Root/
1 | /* |
2 | * Implement CPU time clocks for the POSIX clock interface. |
3 | */ |
4 | |
5 | #include <linux/sched.h> |
6 | #include <linux/posix-timers.h> |
7 | #include <linux/errno.h> |
8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> |
10 | #include <linux/kernel_stat.h> |
11 | #include <trace/events/timer.h> |
12 | |
13 | /* |
14 | * Called after updating RLIMIT_CPU to run cpu timer and update |
15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs |
16 | * siglock protection since other code may update expiration cache as |
17 | * well. |
18 | */ |
19 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
20 | { |
21 | cputime_t cputime = secs_to_cputime(rlim_new); |
22 | |
23 | spin_lock_irq(&task->sighand->siglock); |
24 | set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); |
25 | spin_unlock_irq(&task->sighand->siglock); |
26 | } |
27 | |
28 | static int check_clock(const clockid_t which_clock) |
29 | { |
30 | int error = 0; |
31 | struct task_struct *p; |
32 | const pid_t pid = CPUCLOCK_PID(which_clock); |
33 | |
34 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) |
35 | return -EINVAL; |
36 | |
37 | if (pid == 0) |
38 | return 0; |
39 | |
40 | rcu_read_lock(); |
41 | p = find_task_by_vpid(pid); |
42 | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? |
43 | same_thread_group(p, current) : has_group_leader_pid(p))) { |
44 | error = -EINVAL; |
45 | } |
46 | rcu_read_unlock(); |
47 | |
48 | return error; |
49 | } |
50 | |
51 | static inline union cpu_time_count |
52 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
53 | { |
54 | union cpu_time_count ret; |
55 | ret.sched = 0; /* high half always zero when .cpu used */ |
56 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
57 | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
58 | } else { |
59 | ret.cpu = timespec_to_cputime(tp); |
60 | } |
61 | return ret; |
62 | } |
63 | |
64 | static void sample_to_timespec(const clockid_t which_clock, |
65 | union cpu_time_count cpu, |
66 | struct timespec *tp) |
67 | { |
68 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) |
69 | *tp = ns_to_timespec(cpu.sched); |
70 | else |
71 | cputime_to_timespec(cpu.cpu, tp); |
72 | } |
73 | |
74 | static inline int cpu_time_before(const clockid_t which_clock, |
75 | union cpu_time_count now, |
76 | union cpu_time_count then) |
77 | { |
78 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
79 | return now.sched < then.sched; |
80 | } else { |
81 | return cputime_lt(now.cpu, then.cpu); |
82 | } |
83 | } |
84 | static inline void cpu_time_add(const clockid_t which_clock, |
85 | union cpu_time_count *acc, |
86 | union cpu_time_count val) |
87 | { |
88 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
89 | acc->sched += val.sched; |
90 | } else { |
91 | acc->cpu = cputime_add(acc->cpu, val.cpu); |
92 | } |
93 | } |
94 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
95 | union cpu_time_count a, |
96 | union cpu_time_count b) |
97 | { |
98 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
99 | a.sched -= b.sched; |
100 | } else { |
101 | a.cpu = cputime_sub(a.cpu, b.cpu); |
102 | } |
103 | return a; |
104 | } |
105 | |
106 | /* |
107 | * Divide and limit the result to res >= 1 |
108 | * |
109 | * This is necessary to prevent signal delivery starvation, when the result of |
110 | * the division would be rounded down to 0. |
111 | */ |
112 | static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) |
113 | { |
114 | cputime_t res = cputime_div(time, div); |
115 | |
116 | return max_t(cputime_t, res, 1); |
117 | } |
118 | |
119 | /* |
120 | * Update expiry time from increment, and increase overrun count, |
121 | * given the current clock sample. |
122 | */ |
123 | static void bump_cpu_timer(struct k_itimer *timer, |
124 | union cpu_time_count now) |
125 | { |
126 | int i; |
127 | |
128 | if (timer->it.cpu.incr.sched == 0) |
129 | return; |
130 | |
131 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { |
132 | unsigned long long delta, incr; |
133 | |
134 | if (now.sched < timer->it.cpu.expires.sched) |
135 | return; |
136 | incr = timer->it.cpu.incr.sched; |
137 | delta = now.sched + incr - timer->it.cpu.expires.sched; |
138 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
139 | for (i = 0; incr < delta - incr; i++) |
140 | incr = incr << 1; |
141 | for (; i >= 0; incr >>= 1, i--) { |
142 | if (delta < incr) |
143 | continue; |
144 | timer->it.cpu.expires.sched += incr; |
145 | timer->it_overrun += 1 << i; |
146 | delta -= incr; |
147 | } |
148 | } else { |
149 | cputime_t delta, incr; |
150 | |
151 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) |
152 | return; |
153 | incr = timer->it.cpu.incr.cpu; |
154 | delta = cputime_sub(cputime_add(now.cpu, incr), |
155 | timer->it.cpu.expires.cpu); |
156 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ |
157 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) |
158 | incr = cputime_add(incr, incr); |
159 | for (; i >= 0; incr = cputime_halve(incr), i--) { |
160 | if (cputime_lt(delta, incr)) |
161 | continue; |
162 | timer->it.cpu.expires.cpu = |
163 | cputime_add(timer->it.cpu.expires.cpu, incr); |
164 | timer->it_overrun += 1 << i; |
165 | delta = cputime_sub(delta, incr); |
166 | } |
167 | } |
168 | } |
169 | |
170 | static inline cputime_t prof_ticks(struct task_struct *p) |
171 | { |
172 | return cputime_add(p->utime, p->stime); |
173 | } |
174 | static inline cputime_t virt_ticks(struct task_struct *p) |
175 | { |
176 | return p->utime; |
177 | } |
178 | |
179 | int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
180 | { |
181 | int error = check_clock(which_clock); |
182 | if (!error) { |
183 | tp->tv_sec = 0; |
184 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); |
185 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { |
186 | /* |
187 | * If sched_clock is using a cycle counter, we |
188 | * don't have any idea of its true resolution |
189 | * exported, but it is much more than 1s/HZ. |
190 | */ |
191 | tp->tv_nsec = 1; |
192 | } |
193 | } |
194 | return error; |
195 | } |
196 | |
197 | int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) |
198 | { |
199 | /* |
200 | * You can never reset a CPU clock, but we check for other errors |
201 | * in the call before failing with EPERM. |
202 | */ |
203 | int error = check_clock(which_clock); |
204 | if (error == 0) { |
205 | error = -EPERM; |
206 | } |
207 | return error; |
208 | } |
209 | |
210 | |
211 | /* |
212 | * Sample a per-thread clock for the given task. |
213 | */ |
214 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
215 | union cpu_time_count *cpu) |
216 | { |
