 | } |
183 | |
184 | /* Verify our destination addresses do not overlap. |
185 | * If we alloed overlapping destination addresses |
186 | * through very weird things can happen with no |
187 | * easy explanation as one segment stops on another. |
188 | */ |
189 | result = -EINVAL; |
190 | for (i = 0; i < nr_segments; i++) { |
191 | unsigned long mstart, mend; |
192 | unsigned long j; |
193 | |
194 | mstart = image->segment[i].mem; |
195 | mend = mstart + image->segment[i].memsz; |
196 | for (j = 0; j < i; j++) { |
197 | unsigned long pstart, pend; |
198 | pstart = image->segment[j].mem; |
199 | pend = pstart + image->segment[j].memsz; |
200 | /* Do the segments overlap ? */ |
201 | if ((mend > pstart) && (mstart < pend)) |
202 | goto out; |
203 | } |
204 | } |
205 | |
206 | /* Ensure our buffer sizes are strictly less than |
207 | * our memory sizes. This should always be the case, |
208 | * and it is easier to check up front than to be surprised |
209 | * later on. |
210 | */ |
211 | result = -EINVAL; |
212 | for (i = 0; i < nr_segments; i++) { |
213 | if (image->segment[i].bufsz > image->segment[i].memsz) |
214 | goto out; |
215 | } |
216 | |
217 | result = 0; |
218 | out: |
219 | if (result == 0) |
220 | *rimage = image; |
221 | else |
222 | kfree(image); |
223 | |
224 | return result; |
225 | |
226 | } |
227 | |
228 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, |
229 | unsigned long nr_segments, |
230 | struct kexec_segment __user *segments) |
231 | { |
232 | int result; |
233 | struct kimage *image; |
234 | |
235 | /* Allocate and initialize a controlling structure */ |
236 | image = NULL; |
237 | result = do_kimage_alloc(&image, entry, nr_segments, segments); |
238 | if (result) |
239 | goto out; |
240 | |
241 | *rimage = image; |
242 | |
243 | /* |
244 | * Find a location for the control code buffer, and add it |
245 | * the vector of segments so that it's pages will also be |
246 | * counted as destination pages. |
247 | */ |
248 | result = -ENOMEM; |
249 | image->control_code_page = kimage_alloc_control_pages(image, |
250 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
251 | if (!image->control_code_page) { |
252 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); |
253 | goto out; |
254 | } |
255 | |
256 | image->swap_page = kimage_alloc_control_pages(image, 0); |
257 | if (!image->swap_page) { |
258 | printk(KERN_ERR "Could not allocate swap buffer\n"); |
259 | goto out; |
260 | } |
261 | |
262 | result = 0; |
263 | out: |
264 | if (result == 0) |
265 | *rimage = image; |
266 | else |
267 | kfree(image); |
268 | |
269 | return result; |
270 | } |
271 | |
272 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, |
273 | unsigned long nr_segments, |
274 | struct kexec_segment __user *segments) |
275 | { |
276 | int result; |
277 | struct kimage *image; |
278 | unsigned long i; |
279 | |
280 | image = NULL; |
281 | /* Verify we have a valid entry point */ |
282 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { |
283 | result = -EADDRNOTAVAIL; |
284 | goto out; |
285 | } |
286 | |
287 | /* Allocate and initialize a controlling structure */ |
288 | result = do_kimage_alloc(&image, entry, nr_segments, segments); |
289 | if (result) |
290 | goto out; |
291 | |
292 | /* Enable the special crash kernel control page |
293 | * allocation policy. |
294 | */ |
295 | image->control_page = crashk_res.start; |
296 | image->type = KEXEC_TYPE_CRASH; |
297 | |
298 | /* |
299 | * Verify we have good destination addresses. Normally |
300 | * the caller is responsible for making certain we don't |
301 | * attempt to load the new image into invalid or reserved |
302 | * areas of RAM. But crash kernels are preloaded into a |
303 | * reserved area of ram. We must ensure the addresses |
304 | * are in the reserved area otherwise preloading the |
305 | * kernel could corrupt things. |
306 | */ |
307 | result = -EADDRNOTAVAIL; |
308 | for (i = 0; i < nr_segments; i++) { |
309 | unsigned long mstart, mend; |
310 | |
311 | mstart = image->segment[i].mem; |
312 | mend = mstart + image->segment[i].memsz - 1; |
313 | /* Ensure we are within the crash kernel limits */ |
314 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) |
315 | goto out; |
316 | } |
317 | |
318 | /* |
319 | * Find a location for the control code buffer, and add |
320 | * the vector of segments so that it's pages will also be |
321 | * counted as destination pages. |
322 | */ |
323 | result = -ENOMEM; |
324 | image->control_code_page = kimage_alloc_control_pages(image, |
325 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
326 | if (!image->control_code_page) { |
327 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); |
328 | goto out; |
329 | } |
330 | |
331 | result = 0; |
332 | out: |
333 | if (result == 0) |
334 | *rimage = image; |
335 | else |
336 | kfree(image); |
337 | |
338 | return result; |
339 | } |
340 | |
341 | static int kimage_is_destination_range(struct kimage *image, |
342 | unsigned long start, |
343 | unsigned long end) |
344 | { |
345 | unsigned long i; |
346 | |
347 | for (i = 0; i < image->nr_segments; i++) { |
348 | unsigned long mstart, mend; |
349 | |
350 | mstart = image->segment[i].mem; |
351 | mend = mstart + image->segment[i].memsz; |
352 | if ((end > mstart) && (start < mend)) |
353 | return 1; |
354 | } |
355 | |
356 | return 0; |
357 | } |
358 | |
