Root/kernel/rtmutex.c

1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 * Copyright (C) 2006 Esben Nielsen
10 *
11 * See Documentation/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/timer.h>
17
18#include "rtmutex_common.h"
19
20/*
21 * lock->owner state tracking:
22 *
23 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
24 * are used to keep track of the "owner is pending" and "lock has
25 * waiters" state.
26 *
27 * owner bit1 bit0
28 * NULL 0 0 lock is free (fast acquire possible)
29 * NULL 0 1 invalid state
30 * NULL 1 0 Transitional State*
31 * NULL 1 1 invalid state
32 * taskpointer 0 0 lock is held (fast release possible)
33 * taskpointer 0 1 task is pending owner
34 * taskpointer 1 0 lock is held and has waiters
35 * taskpointer 1 1 task is pending owner and lock has more waiters
36 *
37 * Pending ownership is assigned to the top (highest priority)
38 * waiter of the lock, when the lock is released. The thread is woken
39 * up and can now take the lock. Until the lock is taken (bit 0
40 * cleared) a competing higher priority thread can steal the lock
41 * which puts the woken up thread back on the waiters list.
42 *
43 * The fast atomic compare exchange based acquire and release is only
44 * possible when bit 0 and 1 of lock->owner are 0.
45 *
46 * (*) There's a small time where the owner can be NULL and the
47 * "lock has waiters" bit is set. This can happen when grabbing the lock.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
49 * bit before looking at the lock, hence the reason this is a transitional
50 * state.
51 */
52
53static void
54rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
55           unsigned long mask)
56{
57    unsigned long val = (unsigned long)owner | mask;
58
59    if (rt_mutex_has_waiters(lock))
60        val |= RT_MUTEX_HAS_WAITERS;
61
62    lock->owner = (struct task_struct *)val;
63}
64
65static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
66{
67    lock->owner = (struct task_struct *)
68            ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
69}
70
71static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
72{
73    if (!rt_mutex_has_waiters(lock))
74        clear_rt_mutex_waiters(lock);
75}
76
77/*
78 * We can speed up the acquire/release, if the architecture
79 * supports cmpxchg and if there's no debugging state to be set up
80 */
81#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
82# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c)
83static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
84{
85    unsigned long owner, *p = (unsigned long *) &lock->owner;
86
87    do {
88        owner = *p;
89    } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
90}
91#else
92# define rt_mutex_cmpxchg(l,c,n) (0)
93static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
94{
95    lock->owner = (struct task_struct *)
96            ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
97}
98#endif
99
100/*
101 * Calculate task priority from the waiter list priority
102 *
103 * Return task->normal_prio when the waiter list is empty or when
104 * the waiter is not allowed to do priority boosting
105 */
106int rt_mutex_getprio(struct task_struct *task)
107{
108    if (likely(!task_has_pi_waiters(task)))
109        return task->normal_prio;
110
111    return min(task_top_pi_waiter(task)->pi_list_entry.prio,
112           task->normal_prio);
113}
114
115/*
116 * Adjust the priority of a task, after its pi_waiters got modified.
117 *
118 * This can be both boosting and unboosting. task->pi_lock must be held.
119 */
120static void __rt_mutex_adjust_prio(struct task_struct *task)
121{
122    int prio = rt_mutex_getprio(task);
123
124    if (task->prio != prio)
125        rt_mutex_setprio(task, prio);
126}
127
128/*
129 * Adjust task priority (undo boosting). Called from the exit path of
130 * rt_mutex_slowunlock() and rt_mutex_slowlock().
131 *
132 * (Note: We do this outside of the protection of lock->wait_lock to
133 * allow the lock to be taken while or before we readjust the priority
134 * of task. We do not use the spin_xx_mutex() variants here as we are
135 * outside of the debug path.)
136 */
137static void rt_mutex_adjust_prio(struct task_struct *task)
138{
139    unsigned long flags;
140
141    raw_spin_lock_irqsave(&task->pi_lock, flags);
142    __rt_mutex_adjust_prio(task);
143    raw_spin_unlock_irqrestore(&task->pi_lock, flags);
144}
145
146/*
147 * Max number of times we'll walk the boosting chain:
148 */
149int max_lock_depth = 1024;
150
151/*
152 * Adjust the priority chain. Also used for deadlock detection.
153 * Decreases task's usage by one - may thus free the task.
