1 | /* |
2 | * kernel/sched.c |
3 | * |
4 | * Kernel scheduler and related syscalls |
5 | * |
6 | * Copyright (C) 1991-2002 Linus Torvalds |
7 | * |
8 | * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and |
9 | * make semaphores SMP safe |
10 | * 1998-11-19 Implemented schedule_timeout() and related stuff |
11 | * by Andrea Arcangeli |
12 | * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar: |
13 | * hybrid priority-list and round-robin design with |
14 | * an array-switch method of distributing timeslices |
15 | * and per-CPU runqueues. Cleanups and useful suggestions |
16 | * by Davide Libenzi, preemptible kernel bits by Robert Love. |
17 | * 2003-09-03 Interactivity tuning by Con Kolivas. |
18 | * 2004-04-02 Scheduler domains code by Nick Piggin |
19 | * 2007-04-15 Work begun on replacing all interactivity tuning with a |
20 | * fair scheduling design by Con Kolivas. |
21 | * 2007-05-05 Load balancing (smp-nice) and other improvements |
22 | * by Peter Williams |
23 | * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith |
24 | * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri |
25 | * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins, |
26 | * Thomas Gleixner, Mike Kravetz |
27 | */ |
28 | |
29 | #include <linux/mm.h> |
30 | #include <linux/module.h> |
31 | #include <linux/nmi.h> |
32 | #include <linux/init.h> |
33 | #include <linux/uaccess.h> |
34 | #include <linux/highmem.h> |
35 | #include <linux/smp_lock.h> |
36 | #include <asm/mmu_context.h> |
37 | #include <linux/interrupt.h> |
38 | #include <linux/capability.h> |
39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> |
41 | #include <linux/debug_locks.h> |
42 | #include <linux/perf_event.h> |
43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> |
45 | #include <linux/profile.h> |
46 | #include <linux/freezer.h> |
47 | #include <linux/vmalloc.h> |
48 | #include <linux/blkdev.h> |
49 | #include <linux/delay.h> |
50 | #include <linux/pid_namespace.h> |
51 | #include <linux/smp.h> |
52 | #include <linux/threads.h> |
53 | #include <linux/timer.h> |
54 | #include <linux/rcupdate.h> |
55 | #include <linux/cpu.h> |
56 | #include <linux/cpuset.h> |
57 | #include <linux/percpu.h> |
58 | #include <linux/proc_fs.h> |
59 | #include <linux/seq_file.h> |
60 | #include <linux/stop_machine.h> |
61 | #include <linux/sysctl.h> |
62 | #include <linux/syscalls.h> |
63 | #include <linux/times.h> |
64 | #include <linux/tsacct_kern.h> |
65 | #include <linux/kprobes.h> |
66 | #include <linux/delayacct.h> |
67 | #include <linux/unistd.h> |
68 | #include <linux/pagemap.h> |
69 | #include <linux/hrtimer.h> |
70 | #include <linux/tick.h> |
71 | #include <linux/debugfs.h> |
72 | #include <linux/ctype.h> |
73 | #include <linux/ftrace.h> |
74 | #include <linux/slab.h> |
75 | |
76 | #include <asm/tlb.h> |
77 | #include <asm/irq_regs.h> |
78 | #include <asm/mutex.h> |
79 | |
80 | #include "sched_cpupri.h" |
81 | #include "workqueue_sched.h" |
82 | #include "sched_autogroup.h" |
83 | |
84 | #define CREATE_TRACE_POINTS |
85 | #include <trace/events/sched.h> |
86 | |
87 | /* |
88 | * Convert user-nice values [ -20 ... 0 ... 19 ] |
89 | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], |
90 | * and back. |
91 | */ |
92 | #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20) |
93 | #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20) |
94 | #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio) |
95 | |
96 | /* |
97 | * 'User priority' is the nice value converted to something we |
98 | * can work with better when scaling various scheduler parameters, |
99 | * it's a [ 0 ... 39 ] range. |
100 | */ |
101 | #define USER_PRIO(p) ((p)-MAX_RT_PRIO) |
102 | #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio) |
103 | #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO)) |
104 | |
105 | /* |
106 | * Helpers for converting nanosecond timing to jiffy resolution |
107 | */ |
108 | #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
109 | |
110 | #define NICE_0_LOAD SCHED_LOAD_SCALE |
111 | #define NICE_0_SHIFT SCHED_LOAD_SHIFT |
112 | |
113 | /* |
114 | * These are the 'tuning knobs' of the scheduler: |
115 | * |
116 | * default timeslice is 100 msecs (used only for SCHED_RR tasks). |
117 | * Timeslices get refilled after they expire. |
118 | */ |
119 | #define DEF_TIMESLICE (100 * HZ / 1000) |
120 | |
121 | /* |
122 | * single value that denotes runtime == period, ie unlimited time. |
123 | */ |
124 | #define RUNTIME_INF ((u64)~0ULL) |
125 | |
126 | static inline int rt_policy(int policy) |
127 | { |
128 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
129 | return 1; |
130 | return 0; |
131 | } |
132 | |
133 | static inline int task_has_rt_policy(struct task_struct *p) |
134 | { |
135 | return rt_policy(p->policy); |
136 | } |
137 | |
138 | /* |
139 | * This is the priority-queue data structure of the RT scheduling class: |
140 | */ |
141 | struct rt_prio_array { |
142 | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
143 | struct list_head queue[MAX_RT_PRIO]; |
144 | }; |
145 | |
146 | struct rt_bandwidth { |
147 | /* nests inside the rq lock: */ |
148 | raw_spinlock_t rt_runtime_lock; |
149 | ktime_t rt_period; |
150 | u64 rt_runtime; |
151 | struct hrtimer rt_period_timer; |
152 | }; |
153 | |
154 | static struct rt_bandwidth def_rt_bandwidth; |
155 | |
156 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); |
157 | |
158 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) |
159 | { |
160 | struct rt_bandwidth *rt_b = |
161 | container_of(timer, struct rt_bandwidth, rt_period_timer); |
162 | ktime_t now; |
163 | int overrun; |
164 | int idle = 0; |
165 | |
166 | for (;;) { |
167 | now = hrtimer_cb_get_time(timer); |
168 | overrun = hrtimer_forward(timer, now, rt_b->rt_period); |
169 | |
170 | if (!overrun) |
171 | break; |
172 | |
173 | idle = do_sched_rt_period_timer(rt_b, overrun); |
174 | } |
175 | |
176 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; |
177 | } |
178 | |
179 | static |
180 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) |
181 | { |
182 | rt_b->rt_period = ns_to_ktime(period); |
183 | rt_b->rt_runtime = runtime; |
184 | |
185 | raw_spin_lock_init(&rt_b->rt_runtime_lock); |
186 | |
187 | hrtimer_init(&rt_b->rt_period_timer, |
188 | CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
189 | rt_b->rt_period_timer.function = sched_rt_period_timer; |
190 | } |
191 | |
192 | static inline int rt_bandwidth_enabled(void) |
193 | { |
194 | return sysctl_sched_rt_runtime >= 0; |
195 | } |
196 | |
197 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) |
198 | { |
199 | ktime_t now; |
200 | |
201 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) |
202 | return; |
203 | |
204 | if (hrtimer_active(&rt_b->rt_period_timer)) |
205 | return; |
206 | |
207 | raw_spin_lock(&rt_b->rt_runtime_lock); |
208 | for (;;) { |
209 | unsigned long delta; |
210 | ktime_t soft, hard; |
211 | |
212 | if (hrtimer_active(&rt_b->rt_period_timer)) |
213 | break; |
214 | |
215 | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); |
216 | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); |
217 | |
218 | soft = hrtimer_get_softexpires(&rt_b->rt_period_timer); |
219 | hard = hrtimer_get_expires(&rt_b->rt_period_timer); |
220 | delta = ktime_to_ns(ktime_sub(hard, soft)); |
221 | __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta, |
222 | HRTIMER_MODE_ABS_PINNED, 0); |
223 | } |
224 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
225 | } |
226 | |
227 | #ifdef CONFIG_RT_GROUP_SCHED |
228 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
229 | { |
230 | hrtimer_cancel(&rt_b->rt_period_timer); |
231 | } |
232 | #endif |
233 | |
234 | /* |
235 | * sched_domains_mutex serializes calls to arch_init_sched_domains, |
236 | * detach_destroy_domains and partition_sched_domains. |
237 | */ |
238 | static DEFINE_MUTEX(sched_domains_mutex); |
239 | |
240 | #ifdef CONFIG_CGROUP_SCHED |
241 | |
242 | #include <linux/cgroup.h> |
243 | |
244 | struct cfs_rq; |
245 | |
246 | static LIST_HEAD(task_groups); |
247 | |
248 | /* task group related information */ |
249 | struct task_group { |
250 | struct cgroup_subsys_state css; |
251 | |
252 | #ifdef CONFIG_FAIR_GROUP_SCHED |
253 | /* schedulable entities of this group on each cpu */ |
254 | struct sched_entity **se; |
255 | /* runqueue "owned" by this group on each cpu */ |
256 | struct cfs_rq **cfs_rq; |
257 | unsigned long shares; |
258 | |
259 | atomic_t load_weight; |
260 | #endif |
261 | |
262 | #ifdef CONFIG_RT_GROUP_SCHED |
263 | struct sched_rt_entity **rt_se; |
264 | struct rt_rq **rt_rq; |
265 | |
266 | struct rt_bandwidth rt_bandwidth; |
267 | #endif |
268 | |
269 | struct rcu_head rcu; |
270 | struct list_head list; |
271 | |
272 | struct task_group *parent; |
273 | struct list_head siblings; |
274 | struct list_head children; |
275 | |
276 | #ifdef CONFIG_SCHED_AUTOGROUP |
277 | struct autogroup *autogroup; |
278 | #endif |
279 | }; |
280 | |
281 | /* task_group_lock serializes the addition/removal of task groups */ |
282 | static DEFINE_SPINLOCK(task_group_lock); |
283 | |
284 | #ifdef CONFIG_FAIR_GROUP_SCHED |
285 | |
286 | # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
287 | |
288 | /* |
289 | * A weight of 0 or 1 can cause arithmetics problems. |
290 | * A weight of a cfs_rq is the sum of weights of which entities |
291 | * are queued on this cfs_rq, so a weight of a entity should not be |
292 | * too large, so as the shares value of a task group. |
293 | * (The default weight is 1024 - so there's no practical |
294 | * limitation from this.) |
295 | */ |
296 | #define MIN_SHARES 2 |
297 | #define MAX_SHARES (1UL << 18) |
298 | |
299 | static int root_task_group_load = ROOT_TASK_GROUP_LOAD; |
300 | #endif |
301 | |
302 | /* Default task group. |
303 | * Every task in system belong to this group at bootup. |
304 | */ |
305 | struct task_group root_task_group; |
306 | |
307 | #endif /* CONFIG_CGROUP_SCHED */ |
308 | |
309 | /* CFS-related fields in a runqueue */ |
310 | struct cfs_rq { |
311 | struct load_weight load; |
312 | unsigned long nr_running; |
313 | |
314 | u64 exec_clock; |
315 | u64 min_vruntime; |
316 | |
317 | struct rb_root tasks_timeline; |
318 | struct rb_node *rb_leftmost; |
319 | |
320 | struct list_head tasks; |
321 | struct list_head *balance_iterator; |
322 | |
323 | /* |
324 | * 'curr' points to currently running entity on this cfs_rq. |
325 | * It is set to NULL otherwise (i.e when none are currently running). |
326 | */ |
327 | struct sched_entity *curr, *next, *last; |
328 | |
329 | unsigned int nr_spread_over; |
330 | |
331 | #ifdef CONFIG_FAIR_GROUP_SCHED |
332 | struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */ |
333 | |
334 | /* |
335 | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
336 | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
337 | * (like users, containers etc.) |
338 | * |
339 | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This |
340 | * list is used during load balance. |
341 | */ |
342 | int on_list; |
343 | struct list_head leaf_cfs_rq_list; |
344 | struct task_group *tg; /* group that "owns" this runqueue */ |
345 | |
346 | #ifdef CONFIG_SMP |
347 | /* |
348 | * the part of load.weight contributed by tasks |
349 | */ |
350 | unsigned long task_weight; |
351 | |
352 | /* |
353 | * h_load = weight * f(tg) |
354 | * |
355 | * Where f(tg) is the recursive weight fraction assigned to |
356 | * this group. |
357 | */ |
358 | unsigned long h_load; |
359 | |
360 | /* |
361 | * Maintaining per-cpu shares distribution for group scheduling |
362 | * |
363 | * load_stamp is the last time we updated the load average |
364 | * load_last is the last time we updated the load average and saw load |
365 | * load_unacc_exec_time is currently unaccounted execution time |
366 | */ |
367 | u64 load_avg; |
368 | u64 load_period; |
369 | u64 load_stamp, load_last, load_unacc_exec_time; |
370 | |
371 | unsigned long load_contribution; |
372 | #endif |
373 | #endif |
374 | }; |
375 | |
376 | /* Real-Time classes' related field in a runqueue: */ |
377 | struct rt_rq { |
378 | struct rt_prio_array active; |
379 | unsigned long rt_nr_running; |
380 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
381 | struct { |
382 | int curr; /* highest queued rt task prio */ |
383 | #ifdef CONFIG_SMP |
384 | int next; /* next highest */ |
385 | #endif |
386 | } highest_prio; |
387 | #endif |
388 | #ifdef CONFIG_SMP |
389 | unsigned long rt_nr_migratory; |
390 | unsigned long rt_nr_total; |
391 | int overloaded; |
392 | struct plist_head pushable_tasks; |
393 | #endif |
394 | int rt_throttled; |
395 | u64 rt_time; |
396 | u64 rt_runtime; |
397 | /* Nests inside the rq lock: */ |
398 | raw_spinlock_t rt_runtime_lock; |
399 | |
400 | #ifdef CONFIG_RT_GROUP_SCHED |
401 | unsigned long rt_nr_boosted; |
402 | |
403 | struct rq *rq; |
404 | struct list_head leaf_rt_rq_list; |
405 | struct task_group *tg; |
406 | #endif |
407 | }; |
408 | |
409 | #ifdef CONFIG_SMP |
410 | |
411 | /* |
412 | * We add the notion of a root-domain which will be used to define per-domain |
413 | * variables. Each exclusive cpuset essentially defines an island domain by |
414 | * fully partitioning the member cpus from any other cpuset. Whenever a new |
415 | * exclusive cpuset is created, we also create and attach a new root-domain |
416 | * object. |
417 | * |
418 | */ |
419 | struct root_domain { |
420 | atomic_t refcount; |
421 | cpumask_var_t span; |
422 | cpumask_var_t online; |
423 | |
424 | /* |
425 | * The "RT overload" flag: it gets set if a CPU has more than |
426 | * one runnable RT task. |
427 | */ |
428 | cpumask_var_t rto_mask; |
429 | atomic_t rto_count; |
430 | struct cpupri cpupri; |
431 | }; |
432 | |
433 | /* |
434 | * By default the system creates a single root-domain with all cpus as |
435 | * members (mimicking the global state we have today). |
436 | */ |
437 | static struct root_domain def_root_domain; |
438 | |
439 | #endif /* CONFIG_SMP */ |
440 | |
441 | /* |
442 | * This is the main, per-CPU runqueue data structure. |
443 | * |
444 | * Locking rule: those places that want to lock multiple runqueues |
445 | * (such as the load balancing or the thread migration code), lock |
446 | * acquire operations must be ordered by ascending &runqueue. |
447 | */ |
448 | struct rq { |
449 | /* runqueue lock: */ |
450 | raw_spinlock_t lock; |
451 | |
452 | /* |
453 | * nr_running and cpu_load should be in the same cacheline because |
454 | * remote CPUs use both these fields when doing load calculation. |
455 | */ |
456 | unsigned long nr_running; |
457 | #define CPU_LOAD_IDX_MAX 5 |
458 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
459 | unsigned long last_load_update_tick; |
460 | #ifdef CONFIG_NO_HZ |
461 | u64 nohz_stamp; |
462 | unsigned char nohz_balance_kick; |
463 | #endif |
464 | unsigned int skip_clock_update; |
465 | |
466 | /* capture load from *all* tasks on this cpu: */ |
467 | struct load_weight load; |
468 | unsigned long nr_load_updates; |
469 | u64 nr_switches; |
470 | |
471 | struct cfs_rq cfs; |
472 | struct rt_rq rt; |
473 | |
474 | #ifdef CONFIG_FAIR_GROUP_SCHED |
475 | /* list of leaf cfs_rq on this cpu: */ |
476 | struct list_head leaf_cfs_rq_list; |
477 | #endif |
478 | #ifdef CONFIG_RT_GROUP_SCHED |
479 | struct list_head leaf_rt_rq_list; |
480 | #endif |
481 | |
482 | /* |
483 | * This is part of a global counter where only the total sum |
484 | * over all CPUs matters. A task can increase this counter on |
485 | * one CPU and if it got migrated afterwards it may decrease |
486 | * it on another CPU. Always updated under the runqueue lock: |
487 | */ |
488 | unsigned long nr_uninterruptible; |
489 | |
490 | struct task_struct *curr, *idle, *stop; |
491 | unsigned long next_balance; |
492 | struct mm_struct *prev_mm; |
493 | |
494 | u64 clock; |
495 | u64 clock_task; |
496 | |
497 | atomic_t nr_iowait; |
498 | |
499 | #ifdef CONFIG_SMP |
500 | struct root_domain *rd; |
501 | struct sched_domain *sd; |
502 | |
503 | unsigned long cpu_power; |
504 | |
505 | unsigned char idle_at_tick; |
506 | /* For active balancing */ |
507 | int post_schedule; |
508 | int active_balance; |
509 | int push_cpu; |
510 | struct cpu_stop_work active_balance_work; |
511 | /* cpu of this runqueue: */ |
512 | int cpu; |
513 | int online; |
514 | |
515 | unsigned long avg_load_per_task; |
516 | |
517 | u64 rt_avg; |
518 | u64 age_stamp; |
519 | u64 idle_stamp; |
520 | u64 avg_idle; |
521 | #endif |
522 | |
523 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
524 | u64 prev_irq_time; |
525 | #endif |
526 | |
527 | /* calc_load related fields */ |
528 | unsigned long calc_load_update; |
529 | long calc_load_active; |
530 | |
531 | #ifdef CONFIG_SCHED_HRTICK |
532 | #ifdef CONFIG_SMP |
533 | int hrtick_csd_pending; |
534 | struct call_single_data hrtick_csd; |
535 | #endif |
536 | struct hrtimer hrtick_timer; |
537 | #endif |
538 | |
539 | #ifdef CONFIG_SCHEDSTATS |
540 | /* latency stats */ |
541 | struct sched_info rq_sched_info; |
542 | unsigned long long rq_cpu_time; |
543 | /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
544 | |
545 | /* sys_sched_yield() stats */ |
546 | unsigned int yld_count; |
547 | |
