Root/kernel/relay.c

1/*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15#include <linux/errno.h>
16#include <linux/stddef.h>
17#include <linux/slab.h>
18#include <linux/module.h>
19#include <linux/string.h>
20#include <linux/relay.h>
21#include <linux/vmalloc.h>
22#include <linux/mm.h>
23#include <linux/cpu.h>
24#include <linux/splice.h>
25
26/* list of open channels, for cpu hotplug */
27static DEFINE_MUTEX(relay_channels_mutex);
28static LIST_HEAD(relay_channels);
29
30/*
31 * close() vm_op implementation for relay file mapping.
32 */
33static void relay_file_mmap_close(struct vm_area_struct *vma)
34{
35    struct rchan_buf *buf = vma->vm_private_data;
36    buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37}
38
39/*
40 * fault() vm_op implementation for relay file mapping.
41 */
42static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43{
44    struct page *page;
45    struct rchan_buf *buf = vma->vm_private_data;
46    pgoff_t pgoff = vmf->pgoff;
47
48    if (!buf)
49        return VM_FAULT_OOM;
50
51    page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52    if (!page)
53        return VM_FAULT_SIGBUS;
54    get_page(page);
55    vmf->page = page;
56
57    return 0;
58}
59
60/*
61 * vm_ops for relay file mappings.
62 */
63static const struct vm_operations_struct relay_file_mmap_ops = {
64    .fault = relay_buf_fault,
65    .close = relay_file_mmap_close,
66};
67
68/*
69 * allocate an array of pointers of struct page
70 */
71static struct page **relay_alloc_page_array(unsigned int n_pages)
72{
73    const size_t pa_size = n_pages * sizeof(struct page *);
74    if (pa_size > PAGE_SIZE)
75        return vzalloc(pa_size);
76    return kzalloc(pa_size, GFP_KERNEL);
77}
78
79/*
80 * free an array of pointers of struct page
81 */
82static void relay_free_page_array(struct page **array)
83{
84    if (is_vmalloc_addr(array))
85        vfree(array);
86    else
87        kfree(array);
88}
89
90/**
91 * relay_mmap_buf: - mmap channel buffer to process address space
92 * @buf: relay channel buffer
93 * @vma: vm_area_struct describing memory to be mapped
94 *
95 * Returns 0 if ok, negative on error
96 *
97 * Caller should already have grabbed mmap_sem.
98 */
99static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
100{
101    unsigned long length = vma->vm_end - vma->vm_start;
102    struct file *filp = vma->vm_file;
103
104    if (!buf)
105        return -EBADF;
106
107    if (length != (unsigned long)buf->chan->alloc_size)
108        return -EINVAL;
109
110    vma->vm_ops = &relay_file_mmap_ops;
111    vma->vm_flags |= VM_DONTEXPAND;
112    vma->vm_private_data = buf;
113    buf->chan->cb->buf_mapped(buf, filp);
114
115    return 0;
116}
117
118/**
119 * relay_alloc_buf - allocate a channel buffer
120 * @buf: the buffer struct
121 * @size: total size of the buffer
122 *
123 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
124 * passed in size will get page aligned, if it isn't already.
125 */
126static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
127{
128    void *mem;
129    unsigned int i, j, n_pages;
130
131    *size = PAGE_ALIGN(*size);
132    n_pages = *size >> PAGE_SHIFT;
133
134    buf->page_array = relay_alloc_page_array(n_pages);
135    if (!buf->page_array)
136        return NULL;
137
138    for (i = 0; i < n_pages; i++) {
139        buf->page_array[i] = alloc_page(GFP_KERNEL);
140        if (unlikely(!buf->page_array[i]))
141            goto depopulate;
142        set_page_private(buf->page_array[i], (unsigned long)buf);
143    }
144    mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
145    if (!mem)
146        goto depopulate;
147
148    memset(mem, 0, *size);
149    buf->page_count = n_pages;
150    return mem;
151
152depopulate:
153    for (j = 0; j < i; j++)
154        __free_page(buf->page_array[j]);
155    relay_free_page_array(buf->page_array);
156    return NULL;
157}
158
159/**
160 * relay_create_buf - allocate and initialize a channel buffer
161 * @chan: the relay channel
162 *
163 * Returns channel buffer if successful, %NULL otherwise.
164 */
165static struct rchan_buf *relay_create_buf(struct rchan *chan)
166{
167    struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
168    if (!buf)
169        return NULL;
170
171    buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
172    if (!buf->padding)
173        goto free_buf;
174
175    buf->start = relay_alloc_buf(buf, &chan->alloc_size);
176    if (!buf->start)
177        goto free_buf;
178
179    buf->chan = chan;
180    kref_get(&buf->chan->kref);
181    return buf;
182
183free_buf:
184    kfree(buf->padding);
185    kfree(buf);
186    return NULL;
187}
188
189/**
190 * relay_destroy_channel - free the channel struct
191 * @kref: target kernel reference that contains the relay channel
192 *
193 * Should only be called from kref_put().