217 | switch (CPUCLOCK_WHICH(which_clock)) { |
218 | default: |
219 | return -EINVAL; |
220 | case CPUCLOCK_PROF: |
221 | cpu->cpu = prof_ticks(p); |
222 | break; |
223 | case CPUCLOCK_VIRT: |
224 | cpu->cpu = virt_ticks(p); |
225 | break; |
226 | case CPUCLOCK_SCHED: |
227 | cpu->sched = task_sched_runtime(p); |
228 | break; |
229 | } |
230 | return 0; |
231 | } |
232 | |
233 | void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) |
234 | { |
235 | struct signal_struct *sig = tsk->signal; |
236 | struct task_struct *t; |
237 | |
238 | times->utime = sig->utime; |
239 | times->stime = sig->stime; |
240 | times->sum_exec_runtime = sig->sum_sched_runtime; |
241 | |
242 | rcu_read_lock(); |
243 | /* make sure we can trust tsk->thread_group list */ |
244 | if (!likely(pid_alive(tsk))) |
245 | goto out; |
246 | |
247 | t = tsk; |
248 | do { |
249 | times->utime = cputime_add(times->utime, t->utime); |
250 | times->stime = cputime_add(times->stime, t->stime); |
251 | times->sum_exec_runtime += t->se.sum_exec_runtime; |
252 | } while_each_thread(tsk, t); |
253 | out: |
254 | rcu_read_unlock(); |
255 | } |
256 | |
257 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) |
258 | { |
259 | if (cputime_gt(b->utime, a->utime)) |
260 | a->utime = b->utime; |
261 | |
262 | if (cputime_gt(b->stime, a->stime)) |
263 | a->stime = b->stime; |
264 | |
265 | if (b->sum_exec_runtime > a->sum_exec_runtime) |
266 | a->sum_exec_runtime = b->sum_exec_runtime; |
267 | } |
268 | |
269 | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) |
270 | { |
271 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; |
272 | struct task_cputime sum; |
273 | unsigned long flags; |
274 | |
275 | spin_lock_irqsave(&cputimer->lock, flags); |
276 | if (!cputimer->running) { |
277 | cputimer->running = 1; |
278 | /* |
279 | * The POSIX timer interface allows for absolute time expiry |
280 | * values through the TIMER_ABSTIME flag, therefore we have |
281 | * to synchronize the timer to the clock every time we start |
282 | * it. |
283 | */ |
284 | thread_group_cputime(tsk, &sum); |
285 | update_gt_cputime(&cputimer->cputime, &sum); |
286 | } |
287 | *times = cputimer->cputime; |
288 | spin_unlock_irqrestore(&cputimer->lock, flags); |
289 | } |
290 | |
291 | /* |
292 | * Sample a process (thread group) clock for the given group_leader task. |
293 | * Must be called with tasklist_lock held for reading. |
294 | */ |
295 | static int cpu_clock_sample_group(const clockid_t which_clock, |
296 | struct task_struct *p, |
297 | union cpu_time_count *cpu) |
298 | { |
299 | struct task_cputime cputime; |
300 | |
301 | switch (CPUCLOCK_WHICH(which_clock)) { |
302 | default: |
303 | return -EINVAL; |
304 | case CPUCLOCK_PROF: |
305 | thread_group_cputime(p, &cputime); |
306 | cpu->cpu = cputime_add(cputime.utime, cputime.stime); |
307 | break; |
308 | case CPUCLOCK_VIRT: |
309 | thread_group_cputime(p, &cputime); |
310 | cpu->cpu = cputime.utime; |
311 | break; |
312 | case CPUCLOCK_SCHED: |
313 | cpu->sched = thread_group_sched_runtime(p); |
314 | break; |
315 | } |
316 | return 0; |
317 | } |
318 | |
319 | |
320 | int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
321 | { |
322 | const pid_t pid = CPUCLOCK_PID(which_clock); |
323 | int error = -EINVAL; |
324 | union cpu_time_count rtn; |
325 | |
326 | if (pid == 0) { |
327 | /* |
328 | * Special case constant value for our own clocks. |
329 | * We don't have to do any lookup to find ourselves. |
330 | */ |
331 | if (CPUCLOCK_PERTHREAD(which_clock)) { |
332 | /* |
333 | * Sampling just ourselves we can do with no locking. |
334 | */ |
335 | error = cpu_clock_sample(which_clock, |
336 | current, &rtn); |
337 | } else { |
338 | read_lock(&tasklist_lock); |
339 | error = cpu_clock_sample_group(which_clock, |
340 | current, &rtn); |
341 | read_unlock(&tasklist_lock); |
342 | } |
343 | } else { |
344 | /* |
345 | * Find the given PID, and validate that the caller |
346 | * should be able to see it. |
347 | */ |
348 | struct task_struct *p; |
349 | rcu_read_lock(); |
350 | p = find_task_by_vpid(pid); |
351 | if (p) { |
352 | if (CPUCLOCK_PERTHREAD(which_clock)) { |
353 | if (same_thread_group(p, current)) { |
354 | error = cpu_clock_sample(which_clock, |
355 | p, &rtn); |
356 | } |
357 | } else { |
358 | read_lock(&tasklist_lock); |
359 | if (thread_group_leader(p) && p->sighand) { |
360 | error = |
361 | cpu_clock_sample_group(which_clock, |
362 | p, &rtn); |
363 | } |
364 | read_unlock(&tasklist_lock); |
365 | } |
366 | } |
367 | rcu_read_unlock(); |
368 | } |
369 | |
370 | if (error) |
371 | return error; |
372 | sample_to_timespec(which_clock, rtn, tp); |
373 | return 0; |
374 | } |
375 | |
376 | |
377 | /* |
378 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. |
379 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the |
380 | * new timer already all-zeros initialized. |
381 | */ |
382 | int posix_cpu_timer_create(struct k_itimer *new_timer) |
383 | { |
384 | int ret = 0; |
385 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); |
386 | struct task_struct *p; |
387 | |
388 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) |
389 | return -EINVAL; |
390 | |
391 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); |
392 | |
393 | rcu_read_lock(); |
394 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { |
395 | if (pid == 0) { |
396 | p = current; |
397 | } else { |
398 | p = find_task_by_vpid(pid); |
399 | if (p && !same_thread_group(p, current)) |
400 | p = NULL; |
401 | } |
402 | } else { |
403 | if (pid == 0) { |
404 | p = current->group_leader; |
405 | } else { |
406 | p = find_task_by_vpid(pid); |
407 | if (p && !has_group_leader_pid(p)) |
408 | p = NULL; |
409 | } |
410 | } |
411 | new_timer->it.cpu.task = p; |
412 | if (p) { |
413 | get_task_struct(p); |
414 | } else { |
415 | ret = -EINVAL; |
416 | } |
417 | rcu_read_unlock(); |
418 | |
419 | return ret; |
420 | } |
421 | |
422 | /* |
423 | * Clean up a CPU-clock timer that is about to be destroyed. |
424 | * This is called from timer deletion with the timer already locked. |
425 | * If we return TIMER_RETRY, it's necessary to release the timer's lock |
426 | * and try again. (This happens when the timer is in the middle of firing.) |
427 | */ |
428 | int posix_cpu_timer_del(struct k_itimer *timer) |
429 | { |
430 | struct task_struct *p = timer->it.cpu.task; |
431 | int ret = 0; |
432 | |
433 | if (likely(p != NULL)) { |
434 | read_lock(&tasklist_lock); |
435 | if (unlikely(p->sighand == NULL)) { |
436 | /* |
437 | * We raced with the reaping of the task. |
438 | * The deletion should have cleared us off the list. |
439 | */ |