548 | /* schedule() stats */ |
549 | unsigned int sched_switch; |
550 | unsigned int sched_count; |
551 | unsigned int sched_goidle; |
552 | |
553 | /* try_to_wake_up() stats */ |
554 | unsigned int ttwu_count; |
555 | unsigned int ttwu_local; |
556 | #endif |
557 | }; |
558 | |
559 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
560 | |
561 | |
562 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
563 | |
564 | static inline int cpu_of(struct rq *rq) |
565 | { |
566 | #ifdef CONFIG_SMP |
567 | return rq->cpu; |
568 | #else |
569 | return 0; |
570 | #endif |
571 | } |
572 | |
573 | #define rcu_dereference_check_sched_domain(p) \ |
574 | rcu_dereference_check((p), \ |
575 | rcu_read_lock_sched_held() || \ |
576 | lockdep_is_held(&sched_domains_mutex)) |
577 | |
578 | /* |
579 | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
580 | * See detach_destroy_domains: synchronize_sched for details. |
581 | * |
582 | * The domain tree of any CPU may only be accessed from within |
583 | * preempt-disabled sections. |
584 | */ |
585 | #define for_each_domain(cpu, __sd) \ |
586 | for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) |
587 | |
588 | #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
589 | #define this_rq() (&__get_cpu_var(runqueues)) |
590 | #define task_rq(p) cpu_rq(task_cpu(p)) |
591 | #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
592 | #define raw_rq() (&__raw_get_cpu_var(runqueues)) |
593 | |
594 | #ifdef CONFIG_CGROUP_SCHED |
595 | |
596 | /* |
597 | * Return the group to which this tasks belongs. |
598 | * |
599 | * We use task_subsys_state_check() and extend the RCU verification |
600 | * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach() |
601 | * holds that lock for each task it moves into the cgroup. Therefore |
602 | * by holding that lock, we pin the task to the current cgroup. |
603 | */ |
604 | static inline struct task_group *task_group(struct task_struct *p) |
605 | { |
606 | struct task_group *tg; |
607 | struct cgroup_subsys_state *css; |
608 | |
609 | if (p->flags & PF_EXITING) |
610 | return &root_task_group; |
611 | |
612 | css = task_subsys_state_check(p, cpu_cgroup_subsys_id, |
613 | lockdep_is_held(&task_rq(p)->lock)); |
614 | tg = container_of(css, struct task_group, css); |
615 | |
616 | return autogroup_task_group(p, tg); |
617 | } |
618 | |
619 | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
620 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
621 | { |
622 | #ifdef CONFIG_FAIR_GROUP_SCHED |
623 | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; |
624 | p->se.parent = task_group(p)->se[cpu]; |
625 | #endif |
626 | |
627 | #ifdef CONFIG_RT_GROUP_SCHED |
628 | p->rt.rt_rq = task_group(p)->rt_rq[cpu]; |
629 | p->rt.parent = task_group(p)->rt_se[cpu]; |
630 | #endif |
631 | } |
632 | |
633 | #else /* CONFIG_CGROUP_SCHED */ |
634 | |
635 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
636 | static inline struct task_group *task_group(struct task_struct *p) |
637 | { |
638 | return NULL; |
639 | } |
640 | |
641 | #endif /* CONFIG_CGROUP_SCHED */ |
642 | |
643 | static void update_rq_clock_task(struct rq *rq, s64 delta); |
644 | |
645 | static void update_rq_clock(struct rq *rq) |
646 | { |
647 | s64 delta; |
648 | |
649 | if (rq->skip_clock_update) |
650 | return; |
651 | |
652 | delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; |
653 | rq->clock += delta; |
654 | update_rq_clock_task(rq, delta); |
655 | } |
656 | |
657 | /* |
658 | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
659 | */ |
660 | #ifdef CONFIG_SCHED_DEBUG |
661 | # define const_debug __read_mostly |
662 | #else |
663 | # define const_debug static const |
664 | #endif |
665 | |
666 | /** |
667 | * runqueue_is_locked |
668 | * @cpu: the processor in question. |
669 | * |
670 | * Returns true if the current cpu runqueue is locked. |
671 | * This interface allows printk to be called with the runqueue lock |
672 | * held and know whether or not it is OK to wake up the klogd. |
673 | */ |
674 | int runqueue_is_locked(int cpu) |
675 | { |
676 | return raw_spin_is_locked(&cpu_rq(cpu)->lock); |
677 | } |
678 | |
679 | /* |
680 | * Debugging: various feature bits |
681 | */ |
682 | |
683 | #define SCHED_FEAT(name, enabled) \ |
684 | __SCHED_FEAT_##name , |
685 | |
686 | enum { |
687 | #include "sched_features.h" |
688 | }; |
689 | |
690 | #undef SCHED_FEAT |
691 | |
692 | #define SCHED_FEAT(name, enabled) \ |
693 | (1UL << __SCHED_FEAT_##name) * enabled | |
694 | |
695 | const_debug unsigned int sysctl_sched_features = |
696 | #include "sched_features.h" |
697 | 0; |
698 | |
699 | #undef SCHED_FEAT |
700 | |
701 | #ifdef CONFIG_SCHED_DEBUG |
702 | #define SCHED_FEAT(name, enabled) \ |
703 | #name , |
704 | |
705 | static __read_mostly char *sched_feat_names[] = { |
706 | #include "sched_features.h" |
707 | NULL |
708 | }; |
709 | |
710 | #undef SCHED_FEAT |
711 | |
712 | static int sched_feat_show(struct seq_file *m, void *v) |
713 | { |
714 | int i; |
715 | |
716 | for (i = 0; sched_feat_names[i]; i++) { |
717 | if (!(sysctl_sched_features & (1UL << i))) |
718 | seq_puts(m, "NO_"); |
719 | seq_printf(m, "%s ", sched_feat_names[i]); |
720 | } |
721 | seq_puts(m, "\n"); |
722 | |
723 | return 0; |
724 | } |
725 | |
726 | static ssize_t |
727 | sched_feat_write(struct file *filp, const char __user *ubuf, |
728 | size_t cnt, loff_t *ppos) |
729 | { |
730 | char buf[64]; |
731 | char *cmp; |
732 | int neg = 0; |
733 | int i; |
734 | |
735 | if (cnt > 63) |
736 | cnt = 63; |
737 | |
738 | if (copy_from_user(&buf, ubuf, cnt)) |
739 | return -EFAULT; |
740 | |
741 | buf[cnt] = 0; |
742 | cmp = strstrip(buf); |
743 | |
744 | if (strncmp(cmp, "NO_", 3) == 0) { |
745 | neg = 1; |
746 | cmp += 3; |
747 | } |
748 | |
749 | for (i = 0; sched_feat_names[i]; i++) { |
750 | if (strcmp(cmp, sched_feat_names[i]) == 0) { |
751 | if (neg) |
752 | sysctl_sched_features &= ~(1UL << i); |
753 | else |
754 | sysctl_sched_features |= (1UL << i); |
755 | break; |
756 | } |
757 | } |
758 | |
759 | if (!sched_feat_names[i]) |
760 | return -EINVAL; |
761 | |
762 | *ppos += cnt; |
763 | |
764 | return cnt; |
765 | } |
766 | |
767 | static int sched_feat_open(struct inode *inode, struct file *filp) |
768 | { |
769 | return single_open(filp, sched_feat_show, NULL); |
770 | } |
771 | |
772 | static const struct file_operations sched_feat_fops = { |
773 | .open = sched_feat_open, |
774 | .write = sched_feat_write, |
775 | .read = seq_read, |
776 | .llseek = seq_lseek, |
777 | .release = single_release, |
778 | }; |
779 | |
780 | static __init int sched_init_debug(void) |
781 | { |
782 | debugfs_create_file("sched_features", 0644, NULL, NULL, |
783 | &sched_feat_fops); |
784 | |
785 | return 0; |
786 | } |
787 | late_initcall(sched_init_debug); |
788 | |
789 | #endif |
790 | |
791 | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
792 | |
793 | /* |
794 | * Number of tasks to iterate in a single balance run. |
795 | * Limited because this is done with IRQs disabled. |
796 | */ |
797 | const_debug unsigned int sysctl_sched_nr_migrate = 32; |
798 | |
799 | /* |
800 | * period over which we average the RT time consumption, measured |
801 | * in ms. |
802 | * |
803 | * default: 1s |
804 | */ |
805 | const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC; |
806 | |
807 | /* |
808 | * period over which we measure -rt task cpu usage in us. |
809 | * default: 1s |
810 | */ |
811 | unsigned int sysctl_sched_rt_period = 1000000; |
812 | |
813 | static __read_mostly int scheduler_running; |
814 | |
815 | /* |
816 | * part of the period that we allow rt tasks to run in us. |
817 | * default: 0.95s |
818 | */ |
819 | int sysctl_sched_rt_runtime = 950000; |
820 | |
821 | static inline u64 global_rt_period(void) |
822 | { |
823 | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
824 | } |
825 | |
826 | static inline u64 global_rt_runtime(void) |
827 | { |
828 | if (sysctl_sched_rt_runtime < 0) |
829 | return RUNTIME_INF; |
830 | |
831 | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
832 | } |
833 | |
834 | #ifndef prepare_arch_switch |
835 | # define prepare_arch_switch(next) do { } while (0) |
836 | #endif |
837 | #ifndef finish_arch_switch |
838 | # define finish_arch_switch(prev) do { } while (0) |
839 | #endif |
840 | |
841 | static inline int task_current(struct rq *rq, struct task_struct *p) |
842 | { |
843 | return rq->curr == p; |
844 | } |
845 | |
846 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
847 | static inline int task_running(struct rq *rq, struct task_struct *p) |
848 | { |
849 | return task_current(rq, p); |
850 | } |
851 | |
852 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
853 | { |
854 | } |
855 | |
856 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
857 | { |
858 | #ifdef CONFIG_DEBUG_SPINLOCK |
859 | /* this is a valid case when another task releases the spinlock */ |
860 | rq->lock.owner = current; |
861 | #endif |
862 | /* |
863 | * If we are tracking spinlock dependencies then we have to |
864 | * fix up the runqueue lock - which gets 'carried over' from |
865 | * prev into current: |
866 | */ |
867 | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); |
868 | |
869 | raw_spin_unlock_irq(&rq->lock); |
870 | } |
871 | |
872 | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ |
873 | static inline int task_running(struct rq *rq, struct task_struct *p) |
874 | { |
875 | #ifdef CONFIG_SMP |
876 | return p->oncpu; |
877 | #else |
878 | return task_current(rq, p); |
879 | #endif |
880 | } |
881 | |
882 | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) |
883 | { |
884 | #ifdef CONFIG_SMP |
885 | /* |
886 | * We can optimise this out completely for !SMP, because the |
887 | * SMP rebalancing from interrupt is the only thing that cares |
888 | * here. |
889 | */ |
890 | next->oncpu = 1; |
891 | #endif |
892 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
893 | raw_spin_unlock_irq(&rq->lock); |
894 | #else |
895 | raw_spin_unlock(&rq->lock); |
896 | #endif |
897 | } |
898 | |
899 | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) |
900 | { |
901 | #ifdef CONFIG_SMP |
902 | /* |
903 | * After ->oncpu is cleared, the task can be moved to a different CPU. |
904 | * We must ensure this doesn't happen until the switch is completely |
905 | * finished. |
906 | */ |
907 | smp_wmb(); |
908 | prev->oncpu = 0; |
909 | #endif |
910 | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
911 | local_irq_enable(); |
912 | #endif |
913 | } |
914 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
915 | |
916 | /* |
917 | * Check whether the task is waking, we use this to synchronize ->cpus_allowed |
918 | * against ttwu(). |
919 | */ |
920 | static inline int task_is_waking(struct task_struct *p) |
921 | { |
922 | return unlikely(p->state == TASK_WAKING); |
923 | } |
924 | |
925 | /* |
926 | * __task_rq_lock - lock the runqueue a given task resides on. |
927 | * Must be called interrupts disabled. |
928 | */ |
929 | static inline struct rq *__task_rq_lock(struct task_struct *p) |
930 | __acquires(rq->lock) |
931 | { |
932 | struct rq *rq; |
933 | |
934 | for (;;) { |
935 | rq = task_rq(p); |
936 | raw_spin_lock(&rq->lock); |
937 | if (likely(rq == task_rq(p))) |
938 | return rq; |
939 | raw_spin_unlock(&rq->lock); |
940 | } |
941 | } |
942 | |
943 | /* |
944 | * task_rq_lock - lock the runqueue a given task resides on and disable |
945 | * interrupts. Note the ordering: we can safely lookup the task_rq without |
946 | * explicitly disabling preemption. |
947 | */ |
948 | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) |
949 | __acquires(rq->lock) |
950 | { |
951 | struct rq *rq; |
952 | |
953 | for (;;) { |
954 | local_irq_save(*flags); |
955 | rq = task_rq(p); |
956 | raw_spin_lock(&rq->lock); |
957 | if (likely(rq == task_rq(p))) |
958 | return rq; |
959 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
960 | } |
961 | } |
962 | |
963 | static void __task_rq_unlock(struct rq *rq) |
964 | __releases(rq->lock) |
965 | { |
966 | raw_spin_unlock(&rq->lock); |
967 | } |
968 | |
969 | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) |
970 | __releases(rq->lock) |
971 | { |
972 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
973 | } |
974 | |
975 | /* |
976 | * this_rq_lock - lock this runqueue and disable interrupts. |
977 | */ |
978 | static struct rq *this_rq_lock(void) |
979 | __acquires(rq->lock) |
980 | { |
981 | struct rq *rq; |
982 | |
983 | local_irq_disable(); |
984 | rq = this_rq(); |
985 | raw_spin_lock(&rq->lock); |
986 | |
987 | return rq; |
988 | } |
989 | |
990 | #ifdef CONFIG_SCHED_HRTICK |
991 | /* |
992 | * Use HR-timers to deliver accurate preemption points. |
993 | * |
994 | * Its all a bit involved since we cannot program an hrt while holding the |
995 | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a |
996 | * reschedule event. |
997 | * |
998 | * When we get rescheduled we reprogram the hrtick_timer outside of the |
999 | * rq->lock. |
1000 | */ |
1001 | |
1002 | /* |
1003 | * Use hrtick when: |
1004 | * - enabled by features |
1005 | * - hrtimer is actually high res |
1006 | */ |
1007 | static inline int hrtick_enabled(struct rq *rq) |
1008 | { |
1009 | if (!sched_feat(HRTICK)) |
1010 | return 0; |
1011 | if (!cpu_active(cpu_of(rq))) |
1012 | return 0; |
1013 | return hrtimer_is_hres_active(&rq->hrtick_timer); |
1014 | } |
1015 | |
1016 | static void hrtick_clear(struct rq *rq) |
1017 | { |
1018 | if (hrtimer_active(&rq->hrtick_timer)) |
1019 | hrtimer_cancel(&rq->hrtick_timer); |
1020 | } |
1021 | |
1022 | /* |
1023 | * High-resolution timer tick. |
1024 | * Runs from hardirq context with interrupts disabled. |
1025 | */ |
1026 | static enum hrtimer_restart hrtick(struct hrtimer *timer) |
1027 | { |
1028 | struct rq *rq = container_of(timer, struct rq, hrtick_timer); |
1029 | |
1030 | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); |
1031 | |
1032 | raw_spin_lock(&rq->lock); |
1033 | update_rq_clock(rq); |
1034 | rq->curr->sched_class->task_tick(rq, rq->curr, 1); |
1035 | raw_spin_unlock(&rq->lock); |
1036 | |
1037 | return HRTIMER_NORESTART; |
1038 | } |
1039 | |
1040 | #ifdef CONFIG_SMP |
1041 | /* |
1042 | * called from hardirq (IPI) context |
1043 | */ |
1044 | static void __hrtick_start(void *arg) |
1045 | { |
1046 | struct rq *rq = arg; |
1047 | |
1048 | raw_spin_lock(&rq->lock); |
1049 | hrtimer_restart(&rq->hrtick_timer); |
1050 | rq->hrtick_csd_pending = 0; |
1051 | raw_spin_unlock(&rq->lock); |
1052 | } |
1053 | |
1054 | /* |
1055 | * Called to set the hrtick timer state. |
1056 | * |
1057 | * called with rq->lock held and irqs disabled |
1058 | */ |
1059 | static void hrtick_start(struct rq *rq, u64 delay) |
1060 | { |
1061 | struct hrtimer *timer = &rq->hrtick_timer; |
1062 | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); |
1063 | |
1064 | hrtimer_set_expires(timer, time); |
1065 | |
1066 | if (rq == this_rq()) { |
1067 | hrtimer_restart(timer); |
1068 | } else if (!rq->hrtick_csd_pending) { |
1069 | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0); |
1070 | rq->hrtick_csd_pending = 1; |
1071 | } |
1072 | } |
1073 | |
1074 | static int |
1075 | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) |
1076 | { |
1077 | int cpu = (int)(long)hcpu; |
1078 | |
1079 | switch (action) { |
1080 | case CPU_UP_CANCELED: |
1081 | case CPU_UP_CANCELED_FROZEN: |
1082 | case CPU_DOWN_PREPARE: |
1083 | case CPU_DOWN_PREPARE_FROZEN: |
1084 | case CPU_DEAD: |
1085 | case CPU_DEAD_FROZEN: |
1086 | hrtick_clear(cpu_rq(cpu)); |
1087 | return NOTIFY_OK; |
1088 | } |
1089 | |
1090 | return NOTIFY_DONE; |
1091 | } |
1092 | |
1093 | static __init void init_hrtick(void) |
1094 | { |
1095 | hotcpu_notifier(hotplug_hrtick, 0); |
1096 | } |
1097 | #else |
1098 | /* |
1099 | * Called to set the hrtick timer state. |
1100 | * |
1101 | * called with rq->lock held and irqs disabled |
1102 | */ |
1103 | static void hrtick_start(struct rq *rq, u64 delay) |
1104 | { |
1105 | __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, |
1106 | HRTIMER_MODE_REL_PINNED, 0); |
1107 | } |
1108 | |
1109 | static inline void init_hrtick(void) |
1110 | { |
1111 | } |
1112 | #endif /* CONFIG_SMP */ |
1113 | |
1114 | static void init_rq_hrtick(struct rq *rq) |
1115 | { |
1116 | #ifdef CONFIG_SMP |
1117 | rq->hrtick_csd_pending = 0; |
1118 | |
1119 | rq->hrtick_csd.flags = 0; |
1120 | rq->hrtick_csd.func = __hrtick_start; |
1121 | rq->hrtick_csd.info = rq; |
1122 | #endif |
1123 | |
1124 | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
1125 | rq->hrtick_timer.function = hrtick; |
1126 | } |
1127 | #else /* CONFIG_SCHED_HRTICK */ |
1128 | static inline void hrtick_clear(struct rq *rq) |
1129 | { |
1130 | } |
1131 | |
1132 | static inline void init_rq_hrtick(struct rq *rq) |
1133 | { |
1134 | } |
1135 | |
1136 | static inline void init_hrtick(void) |
1137 | { |
1138 | } |
1139 | #endif /* CONFIG_SCHED_HRTICK */ |
1140 | |
1141 | /* |
1142 | * resched_task - mark a task 'to be rescheduled now'. |
1143 | * |
1144 | * On UP this means the setting of the need_resched flag, on SMP it |
1145 | * might also involve a cross-CPU call to trigger the scheduler on |
1146 | * the target CPU. |
1147 | */ |
1148 | #ifdef CONFIG_SMP |