154 * Returns 0 or -EDEADLK.
155 */
156static int rt_mutex_adjust_prio_chain(struct task_struct *task,
157                      int deadlock_detect,
158                      struct rt_mutex *orig_lock,
159                      struct rt_mutex_waiter *orig_waiter,
160                      struct task_struct *top_task)
161{
162    struct rt_mutex *lock;
163    struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
164    int detect_deadlock, ret = 0, depth = 0;
165    unsigned long flags;
166
167    detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
168                             deadlock_detect);
169
170    /*
171     * The (de)boosting is a step by step approach with a lot of
172     * pitfalls. We want this to be preemptible and we want hold a
173     * maximum of two locks per step. So we have to check
174     * carefully whether things change under us.
175     */
176 again:
177    if (++depth > max_lock_depth) {
178        static int prev_max;
179
180        /*
181         * Print this only once. If the admin changes the limit,
182         * print a new message when reaching the limit again.
183         */
184        if (prev_max != max_lock_depth) {
185            prev_max = max_lock_depth;
186            printk(KERN_WARNING "Maximum lock depth %d reached "
187                   "task: %s (%d)\n", max_lock_depth,
188                   top_task->comm, task_pid_nr(top_task));
189        }
190        put_task_struct(task);
191
192        return deadlock_detect ? -EDEADLK : 0;
193    }
194 retry:
195    /*
196     * Task can not go away as we did a get_task() before !
197     */
198    raw_spin_lock_irqsave(&task->pi_lock, flags);
199
200    waiter = task->pi_blocked_on;
201    /*
202     * Check whether the end of the boosting chain has been
203     * reached or the state of the chain has changed while we
204     * dropped the locks.
205     */
206    if (!waiter || !waiter->task)
207        goto out_unlock_pi;
208
209    /*
210     * Check the orig_waiter state. After we dropped the locks,
211     * the previous owner of the lock might have released the lock
212     * and made us the pending owner:
213     */
214    if (orig_waiter && !orig_waiter->task)
215        goto out_unlock_pi;
216
217    /*
218     * Drop out, when the task has no waiters. Note,
219     * top_waiter can be NULL, when we are in the deboosting
220     * mode!
221     */
222    if (top_waiter && (!task_has_pi_waiters(task) ||
223               top_waiter != task_top_pi_waiter(task)))
224        goto out_unlock_pi;
225
226    /*
227     * When deadlock detection is off then we check, if further
228     * priority adjustment is necessary.
229     */
230    if (!detect_deadlock && waiter->list_entry.prio == task->prio)
231        goto out_unlock_pi;
232
233    lock = waiter->lock;
234    if (!raw_spin_trylock(&lock->wait_lock)) {
235        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
236        cpu_relax();
237        goto retry;
238    }
239
240    /* Deadlock detection */
241    if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
242        debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
243        raw_spin_unlock(&lock->wait_lock);
244        ret = deadlock_detect ? -EDEADLK : 0;
245        goto out_unlock_pi;
246    }
247
248    top_waiter = rt_mutex_top_waiter(lock);
249
250    /* Requeue the waiter */
251    plist_del(&waiter->list_entry, &lock->wait_list);
252    waiter->list_entry.prio = task->prio;
253    plist_add(&waiter->list_entry, &lock->wait_list);
254
255    /* Release the task */
256    raw_spin_unlock_irqrestore(&task->pi_lock, flags);
257    put_task_struct(task);
258
259    /* Grab the next task */
260    task = rt_mutex_owner(lock);
261    get_task_struct(task);
262    raw_spin_lock_irqsave(&task->pi_lock, flags);
263
264    if (waiter == rt_mutex_top_waiter(lock)) {
265        /* Boost the owner */
266        plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
267        waiter->pi_list_entry.prio = waiter->list_entry.prio;
268        plist_add(&waiter->pi_list_entry, &task->pi_waiters);
269        __rt_mutex_adjust_prio(task);
270
271    } else if (top_waiter == waiter) {
272        /* Deboost the owner */
273        plist_del(&waiter->pi_list_entry, &task->pi_waiters);
274        waiter = rt_mutex_top_waiter(lock);
275        waiter->pi_list_entry.prio = waiter->list_entry.prio;
276        plist_add(&waiter->pi_list_entry, &task->pi_waiters);