440 | BUG_ON(!list_empty(&timer->it.cpu.entry)); |
441 | } else { |
442 | spin_lock(&p->sighand->siglock); |
443 | if (timer->it.cpu.firing) |
444 | ret = TIMER_RETRY; |
445 | else |
446 | list_del(&timer->it.cpu.entry); |
447 | spin_unlock(&p->sighand->siglock); |
448 | } |
449 | read_unlock(&tasklist_lock); |
450 | |
451 | if (!ret) |
452 | put_task_struct(p); |
453 | } |
454 | |
455 | return ret; |
456 | } |
457 | |
458 | /* |
459 | * Clean out CPU timers still ticking when a thread exited. The task |
460 | * pointer is cleared, and the expiry time is replaced with the residual |
461 | * time for later timer_gettime calls to return. |
462 | * This must be called with the siglock held. |
463 | */ |
464 | static void cleanup_timers(struct list_head *head, |
465 | cputime_t utime, cputime_t stime, |
466 | unsigned long long sum_exec_runtime) |
467 | { |
468 | struct cpu_timer_list *timer, *next; |
469 | cputime_t ptime = cputime_add(utime, stime); |
470 | |
471 | list_for_each_entry_safe(timer, next, head, entry) { |
472 | list_del_init(&timer->entry); |
473 | if (cputime_lt(timer->expires.cpu, ptime)) { |
474 | timer->expires.cpu = cputime_zero; |
475 | } else { |
476 | timer->expires.cpu = cputime_sub(timer->expires.cpu, |
477 | ptime); |
478 | } |
479 | } |
480 | |
481 | ++head; |
482 | list_for_each_entry_safe(timer, next, head, entry) { |
483 | list_del_init(&timer->entry); |
484 | if (cputime_lt(timer->expires.cpu, utime)) { |
485 | timer->expires.cpu = cputime_zero; |
486 | } else { |
487 | timer->expires.cpu = cputime_sub(timer->expires.cpu, |
488 | utime); |
489 | } |
490 | } |
491 | |
492 | ++head; |
493 | list_for_each_entry_safe(timer, next, head, entry) { |
494 | list_del_init(&timer->entry); |
495 | if (timer->expires.sched < sum_exec_runtime) { |
496 | timer->expires.sched = 0; |
497 | } else { |
498 | timer->expires.sched -= sum_exec_runtime; |
499 | } |
500 | } |
501 | } |
502 | |
503 | /* |
504 | * These are both called with the siglock held, when the current thread |
505 | * is being reaped. When the final (leader) thread in the group is reaped, |
506 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. |
507 | */ |
508 | void posix_cpu_timers_exit(struct task_struct *tsk) |
509 | { |
510 | cleanup_timers(tsk->cpu_timers, |
511 | tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); |
512 | |
513 | } |
514 | void posix_cpu_timers_exit_group(struct task_struct *tsk) |
515 | { |
516 | struct signal_struct *const sig = tsk->signal; |
517 | |
518 | cleanup_timers(tsk->signal->cpu_timers, |
519 | cputime_add(tsk->utime, sig->utime), |
520 | cputime_add(tsk->stime, sig->stime), |
521 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); |
522 | } |
523 | |
524 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) |
525 | { |
526 | /* |
527 | * That's all for this thread or process. |
528 | * We leave our residual in expires to be reported. |
529 | */ |
530 | put_task_struct(timer->it.cpu.task); |
531 | timer->it.cpu.task = NULL; |
532 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, |
533 | timer->it.cpu.expires, |
534 | now); |
535 | } |
536 | |
537 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) |
538 | { |
539 | return cputime_eq(expires, cputime_zero) || |
540 | cputime_gt(expires, new_exp); |
541 | } |
542 | |
543 | /* |
544 | * Insert the timer on the appropriate list before any timers that |
545 | * expire later. This must be called with the tasklist_lock held |
546 | * for reading, interrupts disabled and p->sighand->siglock taken. |
547 | */ |
548 | static void arm_timer(struct k_itimer *timer) |
549 | { |
550 | struct task_struct *p = timer->it.cpu.task; |
551 | struct list_head *head, *listpos; |
552 | struct task_cputime *cputime_expires; |
553 | struct cpu_timer_list *const nt = &timer->it.cpu; |
554 | struct cpu_timer_list *next; |
555 | |
556 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
557 | head = p->cpu_timers; |
558 | cputime_expires = &p->cputime_expires; |
559 | } else { |
560 | head = p->signal->cpu_timers; |
561 | cputime_expires = &p->signal->cputime_expires; |
562 | } |
563 | head += CPUCLOCK_WHICH(timer->it_clock); |
564 | |
565 | listpos = head; |
566 | list_for_each_entry(next, head, entry) { |
567 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) |
568 | break; |
569 | listpos = &next->entry; |
570 | } |
571 | list_add(&nt->entry, listpos); |
572 | |
573 | if (listpos == head) { |
574 | union cpu_time_count *exp = &nt->expires; |
575 | |
576 | /* |
577 | * We are the new earliest-expiring POSIX 1.b timer, hence |
578 | * need to update expiration cache. Take into account that |
579 | * for process timers we share expiration cache with itimers |
580 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. |
581 | */ |
582 | |
583 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
584 | case CPUCLOCK_PROF: |
585 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) |
586 | cputime_expires->prof_exp = exp->cpu; |
587 | break; |
588 | case CPUCLOCK_VIRT: |
589 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) |
590 | cputime_expires->virt_exp = exp->cpu; |
591 | break; |
592 | case CPUCLOCK_SCHED: |
593 | if (cputime_expires->sched_exp == 0 || |
594 | cputime_expires->sched_exp > exp->sched) |
595 | cputime_expires->sched_exp = exp->sched; |
596 | break; |
597 | } |
598 | } |
599 | } |
600 | |
601 | /* |
602 | * The timer is locked, fire it and arrange for its reload. |
603 | */ |
604 | static void cpu_timer_fire(struct k_itimer *timer) |
605 | { |
606 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
607 | /* |
608 | * User don't want any signal. |
609 | */ |
610 | timer->it.cpu.expires.sched = 0; |
611 | } else if (unlikely(timer->sigq == NULL)) { |
612 | /* |
613 | * This a special case for clock_nanosleep, |
614 | * not a normal timer from sys_timer_create. |
615 | */ |
616 | wake_up_process(timer->it_process); |
617 | timer->it.cpu.expires.sched = 0; |
618 | } else if (timer->it.cpu.incr.sched == 0) { |
619 | /* |
620 | * One-shot timer. Clear it as soon as it's fired. |
621 | */ |
622 | posix_timer_event(timer, 0); |
623 | timer->it.cpu.expires.sched = 0; |
624 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { |
625 | /* |
626 | * The signal did not get queued because the signal |
627 | * was ignored, so we won't get any callback to |
628 | * reload the timer. But we need to keep it |
629 | * ticking in case the signal is deliverable next time. |
630 | */ |
631 | posix_cpu_timer_schedule(timer); |
632 | } |
633 | } |
634 | |
635 | /* |
636 | * Sample a process (thread group) timer for the given group_leader task. |
637 | * Must be called with tasklist_lock held for reading. |