1149 | |
1150 | #ifndef tsk_is_polling |
1151 | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) |
1152 | #endif |
1153 | |
1154 | static void resched_task(struct task_struct *p) |
1155 | { |
1156 | int cpu; |
1157 | |
1158 | assert_raw_spin_locked(&task_rq(p)->lock); |
1159 | |
1160 | if (test_tsk_need_resched(p)) |
1161 | return; |
1162 | |
1163 | set_tsk_need_resched(p); |
1164 | |
1165 | cpu = task_cpu(p); |
1166 | if (cpu == smp_processor_id()) |
1167 | return; |
1168 | |
1169 | /* NEED_RESCHED must be visible before we test polling */ |
1170 | smp_mb(); |
1171 | if (!tsk_is_polling(p)) |
1172 | smp_send_reschedule(cpu); |
1173 | } |
1174 | |
1175 | static void resched_cpu(int cpu) |
1176 | { |
1177 | struct rq *rq = cpu_rq(cpu); |
1178 | unsigned long flags; |
1179 | |
1180 | if (!raw_spin_trylock_irqsave(&rq->lock, flags)) |
1181 | return; |
1182 | resched_task(cpu_curr(cpu)); |
1183 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
1184 | } |
1185 | |
1186 | #ifdef CONFIG_NO_HZ |
1187 | /* |
1188 | * In the semi idle case, use the nearest busy cpu for migrating timers |
1189 | * from an idle cpu. This is good for power-savings. |
1190 | * |
1191 | * We don't do similar optimization for completely idle system, as |
1192 | * selecting an idle cpu will add more delays to the timers than intended |
1193 | * (as that cpu's timer base may not be uptodate wrt jiffies etc). |
1194 | */ |
1195 | int get_nohz_timer_target(void) |
1196 | { |
1197 | int cpu = smp_processor_id(); |
1198 | int i; |
1199 | struct sched_domain *sd; |
1200 | |
1201 | for_each_domain(cpu, sd) { |
1202 | for_each_cpu(i, sched_domain_span(sd)) |
1203 | if (!idle_cpu(i)) |
1204 | return i; |
1205 | } |
1206 | return cpu; |
1207 | } |
1208 | /* |
1209 | * When add_timer_on() enqueues a timer into the timer wheel of an |
1210 | * idle CPU then this timer might expire before the next timer event |
1211 | * which is scheduled to wake up that CPU. In case of a completely |
1212 | * idle system the next event might even be infinite time into the |
1213 | * future. wake_up_idle_cpu() ensures that the CPU is woken up and |
1214 | * leaves the inner idle loop so the newly added timer is taken into |
1215 | * account when the CPU goes back to idle and evaluates the timer |
1216 | * wheel for the next timer event. |
1217 | */ |
1218 | void wake_up_idle_cpu(int cpu) |
1219 | { |
1220 | struct rq *rq = cpu_rq(cpu); |
1221 | |
1222 | if (cpu == smp_processor_id()) |
1223 | return; |
1224 | |
1225 | /* |
1226 | * This is safe, as this function is called with the timer |
1227 | * wheel base lock of (cpu) held. When the CPU is on the way |
1228 | * to idle and has not yet set rq->curr to idle then it will |
1229 | * be serialized on the timer wheel base lock and take the new |
1230 | * timer into account automatically. |
1231 | */ |
1232 | if (rq->curr != rq->idle) |
1233 | return; |
1234 | |
1235 | /* |
1236 | * We can set TIF_RESCHED on the idle task of the other CPU |
1237 | * lockless. The worst case is that the other CPU runs the |
1238 | * idle task through an additional NOOP schedule() |
1239 | */ |
1240 | set_tsk_need_resched(rq->idle); |
1241 | |
1242 | /* NEED_RESCHED must be visible before we test polling */ |
1243 | smp_mb(); |
1244 | if (!tsk_is_polling(rq->idle)) |
1245 | smp_send_reschedule(cpu); |
1246 | } |
1247 | |
1248 | #endif /* CONFIG_NO_HZ */ |
1249 | |
1250 | static u64 sched_avg_period(void) |
1251 | { |
1252 | return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2; |
1253 | } |
1254 | |
1255 | static void sched_avg_update(struct rq *rq) |
1256 | { |
1257 | s64 period = sched_avg_period(); |
1258 | |
1259 | while ((s64)(rq->clock - rq->age_stamp) > period) { |
1260 | /* |
1261 | * Inline assembly required to prevent the compiler |
1262 | * optimising this loop into a divmod call. |
1263 | * See __iter_div_u64_rem() for another example of this. |
1264 | */ |
1265 | asm("" : "+rm" (rq->age_stamp)); |
1266 | rq->age_stamp += period; |
1267 | rq->rt_avg /= 2; |
1268 | } |
1269 | } |
1270 | |
1271 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) |
1272 | { |
1273 | rq->rt_avg += rt_delta; |
1274 | sched_avg_update(rq); |
1275 | } |
1276 | |
1277 | #else /* !CONFIG_SMP */ |
1278 | static void resched_task(struct task_struct *p) |
1279 | { |
1280 | assert_raw_spin_locked(&task_rq(p)->lock); |
1281 | set_tsk_need_resched(p); |
1282 | } |
1283 | |
1284 | static void sched_rt_avg_update(struct rq *rq, u64 rt_delta) |
1285 | { |
1286 | } |
1287 | |
1288 | static void sched_avg_update(struct rq *rq) |
1289 | { |
1290 | } |
1291 | #endif /* CONFIG_SMP */ |
1292 | |
1293 | #if BITS_PER_LONG == 32 |
1294 | # define WMULT_CONST (~0UL) |
1295 | #else |
1296 | # define WMULT_CONST (1UL << 32) |
1297 | #endif |
1298 | |
1299 | #define WMULT_SHIFT 32 |
1300 | |
1301 | /* |
1302 | * Shift right and round: |
1303 | */ |
1304 | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) |
1305 | |
1306 | /* |
1307 | * delta *= weight / lw |
1308 | */ |
1309 | static unsigned long |
1310 | calc_delta_mine(unsigned long delta_exec, unsigned long weight, |
1311 | struct load_weight *lw) |
1312 | { |
1313 | u64 tmp; |
1314 | |
1315 | if (!lw->inv_weight) { |
1316 | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) |
1317 | lw->inv_weight = 1; |
1318 | else |
1319 | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) |
1320 | / (lw->weight+1); |
1321 | } |
1322 | |
1323 | tmp = (u64)delta_exec * weight; |
1324 | /* |
1325 | * Check whether we'd overflow the 64-bit multiplication: |
1326 | */ |
1327 | if (unlikely(tmp > WMULT_CONST)) |
1328 | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, |
1329 | WMULT_SHIFT/2); |
1330 | else |
1331 | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); |
1332 | |
1333 | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); |
1334 | } |
1335 | |
1336 | static inline void update_load_add(struct load_weight *lw, unsigned long inc) |
1337 | { |
1338 | lw->weight += inc; |
1339 | lw->inv_weight = 0; |
1340 | } |
1341 | |
1342 | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) |
1343 | { |
1344 | lw->weight -= dec; |
1345 | lw->inv_weight = 0; |
1346 | } |
1347 | |
1348 | static inline void update_load_set(struct load_weight *lw, unsigned long w) |
1349 | { |
1350 | lw->weight = w; |
1351 | lw->inv_weight = 0; |
1352 | } |
1353 | |
1354 | /* |
1355 | * To aid in avoiding the subversion of "niceness" due to uneven distribution |
1356 | * of tasks with abnormal "nice" values across CPUs the contribution that |
1357 | * each task makes to its run queue's load is weighted according to its |
1358 | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
1359 | * scaled version of the new time slice allocation that they receive on time |
1360 | * slice expiry etc. |
1361 | */ |
1362 | |
1363 | #define WEIGHT_IDLEPRIO 3 |
1364 | #define WMULT_IDLEPRIO 1431655765 |
1365 | |
1366 | /* |
1367 | * Nice levels are multiplicative, with a gentle 10% change for every |
1368 | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to |
1369 | * nice 1, it will get ~10% less CPU time than another CPU-bound task |
1370 | * that remained on nice 0. |
1371 | * |
1372 | * The "10% effect" is relative and cumulative: from _any_ nice level, |
1373 | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level |
1374 | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. |
1375 | * If a task goes up by ~10% and another task goes down by ~10% then |
1376 | * the relative distance between them is ~25%.) |
1377 | */ |
1378 | static const int prio_to_weight[40] = { |
1379 | /* -20 */ 88761, 71755, 56483, 46273, 36291, |
1380 | /* -15 */ 29154, 23254, 18705, 14949, 11916, |
1381 | /* -10 */ 9548, 7620, 6100, 4904, 3906, |
1382 | /* -5 */ 3121, 2501, 1991, 1586, 1277, |
1383 | /* 0 */ 1024, 820, 655, 526, 423, |
1384 | /* 5 */ 335, 272, 215, 172, 137, |
1385 | /* 10 */ 110, 87, 70, 56, 45, |
1386 | /* 15 */ 36, 29, 23, 18, 15, |
1387 | }; |
1388 | |
1389 | /* |
1390 | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. |
1391 | * |
1392 | * In cases where the weight does not change often, we can use the |
1393 | * precalculated inverse to speed up arithmetics by turning divisions |
1394 | * into multiplications: |
1395 | */ |
1396 | static const u32 prio_to_wmult[40] = { |
1397 | /* -20 */ 48388, 59856, 76040, 92818, 118348, |
1398 | /* -15 */ 147320, 184698, 229616, 287308, 360437, |
1399 | /* -10 */ 449829, 563644, 704093, 875809, 1099582, |
1400 | /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, |
1401 | /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, |
1402 | /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, |
1403 | /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, |
1404 | /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, |
1405 | }; |
1406 | |
1407 | /* Time spent by the tasks of the cpu accounting group executing in ... */ |
1408 | enum cpuacct_stat_index { |
1409 | CPUACCT_STAT_USER, /* ... user mode */ |
1410 | CPUACCT_STAT_SYSTEM, /* ... kernel mode */ |
1411 | |
1412 | CPUACCT_STAT_NSTATS, |
1413 | }; |
1414 | |
1415 | #ifdef CONFIG_CGROUP_CPUACCT |
1416 | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); |
1417 | static void cpuacct_update_stats(struct task_struct *tsk, |
1418 | enum cpuacct_stat_index idx, cputime_t val); |
1419 | #else |
1420 | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} |
1421 | static inline void cpuacct_update_stats(struct task_struct *tsk, |
1422 | enum cpuacct_stat_index idx, cputime_t val) {} |
1423 | #endif |
1424 | |
1425 | static inline void inc_cpu_load(struct rq *rq, unsigned long load) |
1426 | { |
1427 | update_load_add(&rq->load, load); |
1428 | } |
1429 | |
1430 | static inline void dec_cpu_load(struct rq *rq, unsigned long load) |
1431 | { |
1432 | update_load_sub(&rq->load, load); |
1433 | } |
1434 | |
1435 | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) |
1436 | typedef int (*tg_visitor)(struct task_group *, void *); |
1437 | |
1438 | /* |
1439 | * Iterate the full tree, calling @down when first entering a node and @up when |
1440 | * leaving it for the final time. |
1441 | */ |
1442 | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
1443 | { |
1444 | struct task_group *parent, *child; |
1445 | int ret; |
1446 | |
1447 | rcu_read_lock(); |
1448 | parent = &root_task_group; |
1449 | down: |
1450 | ret = (*down)(parent, data); |
1451 | if (ret) |
1452 | goto out_unlock; |
1453 | list_for_each_entry_rcu(child, &parent->children, siblings) { |
1454 | parent = child; |
1455 | goto down; |
1456 | |
1457 | up: |
1458 | continue; |
1459 | } |
1460 | ret = (*up)(parent, data); |
1461 | if (ret) |
1462 | goto out_unlock; |
1463 | |
1464 | child = parent; |
1465 | parent = parent->parent; |
1466 | if (parent) |
1467 | goto up; |
1468 | out_unlock: |
1469 | rcu_read_unlock(); |
1470 | |
1471 | return ret; |
1472 | } |
1473 | |
1474 | static int tg_nop(struct task_group *tg, void *data) |
1475 | { |
1476 | return 0; |
1477 | } |
1478 | #endif |
1479 | |
1480 | #ifdef CONFIG_SMP |
1481 | /* Used instead of source_load when we know the type == 0 */ |
1482 | static unsigned long weighted_cpuload(const int cpu) |
1483 | { |
1484 | return cpu_rq(cpu)->load.weight; |
1485 | } |
1486 | |
1487 | /* |
1488 | * Return a low guess at the load of a migration-source cpu weighted |
1489 | * according to the scheduling class and "nice" value. |
1490 | * |
1491 | * We want to under-estimate the load of migration sources, to |
1492 | * balance conservatively. |
1493 | */ |
1494 | static unsigned long source_load(int cpu, int type) |
1495 | { |
1496 | struct rq *rq = cpu_rq(cpu); |
1497 | unsigned long total = weighted_cpuload(cpu); |
1498 | |
1499 | if (type == 0 || !sched_feat(LB_BIAS)) |
1500 | return total; |
1501 | |
1502 | return min(rq->cpu_load[type-1], total); |
1503 | } |
1504 | |
1505 | /* |
1506 | * Return a high guess at the load of a migration-target cpu weighted |
1507 | * according to the scheduling class and "nice" value. |
1508 | */ |
1509 | static unsigned long target_load(int cpu, int type) |
1510 | { |
1511 | struct rq *rq = cpu_rq(cpu); |
1512 | unsigned long total = weighted_cpuload(cpu); |
1513 | |
1514 | if (type == 0 || !sched_feat(LB_BIAS)) |
1515 | return total; |
1516 | |
1517 | return max(rq->cpu_load[type-1], total); |
1518 | } |
1519 | |
1520 | static unsigned long power_of(int cpu) |
1521 | { |
1522 | return cpu_rq(cpu)->cpu_power; |
1523 | } |
1524 | |
1525 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1526 | |
1527 | static unsigned long cpu_avg_load_per_task(int cpu) |
1528 | { |
1529 | struct rq *rq = cpu_rq(cpu); |
1530 | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); |
1531 | |
1532 | if (nr_running) |
1533 | rq->avg_load_per_task = rq->load.weight / nr_running; |
1534 | else |
1535 | rq->avg_load_per_task = 0; |
1536 | |
1537 | return rq->avg_load_per_task; |
1538 | } |
1539 | |
1540 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1541 | |
1542 | /* |
1543 | * Compute the cpu's hierarchical load factor for each task group. |
1544 | * This needs to be done in a top-down fashion because the load of a child |
1545 | * group is a fraction of its parents load. |
1546 | */ |
1547 | static int tg_load_down(struct task_group *tg, void *data) |
1548 | { |
1549 | unsigned long load; |
1550 | long cpu = (long)data; |
1551 | |
1552 | if (!tg->parent) { |
1553 | load = cpu_rq(cpu)->load.weight; |
1554 | } else { |
1555 | load = tg->parent->cfs_rq[cpu]->h_load; |
1556 | load *= tg->se[cpu]->load.weight; |
1557 | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; |
1558 | } |
1559 | |
1560 | tg->cfs_rq[cpu]->h_load = load; |
1561 | |
1562 | return 0; |
1563 | } |
1564 | |
1565 | static void update_h_load(long cpu) |
1566 | { |
1567 | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); |
1568 | } |
1569 | |
1570 | #endif |
1571 | |
1572 | #ifdef CONFIG_PREEMPT |
1573 | |
1574 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); |
1575 | |
1576 | /* |
1577 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1578 | * way at the expense of forcing extra atomic operations in all |
1579 | * invocations. This assures that the double_lock is acquired using the |
1580 | * same underlying policy as the spinlock_t on this architecture, which |
1581 | * reduces latency compared to the unfair variant below. However, it |
1582 | * also adds more overhead and therefore may reduce throughput. |
1583 | */ |
1584 | static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1585 | __releases(this_rq->lock) |
1586 | __acquires(busiest->lock) |
1587 | __acquires(this_rq->lock) |
1588 | { |
1589 | raw_spin_unlock(&this_rq->lock); |
1590 | double_rq_lock(this_rq, busiest); |
1591 | |
1592 | return 1; |
1593 | } |
1594 | |
1595 | #else |
1596 | /* |
1597 | * Unfair double_lock_balance: Optimizes throughput at the expense of |
1598 | * latency by eliminating extra atomic operations when the locks are |
1599 | * already in proper order on entry. This favors lower cpu-ids and will |
1600 | * grant the double lock to lower cpus over higher ids under contention, |
1601 | * regardless of entry order into the function. |
1602 | */ |
1603 | static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1604 | __releases(this_rq->lock) |
1605 | __acquires(busiest->lock) |
1606 | __acquires(this_rq->lock) |
1607 | { |
1608 | int ret = 0; |
1609 | |
1610 | if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
1611 | if (busiest < this_rq) { |
1612 | raw_spin_unlock(&this_rq->lock); |
1613 | raw_spin_lock(&busiest->lock); |
1614 | raw_spin_lock_nested(&this_rq->lock, |
1615 | SINGLE_DEPTH_NESTING); |
1616 | ret = 1; |
1617 | } else |
1618 | raw_spin_lock_nested(&busiest->lock, |
1619 | SINGLE_DEPTH_NESTING); |
1620 | } |
1621 | return ret; |
1622 | } |
1623 | |
1624 | #endif /* CONFIG_PREEMPT */ |
1625 | |
1626 | /* |
1627 | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
1628 | */ |
1629 | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
1630 | { |
1631 | if (unlikely(!irqs_disabled())) { |
1632 | /* printk() doesn't work good under rq->lock */ |
1633 | raw_spin_unlock(&this_rq->lock); |
1634 | BUG_ON(1); |
1635 | } |
1636 | |
1637 | return _double_lock_balance(this_rq, busiest); |
1638 | } |
1639 | |
1640 | static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
1641 | __releases(busiest->lock) |
1642 | { |
1643 | raw_spin_unlock(&busiest->lock); |
1644 | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
1645 | } |
1646 | |
1647 | /* |
1648 | * double_rq_lock - safely lock two runqueues |
1649 | * |
1650 | * Note this does not disable interrupts like task_rq_lock, |
1651 | * you need to do so manually before calling. |
1652 | */ |
1653 | static void double_rq_lock(struct rq *rq1, struct rq *rq2) |
1654 | __acquires(rq1->lock) |
1655 | __acquires(rq2->lock) |
1656 | { |
1657 | BUG_ON(!irqs_disabled()); |
1658 | if (rq1 == rq2) { |
1659 | raw_spin_lock(&rq1->lock); |
1660 | __acquire(rq2->lock); /* Fake it out ;) */ |
1661 | } else { |
1662 | if (rq1 < rq2) { |
1663 | raw_spin_lock(&rq1->lock); |
1664 | raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
1665 | } else { |
1666 | raw_spin_lock(&rq2->lock); |