277        __rt_mutex_adjust_prio(task);
278    }
279
280    raw_spin_unlock_irqrestore(&task->pi_lock, flags);
281
282    top_waiter = rt_mutex_top_waiter(lock);
283    raw_spin_unlock(&lock->wait_lock);
284
285    if (!detect_deadlock && waiter != top_waiter)
286        goto out_put_task;
287
288    goto again;
289
290 out_unlock_pi:
291    raw_spin_unlock_irqrestore(&task->pi_lock, flags);
292 out_put_task:
293    put_task_struct(task);
294
295    return ret;
296}
297
298/*
299 * Optimization: check if we can steal the lock from the
300 * assigned pending owner [which might not have taken the
301 * lock yet]:
302 */
303static inline int try_to_steal_lock(struct rt_mutex *lock,
304                    struct task_struct *task)
305{
306    struct task_struct *pendowner = rt_mutex_owner(lock);
307    struct rt_mutex_waiter *next;
308    unsigned long flags;
309
310    if (!rt_mutex_owner_pending(lock))
311        return 0;
312
313    if (pendowner == task)
314        return 1;
315
316    raw_spin_lock_irqsave(&pendowner->pi_lock, flags);
317    if (task->prio >= pendowner->prio) {
318        raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
319        return 0;
320    }
321
322    /*
323     * Check if a waiter is enqueued on the pending owners
324     * pi_waiters list. Remove it and readjust pending owners
325     * priority.
326     */
327    if (likely(!rt_mutex_has_waiters(lock))) {
328        raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
329        return 1;
330    }
331
332    /* No chain handling, pending owner is not blocked on anything: */
333    next = rt_mutex_top_waiter(lock);
334    plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
335    __rt_mutex_adjust_prio(pendowner);
336    raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
337
338    /*
339     * We are going to steal the lock and a waiter was
340     * enqueued on the pending owners pi_waiters queue. So
341     * we have to enqueue this waiter into
342     * task->pi_waiters list. This covers the case,
343     * where task is boosted because it holds another
344     * lock and gets unboosted because the booster is
345     * interrupted, so we would delay a waiter with higher
346     * priority as task->normal_prio.
347     *
348     * Note: in the rare case of a SCHED_OTHER task changing
349     * its priority and thus stealing the lock, next->task
350     * might be task:
351     */
352    if (likely(next->task != task)) {
353        raw_spin_lock_irqsave(&task->pi_lock, flags);
354        plist_add(&next->pi_list_entry, &task->pi_waiters);
355        __rt_mutex_adjust_prio(task);
356        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
357    }
358    return 1;
359}
360
361/*
362 * Try to take an rt-mutex
363 *
364 * This fails
365 * - when the lock has a real owner
366 * - when a different pending owner exists and has higher priority than current
367 *
368 * Must be called with lock->wait_lock held.
369 */
370static int try_to_take_rt_mutex(struct rt_mutex *lock)
371{
372    /*
373     * We have to be careful here if the atomic speedups are
374     * enabled, such that, when
375     * - no other waiter is on the lock
376     * - the lock has been released since we did the cmpxchg
377     * the lock can be released or taken while we are doing the
378     * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
379     *
380     * The atomic acquire/release aware variant of
381     * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
382     * the WAITERS bit, the atomic release / acquire can not
383     * happen anymore and lock->wait_lock protects us from the
384     * non-atomic case.
385     *
386     * Note, that this might set lock->owner =
387     * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
388     * any more. This is fixed up when we take the ownership.
389     * This is the transitional state explained at the top of this file.
390     */
391    mark_rt_mutex_waiters(lock);
392
393    if (rt_mutex_owner(lock) && !try_to_steal_lock(lock, current))
394        return 0;
395
396    /* We got the lock. */
397    debug_rt_mutex_lock(lock);
398
399    rt_mutex_set_owner(lock, current, 0);
400
401    rt_mutex_deadlock_account_lock(lock, current);
402
403    return 1;
404}
405
406/*
407 * Task blocks on lock.
408 *
409 * Prepare waiter and propagate pi chain
410 *
411 * This must be called with lock->wait_lock held.