359 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
360 | { |
361 | struct page *pages; |
362 | |
363 | pages = alloc_pages(gfp_mask, order); |
364 | if (pages) { |
365 | unsigned int count, i; |
366 | pages->mapping = NULL; |
367 | set_page_private(pages, order); |
368 | count = 1 << order; |
369 | for (i = 0; i < count; i++) |
370 | SetPageReserved(pages + i); |
371 | } |
372 | |
373 | return pages; |
374 | } |
375 | |
376 | static void kimage_free_pages(struct page *page) |
377 | { |
378 | unsigned int order, count, i; |
379 | |
380 | order = page_private(page); |
381 | count = 1 << order; |
382 | for (i = 0; i < count; i++) |
383 | ClearPageReserved(page + i); |
384 | __free_pages(page, order); |
385 | } |
386 | |
387 | static void kimage_free_page_list(struct list_head *list) |
388 | { |
389 | struct list_head *pos, *next; |
390 | |
391 | list_for_each_safe(pos, next, list) { |
392 | struct page *page; |
393 | |
394 | page = list_entry(pos, struct page, lru); |
395 | list_del(&page->lru); |
396 | kimage_free_pages(page); |
397 | } |
398 | } |
399 | |
400 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
401 | unsigned int order) |
402 | { |
403 | /* Control pages are special, they are the intermediaries |
404 | * that are needed while we copy the rest of the pages |
405 | * to their final resting place. As such they must |
406 | * not conflict with either the destination addresses |
407 | * or memory the kernel is already using. |
408 | * |
409 | * The only case where we really need more than one of |
410 | * these are for architectures where we cannot disable |
411 | * the MMU and must instead generate an identity mapped |
412 | * page table for all of the memory. |
413 | * |
414 | * At worst this runs in O(N) of the image size. |
415 | */ |
416 | struct list_head extra_pages; |
417 | struct page *pages; |
418 | unsigned int count; |
419 | |
420 | count = 1 << order; |
421 | INIT_LIST_HEAD(&extra_pages); |
422 | |
423 | /* Loop while I can allocate a page and the page allocated |
424 | * is a destination page. |
425 | */ |
426 | do { |
427 | unsigned long pfn, epfn, addr, eaddr; |
428 | |
429 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
430 | if (!pages) |
431 | break; |
432 | pfn = page_to_pfn(pages); |
433 | epfn = pfn + count; |
434 | addr = pfn << PAGE_SHIFT; |
435 | eaddr = epfn << PAGE_SHIFT; |
436 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || |
437 | kimage_is_destination_range(image, addr, eaddr)) { |
438 | list_add(&pages->lru, &extra_pages); |
439 | pages = NULL; |
440 | } |
441 | } while (!pages); |
442 | |
443 | if (pages) { |
444 | /* Remember the allocated page... */ |
445 | list_add(&pages->lru, &image->control_pages); |
446 | |
447 | /* Because the page is already in it's destination |
448 | * location we will never allocate another page at |
449 | * that address. Therefore kimage_alloc_pages |
450 | * will not return it (again) and we don't need |
451 | * to give it an entry in image->segment[]. |
452 | */ |
453 | } |
454 | /* Deal with the destination pages I have inadvertently allocated. |
455 | * |
456 | * Ideally I would convert multi-page allocations into single |
457 | * page allocations, and add everyting to image->dest_pages. |
458 | * |
459 | * For now it is simpler to just free the pages. |
460 | */ |
461 | kimage_free_page_list(&extra_pages); |
462 | |
463 | return pages; |
464 | } |
465 | |
466 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
467 | unsigned int order) |
468 | { |
469 | /* Control pages are special, they are the intermediaries |
470 | * that are needed while we copy the rest of the pages |
471 | * to their final resting place. As such they must |
472 | * not conflict with either the destination addresses |
473 | * or memory the kernel is already using. |
474 | * |
475 | * Control pages are also the only pags we must allocate |
476 | * when loading a crash kernel. All of the other pages |
477 | * are specified by the segments and we just memcpy |
478 | * into them directly. |
479 | * |
480 | * The only case where we really need more than one of |
481 | * these are for architectures where we cannot disable |
482 | * the MMU and must instead generate an identity mapped |
483 | * page table for all of the memory. |
484 | * |
485 | * Given the low demand this implements a very simple |
486 | * allocator that finds the first hole of the appropriate |
487 | * size in the reserved memory region, and allocates all |
488 | * of the memory up to and including the hole. |
489 | */ |
490 | unsigned long hole_start, hole_end, size; |
491 | struct page *pages; |
492 | |
493 | pages = NULL; |
494 | size = (1 << order) << PAGE_SHIFT; |
495 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); |
496 | hole_end = hole_start + size - 1; |
497 | while (hole_end <= crashk_res.end) { |
498 | unsigned long i; |
499 | |
500 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) |
501 | break; |
502 | if (hole_end > crashk_res.end) |
503 | break; |
504 | /* See if I overlap any of the segments */ |
505 | for (i = 0; i < image->nr_segments; i++) { |
506 | unsigned long mstart, mend; |
507 | |
508 | mstart = image->segment[i].mem; |
509 | mend = mstart + image->segment[i].memsz - 1; |
510 | if ((hole_end >= mstart) && (hole_start <= mend)) { |
511 | /* Advance the hole to the end of the segment */ |
512 | hole_start = (mend + (size - 1)) & ~(size - 1); |