1667 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
1668 | } |
1669 | } |
1670 | } |
1671 | |
1672 | /* |
1673 | * double_rq_unlock - safely unlock two runqueues |
1674 | * |
1675 | * Note this does not restore interrupts like task_rq_unlock, |
1676 | * you need to do so manually after calling. |
1677 | */ |
1678 | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
1679 | __releases(rq1->lock) |
1680 | __releases(rq2->lock) |
1681 | { |
1682 | raw_spin_unlock(&rq1->lock); |
1683 | if (rq1 != rq2) |
1684 | raw_spin_unlock(&rq2->lock); |
1685 | else |
1686 | __release(rq2->lock); |
1687 | } |
1688 | |
1689 | #endif |
1690 | |
1691 | static void calc_load_account_idle(struct rq *this_rq); |
1692 | static void update_sysctl(void); |
1693 | static int get_update_sysctl_factor(void); |
1694 | static void update_cpu_load(struct rq *this_rq); |
1695 | |
1696 | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
1697 | { |
1698 | set_task_rq(p, cpu); |
1699 | #ifdef CONFIG_SMP |
1700 | /* |
1701 | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
1702 | * successfuly executed on another CPU. We must ensure that updates of |
1703 | * per-task data have been completed by this moment. |
1704 | */ |
1705 | smp_wmb(); |
1706 | task_thread_info(p)->cpu = cpu; |
1707 | #endif |
1708 | } |
1709 | |
1710 | static const struct sched_class rt_sched_class; |
1711 | |
1712 | #define sched_class_highest (&stop_sched_class) |
1713 | #define for_each_class(class) \ |
1714 | for (class = sched_class_highest; class; class = class->next) |
1715 | |
1716 | #include "sched_stats.h" |
1717 | |
1718 | static void inc_nr_running(struct rq *rq) |
1719 | { |
1720 | rq->nr_running++; |
1721 | } |
1722 | |
1723 | static void dec_nr_running(struct rq *rq) |
1724 | { |
1725 | rq->nr_running--; |
1726 | } |
1727 | |
1728 | static void set_load_weight(struct task_struct *p) |
1729 | { |
1730 | /* |
1731 | * SCHED_IDLE tasks get minimal weight: |
1732 | */ |
1733 | if (p->policy == SCHED_IDLE) { |
1734 | p->se.load.weight = WEIGHT_IDLEPRIO; |
1735 | p->se.load.inv_weight = WMULT_IDLEPRIO; |
1736 | return; |
1737 | } |
1738 | |
1739 | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; |
1740 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; |
1741 | } |
1742 | |
1743 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
1744 | { |
1745 | update_rq_clock(rq); |
1746 | sched_info_queued(p); |
1747 | p->sched_class->enqueue_task(rq, p, flags); |
1748 | p->se.on_rq = 1; |
1749 | } |
1750 | |
1751 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
1752 | { |
1753 | update_rq_clock(rq); |
1754 | sched_info_dequeued(p); |
1755 | p->sched_class->dequeue_task(rq, p, flags); |
1756 | p->se.on_rq = 0; |
1757 | } |
1758 | |
1759 | /* |
1760 | * activate_task - move a task to the runqueue. |
1761 | */ |
1762 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) |
1763 | { |
1764 | if (task_contributes_to_load(p)) |
1765 | rq->nr_uninterruptible--; |
1766 | |
1767 | enqueue_task(rq, p, flags); |
1768 | inc_nr_running(rq); |
1769 | } |
1770 | |
1771 | /* |
1772 | * deactivate_task - remove a task from the runqueue. |
1773 | */ |
1774 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
1775 | { |
1776 | if (task_contributes_to_load(p)) |
1777 | rq->nr_uninterruptible++; |
1778 | |
1779 | dequeue_task(rq, p, flags); |
1780 | dec_nr_running(rq); |
1781 | } |
1782 | |
1783 | #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
1784 | |
1785 | /* |
1786 | * There are no locks covering percpu hardirq/softirq time. |
1787 | * They are only modified in account_system_vtime, on corresponding CPU |
1788 | * with interrupts disabled. So, writes are safe. |
1789 | * They are read and saved off onto struct rq in update_rq_clock(). |
1790 | * This may result in other CPU reading this CPU's irq time and can |
1791 | * race with irq/account_system_vtime on this CPU. We would either get old |
1792 | * or new value with a side effect of accounting a slice of irq time to wrong |
1793 | * task when irq is in progress while we read rq->clock. That is a worthy |
1794 | * compromise in place of having locks on each irq in account_system_time. |
1795 | */ |
1796 | static DEFINE_PER_CPU(u64, cpu_hardirq_time); |
1797 | static DEFINE_PER_CPU(u64, cpu_softirq_time); |
1798 | |
1799 | static DEFINE_PER_CPU(u64, irq_start_time); |
1800 | static int sched_clock_irqtime; |
1801 | |
1802 | void enable_sched_clock_irqtime(void) |
1803 | { |
1804 | sched_clock_irqtime = 1; |
1805 | } |
1806 | |
1807 | void disable_sched_clock_irqtime(void) |
1808 | { |
1809 | sched_clock_irqtime = 0; |
1810 | } |
1811 | |
1812 | #ifndef CONFIG_64BIT |
1813 | static DEFINE_PER_CPU(seqcount_t, irq_time_seq); |
1814 | |
1815 | static inline void irq_time_write_begin(void) |
1816 | { |
1817 | __this_cpu_inc(irq_time_seq.sequence); |
1818 | smp_wmb(); |
1819 | } |
1820 | |
1821 | static inline void irq_time_write_end(void) |
1822 | { |
1823 | smp_wmb(); |
1824 | __this_cpu_inc(irq_time_seq.sequence); |
1825 | } |
1826 | |
1827 | static inline u64 irq_time_read(int cpu) |
1828 | { |
1829 | u64 irq_time; |
1830 | unsigned seq; |
1831 | |
1832 | do { |
1833 | seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu)); |
1834 | irq_time = per_cpu(cpu_softirq_time, cpu) + |
1835 | per_cpu(cpu_hardirq_time, cpu); |
1836 | } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq)); |
1837 | |
1838 | return irq_time; |
1839 | } |
1840 | #else /* CONFIG_64BIT */ |
1841 | static inline void irq_time_write_begin(void) |
1842 | { |
1843 | } |
1844 | |
1845 | static inline void irq_time_write_end(void) |
1846 | { |
1847 | } |
1848 | |
1849 | static inline u64 irq_time_read(int cpu) |
1850 | { |
1851 | return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu); |
1852 | } |
1853 | #endif /* CONFIG_64BIT */ |
1854 | |
1855 | /* |
1856 | * Called before incrementing preempt_count on {soft,}irq_enter |
1857 | * and before decrementing preempt_count on {soft,}irq_exit. |
1858 | */ |
1859 | void account_system_vtime(struct task_struct *curr) |
1860 | { |
1861 | unsigned long flags; |
1862 | s64 delta; |
1863 | int cpu; |
1864 | |
1865 | if (!sched_clock_irqtime) |
1866 | return; |
1867 | |
1868 | local_irq_save(flags); |
1869 | |
1870 | cpu = smp_processor_id(); |
1871 | delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time); |
1872 | __this_cpu_add(irq_start_time, delta); |
1873 | |
1874 | irq_time_write_begin(); |
1875 | /* |
1876 | * We do not account for softirq time from ksoftirqd here. |
1877 | * We want to continue accounting softirq time to ksoftirqd thread |
1878 | * in that case, so as not to confuse scheduler with a special task |
1879 | * that do not consume any time, but still wants to run. |
1880 | */ |
1881 | if (hardirq_count()) |
1882 | __this_cpu_add(cpu_hardirq_time, delta); |
1883 | else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD)) |
1884 | __this_cpu_add(cpu_softirq_time, delta); |
1885 | |
1886 | irq_time_write_end(); |
1887 | local_irq_restore(flags); |
1888 | } |
1889 | EXPORT_SYMBOL_GPL(account_system_vtime); |
1890 | |
1891 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
1892 | { |
1893 | s64 irq_delta; |
1894 | |
1895 | irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; |
1896 | |
1897 | /* |
1898 | * Since irq_time is only updated on {soft,}irq_exit, we might run into |
1899 | * this case when a previous update_rq_clock() happened inside a |
1900 | * {soft,}irq region. |
1901 | * |
1902 | * When this happens, we stop ->clock_task and only update the |
1903 | * prev_irq_time stamp to account for the part that fit, so that a next |
1904 | * update will consume the rest. This ensures ->clock_task is |
1905 | * monotonic. |
1906 | * |
1907 | * It does however cause some slight miss-attribution of {soft,}irq |
1908 | * time, a more accurate solution would be to update the irq_time using |
1909 | * the current rq->clock timestamp, except that would require using |
1910 | * atomic ops. |
1911 | */ |
1912 | if (irq_delta > delta) |
1913 | irq_delta = delta; |
1914 | |
1915 | rq->prev_irq_time += irq_delta; |
1916 | delta -= irq_delta; |
1917 | rq->clock_task += delta; |
1918 | |
1919 | if (irq_delta && sched_feat(NONIRQ_POWER)) |
1920 | sched_rt_avg_update(rq, irq_delta); |
1921 | } |
1922 | |
1923 | #else /* CONFIG_IRQ_TIME_ACCOUNTING */ |
1924 | |
1925 | static void update_rq_clock_task(struct rq *rq, s64 delta) |
1926 | { |
1927 | rq->clock_task += delta; |
1928 | } |
1929 | |
1930 | #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
1931 | |
1932 | #include "sched_idletask.c" |
1933 | #include "sched_fair.c" |
1934 | #include "sched_rt.c" |
1935 | #include "sched_autogroup.c" |
1936 | #include "sched_stoptask.c" |
1937 | #ifdef CONFIG_SCHED_DEBUG |
1938 | # include "sched_debug.c" |
1939 | #endif |
1940 | |
1941 | void sched_set_stop_task(int cpu, struct task_struct *stop) |
1942 | { |
1943 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; |
1944 | struct task_struct *old_stop = cpu_rq(cpu)->stop; |
1945 | |
1946 | if (stop) { |
1947 | /* |
1948 | * Make it appear like a SCHED_FIFO task, its something |
1949 | * userspace knows about and won't get confused about. |
1950 | * |
1951 | * Also, it will make PI more or less work without too |
1952 | * much confusion -- but then, stop work should not |
1953 | * rely on PI working anyway. |
1954 | */ |
1955 | sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); |
1956 | |
1957 | stop->sched_class = &stop_sched_class; |
1958 | } |
1959 | |
1960 | cpu_rq(cpu)->stop = stop; |
1961 | |
1962 | if (old_stop) { |
1963 | /* |
1964 | * Reset it back to a normal scheduling class so that |
1965 | * it can die in pieces. |
1966 | */ |
1967 | old_stop->sched_class = &rt_sched_class; |
1968 | } |
1969 | } |
1970 | |
1971 | /* |
1972 | * __normal_prio - return the priority that is based on the static prio |
1973 | */ |
1974 | static inline int __normal_prio(struct task_struct *p) |
1975 | { |
1976 | return p->static_prio; |
1977 | } |
1978 | |
1979 | /* |
1980 | * Calculate the expected normal priority: i.e. priority |
1981 | * without taking RT-inheritance into account. Might be |
1982 | * boosted by interactivity modifiers. Changes upon fork, |
1983 | * setprio syscalls, and whenever the interactivity |
1984 | * estimator recalculates. |
1985 | */ |
1986 | static inline int normal_prio(struct task_struct *p) |
1987 | { |
1988 | int prio; |
1989 | |
1990 | if (task_has_rt_policy(p)) |
1991 | prio = MAX_RT_PRIO-1 - p->rt_priority; |
1992 | else |
1993 | prio = __normal_prio(p); |
1994 | return prio; |
1995 | } |
1996 | |
1997 | /* |
1998 | * Calculate the current priority, i.e. the priority |
1999 | * taken into account by the scheduler. This value might |
2000 | * be boosted by RT tasks, or might be boosted by |
2001 | * interactivity modifiers. Will be RT if the task got |
2002 | * RT-boosted. If not then it returns p->normal_prio. |
2003 | */ |
2004 | static int effective_prio(struct task_struct *p) |
2005 | { |
2006 | p->normal_prio = normal_prio(p); |
2007 | /* |
2008 | * If we are RT tasks or we were boosted to RT priority, |
2009 | * keep the priority unchanged. Otherwise, update priority |
2010 | * to the normal priority: |
2011 | */ |
2012 | if (!rt_prio(p->prio)) |
2013 | return p->normal_prio; |
2014 | return p->prio; |
2015 | } |
2016 | |
2017 | /** |
2018 | * task_curr - is this task currently executing on a CPU? |
2019 | * @p: the task in question. |
2020 | */ |
2021 | inline int task_curr(const struct task_struct *p) |
2022 | { |
2023 | return cpu_curr(task_cpu(p)) == p; |
2024 | } |
2025 | |
2026 | static inline void check_class_changed(struct rq *rq, struct task_struct *p, |
2027 | const struct sched_class *prev_class, |
2028 | int oldprio, int running) |
2029 | { |
2030 | if (prev_class != p->sched_class) { |
2031 | if (prev_class->switched_from) |
2032 | prev_class->switched_from(rq, p, running); |
2033 | p->sched_class->switched_to(rq, p, running); |
2034 | } else |
2035 | p->sched_class->prio_changed(rq, p, oldprio, running); |
2036 | } |
2037 | |
2038 | static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
2039 | { |
2040 | const struct sched_class *class; |
2041 | |
2042 | if (p->sched_class == rq->curr->sched_class) { |
2043 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
2044 | } else { |
2045 | for_each_class(class) { |
2046 | if (class == rq->curr->sched_class) |
2047 | break; |
2048 | if (class == p->sched_class) { |
2049 | resched_task(rq->curr); |
2050 | break; |
2051 | } |
2052 | } |
2053 | } |
2054 | |
2055 | /* |
2056 | * A queue event has occurred, and we're going to schedule. In |
2057 | * this case, we can save a useless back to back clock update. |
2058 | */ |
2059 | if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr)) |
2060 | rq->skip_clock_update = 1; |
2061 | } |
2062 | |
2063 | #ifdef CONFIG_SMP |
2064 | /* |
2065 | * Is this task likely cache-hot: |
2066 | */ |
2067 | static int |
2068 | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) |
2069 | { |
2070 | s64 delta; |
2071 | |
2072 | if (p->sched_class != &fair_sched_class) |
2073 | return 0; |
2074 | |
2075 | if (unlikely(p->policy == SCHED_IDLE)) |
2076 | return 0; |
2077 | |
2078 | /* |
2079 | * Buddy candidates are cache hot: |
2080 | */ |
2081 | if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && |
2082 | (&p->se == cfs_rq_of(&p->se)->next || |
2083 | &p->se == cfs_rq_of(&p->se)->last)) |
2084 | return 1; |
2085 | |
2086 | if (sysctl_sched_migration_cost == -1) |
2087 | return 1; |
2088 | if (sysctl_sched_migration_cost == 0) |
2089 | return 0; |
2090 | |
2091 | delta = now - p->se.exec_start; |
2092 | |
2093 | return delta < (s64)sysctl_sched_migration_cost; |
2094 | } |
2095 | |
2096 | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) |
2097 | { |
2098 | #ifdef CONFIG_SCHED_DEBUG |
2099 | /* |
2100 | * We should never call set_task_cpu() on a blocked task, |
2101 | * ttwu() will sort out the placement. |
2102 | */ |
2103 | WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && |
2104 | !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); |
2105 | #endif |
2106 | |
2107 | trace_sched_migrate_task(p, new_cpu); |
2108 | |
2109 | if (task_cpu(p) != new_cpu) { |
2110 | p->se.nr_migrations++; |
2111 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0); |
2112 | } |
2113 | |
2114 | __set_task_cpu(p, new_cpu); |
2115 | } |
2116 | |
2117 | struct migration_arg { |
2118 | struct task_struct *task; |
2119 | int dest_cpu; |
2120 | }; |
2121 | |
2122 | static int migration_cpu_stop(void *data); |
2123 | |
2124 | /* |
2125 | * The task's runqueue lock must be held. |
2126 | * Returns true if you have to wait for migration thread. |
2127 | */ |
2128 | static bool migrate_task(struct task_struct *p, struct rq *rq) |
2129 | { |
2130 | /* |
2131 | * If the task is not on a runqueue (and not running), then |
2132 | * the next wake-up will properly place the task. |
2133 | */ |
2134 | return p->se.on_rq || task_running(rq, p); |
2135 | } |
2136 | |
2137 | /* |
2138 | * wait_task_inactive - wait for a thread to unschedule. |
2139 | * |
2140 | * If @match_state is nonzero, it's the @p->state value just checked and |
2141 | * not expected to change. If it changes, i.e. @p might have woken up, |
2142 | * then return zero. When we succeed in waiting for @p to be off its CPU, |
2143 | * we return a positive number (its total switch count). If a second call |
2144 | * a short while later returns the same number, the caller can be sure that |
2145 | * @p has remained unscheduled the whole time. |
2146 | * |
2147 | * The caller must ensure that the task *will* unschedule sometime soon, |
2148 | * else this function might spin for a *long* time. This function can't |
2149 | * be called with interrupts off, or it may introduce deadlock with |
2150 | * smp_call_function() if an IPI is sent by the same process we are |
2151 | * waiting to become inactive. |
2152 | */ |
2153 | unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
2154 | { |
2155 | unsigned long flags; |
2156 | int running, on_rq; |
2157 | unsigned long ncsw; |
2158 | struct rq *rq; |
2159 | |
2160 | for (;;) { |
2161 | /* |
2162 | * We do the initial early heuristics without holding |
2163 | * any task-queue locks at all. We'll only try to get |
2164 | * the runqueue lock when things look like they will |
2165 | * work out! |
2166 | */ |
2167 | rq = task_rq(p); |
2168 | |
2169 | /* |
2170 | * If the task is actively running on another CPU |
2171 | * still, just relax and busy-wait without holding |
2172 | * any locks. |
2173 | * |
2174 | * NOTE! Since we don't hold any locks, it's not |
2175 | * even sure that "rq" stays as the right runqueue! |
2176 | * But we don't care, since "task_running()" will |
2177 | * return false if the runqueue has changed and p |
2178 | * is actually now running somewhere else! |
2179 | */ |
2180 | while (task_running(rq, p)) { |
2181 | if (match_state && unlikely(p->state != match_state)) |
2182 | return 0; |
2183 | cpu_relax(); |
2184 | } |
2185 | |
2186 | /* |
2187 | * Ok, time to look more closely! We need the rq |
2188 | * lock now, to be *sure*. If we're wrong, we'll |
2189 | * just go back and repeat. |
2190 | */ |
2191 | rq = task_rq_lock(p, &flags); |