412 */
413static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
414                   struct rt_mutex_waiter *waiter,
415                   struct task_struct *task,
416                   int detect_deadlock)
417{
418    struct task_struct *owner = rt_mutex_owner(lock);
419    struct rt_mutex_waiter *top_waiter = waiter;
420    unsigned long flags;
421    int chain_walk = 0, res;
422
423    raw_spin_lock_irqsave(&task->pi_lock, flags);
424    __rt_mutex_adjust_prio(task);
425    waiter->task = task;
426    waiter->lock = lock;
427    plist_node_init(&waiter->list_entry, task->prio);
428    plist_node_init(&waiter->pi_list_entry, task->prio);
429
430    /* Get the top priority waiter on the lock */
431    if (rt_mutex_has_waiters(lock))
432        top_waiter = rt_mutex_top_waiter(lock);
433    plist_add(&waiter->list_entry, &lock->wait_list);
434
435    task->pi_blocked_on = waiter;
436
437    raw_spin_unlock_irqrestore(&task->pi_lock, flags);
438
439    if (waiter == rt_mutex_top_waiter(lock)) {
440        raw_spin_lock_irqsave(&owner->pi_lock, flags);
441        plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
442        plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
443
444        __rt_mutex_adjust_prio(owner);
445        if (owner->pi_blocked_on)
446            chain_walk = 1;
447        raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
448    }
449    else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
450        chain_walk = 1;
451
452    if (!chain_walk)
453        return 0;
454
455    /*
456     * The owner can't disappear while holding a lock,
457     * so the owner struct is protected by wait_lock.
458     * Gets dropped in rt_mutex_adjust_prio_chain()!
459     */
460    get_task_struct(owner);
461
462    raw_spin_unlock(&lock->wait_lock);
463
464    res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
465                     task);
466
467    raw_spin_lock(&lock->wait_lock);
468
469    return res;
470}
471
472/*
473 * Wake up the next waiter on the lock.
474 *
475 * Remove the top waiter from the current tasks waiter list and from
476 * the lock waiter list. Set it as pending owner. Then wake it up.
477 *
478 * Called with lock->wait_lock held.
479 */
480static void wakeup_next_waiter(struct rt_mutex *lock)
481{
482    struct rt_mutex_waiter *waiter;
483    struct task_struct *pendowner;
484    unsigned long flags;
485
486    raw_spin_lock_irqsave(&current->pi_lock, flags);
487
488    waiter = rt_mutex_top_waiter(lock);
489    plist_del(&waiter->list_entry, &lock->wait_list);
490
491    /*
492     * Remove it from current->pi_waiters. We do not adjust a
493     * possible priority boost right now. We execute wakeup in the
494     * boosted mode and go back to normal after releasing
495     * lock->wait_lock.
496     */
497    plist_del(&waiter->pi_list_entry, &current->pi_waiters);
498    pendowner = waiter->task;
499    waiter->task = NULL;
500
501    rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
502
503    raw_spin_unlock_irqrestore(&current->pi_lock, flags);
504
505    /*
506     * Clear the pi_blocked_on variable and enqueue a possible
507     * waiter into the pi_waiters list of the pending owner. This
508     * prevents that in case the pending owner gets unboosted a
509     * waiter with higher priority than pending-owner->normal_prio
510     * is blocked on the unboosted (pending) owner.