638 | */ |
639 | static int cpu_timer_sample_group(const clockid_t which_clock, |
640 | struct task_struct *p, |
641 | union cpu_time_count *cpu) |
642 | { |
643 | struct task_cputime cputime; |
644 | |
645 | thread_group_cputimer(p, &cputime); |
646 | switch (CPUCLOCK_WHICH(which_clock)) { |
647 | default: |
648 | return -EINVAL; |
649 | case CPUCLOCK_PROF: |
650 | cpu->cpu = cputime_add(cputime.utime, cputime.stime); |
651 | break; |
652 | case CPUCLOCK_VIRT: |
653 | cpu->cpu = cputime.utime; |
654 | break; |
655 | case CPUCLOCK_SCHED: |
656 | cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p); |
657 | break; |
658 | } |
659 | return 0; |
660 | } |
661 | |
662 | /* |
663 | * Guts of sys_timer_settime for CPU timers. |
664 | * This is called with the timer locked and interrupts disabled. |
665 | * If we return TIMER_RETRY, it's necessary to release the timer's lock |
666 | * and try again. (This happens when the timer is in the middle of firing.) |
667 | */ |
668 | int posix_cpu_timer_set(struct k_itimer *timer, int flags, |
669 | struct itimerspec *new, struct itimerspec *old) |
670 | { |
671 | struct task_struct *p = timer->it.cpu.task; |
672 | union cpu_time_count old_expires, new_expires, old_incr, val; |
673 | int ret; |
674 | |
675 | if (unlikely(p == NULL)) { |
676 | /* |
677 | * Timer refers to a dead task's clock. |
678 | */ |
679 | return -ESRCH; |
680 | } |
681 | |
682 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); |
683 | |
684 | read_lock(&tasklist_lock); |
685 | /* |
686 | * We need the tasklist_lock to protect against reaping that |
687 | * clears p->sighand. If p has just been reaped, we can no |
688 | * longer get any information about it at all. |
689 | */ |
690 | if (unlikely(p->sighand == NULL)) { |
691 | read_unlock(&tasklist_lock); |
692 | put_task_struct(p); |
693 | timer->it.cpu.task = NULL; |
694 | return -ESRCH; |
695 | } |
696 | |
697 | /* |
698 | * Disarm any old timer after extracting its expiry time. |
699 | */ |
700 | BUG_ON(!irqs_disabled()); |
701 | |
702 | ret = 0; |
703 | old_incr = timer->it.cpu.incr; |
704 | spin_lock(&p->sighand->siglock); |
705 | old_expires = timer->it.cpu.expires; |
706 | if (unlikely(timer->it.cpu.firing)) { |
707 | timer->it.cpu.firing = -1; |
708 | ret = TIMER_RETRY; |
709 | } else |
710 | list_del_init(&timer->it.cpu.entry); |
711 | |
712 | /* |
713 | * We need to sample the current value to convert the new |
714 | * value from to relative and absolute, and to convert the |
715 | * old value from absolute to relative. To set a process |
716 | * timer, we need a sample to balance the thread expiry |
717 | * times (in arm_timer). With an absolute time, we must |
718 | * check if it's already passed. In short, we need a sample. |
719 | */ |
720 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
721 | cpu_clock_sample(timer->it_clock, p, &val); |
722 | } else { |
723 | cpu_timer_sample_group(timer->it_clock, p, &val); |
724 | } |
725 | |
726 | if (old) { |
727 | if (old_expires.sched == 0) { |
728 | old->it_value.tv_sec = 0; |
729 | old->it_value.tv_nsec = 0; |
730 | } else { |
731 | /* |
732 | * Update the timer in case it has |
733 | * overrun already. If it has, |
734 | * we'll report it as having overrun |
735 | * and with the next reloaded timer |
736 | * already ticking, though we are |
737 | * swallowing that pending |
738 | * notification here to install the |
739 | * new setting. |
740 | */ |
741 | bump_cpu_timer(timer, val); |
742 | if (cpu_time_before(timer->it_clock, val, |
743 | timer->it.cpu.expires)) { |
744 | old_expires = cpu_time_sub( |
745 | timer->it_clock, |
746 | timer->it.cpu.expires, val); |
747 | sample_to_timespec(timer->it_clock, |
748 | old_expires, |
749 | &old->it_value); |
750 | } else { |
751 | old->it_value.tv_nsec = 1; |
752 | old->it_value.tv_sec = 0; |
753 | } |
754 | } |
755 | } |
756 | |
757 | if (unlikely(ret)) { |
758 | /* |
759 | * We are colliding with the timer actually firing. |
760 | * Punt after filling in the timer's old value, and |
761 | * disable this firing since we are already reporting |
762 | * it as an overrun (thanks to bump_cpu_timer above). |
763 | */ |
764 | spin_unlock(&p->sighand->siglock); |
765 | read_unlock(&tasklist_lock); |
766 | goto out; |
767 | } |
768 | |
769 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { |
770 | cpu_time_add(timer->it_clock, &new_expires, val); |
771 | } |
772 | |
773 | /* |
774 | * Install the new expiry time (or zero). |
775 | * For a timer with no notification action, we don't actually |
776 | * arm the timer (we'll just fake it for timer_gettime). |
777 | */ |
778 | timer->it.cpu.expires = new_expires; |
779 | if (new_expires.sched != 0 && |
780 | cpu_time_before(timer->it_clock, val, new_expires)) { |
781 | arm_timer(timer); |
782 | } |
783 | |
784 | spin_unlock(&p->sighand->siglock); |
785 | read_unlock(&tasklist_lock); |
786 | |
787 | /* |
788 | * Install the new reload setting, and |
789 | * set up the signal and overrun bookkeeping. |
790 | */ |
791 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, |
792 | &new->it_interval); |
793 | |
794 | /* |
795 | * This acts as a modification timestamp for the timer, |
796 | * so any automatic reload attempt will punt on seeing |
797 | * that we have reset the timer manually. |
798 | */ |
799 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & |
800 | ~REQUEUE_PENDING; |
801 | timer->it_overrun_last = 0; |
802 | timer->it_overrun = -1; |
803 | |
804 | if (new_expires.sched != 0 && |
805 | !cpu_time_before(timer->it_clock, val, new_expires)) { |
806 | /* |
807 | * The designated time already passed, so we notify |
808 | * immediately, even if the thread never runs to |
809 | * accumulate more time on this clock. |
810 | */ |
811 | cpu_timer_fire(timer); |
812 | } |
813 | |
814 | ret = 0; |
815 | out: |
816 | if (old) { |
817 | sample_to_timespec(timer->it_clock, |
818 | old_incr, &old->it_interval); |
819 | } |
820 | return ret; |
821 | } |
822 | |
823 | void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
824 | { |
825 | union cpu_time_count now; |
826 | struct task_struct *p = timer->it.cpu.task; |
827 | int clear_dead; |
828 | |
829 | /* |
830 | * Easy part: convert the reload time. |
831 | */ |
832 | sample_to_timespec(timer->it_clock, |
833 | timer->it.cpu.incr, &itp->it_interval); |
834 | |
835 | if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ |
836 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; |
837 | return; |
838 | } |
839 | |
840 | if (unlikely(p == NULL)) { |
841 | /* |
842 | * This task already died and the timer will never fire. |