513 | hole_end = hole_start + size - 1; |
514 | break; |
515 | } |
516 | } |
517 | /* If I don't overlap any segments I have found my hole! */ |
518 | if (i == image->nr_segments) { |
519 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); |
520 | break; |
521 | } |
522 | } |
523 | if (pages) |
524 | image->control_page = hole_end; |
525 | |
526 | return pages; |
527 | } |
528 | |
529 | |
530 | struct page *kimage_alloc_control_pages(struct kimage *image, |
531 | unsigned int order) |
532 | { |
533 | struct page *pages = NULL; |
534 | |
535 | switch (image->type) { |
536 | case KEXEC_TYPE_DEFAULT: |
537 | pages = kimage_alloc_normal_control_pages(image, order); |
538 | break; |
539 | case KEXEC_TYPE_CRASH: |
540 | pages = kimage_alloc_crash_control_pages(image, order); |
541 | break; |
542 | } |
543 | |
544 | return pages; |
545 | } |
546 | |
547 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) |
548 | { |
549 | if (*image->entry != 0) |
550 | image->entry++; |
551 | |
552 | if (image->entry == image->last_entry) { |
553 | kimage_entry_t *ind_page; |
554 | struct page *page; |
555 | |
556 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
557 | if (!page) |
558 | return -ENOMEM; |
559 | |
560 | ind_page = page_address(page); |
561 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; |
562 | image->entry = ind_page; |
563 | image->last_entry = ind_page + |
564 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); |
565 | } |
566 | *image->entry = entry; |
567 | image->entry++; |
568 | *image->entry = 0; |
569 | |
570 | return 0; |
571 | } |
572 | |
573 | static int kimage_set_destination(struct kimage *image, |
574 | unsigned long destination) |
575 | { |
576 | int result; |
577 | |
578 | destination &= PAGE_MASK; |
579 | result = kimage_add_entry(image, destination | IND_DESTINATION); |
580 | if (result == 0) |
581 | image->destination = destination; |
582 | |
583 | return result; |
584 | } |
585 | |
586 | |
587 | static int kimage_add_page(struct kimage *image, unsigned long page) |
588 | { |
589 | int result; |
590 | |
591 | page &= PAGE_MASK; |
592 | result = kimage_add_entry(image, page | IND_SOURCE); |
593 | if (result == 0) |
594 | image->destination += PAGE_SIZE; |
595 | |
596 | return result; |
597 | } |
598 | |
599 | |
600 | static void kimage_free_extra_pages(struct kimage *image) |
601 | { |
602 | /* Walk through and free any extra destination pages I may have */ |
603 | kimage_free_page_list(&image->dest_pages); |
604 | |
605 | /* Walk through and free any unuseable pages I have cached */ |
606 | kimage_free_page_list(&image->unuseable_pages); |
607 | |
608 | } |
609 | static void kimage_terminate(struct kimage *image) |
610 | { |
611 | if (*image->entry != 0) |
612 | image->entry++; |
613 | |
614 | *image->entry = IND_DONE; |
615 | } |
616 | |
617 | #define for_each_kimage_entry(image, ptr, entry) \ |
618 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ |
619 | ptr = (entry & IND_INDIRECTION)? \ |
620 | phys_to_virt((entry & PAGE_MASK)): ptr +1) |
621 | |
622 | static void kimage_free_entry(kimage_entry_t entry) |
623 | { |
624 | struct page *page; |
625 | |
626 | page = pfn_to_page(entry >> PAGE_SHIFT); |
627 | kimage_free_pages(page); |
628 | } |
629 | |
630 | static void kimage_free(struct kimage *image) |
631 | { |
632 | kimage_entry_t *ptr, entry; |
633 | kimage_entry_t ind = 0; |
634 | |
635 | if (!image) |
636 | return; |
637 | |
638 | kimage_free_extra_pages(image); |
639 | for_each_kimage_entry(image, ptr, entry) { |
640 | if (entry & IND_INDIRECTION) { |
641 | /* Free the previous indirection page */ |
642 | if (ind & IND_INDIRECTION) |
643 | kimage_free_entry(ind); |
644 | /* Save this indirection page until we are |
645 | * done with it. |
646 | */ |
647 | ind = entry; |
648 | } |
649 | else if (entry & IND_SOURCE) |
650 | kimage_free_entry(entry); |
651 | } |
652 | /* Free the final indirection page */ |
653 | if (ind & IND_INDIRECTION) |
654 | kimage_free_entry(ind); |
655 | |
656 | /* Handle any machine specific cleanup */ |
657 | machine_kexec_cleanup(image); |
658 | |
659 | /* Free the kexec control pages... */ |
660 | kimage_free_page_list(&image->control_pages); |
661 | kfree(image); |
662 | } |
663 | |
664 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
665 | unsigned long page) |
666 | { |
667 | kimage_entry_t *ptr, entry; |
668 | unsigned long destination = 0; |
669 | |
670 | for_each_kimage_entry(image, ptr, entry) { |
671 | if (entry & IND_DESTINATION) |
672 | destination = entry & PAGE_MASK; |
673 | else if (entry & IND_SOURCE) { |
674 | if (page == destination) |
675 | return ptr; |
676 | destination += PAGE_SIZE; |
677 | } |
678 | } |
679 | |
680 | return NULL; |
681 | } |
682 | |
683 | static struct page *kimage_alloc_page(struct kimage *image, |
684 | gfp_t gfp_mask, |
685 | unsigned long destination) |
686 | { |
687 | /* |
688 | * Here we implement safeguards to ensure that a source page |
689 | * is not copied to its destination page before the data on |
690 | * the destination page is no longer useful. |
691 | * |
692 | * To do this we maintain the invariant that a source page is |
693 | * either its own destination page, or it is not a |
694 | * destination page at all. |
695 | * |
696 | * That is slightly stronger than required, but the proof |
697 | * that no problems will not occur is trivial, and the |