511     */
512    raw_spin_lock_irqsave(&pendowner->pi_lock, flags);
513
514    WARN_ON(!pendowner->pi_blocked_on);
515    WARN_ON(pendowner->pi_blocked_on != waiter);
516    WARN_ON(pendowner->pi_blocked_on->lock != lock);
517
518    pendowner->pi_blocked_on = NULL;
519
520    if (rt_mutex_has_waiters(lock)) {
521        struct rt_mutex_waiter *next;
522
523        next = rt_mutex_top_waiter(lock);
524        plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
525    }
526    raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
527
528    wake_up_process(pendowner);
529}
530
531/*
532 * Remove a waiter from a lock
533 *
534 * Must be called with lock->wait_lock held
535 */
536static void remove_waiter(struct rt_mutex *lock,
537              struct rt_mutex_waiter *waiter)
538{
539    int first = (waiter == rt_mutex_top_waiter(lock));
540    struct task_struct *owner = rt_mutex_owner(lock);
541    unsigned long flags;
542    int chain_walk = 0;
543
544    raw_spin_lock_irqsave(&current->pi_lock, flags);
545    plist_del(&waiter->list_entry, &lock->wait_list);
546    waiter->task = NULL;
547    current->pi_blocked_on = NULL;
548    raw_spin_unlock_irqrestore(&current->pi_lock, flags);
549
550    if (first && owner != current) {
551
552        raw_spin_lock_irqsave(&owner->pi_lock, flags);
553
554        plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
555
556        if (rt_mutex_has_waiters(lock)) {
557            struct rt_mutex_waiter *next;
558
559            next = rt_mutex_top_waiter(lock);
560            plist_add(&next->pi_list_entry, &owner->pi_waiters);
561        }
562        __rt_mutex_adjust_prio(owner);
563
564        if (owner->pi_blocked_on)
565            chain_walk = 1;
566
567        raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
568    }
569
570    WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
571
572    if (!chain_walk)
573        return;
574
575    /* gets dropped in rt_mutex_adjust_prio_chain()! */
576    get_task_struct(owner);
577
578    raw_spin_unlock(&lock->wait_lock);
579
580    rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
581
582    raw_spin_lock(&lock->wait_lock);
583}
584
585/*
586 * Recheck the pi chain, in case we got a priority setting
587 *
588 * Called from sched_setscheduler
589 */
590void rt_mutex_adjust_pi(struct task_struct *task)
591{
592    struct rt_mutex_waiter *waiter;
593    unsigned long flags;
594
595    raw_spin_lock_irqsave(&task->pi_lock, flags);
596
597    waiter = task->pi_blocked_on;
598    if (!waiter || waiter->list_entry.prio == task->prio) {
599        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
600        return;
601    }
602
603    raw_spin_unlock_irqrestore(&task->pi_lock, flags);
604
605    /* gets dropped in rt_mutex_adjust_prio_chain()! */
606    get_task_struct(task);
607    rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
608}
609
610/**
611 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
612 * @lock: the rt_mutex to take
613 * @state: the state the task should block in (TASK_INTERRUPTIBLE
614 * or TASK_UNINTERRUPTIBLE)
615 * @timeout: the pre-initialized and started timer, or NULL for none
616 * @waiter: the pre-initialized rt_mutex_waiter
617 * @detect_deadlock: passed to task_blocks_on_rt_mutex
618 *
619 * lock->wait_lock must be held by the caller.
620 */
621static int __sched
622__rt_mutex_slowlock(struct rt_mutex *lock, int state,
623            struct hrtimer_sleeper *timeout,
624            struct rt_mutex_waiter *waiter,
625            int detect_deadlock)
626{
627    int ret = 0;
628
629    for (;;) {
630        /* Try to acquire the lock: */
631        if (try_to_take_rt_mutex(lock))
632            break;
633
634        /*
635         * TASK_INTERRUPTIBLE checks for signals and
636         * timeout. Ignored otherwise.
637         */
638        if (unlikely(state == TASK_INTERRUPTIBLE)) {
639            /* Signal pending? */
640            if (signal_pending(current))
641                ret = -EINTR;
642            if (timeout && !timeout->task)
643                ret = -ETIMEDOUT;
644            if (ret)
645                break;
646        }
647
648        /*
649         * waiter->task is NULL the first time we come here and
650         * when we have been woken up by the previous owner
651         * but the lock got stolen by a higher prio task.
652         */
653        if (!waiter->task) {
654            ret = task_blocks_on_rt_mutex(lock, waiter, current,
655                              detect_deadlock);
656            /*
657             * If we got woken up by the owner then start loop
658             * all over without going into schedule to try
659             * to get the lock now:
660             */
661            if (unlikely(!waiter->task)) {
662                /*
663                 * Reset the return value. We might
664                 * have returned with -EDEADLK and the
665                 * owner released the lock while we
666                 * were walking the pi chain.