2192 | trace_sched_wait_task(p); |
2193 | running = task_running(rq, p); |
2194 | on_rq = p->se.on_rq; |
2195 | ncsw = 0; |
2196 | if (!match_state || p->state == match_state) |
2197 | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ |
2198 | task_rq_unlock(rq, &flags); |
2199 | |
2200 | /* |
2201 | * If it changed from the expected state, bail out now. |
2202 | */ |
2203 | if (unlikely(!ncsw)) |
2204 | break; |
2205 | |
2206 | /* |
2207 | * Was it really running after all now that we |
2208 | * checked with the proper locks actually held? |
2209 | * |
2210 | * Oops. Go back and try again.. |
2211 | */ |
2212 | if (unlikely(running)) { |
2213 | cpu_relax(); |
2214 | continue; |
2215 | } |
2216 | |
2217 | /* |
2218 | * It's not enough that it's not actively running, |
2219 | * it must be off the runqueue _entirely_, and not |
2220 | * preempted! |
2221 | * |
2222 | * So if it was still runnable (but just not actively |
2223 | * running right now), it's preempted, and we should |
2224 | * yield - it could be a while. |
2225 | */ |
2226 | if (unlikely(on_rq)) { |
2227 | schedule_timeout_uninterruptible(1); |
2228 | continue; |
2229 | } |
2230 | |
2231 | /* |
2232 | * Ahh, all good. It wasn't running, and it wasn't |
2233 | * runnable, which means that it will never become |
2234 | * running in the future either. We're all done! |
2235 | */ |
2236 | break; |
2237 | } |
2238 | |
2239 | return ncsw; |
2240 | } |
2241 | |
2242 | /*** |
2243 | * kick_process - kick a running thread to enter/exit the kernel |
2244 | * @p: the to-be-kicked thread |
2245 | * |
2246 | * Cause a process which is running on another CPU to enter |
2247 | * kernel-mode, without any delay. (to get signals handled.) |
2248 | * |
2249 | * NOTE: this function doesnt have to take the runqueue lock, |
2250 | * because all it wants to ensure is that the remote task enters |
2251 | * the kernel. If the IPI races and the task has been migrated |
2252 | * to another CPU then no harm is done and the purpose has been |
2253 | * achieved as well. |
2254 | */ |
2255 | void kick_process(struct task_struct *p) |
2256 | { |
2257 | int cpu; |
2258 | |
2259 | preempt_disable(); |
2260 | cpu = task_cpu(p); |
2261 | if ((cpu != smp_processor_id()) && task_curr(p)) |
2262 | smp_send_reschedule(cpu); |
2263 | preempt_enable(); |
2264 | } |
2265 | EXPORT_SYMBOL_GPL(kick_process); |
2266 | #endif /* CONFIG_SMP */ |
2267 | |
2268 | /** |
2269 | * task_oncpu_function_call - call a function on the cpu on which a task runs |
2270 | * @p: the task to evaluate |
2271 | * @func: the function to be called |
2272 | * @info: the function call argument |
2273 | * |
2274 | * Calls the function @func when the task is currently running. This might |
2275 | * be on the current CPU, which just calls the function directly |
2276 | */ |
2277 | void task_oncpu_function_call(struct task_struct *p, |
2278 | void (*func) (void *info), void *info) |
2279 | { |
2280 | int cpu; |
2281 | |
2282 | preempt_disable(); |
2283 | cpu = task_cpu(p); |
2284 | if (task_curr(p)) |
2285 | smp_call_function_single(cpu, func, info, 1); |
2286 | preempt_enable(); |
2287 | } |
2288 | |
2289 | #ifdef CONFIG_SMP |
2290 | /* |
2291 | * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. |
2292 | */ |
2293 | static int select_fallback_rq(int cpu, struct task_struct *p) |
2294 | { |
2295 | int dest_cpu; |
2296 | const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu)); |
2297 | |
2298 | /* Look for allowed, online CPU in same node. */ |
2299 | for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask) |
2300 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
2301 | return dest_cpu; |
2302 | |
2303 | /* Any allowed, online CPU? */ |
2304 | dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask); |
2305 | if (dest_cpu < nr_cpu_ids) |
2306 | return dest_cpu; |
2307 | |
2308 | /* No more Mr. Nice Guy. */ |
2309 | dest_cpu = cpuset_cpus_allowed_fallback(p); |
2310 | /* |
2311 | * Don't tell them about moving exiting tasks or |
2312 | * kernel threads (both mm NULL), since they never |
2313 | * leave kernel. |
2314 | */ |
2315 | if (p->mm && printk_ratelimit()) { |
2316 | printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n", |
2317 | task_pid_nr(p), p->comm, cpu); |
2318 | } |
2319 | |
2320 | return dest_cpu; |
2321 | } |
2322 | |
2323 | /* |
2324 | * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. |
2325 | */ |
2326 | static inline |
2327 | int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) |
2328 | { |
2329 | int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); |
2330 | |
2331 | /* |
2332 | * In order not to call set_task_cpu() on a blocking task we need |
2333 | * to rely on ttwu() to place the task on a valid ->cpus_allowed |
2334 | * cpu. |
2335 | * |
2336 | * Since this is common to all placement strategies, this lives here. |
2337 | * |
2338 | * [ this allows ->select_task() to simply return task_cpu(p) and |
2339 | * not worry about this generic constraint ] |
2340 | */ |
2341 | if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) || |
2342 | !cpu_online(cpu))) |
2343 | cpu = select_fallback_rq(task_cpu(p), p); |
2344 | |
2345 | return cpu; |
2346 | } |
2347 | |
2348 | static void update_avg(u64 *avg, u64 sample) |
2349 | { |
2350 | s64 diff = sample - *avg; |
2351 | *avg += diff >> 3; |
2352 | } |
2353 | #endif |
2354 | |
2355 | static inline void ttwu_activate(struct task_struct *p, struct rq *rq, |
2356 | bool is_sync, bool is_migrate, bool is_local, |
2357 | unsigned long en_flags) |
2358 | { |
2359 | schedstat_inc(p, se.statistics.nr_wakeups); |
2360 | if (is_sync) |
2361 | schedstat_inc(p, se.statistics.nr_wakeups_sync); |
2362 | if (is_migrate) |
2363 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); |
2364 | if (is_local) |
2365 | schedstat_inc(p, se.statistics.nr_wakeups_local); |
2366 | else |
2367 | schedstat_inc(p, se.statistics.nr_wakeups_remote); |
2368 | |
2369 | activate_task(rq, p, en_flags); |
2370 | } |
2371 | |
2372 | static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq, |
2373 | int wake_flags, bool success) |
2374 | { |
2375 | trace_sched_wakeup(p, success); |
2376 | check_preempt_curr(rq, p, wake_flags); |
2377 | |
2378 | p->state = TASK_RUNNING; |
2379 | #ifdef CONFIG_SMP |
2380 | if (p->sched_class->task_woken) |
2381 | p->sched_class->task_woken(rq, p); |
2382 | |
2383 | if (unlikely(rq->idle_stamp)) { |
2384 | u64 delta = rq->clock - rq->idle_stamp; |
2385 | u64 max = 2*sysctl_sched_migration_cost; |
2386 | |
2387 | if (delta > max) |
2388 | rq->avg_idle = max; |
2389 | else |
2390 | update_avg(&rq->avg_idle, delta); |
2391 | rq->idle_stamp = 0; |
2392 | } |
2393 | #endif |
2394 | /* if a worker is waking up, notify workqueue */ |
2395 | if ((p->flags & PF_WQ_WORKER) && success) |
2396 | wq_worker_waking_up(p, cpu_of(rq)); |
2397 | } |
2398 | |
2399 | /** |
2400 | * try_to_wake_up - wake up a thread |
2401 | * @p: the thread to be awakened |
2402 | * @state: the mask of task states that can be woken |
2403 | * @wake_flags: wake modifier flags (WF_*) |
2404 | * |
2405 | * Put it on the run-queue if it's not already there. The "current" |
2406 | * thread is always on the run-queue (except when the actual |
2407 | * re-schedule is in progress), and as such you're allowed to do |
2408 | * the simpler "current->state = TASK_RUNNING" to mark yourself |
2409 | * runnable without the overhead of this. |
2410 | * |
2411 | * Returns %true if @p was woken up, %false if it was already running |
2412 | * or @state didn't match @p's state. |
2413 | */ |
2414 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
2415 | int wake_flags) |
2416 | { |
2417 | int cpu, orig_cpu, this_cpu, success = 0; |
2418 | unsigned long flags; |
2419 | unsigned long en_flags = ENQUEUE_WAKEUP; |
2420 | struct rq *rq; |
2421 | |
2422 | this_cpu = get_cpu(); |
2423 | |
2424 | smp_wmb(); |
2425 | rq = task_rq_lock(p, &flags); |
2426 | if (!(p->state & state)) |
2427 | goto out; |
2428 | |
2429 | if (p->se.on_rq) |
2430 | goto out_running; |
2431 | |
2432 | cpu = task_cpu(p); |
2433 | orig_cpu = cpu; |
2434 | |
2435 | #ifdef CONFIG_SMP |
2436 | if (unlikely(task_running(rq, p))) |
2437 | goto out_activate; |
2438 | |
2439 | /* |
2440 | * In order to handle concurrent wakeups and release the rq->lock |
2441 | * we put the task in TASK_WAKING state. |
2442 | * |
2443 | * First fix up the nr_uninterruptible count: |
2444 | */ |
2445 | if (task_contributes_to_load(p)) { |
2446 | if (likely(cpu_online(orig_cpu))) |
2447 | rq->nr_uninterruptible--; |
2448 | else |
2449 | this_rq()->nr_uninterruptible--; |
2450 | } |
2451 | p->state = TASK_WAKING; |
2452 | |
2453 | if (p->sched_class->task_waking) { |
2454 | p->sched_class->task_waking(rq, p); |
2455 | en_flags |= ENQUEUE_WAKING; |
2456 | } |
2457 | |
2458 | cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); |
2459 | if (cpu != orig_cpu) |
2460 | set_task_cpu(p, cpu); |
2461 | __task_rq_unlock(rq); |
2462 | |
2463 | rq = cpu_rq(cpu); |
2464 | raw_spin_lock(&rq->lock); |
2465 | |
2466 | /* |
2467 | * We migrated the task without holding either rq->lock, however |
2468 | * since the task is not on the task list itself, nobody else |
2469 | * will try and migrate the task, hence the rq should match the |
2470 | * cpu we just moved it to. |
2471 | */ |
2472 | WARN_ON(task_cpu(p) != cpu); |
2473 | WARN_ON(p->state != TASK_WAKING); |
2474 | |
2475 | #ifdef CONFIG_SCHEDSTATS |
2476 | schedstat_inc(rq, ttwu_count); |
2477 | if (cpu == this_cpu) |
2478 | schedstat_inc(rq, ttwu_local); |
2479 | else { |
2480 | struct sched_domain *sd; |
2481 | for_each_domain(this_cpu, sd) { |
2482 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
2483 | schedstat_inc(sd, ttwu_wake_remote); |
2484 | break; |
2485 | } |
2486 | } |
2487 | } |
2488 | #endif /* CONFIG_SCHEDSTATS */ |
2489 | |
2490 | out_activate: |
2491 | #endif /* CONFIG_SMP */ |
2492 | ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu, |
2493 | cpu == this_cpu, en_flags); |
2494 | success = 1; |
2495 | out_running: |
2496 | ttwu_post_activation(p, rq, wake_flags, success); |
2497 | out: |
2498 | task_rq_unlock(rq, &flags); |
2499 | put_cpu(); |
2500 | |
2501 | return success; |
2502 | } |
2503 | |
2504 | /** |
2505 | * try_to_wake_up_local - try to wake up a local task with rq lock held |
2506 | * @p: the thread to be awakened |
2507 | * |
2508 | * Put @p on the run-queue if it's not already there. The caller must |
2509 | * ensure that this_rq() is locked, @p is bound to this_rq() and not |
2510 | * the current task. this_rq() stays locked over invocation. |
2511 | */ |
2512 | static void try_to_wake_up_local(struct task_struct *p) |
2513 | { |
2514 | struct rq *rq = task_rq(p); |
2515 | bool success = false; |
2516 | |
2517 | BUG_ON(rq != this_rq()); |
2518 | BUG_ON(p == current); |
2519 | lockdep_assert_held(&rq->lock); |
2520 | |
2521 | if (!(p->state & TASK_NORMAL)) |
2522 | return; |
2523 | |
2524 | if (!p->se.on_rq) { |
2525 | if (likely(!task_running(rq, p))) { |
2526 | schedstat_inc(rq, ttwu_count); |
2527 | schedstat_inc(rq, ttwu_local); |
2528 | } |
2529 | ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP); |
2530 | success = true; |
2531 | } |
2532 | ttwu_post_activation(p, rq, 0, success); |
2533 | } |
2534 | |
2535 | /** |
2536 | * wake_up_process - Wake up a specific process |
2537 | * @p: The process to be woken up. |
2538 | * |
2539 | * Attempt to wake up the nominated process and move it to the set of runnable |
2540 | * processes. Returns 1 if the process was woken up, 0 if it was already |
2541 | * running. |
2542 | * |
2543 | * It may be assumed that this function implies a write memory barrier before |
2544 | * changing the task state if and only if any tasks are woken up. |
2545 | */ |
2546 | int wake_up_process(struct task_struct *p) |
2547 | { |
2548 | return try_to_wake_up(p, TASK_ALL, 0); |
2549 | } |
2550 | EXPORT_SYMBOL(wake_up_process); |
2551 | |
2552 | int wake_up_state(struct task_struct *p, unsigned int state) |
2553 | { |
2554 | return try_to_wake_up(p, state, 0); |
2555 | } |
2556 | |
2557 | /* |
2558 | * Perform scheduler related setup for a newly forked process p. |
2559 | * p is forked by current. |
2560 | * |
2561 | * __sched_fork() is basic setup used by init_idle() too: |
2562 | */ |
2563 | static void __sched_fork(struct task_struct *p) |
2564 | { |
2565 | p->se.exec_start = 0; |
2566 | p->se.sum_exec_runtime = 0; |
2567 | p->se.prev_sum_exec_runtime = 0; |
2568 | p->se.nr_migrations = 0; |
2569 | |
2570 | #ifdef CONFIG_SCHEDSTATS |
2571 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
2572 | #endif |
2573 | |
2574 | INIT_LIST_HEAD(&p->rt.run_list); |
2575 | p->se.on_rq = 0; |
2576 | INIT_LIST_HEAD(&p->se.group_node); |
2577 | |
2578 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2579 | INIT_HLIST_HEAD(&p->preempt_notifiers); |
2580 | #endif |
2581 | } |
2582 | |
2583 | /* |
2584 | * fork()/clone()-time setup: |
2585 | */ |
2586 | void sched_fork(struct task_struct *p, int clone_flags) |
2587 | { |
2588 | int cpu = get_cpu(); |
2589 | |
2590 | __sched_fork(p); |
2591 | /* |
2592 | * We mark the process as running here. This guarantees that |
2593 | * nobody will actually run it, and a signal or other external |
2594 | * event cannot wake it up and insert it on the runqueue either. |
2595 | */ |
2596 | p->state = TASK_RUNNING; |
2597 | |
2598 | /* |
2599 | * Revert to default priority/policy on fork if requested. |
2600 | */ |
2601 | if (unlikely(p->sched_reset_on_fork)) { |
2602 | if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) { |
2603 | p->policy = SCHED_NORMAL; |
2604 | p->normal_prio = p->static_prio; |
2605 | } |
2606 | |
2607 | if (PRIO_TO_NICE(p->static_prio) < 0) { |
2608 | p->static_prio = NICE_TO_PRIO(0); |
2609 | p->normal_prio = p->static_prio; |
2610 | set_load_weight(p); |
2611 | } |
2612 | |
2613 | /* |
2614 | * We don't need the reset flag anymore after the fork. It has |
2615 | * fulfilled its duty: |
2616 | */ |
2617 | p->sched_reset_on_fork = 0; |
2618 | } |
2619 | |
2620 | /* |
2621 | * Make sure we do not leak PI boosting priority to the child. |
2622 | */ |
2623 | p->prio = current->normal_prio; |
2624 | |
2625 | if (!rt_prio(p->prio)) |
2626 | p->sched_class = &fair_sched_class; |
2627 | |
2628 | if (p->sched_class->task_fork) |
2629 | p->sched_class->task_fork(p); |
2630 | |
2631 | /* |
2632 | * The child is not yet in the pid-hash so no cgroup attach races, |
2633 | * and the cgroup is pinned to this child due to cgroup_fork() |
2634 | * is ran before sched_fork(). |
2635 | * |
2636 | * Silence PROVE_RCU. |
2637 | */ |
2638 | rcu_read_lock(); |
2639 | set_task_cpu(p, cpu); |
2640 | rcu_read_unlock(); |
2641 | |
2642 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
2643 | if (likely(sched_info_on())) |
2644 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
2645 | #endif |
2646 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
2647 | p->oncpu = 0; |
2648 | #endif |
2649 | #ifdef CONFIG_PREEMPT |
2650 | /* Want to start with kernel preemption disabled. */ |
2651 | task_thread_info(p)->preempt_count = 1; |
2652 | #endif |
2653 | #ifdef CONFIG_SMP |
2654 | plist_node_init(&p->pushable_tasks, MAX_PRIO); |
2655 | #endif |
2656 | |
2657 | put_cpu(); |
2658 | } |
2659 | |
2660 | /* |
2661 | * wake_up_new_task - wake up a newly created task for the first time. |
2662 | * |
2663 | * This function will do some initial scheduler statistics housekeeping |
2664 | * that must be done for every newly created context, then puts the task |
2665 | * on the runqueue and wakes it. |
2666 | */ |
2667 | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) |
2668 | { |
2669 | unsigned long flags; |
2670 | struct rq *rq; |
2671 | int cpu __maybe_unused = get_cpu(); |
2672 | |
2673 | #ifdef CONFIG_SMP |
2674 | rq = task_rq_lock(p, &flags); |
2675 | p->state = TASK_WAKING; |
2676 | |
2677 | /* |
2678 | * Fork balancing, do it here and not earlier because: |
2679 | * - cpus_allowed can change in the fork path |
2680 | * - any previously selected cpu might disappear through hotplug |
2681 | * |
2682 | * We set TASK_WAKING so that select_task_rq() can drop rq->lock |
2683 | * without people poking at ->cpus_allowed. |
2684 | */ |
2685 | cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); |
2686 | set_task_cpu(p, cpu); |
2687 | |
2688 | p->state = TASK_RUNNING; |
2689 | task_rq_unlock(rq, &flags); |
2690 | #endif |
2691 | |
2692 | rq = task_rq_lock(p, &flags); |
2693 | activate_task(rq, p, 0); |
2694 | trace_sched_wakeup_new(p, 1); |
2695 | check_preempt_curr(rq, p, WF_FORK); |
2696 | #ifdef CONFIG_SMP |
2697 | if (p->sched_class->task_woken) |
2698 | p->sched_class->task_woken(rq, p); |
2699 | #endif |
2700 | task_rq_unlock(rq, &flags); |
2701 | put_cpu(); |
2702 | } |
2703 | |
2704 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
2705 | |
2706 | /** |
2707 | * preempt_notifier_register - tell me when current is being preempted & rescheduled |
2708 | * @notifier: notifier struct to register |
2709 | */ |
2710 | void preempt_notifier_register(struct preempt_notifier *notifier) |
2711 | { |
2712 | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); |
2713 | } |