194 */
195static void relay_destroy_channel(struct kref *kref)
196{
197    struct rchan *chan = container_of(kref, struct rchan, kref);
198    kfree(chan);
199}
200
201/**
202 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
203 * @buf: the buffer struct
204 */
205static void relay_destroy_buf(struct rchan_buf *buf)
206{
207    struct rchan *chan = buf->chan;
208    unsigned int i;
209
210    if (likely(buf->start)) {
211        vunmap(buf->start);
212        for (i = 0; i < buf->page_count; i++)
213            __free_page(buf->page_array[i]);
214        relay_free_page_array(buf->page_array);
215    }
216    chan->buf[buf->cpu] = NULL;
217    kfree(buf->padding);
218    kfree(buf);
219    kref_put(&chan->kref, relay_destroy_channel);
220}
221
222/**
223 * relay_remove_buf - remove a channel buffer
224 * @kref: target kernel reference that contains the relay buffer
225 *
226 * Removes the file from the fileystem, which also frees the
227 * rchan_buf_struct and the channel buffer. Should only be called from
228 * kref_put().
229 */
230static void relay_remove_buf(struct kref *kref)
231{
232    struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
233    buf->chan->cb->remove_buf_file(buf->dentry);
234    relay_destroy_buf(buf);
235}
236
237/**
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
240 *
241 * Returns 1 if the buffer is empty, 0 otherwise.
242 */
243static int relay_buf_empty(struct rchan_buf *buf)
244{
245    return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246}
247
248/**
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
251 *
252 * Returns 1 if the buffer is full, 0 otherwise.
253 */
254int relay_buf_full(struct rchan_buf *buf)
255{
256    size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257    return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258}
259EXPORT_SYMBOL_GPL(relay_buf_full);
260
261/*
262 * High-level relay kernel API and associated functions.
263 */
264
265/*
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
268 */
269
270/*
271 * subbuf_start() default callback. Does nothing.
272 */
273static int subbuf_start_default_callback (struct rchan_buf *buf,
274                      void *subbuf,
275                      void *prev_subbuf,
276                      size_t prev_padding)
277{
278    if (relay_buf_full(buf))
279        return 0;
280
281    return 1;
282}
283
284/*
285 * buf_mapped() default callback. Does nothing.
286 */
287static void buf_mapped_default_callback(struct rchan_buf *buf,
288                    struct file *filp)
289{
290}
291
292/*
293 * buf_unmapped() default callback. Does nothing.
294 */
295static void buf_unmapped_default_callback(struct rchan_buf *buf,
296                      struct file *filp)
297{
298}
299
300/*
301 * create_buf_file_create() default callback. Does nothing.
302 */
303static struct dentry *create_buf_file_default_callback(const char *filename,
304                               struct dentry *parent,
305                               int mode,
306                               struct rchan_buf *buf,
307                               int *is_global)
308{
309    return NULL;
310}
311
312/*
313 * remove_buf_file() default callback. Does nothing.
314 */
315static int remove_buf_file_default_callback(struct dentry *dentry)
316{
317    return -EINVAL;
318}
319
320/* relay channel default callbacks */
321static struct rchan_callbacks default_channel_callbacks = {
322    .subbuf_start = subbuf_start_default_callback,
323    .buf_mapped = buf_mapped_default_callback,
324    .buf_unmapped = buf_unmapped_default_callback,
325    .create_buf_file = create_buf_file_default_callback,
326    .remove_buf_file = remove_buf_file_default_callback,
327};
328
329/**
330 * wakeup_readers - wake up readers waiting on a channel
331 * @data: contains the channel buffer
332 *
333 * This is the timer function used to defer reader waking.
334 */
335static void wakeup_readers(unsigned long data)
336{
337    struct rchan_buf *buf = (struct rchan_buf *)data;
338    wake_up_interruptible(&buf->read_wait);
339}
340
341/**
342 * __relay_reset - reset a channel buffer
343 * @buf: the channel buffer
344 * @init: 1 if this is a first-time initialization
345 *
346 * See relay_reset() for description of effect.
347 */
348static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349{
350    size_t i;
351
352    if (init) {
353        init_waitqueue_head(&buf->read_wait);
354        kref_init(&buf->kref);
355        setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
356    } else
357        del_timer_sync(&buf->timer);
358
359    buf->subbufs_produced = 0;
360    buf->subbufs_consumed = 0;
361    buf->bytes_consumed = 0;
362    buf->finalized = 0;
363    buf->data = buf->start;
364    buf->offset = 0;
365
366    for (i = 0; i < buf->chan->n_subbufs; i++)
367        buf->padding[i] = 0;
368
369    buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
370}
371
372/**
373 * relay_reset - reset the channel
374 * @chan: the channel
375 *
376 * This has the effect of erasing all data from all channel buffers
377 * and restarting the channel in its initial state. The buffers
378 * are not freed, so any mappings are still in effect.
379 *
380 * NOTE. Care should be taken that the channel isn't actually
381 * being used by anything when this call is made.