843 | * In this case, expires is actually the dead value. |
844 | */ |
845 | dead: |
846 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, |
847 | &itp->it_value); |
848 | return; |
849 | } |
850 | |
851 | /* |
852 | * Sample the clock to take the difference with the expiry time. |
853 | */ |
854 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
855 | cpu_clock_sample(timer->it_clock, p, &now); |
856 | clear_dead = p->exit_state; |
857 | } else { |
858 | read_lock(&tasklist_lock); |
859 | if (unlikely(p->sighand == NULL)) { |
860 | /* |
861 | * The process has been reaped. |
862 | * We can't even collect a sample any more. |
863 | * Call the timer disarmed, nothing else to do. |
864 | */ |
865 | put_task_struct(p); |
866 | timer->it.cpu.task = NULL; |
867 | timer->it.cpu.expires.sched = 0; |
868 | read_unlock(&tasklist_lock); |
869 | goto dead; |
870 | } else { |
871 | cpu_timer_sample_group(timer->it_clock, p, &now); |
872 | clear_dead = (unlikely(p->exit_state) && |
873 | thread_group_empty(p)); |
874 | } |
875 | read_unlock(&tasklist_lock); |
876 | } |
877 | |
878 | if (unlikely(clear_dead)) { |
879 | /* |
880 | * We've noticed that the thread is dead, but |
881 | * not yet reaped. Take this opportunity to |
882 | * drop our task ref. |
883 | */ |
884 | clear_dead_task(timer, now); |
885 | goto dead; |
886 | } |
887 | |
888 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { |
889 | sample_to_timespec(timer->it_clock, |
890 | cpu_time_sub(timer->it_clock, |
891 | timer->it.cpu.expires, now), |
892 | &itp->it_value); |
893 | } else { |
894 | /* |
895 | * The timer should have expired already, but the firing |
896 | * hasn't taken place yet. Say it's just about to expire. |
897 | */ |
898 | itp->it_value.tv_nsec = 1; |
899 | itp->it_value.tv_sec = 0; |
900 | } |
901 | } |
902 | |
903 | /* |
904 | * Check for any per-thread CPU timers that have fired and move them off |
905 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the |
906 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. |
907 | */ |
908 | static void check_thread_timers(struct task_struct *tsk, |
909 | struct list_head *firing) |
910 | { |
911 | int maxfire; |
912 | struct list_head *timers = tsk->cpu_timers; |
913 | struct signal_struct *const sig = tsk->signal; |
914 | unsigned long soft; |
915 | |
916 | maxfire = 20; |
917 | tsk->cputime_expires.prof_exp = cputime_zero; |
918 | while (!list_empty(timers)) { |
919 | struct cpu_timer_list *t = list_first_entry(timers, |
920 | struct cpu_timer_list, |
921 | entry); |
922 | if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
923 | tsk->cputime_expires.prof_exp = t->expires.cpu; |
924 | break; |
925 | } |
926 | t->firing = 1; |
927 | list_move_tail(&t->entry, firing); |
928 | } |
929 | |
930 | ++timers; |
931 | maxfire = 20; |
932 | tsk->cputime_expires.virt_exp = cputime_zero; |
933 | while (!list_empty(timers)) { |
934 | struct cpu_timer_list *t = list_first_entry(timers, |
935 | struct cpu_timer_list, |
936 | entry); |
937 | if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
938 | tsk->cputime_expires.virt_exp = t->expires.cpu; |
939 | break; |
940 | } |
941 | t->firing = 1; |
942 | list_move_tail(&t->entry, firing); |
943 | } |
944 | |
945 | ++timers; |
946 | maxfire = 20; |
947 | tsk->cputime_expires.sched_exp = 0; |
948 | while (!list_empty(timers)) { |
949 | struct cpu_timer_list *t = list_first_entry(timers, |
950 | struct cpu_timer_list, |
951 | entry); |
952 | if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { |
953 | tsk->cputime_expires.sched_exp = t->expires.sched; |
954 | break; |
955 | } |
956 | t->firing = 1; |
957 | list_move_tail(&t->entry, firing); |
958 | } |
959 | |
960 | /* |
961 | * Check for the special case thread timers. |
962 | */ |
963 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); |
964 | if (soft != RLIM_INFINITY) { |
965 | unsigned long hard = |
966 | ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); |
967 | |
968 | if (hard != RLIM_INFINITY && |
969 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { |
970 | /* |
971 | * At the hard limit, we just die. |
972 | * No need to calculate anything else now. |
973 | */ |
974 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
975 | return; |
976 | } |
977 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { |
978 | /* |
979 | * At the soft limit, send a SIGXCPU every second. |
980 | */ |
981 | if (soft < hard) { |
982 | soft += USEC_PER_SEC; |
983 | sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; |
984 | } |
985 | printk(KERN_INFO |
986 | "RT Watchdog Timeout: %s[%d]\n", |
987 | tsk->comm, task_pid_nr(tsk)); |
988 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
989 | } |
990 | } |
991 | } |
992 | |
993 | static void stop_process_timers(struct signal_struct *sig) |
994 | { |
995 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
996 | unsigned long flags; |
997 | |
998 | spin_lock_irqsave(&cputimer->lock, flags); |
999 | cputimer->running = 0; |
1000 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1001 | } |
1002 | |
1003 | static u32 onecputick; |
1004 | |
1005 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
1006 | cputime_t *expires, cputime_t cur_time, int signo) |
1007 | { |
1008 | if (cputime_eq(it->expires, cputime_zero)) |
1009 | return; |
1010 | |
1011 | if (cputime_ge(cur_time, it->expires)) { |
1012 | if (!cputime_eq(it->incr, cputime_zero)) { |
1013 | it->expires = cputime_add(it->expires, it->incr); |
1014 | it->error += it->incr_error; |
1015 | if (it->error >= onecputick) { |
1016 | it->expires = cputime_sub(it->expires, |
1017 | cputime_one_jiffy); |
1018 | it->error -= onecputick; |
1019 | } |
1020 | } else { |
1021 | it->expires = cputime_zero; |
1022 | } |
1023 | |
1024 | trace_itimer_expire(signo == SIGPROF ? |
1025 | ITIMER_PROF : ITIMER_VIRTUAL, |
1026 | tsk->signal->leader_pid, cur_time); |
1027 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
1028 | } |
1029 | |
1030 | if (!cputime_eq(it->expires, cputime_zero) && |
1031 | (cputime_eq(*expires, cputime_zero) || |
1032 | cputime_lt(it->expires, *expires))) { |
1033 | *expires = it->expires; |
1034 | } |
1035 | } |
1036 | |
1037 | /** |
1038 | * task_cputime_zero - Check a task_cputime struct for all zero fields. |
1039 | * |
1040 | * @cputime: The struct to compare. |
1041 | * |
1042 | * Checks @cputime to see if all fields are zero. Returns true if all fields |
1043 | * are zero, false if any field is nonzero. |
1044 | */ |
1045 | static inline int task_cputime_zero(const struct task_cputime *cputime) |
1046 | { |
1047 | if (cputime_eq(cputime->utime, cputime_zero) && |