2714 | EXPORT_SYMBOL_GPL(preempt_notifier_register); |
2715 | |
2716 | /** |
2717 | * preempt_notifier_unregister - no longer interested in preemption notifications |
2718 | * @notifier: notifier struct to unregister |
2719 | * |
2720 | * This is safe to call from within a preemption notifier. |
2721 | */ |
2722 | void preempt_notifier_unregister(struct preempt_notifier *notifier) |
2723 | { |
2724 | hlist_del(¬ifier->link); |
2725 | } |
2726 | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); |
2727 | |
2728 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
2729 | { |
2730 | struct preempt_notifier *notifier; |
2731 | struct hlist_node *node; |
2732 | |
2733 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
2734 | notifier->ops->sched_in(notifier, raw_smp_processor_id()); |
2735 | } |
2736 | |
2737 | static void |
2738 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
2739 | struct task_struct *next) |
2740 | { |
2741 | struct preempt_notifier *notifier; |
2742 | struct hlist_node *node; |
2743 | |
2744 | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) |
2745 | notifier->ops->sched_out(notifier, next); |
2746 | } |
2747 | |
2748 | #else /* !CONFIG_PREEMPT_NOTIFIERS */ |
2749 | |
2750 | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) |
2751 | { |
2752 | } |
2753 | |
2754 | static void |
2755 | fire_sched_out_preempt_notifiers(struct task_struct *curr, |
2756 | struct task_struct *next) |
2757 | { |
2758 | } |
2759 | |
2760 | #endif /* CONFIG_PREEMPT_NOTIFIERS */ |
2761 | |
2762 | /** |
2763 | * prepare_task_switch - prepare to switch tasks |
2764 | * @rq: the runqueue preparing to switch |
2765 | * @prev: the current task that is being switched out |
2766 | * @next: the task we are going to switch to. |
2767 | * |
2768 | * This is called with the rq lock held and interrupts off. It must |
2769 | * be paired with a subsequent finish_task_switch after the context |
2770 | * switch. |
2771 | * |
2772 | * prepare_task_switch sets up locking and calls architecture specific |
2773 | * hooks. |
2774 | */ |
2775 | static inline void |
2776 | prepare_task_switch(struct rq *rq, struct task_struct *prev, |
2777 | struct task_struct *next) |
2778 | { |
2779 | fire_sched_out_preempt_notifiers(prev, next); |
2780 | prepare_lock_switch(rq, next); |
2781 | prepare_arch_switch(next); |
2782 | } |
2783 | |
2784 | /** |
2785 | * finish_task_switch - clean up after a task-switch |
2786 | * @rq: runqueue associated with task-switch |
2787 | * @prev: the thread we just switched away from. |
2788 | * |
2789 | * finish_task_switch must be called after the context switch, paired |
2790 | * with a prepare_task_switch call before the context switch. |
2791 | * finish_task_switch will reconcile locking set up by prepare_task_switch, |
2792 | * and do any other architecture-specific cleanup actions. |
2793 | * |
2794 | * Note that we may have delayed dropping an mm in context_switch(). If |
2795 | * so, we finish that here outside of the runqueue lock. (Doing it |
2796 | * with the lock held can cause deadlocks; see schedule() for |
2797 | * details.) |
2798 | */ |
2799 | static void finish_task_switch(struct rq *rq, struct task_struct *prev) |
2800 | __releases(rq->lock) |
2801 | { |
2802 | struct mm_struct *mm = rq->prev_mm; |
2803 | long prev_state; |
2804 | |
2805 | rq->prev_mm = NULL; |
2806 | |
2807 | /* |
2808 | * A task struct has one reference for the use as "current". |
2809 | * If a task dies, then it sets TASK_DEAD in tsk->state and calls |
2810 | * schedule one last time. The schedule call will never return, and |
2811 | * the scheduled task must drop that reference. |
2812 | * The test for TASK_DEAD must occur while the runqueue locks are |
2813 | * still held, otherwise prev could be scheduled on another cpu, die |
2814 | * there before we look at prev->state, and then the reference would |
2815 | * be dropped twice. |
2816 | * Manfred Spraul <manfred@colorfullife.com> |
2817 | */ |
2818 | prev_state = prev->state; |
2819 | finish_arch_switch(prev); |
2820 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2821 | local_irq_disable(); |
2822 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
2823 | perf_event_task_sched_in(current); |
2824 | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW |
2825 | local_irq_enable(); |
2826 | #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */ |
2827 | finish_lock_switch(rq, prev); |
2828 | |
2829 | fire_sched_in_preempt_notifiers(current); |
2830 | if (mm) |
2831 | mmdrop(mm); |
2832 | if (unlikely(prev_state == TASK_DEAD)) { |
2833 | /* |
2834 | * Remove function-return probe instances associated with this |
2835 | * task and put them back on the free list. |
2836 | */ |
2837 | kprobe_flush_task(prev); |
2838 | put_task_struct(prev); |
2839 | } |
2840 | } |
2841 | |
2842 | #ifdef CONFIG_SMP |
2843 | |
2844 | /* assumes rq->lock is held */ |
2845 | static inline void pre_schedule(struct rq *rq, struct task_struct *prev) |
2846 | { |
2847 | if (prev->sched_class->pre_schedule) |
2848 | prev->sched_class->pre_schedule(rq, prev); |
2849 | } |
2850 | |
2851 | /* rq->lock is NOT held, but preemption is disabled */ |
2852 | static inline void post_schedule(struct rq *rq) |
2853 | { |
2854 | if (rq->post_schedule) { |
2855 | unsigned long flags; |
2856 | |
2857 | raw_spin_lock_irqsave(&rq->lock, flags); |
2858 | if (rq->curr->sched_class->post_schedule) |
2859 | rq->curr->sched_class->post_schedule(rq); |
2860 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
2861 | |
2862 | rq->post_schedule = 0; |
2863 | } |
2864 | } |
2865 | |
2866 | #else |
2867 | |
2868 | static inline void pre_schedule(struct rq *rq, struct task_struct *p) |
2869 | { |
2870 | } |
2871 | |
2872 | static inline void post_schedule(struct rq *rq) |
2873 | { |
2874 | } |
2875 | |
2876 | #endif |
2877 | |
2878 | /** |
2879 | * schedule_tail - first thing a freshly forked thread must call. |
2880 | * @prev: the thread we just switched away from. |
2881 | */ |
2882 | asmlinkage void schedule_tail(struct task_struct *prev) |
2883 | __releases(rq->lock) |
2884 | { |
2885 | struct rq *rq = this_rq(); |
2886 | |
2887 | finish_task_switch(rq, prev); |
2888 | |
2889 | /* |
2890 | * FIXME: do we need to worry about rq being invalidated by the |
2891 | * task_switch? |
2892 | */ |
2893 | post_schedule(rq); |
2894 | |
2895 | #ifdef __ARCH_WANT_UNLOCKED_CTXSW |
2896 | /* In this case, finish_task_switch does not reenable preemption */ |
2897 | preempt_enable(); |
2898 | #endif |
2899 | if (current->set_child_tid) |
2900 | put_user(task_pid_vnr(current), current->set_child_tid); |
2901 | } |
2902 | |
2903 | /* |
2904 | * context_switch - switch to the new MM and the new |
2905 | * thread's register state. |
2906 | */ |
2907 | static inline void |
2908 | context_switch(struct rq *rq, struct task_struct *prev, |
2909 | struct task_struct *next) |
2910 | { |
2911 | struct mm_struct *mm, *oldmm; |
2912 | |
2913 | prepare_task_switch(rq, prev, next); |
2914 | trace_sched_switch(prev, next); |
2915 | mm = next->mm; |
2916 | oldmm = prev->active_mm; |
2917 | /* |
2918 | * For paravirt, this is coupled with an exit in switch_to to |
2919 | * combine the page table reload and the switch backend into |
2920 | * one hypercall. |
2921 | */ |
2922 | arch_start_context_switch(prev); |
2923 | |
2924 | if (!mm) { |
2925 | next->active_mm = oldmm; |
2926 | atomic_inc(&oldmm->mm_count); |
2927 | enter_lazy_tlb(oldmm, next); |
2928 | } else |
2929 | switch_mm(oldmm, mm, next); |
2930 | |
2931 | if (!prev->mm) { |
2932 | prev->active_mm = NULL; |
2933 | rq->prev_mm = oldmm; |
2934 | } |
2935 | /* |
2936 | * Since the runqueue lock will be released by the next |
2937 | * task (which is an invalid locking op but in the case |
2938 | * of the scheduler it's an obvious special-case), so we |
2939 | * do an early lockdep release here: |
2940 | */ |
2941 | #ifndef __ARCH_WANT_UNLOCKED_CTXSW |
2942 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
2943 | #endif |
2944 | |
2945 | /* Here we just switch the register state and the stack. */ |
2946 | switch_to(prev, next, prev); |
2947 | |
2948 | barrier(); |
2949 | /* |
2950 | * this_rq must be evaluated again because prev may have moved |
2951 | * CPUs since it called schedule(), thus the 'rq' on its stack |
2952 | * frame will be invalid. |
2953 | */ |
2954 | finish_task_switch(this_rq(), prev); |
2955 | } |
2956 | |
2957 | /* |
2958 | * nr_running, nr_uninterruptible and nr_context_switches: |
2959 | * |
2960 | * externally visible scheduler statistics: current number of runnable |
2961 | * threads, current number of uninterruptible-sleeping threads, total |
2962 | * number of context switches performed since bootup. |
2963 | */ |
2964 | unsigned long nr_running(void) |
2965 | { |
2966 | unsigned long i, sum = 0; |
2967 | |
2968 | for_each_online_cpu(i) |
2969 | sum += cpu_rq(i)->nr_running; |
2970 | |
2971 | return sum; |
2972 | } |
2973 | |
2974 | unsigned long nr_uninterruptible(void) |
2975 | { |
2976 | unsigned long i, sum = 0; |
2977 | |
2978 | for_each_possible_cpu(i) |
2979 | sum += cpu_rq(i)->nr_uninterruptible; |
2980 | |
2981 | /* |
2982 | * Since we read the counters lockless, it might be slightly |
2983 | * inaccurate. Do not allow it to go below zero though: |
2984 | */ |
2985 | if (unlikely((long)sum < 0)) |
2986 | sum = 0; |
2987 | |
2988 | return sum; |
2989 | } |
2990 | |
2991 | unsigned long long nr_context_switches(void) |
2992 | { |
2993 | int i; |
2994 | unsigned long long sum = 0; |
2995 | |
2996 | for_each_possible_cpu(i) |
2997 | sum += cpu_rq(i)->nr_switches; |
2998 | |
2999 | return sum; |
3000 | } |
3001 | |
3002 | unsigned long nr_iowait(void) |
3003 | { |
3004 | unsigned long i, sum = 0; |
3005 | |
3006 | for_each_possible_cpu(i) |
3007 | sum += atomic_read(&cpu_rq(i)->nr_iowait); |
3008 | |
3009 | return sum; |
3010 | } |
3011 | |
3012 | unsigned long nr_iowait_cpu(int cpu) |
3013 | { |
3014 | struct rq *this = cpu_rq(cpu); |
3015 | return atomic_read(&this->nr_iowait); |
3016 | } |
3017 | |
3018 | unsigned long this_cpu_load(void) |
3019 | { |
3020 | struct rq *this = this_rq(); |
3021 | return this->cpu_load[0]; |
3022 | } |
3023 | |
3024 | |
3025 | /* Variables and functions for calc_load */ |
3026 | static atomic_long_t calc_load_tasks; |
3027 | static unsigned long calc_load_update; |
3028 | unsigned long avenrun[3]; |
3029 | EXPORT_SYMBOL(avenrun); |
3030 | |
3031 | static long calc_load_fold_active(struct rq *this_rq) |
3032 | { |
3033 | long nr_active, delta = 0; |
3034 | |
3035 | nr_active = this_rq->nr_running; |
3036 | nr_active += (long) this_rq->nr_uninterruptible; |
3037 | |
3038 | if (nr_active != this_rq->calc_load_active) { |
3039 | delta = nr_active - this_rq->calc_load_active; |
3040 | this_rq->calc_load_active = nr_active; |
3041 | } |
3042 | |
3043 | return delta; |
3044 | } |
3045 | |
3046 | static unsigned long |
3047 | calc_load(unsigned long load, unsigned long exp, unsigned long active) |
3048 | { |
3049 | load *= exp; |
3050 | load += active * (FIXED_1 - exp); |
3051 | load += 1UL << (FSHIFT - 1); |
3052 | return load >> FSHIFT; |
3053 | } |
3054 | |
3055 | #ifdef CONFIG_NO_HZ |
3056 | /* |
3057 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. |
3058 | * |
3059 | * When making the ILB scale, we should try to pull this in as well. |
3060 | */ |
3061 | static atomic_long_t calc_load_tasks_idle; |
3062 | |
3063 | static void calc_load_account_idle(struct rq *this_rq) |
3064 | { |
3065 | long delta; |
3066 | |
3067 | delta = calc_load_fold_active(this_rq); |
3068 | if (delta) |
3069 | atomic_long_add(delta, &calc_load_tasks_idle); |
3070 | } |
3071 | |
3072 | static long calc_load_fold_idle(void) |
3073 | { |
3074 | long delta = 0; |
3075 | |
3076 | /* |
3077 | * Its got a race, we don't care... |
3078 | */ |
3079 | if (atomic_long_read(&calc_load_tasks_idle)) |
3080 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); |
3081 | |
3082 | return delta; |
3083 | } |
3084 | |
3085 | /** |
3086 | * fixed_power_int - compute: x^n, in O(log n) time |
3087 | * |
3088 | * @x: base of the power |
3089 | * @frac_bits: fractional bits of @x |
3090 | * @n: power to raise @x to. |
3091 | * |
3092 | * By exploiting the relation between the definition of the natural power |
3093 | * function: x^n := x*x*...*x (x multiplied by itself for n times), and |
3094 | * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i, |
3095 | * (where: n_i \elem {0, 1}, the binary vector representing n), |
3096 | * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is |
3097 | * of course trivially computable in O(log_2 n), the length of our binary |
3098 | * vector. |
3099 | */ |
3100 | static unsigned long |
3101 | fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n) |
3102 | { |
3103 | unsigned long result = 1UL << frac_bits; |
3104 | |
3105 | if (n) for (;;) { |
3106 | if (n & 1) { |
3107 | result *= x; |
3108 | result += 1UL << (frac_bits - 1); |
3109 | result >>= frac_bits; |
3110 | } |
3111 | n >>= 1; |
3112 | if (!n) |
3113 | break; |
3114 | x *= x; |
3115 | x += 1UL << (frac_bits - 1); |
3116 | x >>= frac_bits; |
3117 | } |
3118 | |
3119 | return result; |
3120 | } |
3121 | |
3122 | /* |
3123 | * a1 = a0 * e + a * (1 - e) |
3124 | * |
3125 | * a2 = a1 * e + a * (1 - e) |
3126 | * = (a0 * e + a * (1 - e)) * e + a * (1 - e) |
3127 | * = a0 * e^2 + a * (1 - e) * (1 + e) |
3128 | * |
3129 | * a3 = a2 * e + a * (1 - e) |
3130 | * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e) |
3131 | * = a0 * e^3 + a * (1 - e) * (1 + e + e^2) |
3132 | * |
3133 | * ... |
3134 | * |
3135 | * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1] |
3136 | * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e) |
3137 | * = a0 * e^n + a * (1 - e^n) |
3138 | * |
3139 | * [1] application of the geometric series: |
3140 | * |
3141 | * n 1 - x^(n+1) |
3142 | * S_n := \Sum x^i = ------------- |
3143 | * i=0 1 - x |
3144 | */ |
3145 | static unsigned long |
3146 | calc_load_n(unsigned long load, unsigned long exp, |
3147 | unsigned long active, unsigned int n) |
3148 | { |
3149 | |
3150 | return calc_load(load, fixed_power_int(exp, FSHIFT, n), active); |
3151 | } |
3152 | |
3153 | /* |
3154 | * NO_HZ can leave us missing all per-cpu ticks calling |
3155 | * calc_load_account_active(), but since an idle CPU folds its delta into |
3156 | * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold |
3157 | * in the pending idle delta if our idle period crossed a load cycle boundary. |
3158 | * |
3159 | * Once we've updated the global active value, we need to apply the exponential |
3160 | * weights adjusted to the number of cycles missed. |
3161 | */ |
3162 | static void calc_global_nohz(unsigned long ticks) |
3163 | { |
3164 | long delta, active, n; |
3165 | |
3166 | if (time_before(jiffies, calc_load_update)) |
3167 | return; |
3168 | |
3169 | /* |
3170 | * If we crossed a calc_load_update boundary, make sure to fold |
3171 | * any pending idle changes, the respective CPUs might have |
3172 | * missed the tick driven calc_load_account_active() update |
3173 | * due to NO_HZ. |
3174 | */ |
3175 | delta = calc_load_fold_idle(); |
3176 | if (delta) |
3177 | atomic_long_add(delta, &calc_load_tasks); |
3178 | |
3179 | /* |
3180 | * If we were idle for multiple load cycles, apply them. |
3181 | */ |
3182 | if (ticks >= LOAD_FREQ) { |
3183 | n = ticks / LOAD_FREQ; |
3184 | |
3185 | active = atomic_long_read(&calc_load_tasks); |
3186 | active = active > 0 ? active * FIXED_1 : 0; |
3187 | |
3188 | avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n); |
3189 | avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); |
3190 | avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); |
3191 | |
3192 | calc_load_update += n * LOAD_FREQ; |
3193 | } |
3194 | |
3195 | /* |
3196 | * Its possible the remainder of the above division also crosses |
3197 | * a LOAD_FREQ period, the regular check in calc_global_load() |
3198 | * which comes after this will take care of that. |
3199 | * |
3200 | * Consider us being 11 ticks before a cycle completion, and us |
3201 | * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will |
3202 | * age us 4 cycles, and the test in calc_global_load() will |
3203 | * pick up the final one. |
3204 | */ |
3205 | } |
3206 | #else |
3207 | static void calc_load_account_idle(struct rq *this_rq) |
3208 | { |
3209 | } |
3210 | |
3211 | static inline long calc_load_fold_idle(void) |
3212 | { |
3213 | return 0; |
3214 | } |
3215 | |
3216 | static void calc_global_nohz(unsigned long ticks) |
3217 | { |
3218 | } |
3219 | #endif |
3220 | |
3221 | /** |
3222 | * get_avenrun - get the load average array |
3223 | * @loads: pointer to dest load array |
3224 | * @offset: offset to add |
3225 | * @shift: shift count to shift the result left |
3226 | * |
3227 | * These values are estimates at best, so no need for locking. |
3228 | */ |
3229 | void get_avenrun(unsigned long *loads, unsigned long offset, int shift) |
3230 | { |
3231 | loads[0] = (avenrun[0] + offset) << shift; |
3232 | loads[1] = (avenrun[1] + offset) << shift; |
3233 | loads[2] = (avenrun[2] + offset) << shift; |
3234 | } |
3235 | |
3236 | /* |
3237 | * calc_load - update the avenrun load estimates 10 ticks after the |