667                 */
668                ret = 0;
669                continue;
670            }
671            if (unlikely(ret))
672                break;
673        }
674
675        raw_spin_unlock(&lock->wait_lock);
676
677        debug_rt_mutex_print_deadlock(waiter);
678
679        if (waiter->task)
680            schedule_rt_mutex(lock);
681
682        raw_spin_lock(&lock->wait_lock);
683        set_current_state(state);
684    }
685
686    return ret;
687}
688
689/*
690 * Slow path lock function:
691 */
692static int __sched
693rt_mutex_slowlock(struct rt_mutex *lock, int state,
694          struct hrtimer_sleeper *timeout,
695          int detect_deadlock)
696{
697    struct rt_mutex_waiter waiter;
698    int ret = 0;
699
700    debug_rt_mutex_init_waiter(&waiter);
701    waiter.task = NULL;
702
703    raw_spin_lock(&lock->wait_lock);
704
705    /* Try to acquire the lock again: */
706    if (try_to_take_rt_mutex(lock)) {
707        raw_spin_unlock(&lock->wait_lock);
708        return 0;
709    }
710
711    set_current_state(state);
712
713    /* Setup the timer, when timeout != NULL */
714    if (unlikely(timeout)) {
715        hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
716        if (!hrtimer_active(&timeout->timer))
717            timeout->task = NULL;
718    }
719
720    ret = __rt_mutex_slowlock(lock, state, timeout, &waiter,
721                  detect_deadlock);
722
723    set_current_state(TASK_RUNNING);
724
725    if (unlikely(waiter.task))
726        remove_waiter(lock, &waiter);
727
728    /*
729     * try_to_take_rt_mutex() sets the waiter bit
730     * unconditionally. We might have to fix that up.
731     */
732    fixup_rt_mutex_waiters(lock);
733
734    raw_spin_unlock(&lock->wait_lock);
735
736    /* Remove pending timer: */
737    if (unlikely(timeout))
738        hrtimer_cancel(&timeout->timer);
739
740    /*
741     * Readjust priority, when we did not get the lock. We might
742     * have been the pending owner and boosted. Since we did not
743     * take the lock, the PI boost has to go.
744     */
745    if (unlikely(ret))
746        rt_mutex_adjust_prio(current);
747
748    debug_rt_mutex_free_waiter(&waiter);
749
750    return ret;
751}
752
753/*
754 * Slow path try-lock function:
755 */
756static inline int
757rt_mutex_slowtrylock(struct rt_mutex *lock)
758{
759    int ret = 0;
760
761    raw_spin_lock(&lock->wait_lock);
762
763    if (likely(rt_mutex_owner(lock) != current)) {
764
765        ret = try_to_take_rt_mutex(lock);
766        /*
767         * try_to_take_rt_mutex() sets the lock waiters
768         * bit unconditionally. Clean this up.
769         */
770        fixup_rt_mutex_waiters(lock);
771    }
772
773    raw_spin_unlock(&lock->wait_lock);
774
775    return ret;
776}
777
778/*
779 * Slow path to release a rt-mutex:
780 */
781static void __sched
782rt_mutex_slowunlock(struct rt_mutex *lock)
783{
784    raw_spin_lock(&lock->wait_lock);
785
786    debug_rt_mutex_unlock(lock);
787
788    rt_mutex_deadlock_account_unlock(current);
789
790    if (!rt_mutex_has_waiters(lock)) {
791        lock->owner = NULL;
792        raw_spin_unlock(&lock->wait_lock);
793        return;
794    }
795
796    wakeup_next_waiter(lock);
797
798    raw_spin_unlock(&lock->wait_lock);
799
800    /* Undo pi boosting if necessary: */
801    rt_mutex_adjust_prio(current);
802}
803
804/*
805 * debug aware fast / slowpath lock,trylock,unlock
806 *
807 * The atomic acquire/release ops are compiled away, when either the
808 * architecture does not support cmpxchg or when debugging is enabled.