698 | * implementation is simply to verify. |
699 | * |
700 | * When allocating all pages normally this algorithm will run |
701 | * in O(N) time, but in the worst case it will run in O(N^2) |
702 | * time. If the runtime is a problem the data structures can |
703 | * be fixed. |
704 | */ |
705 | struct page *page; |
706 | unsigned long addr; |
707 | |
708 | /* |
709 | * Walk through the list of destination pages, and see if I |
710 | * have a match. |
711 | */ |
712 | list_for_each_entry(page, &image->dest_pages, lru) { |
713 | addr = page_to_pfn(page) << PAGE_SHIFT; |
714 | if (addr == destination) { |
715 | list_del(&page->lru); |
716 | return page; |
717 | } |
718 | } |
719 | page = NULL; |
720 | while (1) { |
721 | kimage_entry_t *old; |
722 | |
723 | /* Allocate a page, if we run out of memory give up */ |
724 | page = kimage_alloc_pages(gfp_mask, 0); |
725 | if (!page) |
726 | return NULL; |
727 | /* If the page cannot be used file it away */ |
728 | if (page_to_pfn(page) > |
729 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { |
730 | list_add(&page->lru, &image->unuseable_pages); |
731 | continue; |
732 | } |
733 | addr = page_to_pfn(page) << PAGE_SHIFT; |
734 | |
735 | /* If it is the destination page we want use it */ |
736 | if (addr == destination) |
737 | break; |
738 | |
739 | /* If the page is not a destination page use it */ |
740 | if (!kimage_is_destination_range(image, addr, |
741 | addr + PAGE_SIZE)) |
742 | break; |
743 | |
744 | /* |
745 | * I know that the page is someones destination page. |
746 | * See if there is already a source page for this |
747 | * destination page. And if so swap the source pages. |
748 | */ |
749 | old = kimage_dst_used(image, addr); |
750 | if (old) { |
751 | /* If so move it */ |
752 | unsigned long old_addr; |
753 | struct page *old_page; |
754 | |
755 | old_addr = *old & PAGE_MASK; |
756 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); |
757 | copy_highpage(page, old_page); |
758 | *old = addr | (*old & ~PAGE_MASK); |
759 | |
760 | /* The old page I have found cannot be a |
761 | * destination page, so return it if it's |
762 | * gfp_flags honor the ones passed in. |
763 | */ |
764 | if (!(gfp_mask & __GFP_HIGHMEM) && |
765 | PageHighMem(old_page)) { |
766 | kimage_free_pages(old_page); |
767 | continue; |
768 | } |
769 | addr = old_addr; |
770 | page = old_page; |
771 | break; |
772 | } |
773 | else { |
774 | /* Place the page on the destination list I |
775 | * will use it later. |
776 | */ |
777 | list_add(&page->lru, &image->dest_pages); |
778 | } |
779 | } |
780 | |
781 | return page; |
782 | } |
783 | |
784 | static int kimage_load_normal_segment(struct kimage *image, |
785 | struct kexec_segment *segment) |
786 | { |
787 | unsigned long maddr; |
788 | unsigned long ubytes, mbytes; |
789 | int result; |
790 | unsigned char __user *buf; |
791 | |
792 | result = 0; |
793 | buf = segment->buf; |
794 | ubytes = segment->bufsz; |
795 | mbytes = segment->memsz; |
796 | maddr = segment->mem; |
797 | |
798 | result = kimage_set_destination(image, maddr); |
799 | if (result < 0) |
800 | goto out; |
801 | |
802 | while (mbytes) { |
803 | struct page *page; |
804 | char *ptr; |
805 | size_t uchunk, mchunk; |
806 | |
807 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
808 | if (!page) { |
809 | result = -ENOMEM; |
810 | goto out; |
811 | } |
812 | result = kimage_add_page(image, page_to_pfn(page) |
813 | << PAGE_SHIFT); |
814 | if (result < 0) |
815 | goto out; |
816 | |
817 | ptr = kmap(page); |
818 | /* Start with a clear page */ |
819 | clear_page(ptr); |
820 | ptr += maddr & ~PAGE_MASK; |
821 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); |
822 | if (mchunk > mbytes) |
823 | mchunk = mbytes; |
824 | |
825 | uchunk = mchunk; |
826 | if (uchunk > ubytes) |
827 | uchunk = ubytes; |
828 | |
829 | result = copy_from_user(ptr, buf, uchunk); |
830 | kunmap(page); |
831 | if (result) { |
832 | result = -EFAULT; |
833 | goto out; |
834 | } |
835 | ubytes -= uchunk; |
836 | maddr += mchunk; |
837 | buf += mchunk; |
838 | mbytes -= mchunk; |
839 | } |
840 | out: |
841 | return result; |
842 | } |
843 | |
844 | static int kimage_load_crash_segment(struct kimage *image, |
845 | struct kexec_segment *segment) |
846 | { |
847 | /* For crash dumps kernels we simply copy the data from |
848 | * user space to it's destination. |
849 | * We do things a page at a time for the sake of kmap. |
850 | */ |
851 | unsigned long maddr; |
852 | unsigned long ubytes, mbytes; |
853 | int result; |
854 | unsigned char __user *buf; |
855 | |
856 | result = 0; |
857 | buf = segment->buf; |
858 | ubytes = segment->bufsz; |
859 | mbytes = segment->memsz; |
860 | maddr = segment->mem; |
861 | while (mbytes) { |
862 | struct page *page; |
863 | char *ptr; |
864 | size_t uchunk, mchunk; |
865 | |
866 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
867 | if (!page) { |
868 | result = -ENOMEM; |
869 | goto out; |
870 | } |
871 | ptr = kmap(page); |
872 | ptr += maddr & ~PAGE_MASK; |
873 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); |
874 | if (mchunk > mbytes) |
875 | mchunk = mbytes; |
876 | |
877 | uchunk = mchunk; |
878 | if (uchunk > ubytes) { |
879 | uchunk = ubytes; |
880 | /* Zero the trailing part of the page */ |
881 | memset(ptr + uchunk, 0, mchunk - uchunk); |
882 | } |