3238 | * CPUs have updated calc_load_tasks. |
3239 | */ |
3240 | void calc_global_load(unsigned long ticks) |
3241 | { |
3242 | long active; |
3243 | |
3244 | calc_global_nohz(ticks); |
3245 | |
3246 | if (time_before(jiffies, calc_load_update + 10)) |
3247 | return; |
3248 | |
3249 | active = atomic_long_read(&calc_load_tasks); |
3250 | active = active > 0 ? active * FIXED_1 : 0; |
3251 | |
3252 | avenrun[0] = calc_load(avenrun[0], EXP_1, active); |
3253 | avenrun[1] = calc_load(avenrun[1], EXP_5, active); |
3254 | avenrun[2] = calc_load(avenrun[2], EXP_15, active); |
3255 | |
3256 | calc_load_update += LOAD_FREQ; |
3257 | } |
3258 | |
3259 | /* |
3260 | * Called from update_cpu_load() to periodically update this CPU's |
3261 | * active count. |
3262 | */ |
3263 | static void calc_load_account_active(struct rq *this_rq) |
3264 | { |
3265 | long delta; |
3266 | |
3267 | if (time_before(jiffies, this_rq->calc_load_update)) |
3268 | return; |
3269 | |
3270 | delta = calc_load_fold_active(this_rq); |
3271 | delta += calc_load_fold_idle(); |
3272 | if (delta) |
3273 | atomic_long_add(delta, &calc_load_tasks); |
3274 | |
3275 | this_rq->calc_load_update += LOAD_FREQ; |
3276 | } |
3277 | |
3278 | /* |
3279 | * The exact cpuload at various idx values, calculated at every tick would be |
3280 | * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load |
3281 | * |
3282 | * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called |
3283 | * on nth tick when cpu may be busy, then we have: |
3284 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
3285 | * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load |
3286 | * |
3287 | * decay_load_missed() below does efficient calculation of |
3288 | * load = ((2^idx - 1) / 2^idx)^(n-1) * load |
3289 | * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load |
3290 | * |
3291 | * The calculation is approximated on a 128 point scale. |
3292 | * degrade_zero_ticks is the number of ticks after which load at any |
3293 | * particular idx is approximated to be zero. |
3294 | * degrade_factor is a precomputed table, a row for each load idx. |
3295 | * Each column corresponds to degradation factor for a power of two ticks, |
3296 | * based on 128 point scale. |
3297 | * Example: |
3298 | * row 2, col 3 (=12) says that the degradation at load idx 2 after |
3299 | * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). |
3300 | * |
3301 | * With this power of 2 load factors, we can degrade the load n times |
3302 | * by looking at 1 bits in n and doing as many mult/shift instead of |
3303 | * n mult/shifts needed by the exact degradation. |
3304 | */ |
3305 | #define DEGRADE_SHIFT 7 |
3306 | static const unsigned char |
3307 | degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; |
3308 | static const unsigned char |
3309 | degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { |
3310 | {0, 0, 0, 0, 0, 0, 0, 0}, |
3311 | {64, 32, 8, 0, 0, 0, 0, 0}, |
3312 | {96, 72, 40, 12, 1, 0, 0}, |
3313 | {112, 98, 75, 43, 15, 1, 0}, |
3314 | {120, 112, 98, 76, 45, 16, 2} }; |
3315 | |
3316 | /* |
3317 | * Update cpu_load for any missed ticks, due to tickless idle. The backlog |
3318 | * would be when CPU is idle and so we just decay the old load without |
3319 | * adding any new load. |
3320 | */ |
3321 | static unsigned long |
3322 | decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) |
3323 | { |
3324 | int j = 0; |
3325 | |
3326 | if (!missed_updates) |
3327 | return load; |
3328 | |
3329 | if (missed_updates >= degrade_zero_ticks[idx]) |
3330 | return 0; |
3331 | |
3332 | if (idx == 1) |
3333 | return load >> missed_updates; |
3334 | |
3335 | while (missed_updates) { |
3336 | if (missed_updates % 2) |
3337 | load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; |
3338 | |
3339 | missed_updates >>= 1; |
3340 | j++; |
3341 | } |
3342 | return load; |
3343 | } |
3344 | |
3345 | /* |
3346 | * Update rq->cpu_load[] statistics. This function is usually called every |
3347 | * scheduler tick (TICK_NSEC). With tickless idle this will not be called |
3348 | * every tick. We fix it up based on jiffies. |
3349 | */ |
3350 | static void update_cpu_load(struct rq *this_rq) |
3351 | { |
3352 | unsigned long this_load = this_rq->load.weight; |
3353 | unsigned long curr_jiffies = jiffies; |
3354 | unsigned long pending_updates; |
3355 | int i, scale; |
3356 | |
3357 | this_rq->nr_load_updates++; |
3358 | |
3359 | /* Avoid repeated calls on same jiffy, when moving in and out of idle */ |
3360 | if (curr_jiffies == this_rq->last_load_update_tick) |
3361 | return; |
3362 | |
3363 | pending_updates = curr_jiffies - this_rq->last_load_update_tick; |
3364 | this_rq->last_load_update_tick = curr_jiffies; |
3365 | |
3366 | /* Update our load: */ |
3367 | this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ |
3368 | for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { |
3369 | unsigned long old_load, new_load; |
3370 | |
3371 | /* scale is effectively 1 << i now, and >> i divides by scale */ |
3372 | |
3373 | old_load = this_rq->cpu_load[i]; |
3374 | old_load = decay_load_missed(old_load, pending_updates - 1, i); |
3375 | new_load = this_load; |
3376 | /* |
3377 | * Round up the averaging division if load is increasing. This |
3378 | * prevents us from getting stuck on 9 if the load is 10, for |
3379 | * example. |
3380 | */ |
3381 | if (new_load > old_load) |
3382 | new_load += scale - 1; |
3383 | |
3384 | this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; |
3385 | } |
3386 | |
3387 | sched_avg_update(this_rq); |
3388 | } |
3389 | |
3390 | static void update_cpu_load_active(struct rq *this_rq) |
3391 | { |
3392 | update_cpu_load(this_rq); |
3393 | |
3394 | calc_load_account_active(this_rq); |
3395 | } |
3396 | |
3397 | #ifdef CONFIG_SMP |
3398 | |
3399 | /* |
3400 | * sched_exec - execve() is a valuable balancing opportunity, because at |
3401 | * this point the task has the smallest effective memory and cache footprint. |
3402 | */ |
3403 | void sched_exec(void) |
3404 | { |
3405 | struct task_struct *p = current; |
3406 | unsigned long flags; |
3407 | struct rq *rq; |
3408 | int dest_cpu; |
3409 | |
3410 | rq = task_rq_lock(p, &flags); |
3411 | dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); |
3412 | if (dest_cpu == smp_processor_id()) |
3413 | goto unlock; |
3414 | |
3415 | /* |
3416 | * select_task_rq() can race against ->cpus_allowed |
3417 | */ |
3418 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && |
3419 | likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) { |
3420 | struct migration_arg arg = { p, dest_cpu }; |
3421 | |
3422 | task_rq_unlock(rq, &flags); |
3423 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
3424 | return; |
3425 | } |
3426 | unlock: |
3427 | task_rq_unlock(rq, &flags); |
3428 | } |
3429 | |
3430 | #endif |
3431 | |
3432 | DEFINE_PER_CPU(struct kernel_stat, kstat); |
3433 | |
3434 | EXPORT_PER_CPU_SYMBOL(kstat); |
3435 | |
3436 | /* |
3437 | * Return any ns on the sched_clock that have not yet been accounted in |
3438 | * @p in case that task is currently running. |
3439 | * |
3440 | * Called with task_rq_lock() held on @rq. |
3441 | */ |
3442 | static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq) |
3443 | { |
3444 | u64 ns = 0; |
3445 | |
3446 | if (task_current(rq, p)) { |
3447 | update_rq_clock(rq); |
3448 | ns = rq->clock_task - p->se.exec_start; |
3449 | if ((s64)ns < 0) |
3450 | ns = 0; |
3451 | } |
3452 | |
3453 | return ns; |
3454 | } |
3455 | |
3456 | unsigned long long task_delta_exec(struct task_struct *p) |
3457 | { |
3458 | unsigned long flags; |
3459 | struct rq *rq; |
3460 | u64 ns = 0; |
3461 | |
3462 | rq = task_rq_lock(p, &flags); |
3463 | ns = do_task_delta_exec(p, rq); |
3464 | task_rq_unlock(rq, &flags); |
3465 | |
3466 | return ns; |
3467 | } |
3468 | |
3469 | /* |
3470 | * Return accounted runtime for the task. |
3471 | * In case the task is currently running, return the runtime plus current's |
3472 | * pending runtime that have not been accounted yet. |
3473 | */ |
3474 | unsigned long long task_sched_runtime(struct task_struct *p) |
3475 | { |
3476 | unsigned long flags; |
3477 | struct rq *rq; |
3478 | u64 ns = 0; |
3479 | |
3480 | rq = task_rq_lock(p, &flags); |
3481 | ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq); |
3482 | task_rq_unlock(rq, &flags); |
3483 | |
3484 | return ns; |
3485 | } |
3486 | |
3487 | /* |
3488 | * Return sum_exec_runtime for the thread group. |
3489 | * In case the task is currently running, return the sum plus current's |
3490 | * pending runtime that have not been accounted yet. |
3491 | * |
3492 | * Note that the thread group might have other running tasks as well, |
3493 | * so the return value not includes other pending runtime that other |
3494 | * running tasks might have. |
3495 | */ |
3496 | unsigned long long thread_group_sched_runtime(struct task_struct *p) |
3497 | { |
3498 | struct task_cputime totals; |
3499 | unsigned long flags; |
3500 | struct rq *rq; |
3501 | u64 ns; |
3502 | |
3503 | rq = task_rq_lock(p, &flags); |
3504 | thread_group_cputime(p, &totals); |
3505 | ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq); |
3506 | task_rq_unlock(rq, &flags); |
3507 | |
3508 | return ns; |
3509 | } |
3510 | |
3511 | /* |
3512 | * Account user cpu time to a process. |
3513 | * @p: the process that the cpu time gets accounted to |
3514 | * @cputime: the cpu time spent in user space since the last update |
3515 | * @cputime_scaled: cputime scaled by cpu frequency |
3516 | */ |
3517 | void account_user_time(struct task_struct *p, cputime_t cputime, |
3518 | cputime_t cputime_scaled) |
3519 | { |
3520 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3521 | cputime64_t tmp; |
3522 | |
3523 | /* Add user time to process. */ |
3524 | p->utime = cputime_add(p->utime, cputime); |
3525 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
3526 | account_group_user_time(p, cputime); |
3527 | |
3528 | /* Add user time to cpustat. */ |
3529 | tmp = cputime_to_cputime64(cputime); |
3530 | if (TASK_NICE(p) > 0) |
3531 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
3532 | else |
3533 | cpustat->user = cputime64_add(cpustat->user, tmp); |
3534 | |
3535 | cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime); |
3536 | /* Account for user time used */ |
3537 | acct_update_integrals(p); |
3538 | } |
3539 | |
3540 | /* |
3541 | * Account guest cpu time to a process. |
3542 | * @p: the process that the cpu time gets accounted to |
3543 | * @cputime: the cpu time spent in virtual machine since the last update |
3544 | * @cputime_scaled: cputime scaled by cpu frequency |
3545 | */ |
3546 | static void account_guest_time(struct task_struct *p, cputime_t cputime, |
3547 | cputime_t cputime_scaled) |
3548 | { |
3549 | cputime64_t tmp; |
3550 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3551 | |
3552 | tmp = cputime_to_cputime64(cputime); |
3553 | |
3554 | /* Add guest time to process. */ |
3555 | p->utime = cputime_add(p->utime, cputime); |
3556 | p->utimescaled = cputime_add(p->utimescaled, cputime_scaled); |
3557 | account_group_user_time(p, cputime); |
3558 | p->gtime = cputime_add(p->gtime, cputime); |
3559 | |
3560 | /* Add guest time to cpustat. */ |
3561 | if (TASK_NICE(p) > 0) { |
3562 | cpustat->nice = cputime64_add(cpustat->nice, tmp); |
3563 | cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp); |
3564 | } else { |
3565 | cpustat->user = cputime64_add(cpustat->user, tmp); |
3566 | cpustat->guest = cputime64_add(cpustat->guest, tmp); |
3567 | } |
3568 | } |
3569 | |
3570 | /* |
3571 | * Account system cpu time to a process. |
3572 | * @p: the process that the cpu time gets accounted to |
3573 | * @hardirq_offset: the offset to subtract from hardirq_count() |
3574 | * @cputime: the cpu time spent in kernel space since the last update |
3575 | * @cputime_scaled: cputime scaled by cpu frequency |
3576 | */ |
3577 | void account_system_time(struct task_struct *p, int hardirq_offset, |
3578 | cputime_t cputime, cputime_t cputime_scaled) |
3579 | { |
3580 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3581 | cputime64_t tmp; |
3582 | |
3583 | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { |
3584 | account_guest_time(p, cputime, cputime_scaled); |
3585 | return; |
3586 | } |
3587 | |
3588 | /* Add system time to process. */ |
3589 | p->stime = cputime_add(p->stime, cputime); |
3590 | p->stimescaled = cputime_add(p->stimescaled, cputime_scaled); |
3591 | account_group_system_time(p, cputime); |
3592 | |
3593 | /* Add system time to cpustat. */ |
3594 | tmp = cputime_to_cputime64(cputime); |
3595 | if (hardirq_count() - hardirq_offset) |
3596 | cpustat->irq = cputime64_add(cpustat->irq, tmp); |
3597 | else if (in_serving_softirq()) |
3598 | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); |
3599 | else |
3600 | cpustat->system = cputime64_add(cpustat->system, tmp); |
3601 | |
3602 | cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime); |
3603 | |
3604 | /* Account for system time used */ |
3605 | acct_update_integrals(p); |
3606 | } |
3607 | |
3608 | /* |
3609 | * Account for involuntary wait time. |
3610 | * @steal: the cpu time spent in involuntary wait |
3611 | */ |
3612 | void account_steal_time(cputime_t cputime) |
3613 | { |
3614 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3615 | cputime64_t cputime64 = cputime_to_cputime64(cputime); |
3616 | |
3617 | cpustat->steal = cputime64_add(cpustat->steal, cputime64); |
3618 | } |
3619 | |
3620 | /* |
3621 | * Account for idle time. |
3622 | * @cputime: the cpu time spent in idle wait |
3623 | */ |
3624 | void account_idle_time(cputime_t cputime) |
3625 | { |
3626 | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; |
3627 | cputime64_t cputime64 = cputime_to_cputime64(cputime); |
3628 | struct rq *rq = this_rq(); |
3629 | |
3630 | if (atomic_read(&rq->nr_iowait) > 0) |
3631 | cpustat->iowait = cputime64_add(cpustat->iowait, cputime64); |
3632 | else |
3633 | cpustat->idle = cputime64_add(cpustat->idle, cputime64); |
3634 | } |
3635 | |
3636 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING |
3637 | |
3638 | /* |
3639 | * Account a single tick of cpu time. |
3640 | * @p: the process that the cpu time gets accounted to |
3641 | * @user_tick: indicates if the tick is a user or a system tick |
3642 | */ |
3643 | void account_process_tick(struct task_struct *p, int user_tick) |
3644 | { |
3645 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
3646 | struct rq *rq = this_rq(); |
3647 | |
3648 | if (user_tick) |
3649 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
3650 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
3651 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
3652 | one_jiffy_scaled); |
3653 | else |
3654 | account_idle_time(cputime_one_jiffy); |
3655 | } |
3656 | |
3657 | /* |
3658 | * Account multiple ticks of steal time. |
3659 | * @p: the process from which the cpu time has been stolen |
3660 | * @ticks: number of stolen ticks |
3661 | */ |
3662 | void account_steal_ticks(unsigned long ticks) |
3663 | { |
3664 | account_steal_time(jiffies_to_cputime(ticks)); |
3665 | } |
3666 | |
3667 | /* |
3668 | * Account multiple ticks of idle time. |
3669 | * @ticks: number of stolen ticks |
3670 | */ |
3671 | void account_idle_ticks(unsigned long ticks) |
3672 | { |
3673 | account_idle_time(jiffies_to_cputime(ticks)); |
3674 | } |
3675 | |
3676 | #endif |
3677 | |
3678 | /* |
3679 | * Use precise platform statistics if available: |
3680 | */ |
3681 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING |
3682 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
3683 | { |
3684 | *ut = p->utime; |
3685 | *st = p->stime; |
3686 | } |
3687 | |
3688 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
3689 | { |
3690 | struct task_cputime cputime; |
3691 | |
3692 | thread_group_cputime(p, &cputime); |
3693 | |
3694 | *ut = cputime.utime; |
3695 | *st = cputime.stime; |
3696 | } |
3697 | #else |
3698 | |
3699 | #ifndef nsecs_to_cputime |
3700 | # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs) |
3701 | #endif |
3702 | |
3703 | void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
3704 | { |
3705 | cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime); |
3706 | |
3707 | /* |
3708 | * Use CFS's precise accounting: |
3709 | */ |
3710 | rtime = nsecs_to_cputime(p->se.sum_exec_runtime); |
3711 | |
3712 | if (total) { |
3713 | u64 temp = rtime; |
3714 | |
3715 | temp *= utime; |
3716 | do_div(temp, total); |
3717 | utime = (cputime_t)temp; |
3718 | } else |
3719 | utime = rtime; |
3720 | |
3721 | /* |
3722 | * Compare with previous values, to keep monotonicity: |
3723 | */ |
3724 | p->prev_utime = max(p->prev_utime, utime); |
3725 | p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime)); |
3726 | |
3727 | *ut = p->prev_utime; |
3728 | *st = p->prev_stime; |
3729 | } |
3730 | |
3731 | /* |
3732 | * Must be called with siglock held. |
3733 | */ |
3734 | void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st) |
3735 | { |
3736 | struct signal_struct *sig = p->signal; |
3737 | struct task_cputime cputime; |
3738 | cputime_t rtime, utime, total; |
3739 | |
3740 | thread_group_cputime(p, &cputime); |
3741 | |