382 */
383void relay_reset(struct rchan *chan)
384{
385    unsigned int i;
386
387    if (!chan)
388        return;
389
390    if (chan->is_global && chan->buf[0]) {
391        __relay_reset(chan->buf[0], 0);
392        return;
393    }
394
395    mutex_lock(&relay_channels_mutex);
396    for_each_possible_cpu(i)
397        if (chan->buf[i])
398            __relay_reset(chan->buf[i], 0);
399    mutex_unlock(&relay_channels_mutex);
400}
401EXPORT_SYMBOL_GPL(relay_reset);
402
403static inline void relay_set_buf_dentry(struct rchan_buf *buf,
404                    struct dentry *dentry)
405{
406    buf->dentry = dentry;
407    buf->dentry->d_inode->i_size = buf->early_bytes;
408}
409
410static struct dentry *relay_create_buf_file(struct rchan *chan,
411                        struct rchan_buf *buf,
412                        unsigned int cpu)
413{
414    struct dentry *dentry;
415    char *tmpname;
416
417    tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
418    if (!tmpname)
419        return NULL;
420    snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
421
422    /* Create file in fs */
423    dentry = chan->cb->create_buf_file(tmpname, chan->parent,
424                       S_IRUSR, buf,
425                       &chan->is_global);
426
427    kfree(tmpname);
428
429    return dentry;
430}
431
432/*
433 * relay_open_buf - create a new relay channel buffer
434 *
435 * used by relay_open() and CPU hotplug.
436 */
437static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
438{
439     struct rchan_buf *buf = NULL;
440    struct dentry *dentry;
441
442     if (chan->is_global)
443        return chan->buf[0];
444
445    buf = relay_create_buf(chan);
446    if (!buf)
447        return NULL;
448
449    if (chan->has_base_filename) {
450        dentry = relay_create_buf_file(chan, buf, cpu);
451        if (!dentry)
452            goto free_buf;
453        relay_set_buf_dentry(buf, dentry);
454    }
455
456     buf->cpu = cpu;
457     __relay_reset(buf, 1);
458
459     if(chan->is_global) {
460         chan->buf[0] = buf;
461         buf->cpu = 0;
462      }
463
464    return buf;
465
466free_buf:
467     relay_destroy_buf(buf);
468    return NULL;
469}
470
471/**
472 * relay_close_buf - close a channel buffer
473 * @buf: channel buffer
474 *
475 * Marks the buffer finalized and restores the default callbacks.
476 * The channel buffer and channel buffer data structure are then freed
477 * automatically when the last reference is given up.
478 */
479static void relay_close_buf(struct rchan_buf *buf)
480{
481    buf->finalized = 1;
482    del_timer_sync(&buf->timer);
483    kref_put(&buf->kref, relay_remove_buf);
484}
485
486static void setup_callbacks(struct rchan *chan,
487                   struct rchan_callbacks *cb)
488{
489    if (!cb) {
490        chan->cb = &default_channel_callbacks;
491        return;
492    }
493
494    if (!cb->subbuf_start)
495        cb->subbuf_start = subbuf_start_default_callback;
496    if (!cb->buf_mapped)
497        cb->buf_mapped = buf_mapped_default_callback;
498    if (!cb->buf_unmapped)
499        cb->buf_unmapped = buf_unmapped_default_callback;
500    if (!cb->create_buf_file)
501        cb->create_buf_file = create_buf_file_default_callback;
502    if (!cb->remove_buf_file)
503        cb->remove_buf_file = remove_buf_file_default_callback;
504    chan->cb = cb;
505}
506
507/**
508 * relay_hotcpu_callback - CPU hotplug callback
509 * @nb: notifier block
510 * @action: hotplug action to take
511 * @hcpu: CPU number
512 *
513 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
514 */
515static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
516                unsigned long action,
517                void *hcpu)
518{
519    unsigned int hotcpu = (unsigned long)hcpu;
520    struct rchan *chan;
521
522    switch(action) {
523    case CPU_UP_PREPARE:
524    case CPU_UP_PREPARE_FROZEN:
525        mutex_lock(&relay_channels_mutex);
526        list_for_each_entry(chan, &relay_channels, list) {
527            if (chan->buf[hotcpu])
528                continue;
529            chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
530            if(!chan->buf[hotcpu]) {
531                printk(KERN_ERR
532                    "relay_hotcpu_callback: cpu %d buffer "
533                    "creation failed\n", hotcpu);
534                mutex_unlock(&relay_channels_mutex);
535                return notifier_from_errno(-ENOMEM);
536            }
537        }
538        mutex_unlock(&relay_channels_mutex);
539        break;
540    case CPU_DEAD:
541    case CPU_DEAD_FROZEN:
542        /* No need to flush the cpu : will be flushed upon
543         * final relay_flush() call. */
544        break;
545    }
546    return NOTIFY_OK;
547}
548
549/**
550 * relay_open - create a new relay channel
551 * @base_filename: base name of files to create, %NULL for buffering only
552 * @parent: dentry of parent directory, %NULL for root directory or buffer
553 * @subbuf_size: size of sub-buffers
554 * @n_subbufs: number of sub-buffers
555 * @cb: client callback functions
556 * @private_data: user-defined data
557 *
558 * Returns channel pointer if successful, %NULL otherwise.