883 | result = copy_from_user(ptr, buf, uchunk); |
884 | kexec_flush_icache_page(page); |
885 | kunmap(page); |
886 | if (result) { |
887 | result = -EFAULT; |
888 | goto out; |
889 | } |
890 | ubytes -= uchunk; |
891 | maddr += mchunk; |
892 | buf += mchunk; |
893 | mbytes -= mchunk; |
894 | } |
895 | out: |
896 | return result; |
897 | } |
898 | |
899 | static int kimage_load_segment(struct kimage *image, |
900 | struct kexec_segment *segment) |
901 | { |
902 | int result = -ENOMEM; |
903 | |
904 | switch (image->type) { |
905 | case KEXEC_TYPE_DEFAULT: |
906 | result = kimage_load_normal_segment(image, segment); |
907 | break; |
908 | case KEXEC_TYPE_CRASH: |
909 | result = kimage_load_crash_segment(image, segment); |
910 | break; |
911 | } |
912 | |
913 | return result; |
914 | } |
915 | |
916 | /* |
917 | * Exec Kernel system call: for obvious reasons only root may call it. |
918 | * |
919 | * This call breaks up into three pieces. |
920 | * - A generic part which loads the new kernel from the current |
921 | * address space, and very carefully places the data in the |
922 | * allocated pages. |
923 | * |
924 | * - A generic part that interacts with the kernel and tells all of |
925 | * the devices to shut down. Preventing on-going dmas, and placing |
926 | * the devices in a consistent state so a later kernel can |
927 | * reinitialize them. |
928 | * |
929 | * - A machine specific part that includes the syscall number |
930 | * and the copies the image to it's final destination. And |
931 | * jumps into the image at entry. |
932 | * |
933 | * kexec does not sync, or unmount filesystems so if you need |
934 | * that to happen you need to do that yourself. |
935 | */ |
936 | struct kimage *kexec_image; |
937 | struct kimage *kexec_crash_image; |
938 | |
939 | static DEFINE_MUTEX(kexec_mutex); |
940 | |
941 | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, |
942 | struct kexec_segment __user *, segments, unsigned long, flags) |
943 | { |
944 | struct kimage **dest_image, *image; |
945 | int result; |
946 | |
947 | /* We only trust the superuser with rebooting the system. */ |
948 | if (!capable(CAP_SYS_BOOT)) |
949 | return -EPERM; |
950 | |
951 | /* |
952 | * Verify we have a legal set of flags |
953 | * This leaves us room for future extensions. |
954 | */ |
955 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) |
956 | return -EINVAL; |
957 | |
958 | /* Verify we are on the appropriate architecture */ |
959 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && |
960 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) |
961 | return -EINVAL; |
962 | |
963 | /* Put an artificial cap on the number |
964 | * of segments passed to kexec_load. |
965 | */ |
966 | if (nr_segments > KEXEC_SEGMENT_MAX) |
967 | return -EINVAL; |
968 | |
969 | image = NULL; |
970 | result = 0; |
971 | |
972 | /* Because we write directly to the reserved memory |
973 | * region when loading crash kernels we need a mutex here to |
974 | * prevent multiple crash kernels from attempting to load |
975 | * simultaneously, and to prevent a crash kernel from loading |
976 | * over the top of a in use crash kernel. |
977 | * |
978 | * KISS: always take the mutex. |
979 | */ |
980 | if (!mutex_trylock(&kexec_mutex)) |
981 | return -EBUSY; |
982 | |
983 | dest_image = &kexec_image; |
984 | if (flags & KEXEC_ON_CRASH) |
985 | dest_image = &kexec_crash_image; |
986 | if (nr_segments > 0) { |
987 | unsigned long i; |
988 | |
989 | /* Loading another kernel to reboot into */ |
990 | if ((flags & KEXEC_ON_CRASH) == 0) |
991 | result = kimage_normal_alloc(&image, entry, |
992 | nr_segments, segments); |
993 | /* Loading another kernel to switch to if this one crashes */ |
994 | else if (flags & KEXEC_ON_CRASH) { |
995 | /* Free any current crash dump kernel before |
996 | * we corrupt it. |
997 | */ |
998 | kimage_free(xchg(&kexec_crash_image, NULL)); |
999 | result = kimage_crash_alloc(&image, entry, |
1000 | nr_segments, segments); |
1001 | } |
1002 | if (result) |
1003 | goto out; |
1004 | |
1005 | if (flags & KEXEC_PRESERVE_CONTEXT) |
1006 | image->preserve_context = 1; |
1007 | result = machine_kexec_prepare(image); |
1008 | if (result) |
1009 | goto out; |
1010 | |
1011 | for (i = 0; i < nr_segments; i++) { |
1012 | result = kimage_load_segment(image, &image->segment[i]); |
1013 | if (result) |
1014 | goto out; |
1015 | } |
1016 | kimage_terminate(image); |
1017 | } |
1018 | /* Install the new kernel, and Uninstall the old */ |
1019 | image = xchg(dest_image, image); |
1020 | |
1021 | out: |
1022 | mutex_unlock(&kexec_mutex); |
1023 | kimage_free(image); |
1024 | |
1025 | return result; |
1026 | } |
1027 | |
1028 | #ifdef CONFIG_COMPAT |
1029 | asmlinkage long compat_sys_kexec_load(unsigned long entry, |
1030 | unsigned long nr_segments, |
1031 | struct compat_kexec_segment __user *segments, |
1032 | unsigned long flags) |
1033 | { |
1034 | struct compat_kexec_segment in; |
1035 | struct kexec_segment out, __user *ksegments; |
1036 | unsigned long i, result; |
1037 | |
1038 | /* Don't allow clients that don't understand the native |
1039 | * architecture to do anything. |
1040 | */ |
1041 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
1042 | return -EINVAL; |
1043 | |
1044 | if (nr_segments > KEXEC_SEGMENT_MAX) |
1045 | return -EINVAL; |
1046 | |
1047 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); |