809 */
810static inline int
811rt_mutex_fastlock(struct rt_mutex *lock, int state,
812          int detect_deadlock,
813          int (*slowfn)(struct rt_mutex *lock, int state,
814                struct hrtimer_sleeper *timeout,
815                int detect_deadlock))
816{
817    if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
818        rt_mutex_deadlock_account_lock(lock, current);
819        return 0;
820    } else
821        return slowfn(lock, state, NULL, detect_deadlock);
822}
823
824static inline int
825rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
826            struct hrtimer_sleeper *timeout, int detect_deadlock,
827            int (*slowfn)(struct rt_mutex *lock, int state,
828                      struct hrtimer_sleeper *timeout,
829                      int detect_deadlock))
830{
831    if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
832        rt_mutex_deadlock_account_lock(lock, current);
833        return 0;
834    } else
835        return slowfn(lock, state, timeout, detect_deadlock);
836}
837
838static inline int
839rt_mutex_fasttrylock(struct rt_mutex *lock,
840             int (*slowfn)(struct rt_mutex *lock))
841{
842    if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
843        rt_mutex_deadlock_account_lock(lock, current);
844        return 1;
845    }
846    return slowfn(lock);
847}
848
849static inline void
850rt_mutex_fastunlock(struct rt_mutex *lock,
851            void (*slowfn)(struct rt_mutex *lock))
852{
853    if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
854        rt_mutex_deadlock_account_unlock(current);
855    else
856        slowfn(lock);
857}
858
859/**
860 * rt_mutex_lock - lock a rt_mutex
861 *
862 * @lock: the rt_mutex to be locked
863 */
864void __sched rt_mutex_lock(struct rt_mutex *lock)
865{
866    might_sleep();
867
868    rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
869}
870EXPORT_SYMBOL_GPL(rt_mutex_lock);
871
872/**
873 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
874 *
875 * @lock: the rt_mutex to be locked
876 * @detect_deadlock: deadlock detection on/off
877 *
878 * Returns:
879 * 0 on success
880 * -EINTR when interrupted by a signal
881 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
882 */
883int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
884                         int detect_deadlock)
885{
886    might_sleep();
887
888    return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
889                 detect_deadlock, rt_mutex_slowlock);
890}
891EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
892
893/**
894 * rt_mutex_timed_lock - lock a rt_mutex interruptible
895 * the timeout structure is provided
896 * by the caller
897 *
898 * @lock: the rt_mutex to be locked
899 * @timeout: timeout structure or NULL (no timeout)
900 * @detect_deadlock: deadlock detection on/off
901 *
902 * Returns:
903 * 0 on success
904 * -EINTR when interrupted by a signal
905 * -ETIMEDOUT when the timeout expired
906 * -EDEADLK when the lock would deadlock (when deadlock detection is on)
907 */
908int
909rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
910            int detect_deadlock)
911{
912    might_sleep();
913
914    return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
915                       detect_deadlock, rt_mutex_slowlock);
916}
917EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
918
919/**
920 * rt_mutex_trylock - try to lock a rt_mutex
921 *
922 * @lock: the rt_mutex to be locked
923 *
924 * Returns 1 on success and 0 on contention
925 */
926int __sched rt_mutex_trylock(struct rt_mutex *lock)
927{
928    return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
929}
930EXPORT_SYMBOL_GPL(rt_mutex_trylock);
931
932/**
933 * rt_mutex_unlock - unlock a rt_mutex
934 *
935 * @lock: the rt_mutex to be unlocked
936 */
937void __sched rt_mutex_unlock(struct rt_mutex *lock)
938{
939    rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
940}
941EXPORT_SYMBOL_GPL(rt_mutex_unlock);
942
943/**
944 * rt_mutex_destroy - mark a mutex unusable
945 * @lock: the mutex to be destroyed
946 *
947 * This function marks the mutex uninitialized, and any subsequent
948 * use of the mutex is forbidden. The mutex must not be locked when
949 * this function is called.
950 */
951void rt_mutex_destroy(struct rt_mutex *lock)
952{
953    WARN_ON(rt_mutex_is_locked(lock));
954#ifdef CONFIG_DEBUG_RT_MUTEXES
955    lock->magic = NULL;
956#endif
957}
958
959EXPORT_SYMBOL_GPL(rt_mutex_destroy);
960
961/**
962 * __rt_mutex_init - initialize the rt lock
963 *
964 * @lock: the rt lock to be initialized
965 *
966 * Initialize the rt lock to unlocked state.