559 *
560 * Creates a channel buffer for each cpu using the sizes and
561 * attributes specified. The created channel buffer files
562 * will be named base_filename0...base_filenameN-1. File
563 * permissions will be %S_IRUSR.
564 */
565struct rchan *relay_open(const char *base_filename,
566             struct dentry *parent,
567             size_t subbuf_size,
568             size_t n_subbufs,
569             struct rchan_callbacks *cb,
570             void *private_data)
571{
572    unsigned int i;
573    struct rchan *chan;
574
575    if (!(subbuf_size && n_subbufs))
576        return NULL;
577
578    chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
579    if (!chan)
580        return NULL;
581
582    chan->version = RELAYFS_CHANNEL_VERSION;
583    chan->n_subbufs = n_subbufs;
584    chan->subbuf_size = subbuf_size;
585    chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
586    chan->parent = parent;
587    chan->private_data = private_data;
588    if (base_filename) {
589        chan->has_base_filename = 1;
590        strlcpy(chan->base_filename, base_filename, NAME_MAX);
591    }
592    setup_callbacks(chan, cb);
593    kref_init(&chan->kref);
594
595    mutex_lock(&relay_channels_mutex);
596    for_each_online_cpu(i) {
597        chan->buf[i] = relay_open_buf(chan, i);
598        if (!chan->buf[i])
599            goto free_bufs;
600    }
601    list_add(&chan->list, &relay_channels);
602    mutex_unlock(&relay_channels_mutex);
603
604    return chan;
605
606free_bufs:
607    for_each_possible_cpu(i) {
608        if (chan->buf[i])
609            relay_close_buf(chan->buf[i]);
610    }
611
612    kref_put(&chan->kref, relay_destroy_channel);
613    mutex_unlock(&relay_channels_mutex);
614    return NULL;
615}
616EXPORT_SYMBOL_GPL(relay_open);
617
618struct rchan_percpu_buf_dispatcher {
619    struct rchan_buf *buf;
620    struct dentry *dentry;
621};
622
623/* Called in atomic context. */
624static void __relay_set_buf_dentry(void *info)
625{
626    struct rchan_percpu_buf_dispatcher *p = info;
627
628    relay_set_buf_dentry(p->buf, p->dentry);
629}
630
631/**
632 * relay_late_setup_files - triggers file creation
633 * @chan: channel to operate on
634 * @base_filename: base name of files to create
635 * @parent: dentry of parent directory, %NULL for root directory
636 *
637 * Returns 0 if successful, non-zero otherwise.
638 *
639 * Use to setup files for a previously buffer-only channel.
640 * Useful to do early tracing in kernel, before VFS is up, for example.
641 */
642int relay_late_setup_files(struct rchan *chan,
643               const char *base_filename,
644               struct dentry *parent)
645{
646    int err = 0;
647    unsigned int i, curr_cpu;
648    unsigned long flags;
649    struct dentry *dentry;
650    struct rchan_percpu_buf_dispatcher disp;
651
652    if (!chan || !base_filename)
653        return -EINVAL;
654
655    strlcpy(chan->base_filename, base_filename, NAME_MAX);
656
657    mutex_lock(&relay_channels_mutex);
658    /* Is chan already set up? */
659    if (unlikely(chan->has_base_filename)) {
660        mutex_unlock(&relay_channels_mutex);
661        return -EEXIST;
662    }
663    chan->has_base_filename = 1;
664    chan->parent = parent;
665    curr_cpu = get_cpu();
666    /*
667     * The CPU hotplug notifier ran before us and created buffers with
668     * no files associated. So it's safe to call relay_setup_buf_file()
669     * on all currently online CPUs.
670     */
671    for_each_online_cpu(i) {
672        if (unlikely(!chan->buf[i])) {
673            WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
674            err = -EINVAL;
675            break;
676        }
677
678        dentry = relay_create_buf_file(chan, chan->buf[i], i);
679        if (unlikely(!dentry)) {
680            err = -EINVAL;
681            break;
682        }
683
684        if (curr_cpu == i) {
685            local_irq_save(flags);
686            relay_set_buf_dentry(chan->buf[i], dentry);
687            local_irq_restore(flags);
688        } else {
689            disp.buf = chan->buf[i];
690            disp.dentry = dentry;
691            smp_mb();
692            /* relay_channels_mutex must be held, so wait. */
693            err = smp_call_function_single(i,
694                               __relay_set_buf_dentry,
695                               &disp, 1);
696        }
697        if (unlikely(err))
698            break;
699    }
700    put_cpu();
701    mutex_unlock(&relay_channels_mutex);
702
703    return err;
704}
705
706/**
707 * relay_switch_subbuf - switch to a new sub-buffer
708 * @buf: channel buffer
709 * @length: size of current event
710 *
711 * Returns either the length passed in or 0 if full.