1048 | for (i=0; i < nr_segments; i++) { |
1049 | result = copy_from_user(&in, &segments[i], sizeof(in)); |
1050 | if (result) |
1051 | return -EFAULT; |
1052 | |
1053 | out.buf = compat_ptr(in.buf); |
1054 | out.bufsz = in.bufsz; |
1055 | out.mem = in.mem; |
1056 | out.memsz = in.memsz; |
1057 | |
1058 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); |
1059 | if (result) |
1060 | return -EFAULT; |
1061 | } |
1062 | |
1063 | return sys_kexec_load(entry, nr_segments, ksegments, flags); |
1064 | } |
1065 | #endif |
1066 | |
1067 | void crash_kexec(struct pt_regs *regs) |
1068 | { |
1069 | /* Take the kexec_mutex here to prevent sys_kexec_load |
1070 | * running on one cpu from replacing the crash kernel |
1071 | * we are using after a panic on a different cpu. |
1072 | * |
1073 | * If the crash kernel was not located in a fixed area |
1074 | * of memory the xchg(&kexec_crash_image) would be |
1075 | * sufficient. But since I reuse the memory... |
1076 | */ |
1077 | if (mutex_trylock(&kexec_mutex)) { |
1078 | if (kexec_crash_image) { |
1079 | struct pt_regs fixed_regs; |
1080 | |
1081 | kmsg_dump(KMSG_DUMP_KEXEC); |
1082 | |
1083 | crash_setup_regs(&fixed_regs, regs); |
1084 | crash_save_vmcoreinfo(); |
1085 | machine_crash_shutdown(&fixed_regs); |
1086 | machine_kexec(kexec_crash_image); |
1087 | } |
1088 | mutex_unlock(&kexec_mutex); |
1089 | } |
1090 | } |
1091 | |
1092 | size_t crash_get_memory_size(void) |
1093 | { |
1094 | size_t size = 0; |
1095 | mutex_lock(&kexec_mutex); |
1096 | if (crashk_res.end != crashk_res.start) |
1097 | size = crashk_res.end - crashk_res.start + 1; |
1098 | mutex_unlock(&kexec_mutex); |
1099 | return size; |
1100 | } |
1101 | |
1102 | static void free_reserved_phys_range(unsigned long begin, unsigned long end) |
1103 | { |
1104 | unsigned long addr; |
1105 | |
1106 | for (addr = begin; addr < end; addr += PAGE_SIZE) { |
1107 | ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); |
1108 | init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); |
1109 | free_page((unsigned long)__va(addr)); |
1110 | totalram_pages++; |
1111 | } |
1112 | } |
1113 | |
1114 | int crash_shrink_memory(unsigned long new_size) |
1115 | { |
1116 | int ret = 0; |
1117 | unsigned long start, end; |
1118 | |
1119 | mutex_lock(&kexec_mutex); |
1120 | |
1121 | if (kexec_crash_image) { |
1122 | ret = -ENOENT; |
1123 | goto unlock; |
1124 | } |
1125 | start = crashk_res.start; |
1126 | end = crashk_res.end; |
1127 | |
1128 | if (new_size >= end - start + 1) { |
1129 | ret = -EINVAL; |
1130 | if (new_size == end - start + 1) |
1131 | ret = 0; |
1132 | goto unlock; |
1133 | } |
1134 | |
1135 | start = roundup(start, PAGE_SIZE); |
1136 | end = roundup(start + new_size, PAGE_SIZE); |
1137 | |
1138 | free_reserved_phys_range(end, crashk_res.end); |
1139 | |
1140 | if ((start == end) && (crashk_res.parent != NULL)) |
1141 | release_resource(&crashk_res); |
1142 | crashk_res.end = end - 1; |
1143 | |
1144 | unlock: |
1145 | mutex_unlock(&kexec_mutex); |
1146 | return ret; |
1147 | } |
1148 | |
1149 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1150 | size_t data_len) |
1151 | { |
1152 | struct elf_note note; |
1153 | |
1154 | note.n_namesz = strlen(name) + 1; |
1155 | note.n_descsz = data_len; |
1156 | note.n_type = type; |
1157 | memcpy(buf, ¬e, sizeof(note)); |
1158 | buf += (sizeof(note) + 3)/4; |
1159 | memcpy(buf, name, note.n_namesz); |
1160 | buf += (note.n_namesz + 3)/4; |
1161 | memcpy(buf, data, note.n_descsz); |
1162 | buf += (note.n_descsz + 3)/4; |
1163 | |
1164 | return buf; |
1165 | } |
1166 | |
1167 | static void final_note(u32 *buf) |
1168 | { |
1169 | struct elf_note note; |
1170 | |
1171 | note.n_namesz = 0; |
1172 | note.n_descsz = 0; |
1173 | note.n_type = 0; |
1174 | memcpy(buf, ¬e, sizeof(note)); |
1175 | } |
1176 | |
1177 | void crash_save_cpu(struct pt_regs *regs, int cpu) |
1178 | { |
1179 | struct elf_prstatus prstatus; |
1180 | u32 *buf; |
1181 | |
1182 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) |
1183 | return; |
1184 | |
1185 | /* Using ELF notes here is opportunistic. |
1186 | * I need a well defined structure format |
1187 | * for the data I pass, and I need tags |
1188 | * on the data to indicate what information I have |
1189 | * squirrelled away. ELF notes happen to provide |
1190 | * all of that, so there is no need to invent something new. |
1191 | */ |
1192 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); |
1193 | if (!buf) |
1194 | return; |
1195 | memset(&prstatus, 0, sizeof(prstatus)); |
1196 | prstatus.pr_pid = current->pid; |
1197 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
1198 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1199 | &prstatus, sizeof(prstatus)); |
1200 | final_note(buf); |
1201 | } |
1202 | |
1203 | static int __init crash_notes_memory_init(void) |
1204 | { |
1205 | /* Allocate memory for saving cpu registers. */ |
1206 | crash_notes = alloc_percpu(note_buf_t); |
1207 | if (!crash_notes) { |
1208 | printk("Kexec: Memory allocation for saving cpu register" |
1209 | " states failed\n"); |
1210 | return -ENOMEM; |
1211 | } |
1212 | return 0; |
1213 | } |
1214 | module_init(crash_notes_memory_init) |
1215 | |
1216 | |
1217 | /* |
1218 | * parsing the "crashkernel" commandline |
1219 | * |
1220 | * this code is intended to be called from architecture specific code |