967 *
968 * Initializing of a locked rt lock is not allowed
969 */
970void __rt_mutex_init(struct rt_mutex *lock, const char *name)
971{
972    lock->owner = NULL;
973    raw_spin_lock_init(&lock->wait_lock);
974    plist_head_init_raw(&lock->wait_list, &lock->wait_lock);
975
976    debug_rt_mutex_init(lock, name);
977}
978EXPORT_SYMBOL_GPL(__rt_mutex_init);
979
980/**
981 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
982 * proxy owner
983 *
984 * @lock: the rt_mutex to be locked
985 * @proxy_owner:the task to set as owner
986 *
987 * No locking. Caller has to do serializing itself
988 * Special API call for PI-futex support
989 */
990void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
991                struct task_struct *proxy_owner)
992{
993    __rt_mutex_init(lock, NULL);
994    debug_rt_mutex_proxy_lock(lock, proxy_owner);
995    rt_mutex_set_owner(lock, proxy_owner, 0);
996    rt_mutex_deadlock_account_lock(lock, proxy_owner);
997}
998
999/**
1000 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1001 *
1002 * @lock: the rt_mutex to be locked
1003 *
1004 * No locking. Caller has to do serializing itself
1005 * Special API call for PI-futex support
1006 */
1007void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1008               struct task_struct *proxy_owner)
1009{
1010    debug_rt_mutex_proxy_unlock(lock);
1011    rt_mutex_set_owner(lock, NULL, 0);
1012    rt_mutex_deadlock_account_unlock(proxy_owner);
1013}
1014
1015/**
1016 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1017 * @lock: the rt_mutex to take
1018 * @waiter: the pre-initialized rt_mutex_waiter
1019 * @task: the task to prepare
1020 * @detect_deadlock: perform deadlock detection (1) or not (0)
1021 *
1022 * Returns:
1023 * 0 - task blocked on lock
1024 * 1 - acquired the lock for task, caller should wake it up
1025 * <0 - error
1026 *
1027 * Special API call for FUTEX_REQUEUE_PI support.
1028 */
1029int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1030                  struct rt_mutex_waiter *waiter,
1031                  struct task_struct *task, int detect_deadlock)
1032{
1033    int ret;
1034
1035    raw_spin_lock(&lock->wait_lock);
1036
1037    mark_rt_mutex_waiters(lock);
1038
1039    if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) {
1040        /* We got the lock for task. */
1041        debug_rt_mutex_lock(lock);
1042        rt_mutex_set_owner(lock, task, 0);
1043        raw_spin_unlock(&lock->wait_lock);
1044        rt_mutex_deadlock_account_lock(lock, task);
1045        return 1;
1046    }
1047
1048    ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1049
1050    if (ret && !waiter->task) {
1051        /*
1052         * Reset the return value. We might have
1053         * returned with -EDEADLK and the owner
1054         * released the lock while we were walking the
1055         * pi chain. Let the waiter sort it out.
1056         */
1057        ret = 0;
1058    }
1059    raw_spin_unlock(&lock->wait_lock);
1060
1061    debug_rt_mutex_print_deadlock(waiter);
1062
1063    return ret;
1064}
1065
1066/**
1067 * rt_mutex_next_owner - return the next owner of the lock
1068 *
1069 * @lock: the rt lock query
1070 *
1071 * Returns the next owner of the lock or NULL
1072 *
1073 * Caller has to serialize against other accessors to the lock
1074 * itself.
1075 *
1076 * Special API call for PI-futex support
1077 */
1078struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1079{
1080    if (!rt_mutex_has_waiters(lock))
1081        return NULL;
1082
1083    return rt_mutex_top_waiter(lock)->task;
1084}
1085
1086/**
1087 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1088 * @lock: the rt_mutex we were woken on
1089 * @to: the timeout, null if none. hrtimer should already have
1090 * been started.
1091 * @waiter: the pre-initialized rt_mutex_waiter
1092 * @detect_deadlock: perform deadlock detection (1) or not (0)
1093 *
1094 * Complete the lock acquisition started our behalf by another thread.
1095 *
1096 * Returns:
1097 * 0 - success
1098 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
1099 *
1100 * Special API call for PI-futex requeue support
1101 */
1102int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1103                   struct hrtimer_sleeper *to,
1104                   struct rt_mutex_waiter *waiter,
1105                   int detect_deadlock)
1106{
1107    int ret;
1108
1109    raw_spin_lock(&lock->wait_lock);
1110
1111    set_current_state(TASK_INTERRUPTIBLE);
1112
1113    ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter,
1114                  detect_deadlock);
1115
1116    set_current_state(TASK_RUNNING);
1117
1118    if (unlikely(waiter->task))
1119        remove_waiter(lock, waiter);
1120
1121    /*
1122     * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1123     * have to fix that up.
1124     */
1125    fixup_rt_mutex_waiters(lock);
1126
1127    raw_spin_unlock(&lock->wait_lock);
1128
1129    /*
1130     * Readjust priority, when we did not get the lock. We might have been
1131     * the pending owner and boosted. Since we did not take the lock, the
1132     * PI boost has to go.
1133     */
1134    if (unlikely(ret))
1135        rt_mutex_adjust_prio(current);
1136
1137    return ret;
1138}
1139

Archive Download this file



interactive