1048 | cputime_eq(cputime->stime, cputime_zero) && |
1049 | cputime->sum_exec_runtime == 0) |
1050 | return 1; |
1051 | return 0; |
1052 | } |
1053 | |
1054 | /* |
1055 | * Check for any per-thread CPU timers that have fired and move them |
1056 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
1057 | * have already been taken off. |
1058 | */ |
1059 | static void check_process_timers(struct task_struct *tsk, |
1060 | struct list_head *firing) |
1061 | { |
1062 | int maxfire; |
1063 | struct signal_struct *const sig = tsk->signal; |
1064 | cputime_t utime, ptime, virt_expires, prof_expires; |
1065 | unsigned long long sum_sched_runtime, sched_expires; |
1066 | struct list_head *timers = sig->cpu_timers; |
1067 | struct task_cputime cputime; |
1068 | unsigned long soft; |
1069 | |
1070 | /* |
1071 | * Collect the current process totals. |
1072 | */ |
1073 | thread_group_cputimer(tsk, &cputime); |
1074 | utime = cputime.utime; |
1075 | ptime = cputime_add(utime, cputime.stime); |
1076 | sum_sched_runtime = cputime.sum_exec_runtime; |
1077 | maxfire = 20; |
1078 | prof_expires = cputime_zero; |
1079 | while (!list_empty(timers)) { |
1080 | struct cpu_timer_list *tl = list_first_entry(timers, |
1081 | struct cpu_timer_list, |
1082 | entry); |
1083 | if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { |
1084 | prof_expires = tl->expires.cpu; |
1085 | break; |
1086 | } |
1087 | tl->firing = 1; |
1088 | list_move_tail(&tl->entry, firing); |
1089 | } |
1090 | |
1091 | ++timers; |
1092 | maxfire = 20; |
1093 | virt_expires = cputime_zero; |
1094 | while (!list_empty(timers)) { |
1095 | struct cpu_timer_list *tl = list_first_entry(timers, |
1096 | struct cpu_timer_list, |
1097 | entry); |
1098 | if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { |
1099 | virt_expires = tl->expires.cpu; |
1100 | break; |
1101 | } |
1102 | tl->firing = 1; |
1103 | list_move_tail(&tl->entry, firing); |
1104 | } |
1105 | |
1106 | ++timers; |
1107 | maxfire = 20; |
1108 | sched_expires = 0; |
1109 | while (!list_empty(timers)) { |
1110 | struct cpu_timer_list *tl = list_first_entry(timers, |
1111 | struct cpu_timer_list, |
1112 | entry); |
1113 | if (!--maxfire || sum_sched_runtime < tl->expires.sched) { |
1114 | sched_expires = tl->expires.sched; |
1115 | break; |
1116 | } |
1117 | tl->firing = 1; |
1118 | list_move_tail(&tl->entry, firing); |
1119 | } |
1120 | |
1121 | /* |
1122 | * Check for the special case process timers. |
1123 | */ |
1124 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1125 | SIGPROF); |
1126 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
1127 | SIGVTALRM); |
1128 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); |
1129 | if (soft != RLIM_INFINITY) { |
1130 | unsigned long psecs = cputime_to_secs(ptime); |
1131 | unsigned long hard = |
1132 | ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); |
1133 | cputime_t x; |
1134 | if (psecs >= hard) { |
1135 | /* |
1136 | * At the hard limit, we just die. |
1137 | * No need to calculate anything else now. |
1138 | */ |
1139 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); |
1140 | return; |
1141 | } |
1142 | if (psecs >= soft) { |
1143 | /* |
1144 | * At the soft limit, send a SIGXCPU every second. |
1145 | */ |
1146 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
1147 | if (soft < hard) { |
1148 | soft++; |
1149 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; |
1150 | } |
1151 | } |
1152 | x = secs_to_cputime(soft); |
1153 | if (cputime_eq(prof_expires, cputime_zero) || |
1154 | cputime_lt(x, prof_expires)) { |
1155 | prof_expires = x; |
1156 | } |
1157 | } |
1158 | |
1159 | sig->cputime_expires.prof_exp = prof_expires; |
1160 | sig->cputime_expires.virt_exp = virt_expires; |
1161 | sig->cputime_expires.sched_exp = sched_expires; |
1162 | if (task_cputime_zero(&sig->cputime_expires)) |
1163 | stop_process_timers(sig); |
1164 | } |
1165 | |
1166 | /* |
1167 | * This is called from the signal code (via do_schedule_next_timer) |
1168 | * when the last timer signal was delivered and we have to reload the timer. |
1169 | */ |
1170 | void posix_cpu_timer_schedule(struct k_itimer *timer) |
1171 | { |
1172 | struct task_struct *p = timer->it.cpu.task; |
1173 | union cpu_time_count now; |
1174 | |
1175 | if (unlikely(p == NULL)) |
1176 | /* |
1177 | * The task was cleaned up already, no future firings. |
1178 | */ |
1179 | goto out; |
1180 | |
1181 | /* |
1182 | * Fetch the current sample and update the timer's expiry time. |
1183 | */ |
1184 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
1185 | cpu_clock_sample(timer->it_clock, p, &now); |
1186 | bump_cpu_timer(timer, now); |
1187 | if (unlikely(p->exit_state)) { |
1188 | clear_dead_task(timer, now); |
1189 | goto out; |
1190 | } |
1191 | read_lock(&tasklist_lock); /* arm_timer needs it. */ |
1192 | spin_lock(&p->sighand->siglock); |
1193 | } else { |
1194 | read_lock(&tasklist_lock); |
1195 | if (unlikely(p->sighand == NULL)) { |
1196 | /* |
1197 | * The process has been reaped. |
1198 | * We can't even collect a sample any more. |
1199 | */ |
1200 | put_task_struct(p); |
1201 | timer->it.cpu.task = p = NULL; |
1202 | timer->it.cpu.expires.sched = 0; |
1203 | goto out_unlock; |
1204 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
1205 | /* |
1206 | * We've noticed that the thread is dead, but |
1207 | * not yet reaped. Take this opportunity to |
1208 | * drop our task ref. |
1209 | */ |
1210 | clear_dead_task(timer, now); |
1211 | goto out_unlock; |
1212 | } |
1213 | spin_lock(&p->sighand->siglock); |
1214 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1215 | bump_cpu_timer(timer, now); |
1216 | /* Leave the tasklist_lock locked for the call below. */ |
1217 | } |
1218 | |
1219 | /* |
1220 | * Now re-arm for the new expiry time. |
1221 | */ |
1222 | BUG_ON(!irqs_disabled()); |
1223 | arm_timer(timer); |
1224 | spin_unlock(&p->sighand->siglock); |
1225 | |
1226 | out_unlock: |
1227 | read_unlock(&tasklist_lock); |
1228 | |
1229 | out: |
1230 | timer->it_overrun_last = timer->it_overrun; |
1231 | timer->it_overrun = -1; |
1232 | ++timer->it_requeue_pending; |
1233 | } |
1234 | |
1235 | /** |
1236 | * task_cputime_expired - Compare two task_cputime entities. |
1237 | * |
1238 | * @sample: The task_cputime structure to be checked for expiration. |
1239 | * @expires: Expiration times, against which @sample will be checked. |
1240 | * |
1241 | * Checks @sample against @expires to see if any field of @sample has expired. |
1242 | * Returns true if any field of the former is greater than the corresponding |
1243 | * field of the latter if the latter field is set. Otherwise returns false. |