712 *
713 * Performs sub-buffer-switch tasks such as invoking callbacks,
714 * updating padding counts, waking up readers, etc.
715 */
716size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
717{
718    void *old, *new;
719    size_t old_subbuf, new_subbuf;
720
721    if (unlikely(length > buf->chan->subbuf_size))
722        goto toobig;
723
724    if (buf->offset != buf->chan->subbuf_size + 1) {
725        buf->prev_padding = buf->chan->subbuf_size - buf->offset;
726        old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
727        buf->padding[old_subbuf] = buf->prev_padding;
728        buf->subbufs_produced++;
729        if (buf->dentry)
730            buf->dentry->d_inode->i_size +=
731                buf->chan->subbuf_size -
732                buf->padding[old_subbuf];
733        else
734            buf->early_bytes += buf->chan->subbuf_size -
735                        buf->padding[old_subbuf];
736        smp_mb();
737        if (waitqueue_active(&buf->read_wait))
738            /*
739             * Calling wake_up_interruptible() from here
740             * will deadlock if we happen to be logging
741             * from the scheduler (trying to re-grab
742             * rq->lock), so defer it.
743             */
744            mod_timer(&buf->timer, jiffies + 1);
745    }
746
747    old = buf->data;
748    new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
749    new = buf->start + new_subbuf * buf->chan->subbuf_size;
750    buf->offset = 0;
751    if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
752        buf->offset = buf->chan->subbuf_size + 1;
753        return 0;
754    }
755    buf->data = new;
756    buf->padding[new_subbuf] = 0;
757
758    if (unlikely(length + buf->offset > buf->chan->subbuf_size))
759        goto toobig;
760
761    return length;
762
763toobig:
764    buf->chan->last_toobig = length;
765    return 0;
766}
767EXPORT_SYMBOL_GPL(relay_switch_subbuf);
768
769/**
770 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
771 * @chan: the channel
772 * @cpu: the cpu associated with the channel buffer to update
773 * @subbufs_consumed: number of sub-buffers to add to current buf's count
774 *
775 * Adds to the channel buffer's consumed sub-buffer count.
776 * subbufs_consumed should be the number of sub-buffers newly consumed,
777 * not the total consumed.
778 *
779 * NOTE. Kernel clients don't need to call this function if the channel
780 * mode is 'overwrite'.
781 */
782void relay_subbufs_consumed(struct rchan *chan,
783                unsigned int cpu,
784                size_t subbufs_consumed)
785{
786    struct rchan_buf *buf;
787
788    if (!chan)
789        return;
790
791    if (cpu >= NR_CPUS || !chan->buf[cpu] ||
792                    subbufs_consumed > chan->n_subbufs)
793        return;
794
795    buf = chan->buf[cpu];
796    if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
797        buf->subbufs_consumed = buf->subbufs_produced;
798    else
799        buf->subbufs_consumed += subbufs_consumed;
800}
801EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
802
803/**
804 * relay_close - close the channel
805 * @chan: the channel
806 *
807 * Closes all channel buffers and frees the channel.
808 */
809void relay_close(struct rchan *chan)
810{
811    unsigned int i;
812
813    if (!chan)
814        return;
815
816    mutex_lock(&relay_channels_mutex);
817    if (chan->is_global && chan->buf[0])
818        relay_close_buf(chan->buf[0]);
819    else
820        for_each_possible_cpu(i)
821            if (chan->buf[i])
822                relay_close_buf(chan->buf[i]);
823
824    if (chan->last_toobig)
825        printk(KERN_WARNING "relay: one or more items not logged "
826               "[item size (%Zd) > sub-buffer size (%Zd)]\n",
827               chan->last_toobig, chan->subbuf_size);
828
829    list_del(&chan->list);
830    kref_put(&chan->kref, relay_destroy_channel);
831    mutex_unlock(&relay_channels_mutex);
832}
833EXPORT_SYMBOL_GPL(relay_close);
834
835/**
836 * relay_flush - close the channel
837 * @chan: the channel
838 *
839 * Flushes all channel buffers, i.e. forces buffer switch.
840 */
841void relay_flush(struct rchan *chan)
842{
843    unsigned int i;
844
845    if (!chan)
846        return;
847
848    if (chan->is_global && chan->buf[0]) {
849        relay_switch_subbuf(chan->buf[0], 0);
850        return;
851    }
852
853    mutex_lock(&relay_channels_mutex);
854    for_each_possible_cpu(i)
855        if (chan->buf[i])
856            relay_switch_subbuf(chan->buf[i], 0);
857    mutex_unlock(&relay_channels_mutex);
858}
859EXPORT_SYMBOL_GPL(relay_flush);
860
861/**
862 * relay_file_open - open file op for relay files
863 * @inode: the inode
864 * @filp: the file
865 *
866 * Increments the channel buffer refcount.