1221 | */ |
1222 | |
1223 | |
1224 | /* |
1225 | * This function parses command lines in the format |
1226 | * |
1227 | * crashkernel=ramsize-range:size[,...][@offset] |
1228 | * |
1229 | * The function returns 0 on success and -EINVAL on failure. |
1230 | */ |
1231 | static int __init parse_crashkernel_mem(char *cmdline, |
1232 | unsigned long long system_ram, |
1233 | unsigned long long *crash_size, |
1234 | unsigned long long *crash_base) |
1235 | { |
1236 | char *cur = cmdline, *tmp; |
1237 | |
1238 | /* for each entry of the comma-separated list */ |
1239 | do { |
1240 | unsigned long long start, end = ULLONG_MAX, size; |
1241 | |
1242 | /* get the start of the range */ |
1243 | start = memparse(cur, &tmp); |
1244 | if (cur == tmp) { |
1245 | pr_warning("crashkernel: Memory value expected\n"); |
1246 | return -EINVAL; |
1247 | } |
1248 | cur = tmp; |
1249 | if (*cur != '-') { |
1250 | pr_warning("crashkernel: '-' expected\n"); |
1251 | return -EINVAL; |
1252 | } |
1253 | cur++; |
1254 | |
1255 | /* if no ':' is here, than we read the end */ |
1256 | if (*cur != ':') { |
1257 | end = memparse(cur, &tmp); |
1258 | if (cur == tmp) { |
1259 | pr_warning("crashkernel: Memory " |
1260 | "value expected\n"); |
1261 | return -EINVAL; |
1262 | } |
1263 | cur = tmp; |
1264 | if (end <= start) { |
1265 | pr_warning("crashkernel: end <= start\n"); |
1266 | return -EINVAL; |
1267 | } |
1268 | } |
1269 | |
1270 | if (*cur != ':') { |
1271 | pr_warning("crashkernel: ':' expected\n"); |
1272 | return -EINVAL; |
1273 | } |
1274 | cur++; |
1275 | |
1276 | size = memparse(cur, &tmp); |
1277 | if (cur == tmp) { |
1278 | pr_warning("Memory value expected\n"); |
1279 | return -EINVAL; |
1280 | } |
1281 | cur = tmp; |
1282 | if (size >= system_ram) { |
1283 | pr_warning("crashkernel: invalid size\n"); |
1284 | return -EINVAL; |
1285 | } |
1286 | |
1287 | /* match ? */ |
1288 | if (system_ram >= start && system_ram < end) { |
1289 | *crash_size = size; |
1290 | break; |
1291 | } |
1292 | } while (*cur++ == ','); |
1293 | |
1294 | if (*crash_size > 0) { |
1295 | while (*cur && *cur != ' ' && *cur != '@') |
1296 | cur++; |
1297 | if (*cur == '@') { |
1298 | cur++; |
1299 | *crash_base = memparse(cur, &tmp); |
1300 | if (cur == tmp) { |
1301 | pr_warning("Memory value expected " |
1302 | "after '@'\n"); |
1303 | return -EINVAL; |
1304 | } |
1305 | } |
1306 | } |
1307 | |
1308 | return 0; |
1309 | } |
1310 | |
1311 | /* |
1312 | * That function parses "simple" (old) crashkernel command lines like |
1313 | * |
1314 | * crashkernel=size[@offset] |
1315 | * |
1316 | * It returns 0 on success and -EINVAL on failure. |
1317 | */ |
1318 | static int __init parse_crashkernel_simple(char *cmdline, |
1319 | unsigned long long *crash_size, |
1320 | unsigned long long *crash_base) |
1321 | { |
1322 | char *cur = cmdline; |
1323 | |
1324 | *crash_size = memparse(cmdline, &cur); |
1325 | if (cmdline == cur) { |
1326 | pr_warning("crashkernel: memory value expected\n"); |
1327 | return -EINVAL; |
1328 | } |
1329 | |
1330 | if (*cur == '@') |
1331 | *crash_base = memparse(cur+1, &cur); |
1332 | |
1333 | return 0; |
1334 | } |
1335 | |
1336 | /* |
1337 | * That function is the entry point for command line parsing and should be |
1338 | * called from the arch-specific code. |
1339 | */ |
1340 | int __init parse_crashkernel(char *cmdline, |
1341 | unsigned long long system_ram, |
1342 | unsigned long long *crash_size, |
1343 | unsigned long long *crash_base) |
1344 | { |
1345 | char *p = cmdline, *ck_cmdline = NULL; |
1346 | char *first_colon, *first_space; |
1347 | |
1348 | BUG_ON(!crash_size || !crash_base); |
1349 | *crash_size = 0; |
1350 | *crash_base = 0; |
1351 | |
1352 | /* find crashkernel and use the last one if there are more */ |
1353 | p = strstr(p, "crashkernel="); |
1354 | while (p) { |
1355 | ck_cmdline = p; |
1356 | p = strstr(p+1, "crashkernel="); |
1357 | } |
1358 | |
1359 | if (!ck_cmdline) |
1360 | return -EINVAL; |
1361 | |
1362 | ck_cmdline += 12; /* strlen("crashkernel=") */ |
1363 | |
1364 | /* |
1365 | * if the commandline contains a ':', then that's the extended |
1366 | * syntax -- if not, it must be the classic syntax |
1367 | */ |
1368 | first_colon = strchr(ck_cmdline, ':'); |
1369 | first_space = strchr(ck_cmdline, ' '); |
1370 | if (first_colon && (!first_space || first_colon < first_space)) |
1371 | return parse_crashkernel_mem(ck_cmdline, system_ram, |
1372 | crash_size, crash_base); |
1373 | else |
1374 | return parse_crashkernel_simple(ck_cmdline, crash_size, |
1375 | crash_base); |
1376 | |
1377 | return 0; |
1378 | } |
1379 | |
1380 | |
1381 | |
1382 | void crash_save_vmcoreinfo(void) |
1383 | { |
1384 | u32 *buf; |
1385 | |
1386 | if (!vmcoreinfo_size) |
1387 | return; |
1388 | |
1389 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); |
1390 | |
1391 | buf = (u32 *)vmcoreinfo_note; |
1392 | |
1393 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, |
1394 | vmcoreinfo_size); |
1395 | |
1396 | final_note(buf); |
1397 | } |
1398 | |
1399 | void vmcoreinfo_append_str(const char *fmt, ...) |
1400 | { |
1401 | va_list args; |
1402 | char buf[0x50]; |
1403 | int r; |
1404 | |
1405 | va_start(args, fmt); |
1406 | r = vsnprintf(buf, sizeof(buf), fmt, args); |
1407 | va_end(args); |
1408 | |
1409 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) |