1244 | */ |
1245 | static inline int task_cputime_expired(const struct task_cputime *sample, |
1246 | const struct task_cputime *expires) |
1247 | { |
1248 | if (!cputime_eq(expires->utime, cputime_zero) && |
1249 | cputime_ge(sample->utime, expires->utime)) |
1250 | return 1; |
1251 | if (!cputime_eq(expires->stime, cputime_zero) && |
1252 | cputime_ge(cputime_add(sample->utime, sample->stime), |
1253 | expires->stime)) |
1254 | return 1; |
1255 | if (expires->sum_exec_runtime != 0 && |
1256 | sample->sum_exec_runtime >= expires->sum_exec_runtime) |
1257 | return 1; |
1258 | return 0; |
1259 | } |
1260 | |
1261 | /** |
1262 | * fastpath_timer_check - POSIX CPU timers fast path. |
1263 | * |
1264 | * @tsk: The task (thread) being checked. |
1265 | * |
1266 | * Check the task and thread group timers. If both are zero (there are no |
1267 | * timers set) return false. Otherwise snapshot the task and thread group |
1268 | * timers and compare them with the corresponding expiration times. Return |
1269 | * true if a timer has expired, else return false. |
1270 | */ |
1271 | static inline int fastpath_timer_check(struct task_struct *tsk) |
1272 | { |
1273 | struct signal_struct *sig; |
1274 | |
1275 | if (!task_cputime_zero(&tsk->cputime_expires)) { |
1276 | struct task_cputime task_sample = { |
1277 | .utime = tsk->utime, |
1278 | .stime = tsk->stime, |
1279 | .sum_exec_runtime = tsk->se.sum_exec_runtime |
1280 | }; |
1281 | |
1282 | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) |
1283 | return 1; |
1284 | } |
1285 | |
1286 | sig = tsk->signal; |
1287 | if (sig->cputimer.running) { |
1288 | struct task_cputime group_sample; |
1289 | |
1290 | spin_lock(&sig->cputimer.lock); |
1291 | group_sample = sig->cputimer.cputime; |
1292 | spin_unlock(&sig->cputimer.lock); |
1293 | |
1294 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) |
1295 | return 1; |
1296 | } |
1297 | |
1298 | return 0; |
1299 | } |
1300 | |
1301 | /* |
1302 | * This is called from the timer interrupt handler. The irq handler has |
1303 | * already updated our counts. We need to check if any timers fire now. |
1304 | * Interrupts are disabled. |
1305 | */ |
1306 | void run_posix_cpu_timers(struct task_struct *tsk) |
1307 | { |
1308 | LIST_HEAD(firing); |
1309 | struct k_itimer *timer, *next; |
1310 | unsigned long flags; |
1311 | |
1312 | BUG_ON(!irqs_disabled()); |
1313 | |
1314 | /* |
1315 | * The fast path checks that there are no expired thread or thread |
1316 | * group timers. If that's so, just return. |
1317 | */ |
1318 | if (!fastpath_timer_check(tsk)) |
1319 | return; |
1320 | |
1321 | if (!lock_task_sighand(tsk, &flags)) |
1322 | return; |
1323 | /* |
1324 | * Here we take off tsk->signal->cpu_timers[N] and |
1325 | * tsk->cpu_timers[N] all the timers that are firing, and |
1326 | * put them on the firing list. |
1327 | */ |
1328 | check_thread_timers(tsk, &firing); |
1329 | /* |
1330 | * If there are any active process wide timers (POSIX 1.b, itimers, |
1331 | * RLIMIT_CPU) cputimer must be running. |
1332 | */ |
1333 | if (tsk->signal->cputimer.running) |
1334 | check_process_timers(tsk, &firing); |
1335 | |
1336 | /* |
1337 | * We must release these locks before taking any timer's lock. |
1338 | * There is a potential race with timer deletion here, as the |
1339 | * siglock now protects our private firing list. We have set |
1340 | * the firing flag in each timer, so that a deletion attempt |
1341 | * that gets the timer lock before we do will give it up and |
1342 | * spin until we've taken care of that timer below. |
1343 | */ |
1344 | unlock_task_sighand(tsk, &flags); |
1345 | |
1346 | /* |
1347 | * Now that all the timers on our list have the firing flag, |
1348 | * noone will touch their list entries but us. We'll take |
1349 | * each timer's lock before clearing its firing flag, so no |
1350 | * timer call will interfere. |
1351 | */ |
1352 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { |
1353 | int cpu_firing; |
1354 | |
1355 | spin_lock(&timer->it_lock); |
1356 | list_del_init(&timer->it.cpu.entry); |
1357 | cpu_firing = timer->it.cpu.firing; |
1358 | timer->it.cpu.firing = 0; |
1359 | /* |
1360 | * The firing flag is -1 if we collided with a reset |
1361 | * of the timer, which already reported this |
1362 | * almost-firing as an overrun. So don't generate an event. |
1363 | */ |
1364 | if (likely(cpu_firing >= 0)) |
1365 | cpu_timer_fire(timer); |
1366 | spin_unlock(&timer->it_lock); |
1367 | } |
1368 | } |
1369 | |
1370 | /* |
1371 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
1372 | * The tsk->sighand->siglock must be held by the caller. |
1373 | */ |
1374 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, |
1375 | cputime_t *newval, cputime_t *oldval) |
1376 | { |
1377 | union cpu_time_count now; |
1378 | |
1379 | BUG_ON(clock_idx == CPUCLOCK_SCHED); |
1380 | cpu_timer_sample_group(clock_idx, tsk, &now); |
1381 | |
1382 | if (oldval) { |
1383 | /* |
1384 | * We are setting itimer. The *oldval is absolute and we update |
1385 | * it to be relative, *newval argument is relative and we update |
1386 | * it to be absolute. |
1387 | */ |
1388 | if (!cputime_eq(*oldval, cputime_zero)) { |
1389 | if (cputime_le(*oldval, now.cpu)) { |
1390 | /* Just about to fire. */ |
1391 | *oldval = cputime_one_jiffy; |
1392 | } else { |
1393 | *oldval = cputime_sub(*oldval, now.cpu); |
1394 | } |
1395 | } |
1396 | |
1397 | if (cputime_eq(*newval, cputime_zero)) |
1398 | return; |
1399 | *newval = cputime_add(*newval, now.cpu); |
1400 | } |
1401 | |
1402 | /* |
1403 | * Update expiration cache if we are the earliest timer, or eventually |
1404 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. |
1405 | */ |
1406 | switch (clock_idx) { |
1407 | case CPUCLOCK_PROF: |
1408 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) |
1409 | tsk->signal->cputime_expires.prof_exp = *newval; |
1410 | break; |
1411 | case CPUCLOCK_VIRT: |
1412 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) |
1413 | tsk->signal->cputime_expires.virt_exp = *newval; |
1414 | break; |
1415 | } |
1416 | } |
1417 | |
1418 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
1419 | struct timespec *rqtp, struct itimerspec *it) |
1420 | { |
1421 | struct k_itimer timer; |
1422 | int error; |
1423 | |
1424 | /* |
1425 | * Set up a temporary timer and then wait for it to go off. |
1426 | */ |
1427 | memset(&timer, 0, sizeof timer); |
1428 | spin_lock_init(&timer.it_lock); |
1429 | timer.it_clock = which_clock; |
1430 | timer.it_overrun = -1; |
1431 | error = posix_cpu_timer_create(&timer); |
1432 | timer.it_process = current; |
1433 | if (!error) { |