867 */
868static int relay_file_open(struct inode *inode, struct file *filp)
869{
870    struct rchan_buf *buf = inode->i_private;
871    kref_get(&buf->kref);
872    filp->private_data = buf;
873
874    return nonseekable_open(inode, filp);
875}
876
877/**
878 * relay_file_mmap - mmap file op for relay files
879 * @filp: the file
880 * @vma: the vma describing what to map
881 *
882 * Calls upon relay_mmap_buf() to map the file into user space.
883 */
884static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
885{
886    struct rchan_buf *buf = filp->private_data;
887    return relay_mmap_buf(buf, vma);
888}
889
890/**
891 * relay_file_poll - poll file op for relay files
892 * @filp: the file
893 * @wait: poll table
894 *
895 * Poll implemention.
896 */
897static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
898{
899    unsigned int mask = 0;
900    struct rchan_buf *buf = filp->private_data;
901
902    if (buf->finalized)
903        return POLLERR;
904
905    if (filp->f_mode & FMODE_READ) {
906        poll_wait(filp, &buf->read_wait, wait);
907        if (!relay_buf_empty(buf))
908            mask |= POLLIN | POLLRDNORM;
909    }
910
911    return mask;
912}
913
914/**
915 * relay_file_release - release file op for relay files
916 * @inode: the inode
917 * @filp: the file
918 *
919 * Decrements the channel refcount, as the filesystem is
920 * no longer using it.
921 */
922static int relay_file_release(struct inode *inode, struct file *filp)
923{
924    struct rchan_buf *buf = filp->private_data;
925    kref_put(&buf->kref, relay_remove_buf);
926
927    return 0;
928}
929
930/*
931 * relay_file_read_consume - update the consumed count for the buffer
932 */
933static void relay_file_read_consume(struct rchan_buf *buf,
934                    size_t read_pos,
935                    size_t bytes_consumed)
936{
937    size_t subbuf_size = buf->chan->subbuf_size;
938    size_t n_subbufs = buf->chan->n_subbufs;
939    size_t read_subbuf;
940
941    if (buf->subbufs_produced == buf->subbufs_consumed &&
942        buf->offset == buf->bytes_consumed)
943        return;
944
945    if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
946        relay_subbufs_consumed(buf->chan, buf->cpu, 1);
947        buf->bytes_consumed = 0;
948    }
949
950    buf->bytes_consumed += bytes_consumed;
951    if (!read_pos)
952        read_subbuf = buf->subbufs_consumed % n_subbufs;
953    else
954        read_subbuf = read_pos / buf->chan->subbuf_size;
955    if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
956        if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
957            (buf->offset == subbuf_size))
958            return;
959        relay_subbufs_consumed(buf->chan, buf->cpu, 1);
960        buf->bytes_consumed = 0;
961    }
962}
963
964/*
965 * relay_file_read_avail - boolean, are there unconsumed bytes available?
966 */
967static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
968{
969    size_t subbuf_size = buf->chan->subbuf_size;
970    size_t n_subbufs = buf->chan->n_subbufs;
971    size_t produced = buf->subbufs_produced;
972    size_t consumed = buf->subbufs_consumed;
973
974    relay_file_read_consume(buf, read_pos, 0);
975
976    consumed = buf->subbufs_consumed;
977
978    if (unlikely(buf->offset > subbuf_size)) {
979        if (produced == consumed)
980            return 0;
981        return 1;
982    }
983
984    if (unlikely(produced - consumed >= n_subbufs)) {
985        consumed = produced - n_subbufs + 1;
986        buf->subbufs_consumed = consumed;
987        buf->bytes_consumed = 0;
988    }
989
990    produced = (produced % n_subbufs) * subbuf_size + buf->offset;
991    consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
992
993    if (consumed > produced)
994        produced += n_subbufs * subbuf_size;
995
996    if (consumed == produced) {
997        if (buf->offset == subbuf_size &&
998            buf->subbufs_produced > buf->subbufs_consumed)
999            return 1;
1000        return 0;
1001    }
1002
1003    return 1;
1004}
1005
1006/**
1007 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1008 * @read_pos: file read position
1009 * @buf: relay channel buffer
1010 */
1011static size_t relay_file_read_subbuf_avail(size_t read_pos,
1012                       struct rchan_buf *buf)
1013{
1014    size_t padding, avail = 0;
1015    size_t read_subbuf, read_offset, write_subbuf, write_offset;
1016    size_t subbuf_size = buf->chan->subbuf_size;
1017
1018    write_subbuf = (buf->data - buf->start) / subbuf_size;
1019    write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1020    read_subbuf = read_pos / subbuf_size;
1021    read_offset = read_pos % subbuf_size;
1022    padding = buf->padding[read_subbuf];
1023
1024    if (read_subbuf == write_subbuf) {
1025        if (read_offset + padding < write_offset)
1026            avail = write_offset - (read_offset + padding);
1027    } else
1028        avail = (subbuf_size - padding) - read_offset;
1029
1030    return avail;
1031}
1032
1033/**
1034 * relay_file_read_start_pos - find the first available byte to read
1035 * @read_pos: file read position
1036 * @buf: relay channel buffer
1037 *
1038 * If the @read_pos is in the middle of padding, return the
1039 * position of the first actually available byte, otherwise
1040 * return the original value.