1410 | r = vmcoreinfo_max_size - vmcoreinfo_size; |
1411 | |
1412 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); |
1413 | |
1414 | vmcoreinfo_size += r; |
1415 | } |
1416 | |
1417 | /* |
1418 | * provide an empty default implementation here -- architecture |
1419 | * code may override this |
1420 | */ |
1421 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) |
1422 | {} |
1423 | |
1424 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) |
1425 | { |
1426 | return __pa((unsigned long)(char *)&vmcoreinfo_note); |
1427 | } |
1428 | |
1429 | static int __init crash_save_vmcoreinfo_init(void) |
1430 | { |
1431 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
1432 | VMCOREINFO_PAGESIZE(PAGE_SIZE); |
1433 | |
1434 | VMCOREINFO_SYMBOL(init_uts_ns); |
1435 | VMCOREINFO_SYMBOL(node_online_map); |
1436 | VMCOREINFO_SYMBOL(swapper_pg_dir); |
1437 | VMCOREINFO_SYMBOL(_stext); |
1438 | VMCOREINFO_SYMBOL(vmlist); |
1439 | |
1440 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1441 | VMCOREINFO_SYMBOL(mem_map); |
1442 | VMCOREINFO_SYMBOL(contig_page_data); |
1443 | #endif |
1444 | #ifdef CONFIG_SPARSEMEM |
1445 | VMCOREINFO_SYMBOL(mem_section); |
1446 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); |
1447 | VMCOREINFO_STRUCT_SIZE(mem_section); |
1448 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
1449 | #endif |
1450 | VMCOREINFO_STRUCT_SIZE(page); |
1451 | VMCOREINFO_STRUCT_SIZE(pglist_data); |
1452 | VMCOREINFO_STRUCT_SIZE(zone); |
1453 | VMCOREINFO_STRUCT_SIZE(free_area); |
1454 | VMCOREINFO_STRUCT_SIZE(list_head); |
1455 | VMCOREINFO_SIZE(nodemask_t); |
1456 | VMCOREINFO_OFFSET(page, flags); |
1457 | VMCOREINFO_OFFSET(page, _count); |
1458 | VMCOREINFO_OFFSET(page, mapping); |
1459 | VMCOREINFO_OFFSET(page, lru); |
1460 | VMCOREINFO_OFFSET(pglist_data, node_zones); |
1461 | VMCOREINFO_OFFSET(pglist_data, nr_zones); |
1462 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1463 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
1464 | #endif |
1465 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
1466 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); |
1467 | VMCOREINFO_OFFSET(pglist_data, node_id); |
1468 | VMCOREINFO_OFFSET(zone, free_area); |
1469 | VMCOREINFO_OFFSET(zone, vm_stat); |
1470 | VMCOREINFO_OFFSET(zone, spanned_pages); |
1471 | VMCOREINFO_OFFSET(free_area, free_list); |
1472 | VMCOREINFO_OFFSET(list_head, next); |
1473 | VMCOREINFO_OFFSET(list_head, prev); |
1474 | VMCOREINFO_OFFSET(vm_struct, addr); |
1475 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
1476 | log_buf_kexec_setup(); |
1477 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
1478 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
1479 | VMCOREINFO_NUMBER(PG_lru); |
1480 | VMCOREINFO_NUMBER(PG_private); |
1481 | VMCOREINFO_NUMBER(PG_swapcache); |
1482 | |
1483 | arch_crash_save_vmcoreinfo(); |
1484 | |
1485 | return 0; |
1486 | } |
1487 | |
1488 | module_init(crash_save_vmcoreinfo_init) |
1489 | |
1490 | /* |
1491 | * Move into place and start executing a preloaded standalone |
1492 | * executable. If nothing was preloaded return an error. |
1493 | */ |
1494 | int kernel_kexec(void) |
1495 | { |
1496 | int error = 0; |
1497 | |
1498 | if (!mutex_trylock(&kexec_mutex)) |
1499 | return -EBUSY; |
1500 | if (!kexec_image) { |
1501 | error = -EINVAL; |
1502 | goto Unlock; |
1503 | } |
1504 | |
1505 | #ifdef CONFIG_KEXEC_JUMP |
1506 | if (kexec_image->preserve_context) { |
1507 | mutex_lock(&pm_mutex); |
1508 | pm_prepare_console(); |
1509 | error = freeze_processes(); |
1510 | if (error) { |
1511 | error = -EBUSY; |
1512 | goto Restore_console; |
1513 | } |
1514 | suspend_console(); |
1515 | error = dpm_suspend_start(PMSG_FREEZE); |
1516 | if (error) |
1517 | goto Resume_console; |
1518 | /* At this point, dpm_suspend_start() has been called, |
1519 | * but *not* dpm_suspend_noirq(). We *must* call |
1520 | * dpm_suspend_noirq() now. Otherwise, drivers for |
1521 | * some devices (e.g. interrupt controllers) become |
1522 | * desynchronized with the actual state of the |
1523 | * hardware at resume time, and evil weirdness ensues. |
1524 | */ |
1525 | error = dpm_suspend_noirq(PMSG_FREEZE); |
1526 | if (error) |
1527 | goto Resume_devices; |
1528 | error = disable_nonboot_cpus(); |
1529 | if (error) |
1530 | goto Enable_cpus; |
1531 | local_irq_disable(); |
1532 | /* Suspend system devices */ |
1533 | error = sysdev_suspend(PMSG_FREEZE); |
1534 | if (error) |
1535 | goto Enable_irqs; |
1536 | } else |
1537 | #endif |
1538 | { |
1539 | kernel_restart_prepare(NULL); |
1540 | printk(KERN_EMERG "Starting new kernel\n"); |
1541 | machine_shutdown(); |
1542 | } |
1543 | |
1544 | machine_kexec(kexec_image); |
1545 | |
1546 | #ifdef CONFIG_KEXEC_JUMP |
1547 | if (kexec_image->preserve_context) { |
1548 | sysdev_resume(); |
1549 | Enable_irqs: |
1550 | local_irq_enable(); |
1551 | Enable_cpus: |
1552 | enable_nonboot_cpus(); |
1553 | dpm_resume_noirq(PMSG_RESTORE); |
1554 | Resume_devices: |
1555 | dpm_resume_end(PMSG_RESTORE); |
1556 | Resume_console: |
1557 | resume_console(); |
1558 | thaw_processes(); |
1559 | Restore_console: |
1560 | pm_restore_console(); |
1561 | mutex_unlock(&pm_mutex); |
1562 | } |
1563 | #endif |
1564 | |
1565 | Unlock: |
1566 | mutex_unlock(&kexec_mutex); |
1567 | return error; |
1568 | } |
1569 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9