1434 | static struct itimerspec zero_it; |
1435 | |
1436 | memset(it, 0, sizeof *it); |
1437 | it->it_value = *rqtp; |
1438 | |
1439 | spin_lock_irq(&timer.it_lock); |
1440 | error = posix_cpu_timer_set(&timer, flags, it, NULL); |
1441 | if (error) { |
1442 | spin_unlock_irq(&timer.it_lock); |
1443 | return error; |
1444 | } |
1445 | |
1446 | while (!signal_pending(current)) { |
1447 | if (timer.it.cpu.expires.sched == 0) { |
1448 | /* |
1449 | * Our timer fired and was reset. |
1450 | */ |
1451 | spin_unlock_irq(&timer.it_lock); |
1452 | return 0; |
1453 | } |
1454 | |
1455 | /* |
1456 | * Block until cpu_timer_fire (or a signal) wakes us. |
1457 | */ |
1458 | __set_current_state(TASK_INTERRUPTIBLE); |
1459 | spin_unlock_irq(&timer.it_lock); |
1460 | schedule(); |
1461 | spin_lock_irq(&timer.it_lock); |
1462 | } |
1463 | |
1464 | /* |
1465 | * We were interrupted by a signal. |
1466 | */ |
1467 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); |
1468 | posix_cpu_timer_set(&timer, 0, &zero_it, it); |
1469 | spin_unlock_irq(&timer.it_lock); |
1470 | |
1471 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
1472 | /* |
1473 | * It actually did fire already. |
1474 | */ |
1475 | return 0; |
1476 | } |
1477 | |
1478 | error = -ERESTART_RESTARTBLOCK; |
1479 | } |
1480 | |
1481 | return error; |
1482 | } |
1483 | |
1484 | int posix_cpu_nsleep(const clockid_t which_clock, int flags, |
1485 | struct timespec *rqtp, struct timespec __user *rmtp) |
1486 | { |
1487 | struct restart_block *restart_block = |
1488 | ¤t_thread_info()->restart_block; |
1489 | struct itimerspec it; |
1490 | int error; |
1491 | |
1492 | /* |
1493 | * Diagnose required errors first. |
1494 | */ |
1495 | if (CPUCLOCK_PERTHREAD(which_clock) && |
1496 | (CPUCLOCK_PID(which_clock) == 0 || |
1497 | CPUCLOCK_PID(which_clock) == current->pid)) |
1498 | return -EINVAL; |
1499 | |
1500 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); |
1501 | |
1502 | if (error == -ERESTART_RESTARTBLOCK) { |
1503 | |
1504 | if (flags & TIMER_ABSTIME) |
1505 | return -ERESTARTNOHAND; |
1506 | /* |
1507 | * Report back to the user the time still remaining. |
1508 | */ |
1509 | if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
1510 | return -EFAULT; |
1511 | |
1512 | restart_block->fn = posix_cpu_nsleep_restart; |
1513 | restart_block->arg0 = which_clock; |
1514 | restart_block->arg1 = (unsigned long) rmtp; |
1515 | restart_block->arg2 = rqtp->tv_sec; |
1516 | restart_block->arg3 = rqtp->tv_nsec; |
1517 | } |
1518 | return error; |
1519 | } |
1520 | |
1521 | long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1522 | { |
1523 | clockid_t which_clock = restart_block->arg0; |
1524 | struct timespec __user *rmtp; |
1525 | struct timespec t; |
1526 | struct itimerspec it; |
1527 | int error; |
1528 | |
1529 | rmtp = (struct timespec __user *) restart_block->arg1; |
1530 | t.tv_sec = restart_block->arg2; |
1531 | t.tv_nsec = restart_block->arg3; |
1532 | |
1533 | restart_block->fn = do_no_restart_syscall; |
1534 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); |
1535 | |
1536 | if (error == -ERESTART_RESTARTBLOCK) { |
1537 | /* |
1538 | * Report back to the user the time still remaining. |
1539 | */ |
1540 | if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) |
1541 | return -EFAULT; |
1542 | |
1543 | restart_block->fn = posix_cpu_nsleep_restart; |
1544 | restart_block->arg0 = which_clock; |
1545 | restart_block->arg1 = (unsigned long) rmtp; |
1546 | restart_block->arg2 = t.tv_sec; |
1547 | restart_block->arg3 = t.tv_nsec; |
1548 | } |
1549 | return error; |
1550 | |
1551 | } |
1552 | |
1553 | |
1554 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) |
1555 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) |
1556 | |
1557 | static int process_cpu_clock_getres(const clockid_t which_clock, |
1558 | struct timespec *tp) |
1559 | { |
1560 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); |
1561 | } |
1562 | static int process_cpu_clock_get(const clockid_t which_clock, |
1563 | struct timespec *tp) |
1564 | { |
1565 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); |
1566 | } |
1567 | static int process_cpu_timer_create(struct k_itimer *timer) |
1568 | { |
1569 | timer->it_clock = PROCESS_CLOCK; |
1570 | return posix_cpu_timer_create(timer); |
1571 | } |
1572 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
1573 | struct timespec *rqtp, |
1574 | struct timespec __user *rmtp) |
1575 | { |
1576 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
1577 | } |
1578 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
1579 | { |
1580 | return -EINVAL; |
1581 | } |
1582 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
1583 | struct timespec *tp) |
1584 | { |
1585 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); |
1586 | } |
1587 | static int thread_cpu_clock_get(const clockid_t which_clock, |
1588 | struct timespec *tp) |
1589 | { |
1590 | return posix_cpu_clock_get(THREAD_CLOCK, tp); |
1591 | } |
1592 | static int thread_cpu_timer_create(struct k_itimer *timer) |
1593 | { |
1594 | timer->it_clock = THREAD_CLOCK; |
1595 | return posix_cpu_timer_create(timer); |
1596 | } |
1597 | static int thread_cpu_nsleep(const clockid_t which_clock, int flags, |
1598 | struct timespec *rqtp, struct timespec __user *rmtp) |
1599 | { |
1600 | return -EINVAL; |
1601 | } |
1602 | static long thread_cpu_nsleep_restart(struct restart_block *restart_block) |
1603 | { |
1604 | return -EINVAL; |
1605 | } |
1606 | |
1607 | static __init int init_posix_cpu_timers(void) |
1608 | { |
1609 | struct k_clock process = { |
1610 | .clock_getres = process_cpu_clock_getres, |
1611 | .clock_get = process_cpu_clock_get, |
1612 | .clock_set = do_posix_clock_nosettime, |
1613 | .timer_create = process_cpu_timer_create, |
1614 | .nsleep = process_cpu_nsleep, |
1615 | .nsleep_restart = process_cpu_nsleep_restart, |
1616 | }; |
1617 | struct k_clock thread = { |
1618 | .clock_getres = thread_cpu_clock_getres, |
1619 | .clock_get = thread_cpu_clock_get, |
1620 | .clock_set = do_posix_clock_nosettime, |
1621 | .timer_create = thread_cpu_timer_create, |
1622 | .nsleep = thread_cpu_nsleep, |
1623 | .nsleep_restart = thread_cpu_nsleep_restart, |
1624 | }; |
1625 | struct timespec ts; |
1626 | |
1627 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1628 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
1629 | |
1630 | cputime_to_timespec(cputime_one_jiffy, &ts); |
1631 | onecputick = ts.tv_nsec; |
1632 | WARN_ON(ts.tv_sec != 0); |
1633 | |
1634 | return 0; |
1635 | } |
1636 | __initcall(init_posix_cpu_timers); |
1637 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9