1041 */
1042static size_t relay_file_read_start_pos(size_t read_pos,
1043                    struct rchan_buf *buf)
1044{
1045    size_t read_subbuf, padding, padding_start, padding_end;
1046    size_t subbuf_size = buf->chan->subbuf_size;
1047    size_t n_subbufs = buf->chan->n_subbufs;
1048    size_t consumed = buf->subbufs_consumed % n_subbufs;
1049
1050    if (!read_pos)
1051        read_pos = consumed * subbuf_size + buf->bytes_consumed;
1052    read_subbuf = read_pos / subbuf_size;
1053    padding = buf->padding[read_subbuf];
1054    padding_start = (read_subbuf + 1) * subbuf_size - padding;
1055    padding_end = (read_subbuf + 1) * subbuf_size;
1056    if (read_pos >= padding_start && read_pos < padding_end) {
1057        read_subbuf = (read_subbuf + 1) % n_subbufs;
1058        read_pos = read_subbuf * subbuf_size;
1059    }
1060
1061    return read_pos;
1062}
1063
1064/**
1065 * relay_file_read_end_pos - return the new read position
1066 * @read_pos: file read position
1067 * @buf: relay channel buffer
1068 * @count: number of bytes to be read
1069 */
1070static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1071                      size_t read_pos,
1072                      size_t count)
1073{
1074    size_t read_subbuf, padding, end_pos;
1075    size_t subbuf_size = buf->chan->subbuf_size;
1076    size_t n_subbufs = buf->chan->n_subbufs;
1077
1078    read_subbuf = read_pos / subbuf_size;
1079    padding = buf->padding[read_subbuf];
1080    if (read_pos % subbuf_size + count + padding == subbuf_size)
1081        end_pos = (read_subbuf + 1) * subbuf_size;
1082    else
1083        end_pos = read_pos + count;
1084    if (end_pos >= subbuf_size * n_subbufs)
1085        end_pos = 0;
1086
1087    return end_pos;
1088}
1089
1090/*
1091 * subbuf_read_actor - read up to one subbuf's worth of data
1092 */
1093static int subbuf_read_actor(size_t read_start,
1094                 struct rchan_buf *buf,
1095                 size_t avail,
1096                 read_descriptor_t *desc,
1097                 read_actor_t actor)
1098{
1099    void *from;
1100    int ret = 0;
1101
1102    from = buf->start + read_start;
1103    ret = avail;
1104    if (copy_to_user(desc->arg.buf, from, avail)) {
1105        desc->error = -EFAULT;
1106        ret = 0;
1107    }
1108    desc->arg.data += ret;
1109    desc->written += ret;
1110    desc->count -= ret;
1111
1112    return ret;
1113}
1114
1115typedef int (*subbuf_actor_t) (size_t read_start,
1116                   struct rchan_buf *buf,
1117                   size_t avail,
1118                   read_descriptor_t *desc,
1119                   read_actor_t actor);
1120
1121/*
1122 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1123 */
1124static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1125                    subbuf_actor_t subbuf_actor,
1126                    read_actor_t actor,
1127                    read_descriptor_t *desc)
1128{
1129    struct rchan_buf *buf = filp->private_data;
1130    size_t read_start, avail;
1131    int ret;
1132
1133    if (!desc->count)
1134        return 0;
1135
1136    mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
1137    do {
1138        if (!relay_file_read_avail(buf, *ppos))
1139            break;
1140
1141        read_start = relay_file_read_start_pos(*ppos, buf);
1142        avail = relay_file_read_subbuf_avail(read_start, buf);
1143        if (!avail)
1144            break;
1145
1146        avail = min(desc->count, avail);
1147        ret = subbuf_actor(read_start, buf, avail, desc, actor);
1148        if (desc->error < 0)
1149            break;
1150
1151        if (ret) {
1152            relay_file_read_consume(buf, read_start, ret);
1153            *ppos = relay_file_read_end_pos(buf, read_start, ret);
1154        }
1155    } while (desc->count && ret);
1156    mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1157
1158    return desc->written;
1159}
1160
1161static ssize_t relay_file_read(struct file *filp,
1162                   char __user *buffer,
1163                   size_t count,
1164                   loff_t *ppos)
1165{
1166    read_descriptor_t desc;
1167    desc.written = 0;
1168    desc.count = count;
1169    desc.arg.buf = buffer;
1170    desc.error = 0;
1171    return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1172                       NULL, &desc);
1173}
1174
1175static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1176{
1177    rbuf->bytes_consumed += bytes_consumed;
1178
1179    if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1180        relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1181        rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1182    }
1183}
1184
1185static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1186                   struct pipe_buffer *buf)
1187{
1188    struct rchan_buf *rbuf;
1189
1190    rbuf = (struct rchan_buf *)page_private(buf->page);
1191    relay_consume_bytes(rbuf, buf->private);
1192}
1193
1194static const struct pipe_buf_operations relay_pipe_buf_ops = {
1195    .can_merge = 0,
1196    .map = generic_pipe_buf_map,
1197    .unmap = generic_pipe_buf_unmap,
1198    .confirm = generic_pipe_buf_confirm,
1199    .release = relay_pipe_buf_release,
1200    .steal = generic_pipe_buf_steal,
1201    .get = generic_pipe_buf_get,
1202};
1203
1204static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1205{
1206}
1207
1208/*
1209 * subbuf_splice_actor - splice up to one subbuf's worth of data
1210 */
1211static ssize_t subbuf_splice_actor(struct file *in,
1212                   loff_t *ppos,
1213                   struct pipe_inode_info *pipe,
1214                   size_t len,
1215                   unsigned int flags,
1216                   int *nonpad_ret)
1217{
1218    unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1219    struct rchan_buf *rbuf = in->private_data;
1220    unsigned int subbuf_size = rbuf->chan->subbuf_size;
1221    uint64_t pos = (uint64_t) *ppos;
1222    uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1223    size_t read_start = (size_t) do_div(pos, alloc_size);
1224    size_t read_subbuf = read_start / subbuf_size;
1225    size_t padding = rbuf->padding[read_subbuf];
1226    size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1227    struct page *pages[PIPE_DEF_BUFFERS];
1228    struct partial_page partial[PIPE_DEF_BUFFERS];
1229    struct splice_pipe_desc spd = {
1230        .pages = pages,
1231        .nr_pages = 0,
1232        .partial = partial,
1233        .flags = flags,
1234        .ops = &relay_pipe_buf_ops,
1235        .spd_release = relay_page_release,
1236    };
1237    ssize_t ret;
1238
1239    if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1240        return 0;
1241    if (splice_grow_spd(pipe, &spd))
1242        return -ENOMEM;
1243
1244    /*
1245     * Adjust read len, if longer than what is available
1246     */
1247    if (len > (subbuf_size - read_start % subbuf_size))
1248        len = subbuf_size - read_start % subbuf_size;
1249
1250    subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1251    pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1252    poff = read_start & ~PAGE_MASK;
1253    nr_pages = min_t(unsigned int, subbuf_pages, pipe->buffers);
1254
1255    for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1256        unsigned int this_len, this_end, private;
1257        unsigned int cur_pos = read_start + total_len;
1258
1259        if (!len)
1260            break;
1261
1262        this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1263        private = this_len;
1264
1265        spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1266        spd.partial[spd.nr_pages].offset = poff;
1267
1268        this_end = cur_pos + this_len;
1269        if (this_end >= nonpad_end) {
1270            this_len = nonpad_end - cur_pos;
1271            private = this_len + padding;
1272        }
1273        spd.partial[spd.nr_pages].len = this_len;
1274        spd.partial[spd.nr_pages].private = private;
1275
1276        len -= this_len;
1277        total_len += this_len;
1278        poff = 0;
1279        pidx = (pidx + 1) % subbuf_pages;
1280
1281        if (this_end >= nonpad_end) {
1282            spd.nr_pages++;
1283            break;
1284        }
1285    }
1286
1287    ret = 0;
1288    if (!spd.nr_pages)
1289        goto out;
1290
1291    ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1292    if (ret < 0 || ret < total_len)
1293        goto out;
1294
1295        if (read_start + ret == nonpad_end)
1296                ret += padding;
1297
1298out:
1299    splice_shrink_spd(pipe, &spd);
1300        return ret;
1301}
1302
1303static ssize_t relay_file_splice_read(struct file *in,
1304                      loff_t *ppos,
1305                      struct pipe_inode_info *pipe,
1306                      size_t len,
1307                      unsigned int flags)
1308{
1309    ssize_t spliced;
1310    int ret;
1311    int nonpad_ret = 0;
1312
1313    ret = 0;
1314    spliced = 0;
1315
1316    while (len && !spliced) {
1317        ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1318        if (ret < 0)
1319            break;
1320        else if (!ret) {
1321            if (flags & SPLICE_F_NONBLOCK)
1322                ret = -EAGAIN;
1323            break;
1324        }
1325
1326        *ppos += ret;
1327        if (ret > len)
1328            len = 0;
1329        else
1330            len -= ret;
1331        spliced += nonpad_ret;
1332        nonpad_ret = 0;
1333    }
1334
1335    if (spliced)
1336        return spliced;
1337
1338    return ret;
1339}
1340
1341const struct file_operations relay_file_operations = {
1342    .open = relay_file_open,
1343    .poll = relay_file_poll,
1344    .mmap = relay_file_mmap,
1345    .read = relay_file_read,
1346    .llseek = no_llseek,
1347    .release = relay_file_release,
1348    .splice_read = relay_file_splice_read,
1349};
1350EXPORT_SYMBOL_GPL(relay_file_operations);
1351
1352static __init int relay_init(void)
1353{
1354
1355    hotcpu_notifier(relay_hotcpu_callback, 0);
1356    return 0;
1357}
1358
1359early_initcall(relay_init);
1360

Archive Download this file



interactive