3742 | total = cputime_add(cputime.utime, cputime.stime); |
3743 | rtime = nsecs_to_cputime(cputime.sum_exec_runtime); |
3744 | |
3745 | if (total) { |
3746 | u64 temp = rtime; |
3747 | |
3748 | temp *= cputime.utime; |
3749 | do_div(temp, total); |
3750 | utime = (cputime_t)temp; |
3751 | } else |
3752 | utime = rtime; |
3753 | |
3754 | sig->prev_utime = max(sig->prev_utime, utime); |
3755 | sig->prev_stime = max(sig->prev_stime, |
3756 | cputime_sub(rtime, sig->prev_utime)); |
3757 | |
3758 | *ut = sig->prev_utime; |
3759 | *st = sig->prev_stime; |
3760 | } |
3761 | #endif |
3762 | |
3763 | /* |
3764 | * This function gets called by the timer code, with HZ frequency. |
3765 | * We call it with interrupts disabled. |
3766 | * |
3767 | * It also gets called by the fork code, when changing the parent's |
3768 | * timeslices. |
3769 | */ |
3770 | void scheduler_tick(void) |
3771 | { |
3772 | int cpu = smp_processor_id(); |
3773 | struct rq *rq = cpu_rq(cpu); |
3774 | struct task_struct *curr = rq->curr; |
3775 | |
3776 | sched_clock_tick(); |
3777 | |
3778 | raw_spin_lock(&rq->lock); |
3779 | update_rq_clock(rq); |
3780 | update_cpu_load_active(rq); |
3781 | curr->sched_class->task_tick(rq, curr, 0); |
3782 | raw_spin_unlock(&rq->lock); |
3783 | |
3784 | perf_event_task_tick(); |
3785 | |
3786 | #ifdef CONFIG_SMP |
3787 | rq->idle_at_tick = idle_cpu(cpu); |
3788 | trigger_load_balance(rq, cpu); |
3789 | #endif |
3790 | } |
3791 | |
3792 | notrace unsigned long get_parent_ip(unsigned long addr) |
3793 | { |
3794 | if (in_lock_functions(addr)) { |
3795 | addr = CALLER_ADDR2; |
3796 | if (in_lock_functions(addr)) |
3797 | addr = CALLER_ADDR3; |
3798 | } |
3799 | return addr; |
3800 | } |
3801 | |
3802 | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ |
3803 | defined(CONFIG_PREEMPT_TRACER)) |
3804 | |
3805 | void __kprobes add_preempt_count(int val) |
3806 | { |
3807 | #ifdef CONFIG_DEBUG_PREEMPT |
3808 | /* |
3809 | * Underflow? |
3810 | */ |
3811 | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) |
3812 | return; |
3813 | #endif |
3814 | preempt_count() += val; |
3815 | #ifdef CONFIG_DEBUG_PREEMPT |
3816 | /* |
3817 | * Spinlock count overflowing soon? |
3818 | */ |
3819 | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= |
3820 | PREEMPT_MASK - 10); |
3821 | #endif |
3822 | if (preempt_count() == val) |
3823 | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
3824 | } |
3825 | EXPORT_SYMBOL(add_preempt_count); |
3826 | |
3827 | void __kprobes sub_preempt_count(int val) |
3828 | { |
3829 | #ifdef CONFIG_DEBUG_PREEMPT |
3830 | /* |
3831 | * Underflow? |
3832 | */ |
3833 | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) |
3834 | return; |
3835 | /* |
3836 | * Is the spinlock portion underflowing? |
3837 | */ |
3838 | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && |
3839 | !(preempt_count() & PREEMPT_MASK))) |
3840 | return; |
3841 | #endif |
3842 | |
3843 | if (preempt_count() == val) |
3844 | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); |
3845 | preempt_count() -= val; |
3846 | } |
3847 | EXPORT_SYMBOL(sub_preempt_count); |
3848 | |
3849 | #endif |
3850 | |
3851 | /* |
3852 | * Print scheduling while atomic bug: |
3853 | */ |
3854 | static noinline void __schedule_bug(struct task_struct *prev) |
3855 | { |
3856 | struct pt_regs *regs = get_irq_regs(); |
3857 | |
3858 | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", |
3859 | prev->comm, prev->pid, preempt_count()); |
3860 | |
3861 | debug_show_held_locks(prev); |
3862 | print_modules(); |
3863 | if (irqs_disabled()) |
3864 | print_irqtrace_events(prev); |
3865 | |
3866 | if (regs) |
3867 | show_regs(regs); |
3868 | else |
3869 | dump_stack(); |
3870 | } |
3871 | |
3872 | /* |
3873 | * Various schedule()-time debugging checks and statistics: |
3874 | */ |
3875 | static inline void schedule_debug(struct task_struct *prev) |
3876 | { |
3877 | /* |
3878 | * Test if we are atomic. Since do_exit() needs to call into |
3879 | * schedule() atomically, we ignore that path for now. |
3880 | * Otherwise, whine if we are scheduling when we should not be. |
3881 | */ |
3882 | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) |
3883 | __schedule_bug(prev); |
3884 | |
3885 | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); |
3886 | |
3887 | schedstat_inc(this_rq(), sched_count); |
3888 | #ifdef CONFIG_SCHEDSTATS |
3889 | if (unlikely(prev->lock_depth >= 0)) { |
3890 | schedstat_inc(this_rq(), rq_sched_info.bkl_count); |
3891 | schedstat_inc(prev, sched_info.bkl_count); |
3892 | } |
3893 | #endif |
3894 | } |
3895 | |
3896 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
3897 | { |
3898 | if (prev->se.on_rq) |
3899 | update_rq_clock(rq); |
3900 | prev->sched_class->put_prev_task(rq, prev); |
3901 | } |
3902 | |
3903 | /* |
3904 | * Pick up the highest-prio task: |
3905 | */ |
3906 | static inline struct task_struct * |
3907 | pick_next_task(struct rq *rq) |
3908 | { |
3909 | const struct sched_class *class; |
3910 | struct task_struct *p; |
3911 | |
3912 | /* |
3913 | * Optimization: we know that if all tasks are in |
3914 | * the fair class we can call that function directly: |
3915 | */ |
3916 | if (likely(rq->nr_running == rq->cfs.nr_running)) { |
3917 | p = fair_sched_class.pick_next_task(rq); |
3918 | if (likely(p)) |
3919 | return p; |
3920 | } |
3921 | |
3922 | for_each_class(class) { |
3923 | p = class->pick_next_task(rq); |
3924 | if (p) |
3925 | return p; |
3926 | } |
3927 | |
3928 | BUG(); /* the idle class will always have a runnable task */ |
3929 | } |
3930 | |
3931 | /* |
3932 | * schedule() is the main scheduler function. |
3933 | */ |
3934 | asmlinkage void __sched schedule(void) |
3935 | { |
3936 | struct task_struct *prev, *next; |
3937 | unsigned long *switch_count; |
3938 | struct rq *rq; |
3939 | int cpu; |
3940 | |
3941 | need_resched: |
3942 | preempt_disable(); |
3943 | cpu = smp_processor_id(); |
3944 | rq = cpu_rq(cpu); |
3945 | rcu_note_context_switch(cpu); |
3946 | prev = rq->curr; |
3947 | |
3948 | release_kernel_lock(prev); |
3949 | need_resched_nonpreemptible: |
3950 | |
3951 | schedule_debug(prev); |
3952 | |
3953 | if (sched_feat(HRTICK)) |
3954 | hrtick_clear(rq); |
3955 | |
3956 | raw_spin_lock_irq(&rq->lock); |
3957 | |
3958 | switch_count = &prev->nivcsw; |
3959 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
3960 | if (unlikely(signal_pending_state(prev->state, prev))) { |
3961 | prev->state = TASK_RUNNING; |
3962 | } else { |
3963 | /* |
3964 | * If a worker is going to sleep, notify and |
3965 | * ask workqueue whether it wants to wake up a |
3966 | * task to maintain concurrency. If so, wake |
3967 | * up the task. |
3968 | */ |
3969 | if (prev->flags & PF_WQ_WORKER) { |
3970 | struct task_struct *to_wakeup; |
3971 | |
3972 | to_wakeup = wq_worker_sleeping(prev, cpu); |
3973 | if (to_wakeup) |
3974 | try_to_wake_up_local(to_wakeup); |
3975 | } |
3976 | deactivate_task(rq, prev, DEQUEUE_SLEEP); |
3977 | } |
3978 | switch_count = &prev->nvcsw; |
3979 | } |
3980 | |
3981 | pre_schedule(rq, prev); |
3982 | |
3983 | if (unlikely(!rq->nr_running)) |
3984 | idle_balance(cpu, rq); |
3985 | |
3986 | put_prev_task(rq, prev); |
3987 | next = pick_next_task(rq); |
3988 | clear_tsk_need_resched(prev); |
3989 | rq->skip_clock_update = 0; |
3990 | |
3991 | if (likely(prev != next)) { |
3992 | sched_info_switch(prev, next); |
3993 | perf_event_task_sched_out(prev, next); |
3994 | |
3995 | rq->nr_switches++; |
3996 | rq->curr = next; |
3997 | ++*switch_count; |
3998 | |
3999 | context_switch(rq, prev, next); /* unlocks the rq */ |
4000 | /* |
4001 | * The context switch have flipped the stack from under us |
4002 | * and restored the local variables which were saved when |
4003 | * this task called schedule() in the past. prev == current |
4004 | * is still correct, but it can be moved to another cpu/rq. |
4005 | */ |
4006 | cpu = smp_processor_id(); |
4007 | rq = cpu_rq(cpu); |
4008 | } else |
4009 | raw_spin_unlock_irq(&rq->lock); |
4010 | |
4011 | post_schedule(rq); |
4012 | |
4013 | if (unlikely(reacquire_kernel_lock(prev))) |
4014 | goto need_resched_nonpreemptible; |
4015 | |
4016 | preempt_enable_no_resched(); |
4017 | if (need_resched()) |
4018 | goto need_resched; |
4019 | } |
4020 | EXPORT_SYMBOL(schedule); |
4021 | |
4022 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
4023 | /* |
4024 | * Look out! "owner" is an entirely speculative pointer |
4025 | * access and not reliable. |
4026 | */ |
4027 | int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner) |
4028 | { |
4029 | unsigned int cpu; |
4030 | struct rq *rq; |
4031 | |
4032 | if (!sched_feat(OWNER_SPIN)) |
4033 | return 0; |
4034 | |
4035 | #ifdef CONFIG_DEBUG_PAGEALLOC |
4036 | /* |
4037 | * Need to access the cpu field knowing that |
4038 | * DEBUG_PAGEALLOC could have unmapped it if |
4039 | * the mutex owner just released it and exited. |
4040 | */ |
4041 | if (probe_kernel_address(&owner->cpu, cpu)) |
4042 | return 0; |
4043 | #else |
4044 | cpu = owner->cpu; |
4045 | #endif |
4046 | |
4047 | /* |
4048 | * Even if the access succeeded (likely case), |
4049 | * the cpu field may no longer be valid. |
4050 | */ |
4051 | if (cpu >= nr_cpumask_bits) |
4052 | return 0; |
4053 | |
4054 | /* |
4055 | * We need to validate that we can do a |
4056 | * get_cpu() and that we have the percpu area. |
4057 | */ |
4058 | if (!cpu_online(cpu)) |
4059 | return 0; |
4060 | |
4061 | rq = cpu_rq(cpu); |
4062 | |
4063 | for (;;) { |
4064 | /* |
4065 | * Owner changed, break to re-assess state. |
4066 | */ |
4067 | if (lock->owner != owner) { |
4068 | /* |
4069 | * If the lock has switched to a different owner, |
4070 | * we likely have heavy contention. Return 0 to quit |
4071 | * optimistic spinning and not contend further: |
4072 | */ |
4073 | if (lock->owner) |
4074 | return 0; |
4075 | break; |
4076 | } |
4077 | |
4078 | /* |
4079 | * Is that owner really running on that cpu? |
4080 | */ |
4081 | if (task_thread_info(rq->curr) != owner || need_resched()) |
4082 | return 0; |
4083 | |
4084 | arch_mutex_cpu_relax(); |
4085 | } |
4086 | |
4087 | return 1; |
4088 | } |
4089 | #endif |
4090 | |
4091 | #ifdef CONFIG_PREEMPT |
4092 | /* |
4093 | * this is the entry point to schedule() from in-kernel preemption |
4094 | * off of preempt_enable. Kernel preemptions off return from interrupt |
4095 | * occur there and call schedule directly. |
4096 | */ |
4097 | asmlinkage void __sched notrace preempt_schedule(void) |
4098 | { |
4099 | struct thread_info *ti = current_thread_info(); |
4100 | |
4101 | /* |
4102 | * If there is a non-zero preempt_count or interrupts are disabled, |
4103 | * we do not want to preempt the current task. Just return.. |
4104 | */ |
4105 | if (likely(ti->preempt_count || irqs_disabled())) |
4106 | return; |
4107 | |
4108 | do { |
4109 | add_preempt_count_notrace(PREEMPT_ACTIVE); |
4110 | schedule(); |
4111 | sub_preempt_count_notrace(PREEMPT_ACTIVE); |
4112 | |
4113 | /* |
4114 | * Check again in case we missed a preemption opportunity |
4115 | * between schedule and now. |
4116 | */ |
4117 | barrier(); |
4118 | } while (need_resched()); |
4119 | } |
4120 | EXPORT_SYMBOL(preempt_schedule); |
4121 | |
4122 | /* |
4123 | * this is the entry point to schedule() from kernel preemption |
4124 | * off of irq context. |
4125 | * Note, that this is called and return with irqs disabled. This will |
4126 | * protect us against recursive calling from irq. |
4127 | */ |
4128 | asmlinkage void __sched preempt_schedule_irq(void) |
4129 | { |
4130 | struct thread_info *ti = current_thread_info(); |
4131 | |
4132 | /* Catch callers which need to be fixed */ |
4133 | BUG_ON(ti->preempt_count || !irqs_disabled()); |
4134 | |
4135 | do { |
4136 | add_preempt_count(PREEMPT_ACTIVE); |
4137 | local_irq_enable(); |
4138 | schedule(); |
4139 | local_irq_disable(); |
4140 | sub_preempt_count(PREEMPT_ACTIVE); |
4141 | |
4142 | /* |
4143 | * Check again in case we missed a preemption opportunity |
4144 | * between schedule and now. |
4145 | */ |
4146 | barrier(); |
4147 | } while (need_resched()); |
4148 | } |
4149 | |
4150 | #endif /* CONFIG_PREEMPT */ |
4151 | |
4152 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
4153 | void *key) |
4154 | { |
4155 | return try_to_wake_up(curr->private, mode, wake_flags); |
4156 | } |
4157 | EXPORT_SYMBOL(default_wake_function); |
4158 | |
4159 | /* |
4160 | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just |
4161 | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve |
4162 | * number) then we wake all the non-exclusive tasks and one exclusive task. |
4163 | * |
4164 | * There are circumstances in which we can try to wake a task which has already |
4165 | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns |
4166 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
4167 | */ |
4168 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
4169 | int nr_exclusive, int wake_flags, void *key) |
4170 | { |
4171 | wait_queue_t *curr, *next; |
4172 | |
4173 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
4174 | unsigned flags = curr->flags; |
4175 | |
4176 | if (curr->func(curr, mode, wake_flags, key) && |
4177 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
4178 | break; |
4179 | } |
4180 | } |
4181 | |
4182 | /** |
4183 | * __wake_up - wake up threads blocked on a waitqueue. |
4184 | * @q: the waitqueue |
4185 | * @mode: which threads |
4186 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
4187 | * @key: is directly passed to the wakeup function |
4188 | * |
4189 | * It may be assumed that this function implies a write memory barrier before |
4190 | * changing the task state if and only if any tasks are woken up. |
4191 | */ |
4192 | void __wake_up(wait_queue_head_t *q, unsigned int mode, |
4193 | int nr_exclusive, void *key) |
4194 | { |
4195 | unsigned long flags; |
4196 | |
4197 | spin_lock_irqsave(&q->lock, flags); |
4198 | __wake_up_common(q, mode, nr_exclusive, 0, key); |
4199 | spin_unlock_irqrestore(&q->lock, flags); |
4200 | } |
4201 | EXPORT_SYMBOL(__wake_up); |
4202 | |
4203 | /* |
4204 | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. |
4205 | */ |
4206 | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) |
4207 | { |
4208 | __wake_up_common(q, mode, 1, 0, NULL); |
4209 | } |
4210 | EXPORT_SYMBOL_GPL(__wake_up_locked); |
4211 | |
4212 | void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) |
4213 | { |
4214 | __wake_up_common(q, mode, 1, 0, key); |
4215 | } |
4216 | EXPORT_SYMBOL_GPL(__wake_up_locked_key); |
4217 | |
4218 | /** |
4219 | * __wake_up_sync_key - wake up threads blocked on a waitqueue. |
4220 | * @q: the waitqueue |
4221 | * @mode: which threads |
4222 | * @nr_exclusive: how many wake-one or wake-many threads to wake up |
4223 | * @key: opaque value to be passed to wakeup targets |
4224 | * |
4225 | * The sync wakeup differs that the waker knows that it will schedule |
4226 | * away soon, so while the target thread will be woken up, it will not |
4227 | * be migrated to another CPU - ie. the two threads are 'synchronized' |
4228 | * with each other. This can prevent needless bouncing between CPUs. |
4229 | * |
4230 | * On UP it can prevent extra preemption. |
4231 | * |
4232 | * It may be assumed that this function implies a write memory barrier before |
4233 | * changing the task state if and only if any tasks are woken up. |
4234 | */ |
4235 | void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, |
4236 | int nr_exclusive, void *key) |
4237 | { |
4238 | unsigned long flags; |
4239 | int wake_flags = WF_SYNC; |
4240 | |
4241 | if (unlikely(!q)) |
4242 | return; |
4243 | |
4244 | if (unlikely(!nr_exclusive)) |
4245 | wake_flags = 0; |
4246 | |
4247 | spin_lock_irqsave(&q->lock, flags); |
4248 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
4249 | spin_unlock_irqrestore(&q->lock, flags); |
4250 | } |
4251 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
4252 | |
4253 | /* |
4254 | * __wake_up_sync - see __wake_up_sync_key() |
4255 | */ |
4256 | void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) |
4257 | { |
4258 | __wake_up_sync_key(q, mode, nr_exclusive, NULL); |
4259 | } |
4260 | EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ |
4261 | |
4262 | /** |
4263 | * complete: - signals a single thread waiting on this completion |
4264 | * @x: holds the state of this particular completion |
4265 | * |
4266 | * This will wake up a single thread waiting on this completion. Threads will be |
4267 | * awakened in the same order in which they were queued. |
4268 | * |
4269 | * See also complete_all(), wait_for_completion() and related routines. |
4270 | * |
4271 | * It may be assumed that this function implies a write memory barrier before |
4272 | * changing the task state if and only if any tasks are woken up. |
4273 | */ |
4274 | void complete(struct completion *x) |
4275 | { |
4276 | unsigned long flags; |
4277 | |
4278 | spin_lock_irqsave(&x->wait.lock, flags); |
4279 | x->done++; |
4280 | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); |
4281 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4282 | } |
4283 | EXPORT_SYMBOL(complete); |
4284 | |
4285 | /** |
4286 | * complete_all: - signals all threads waiting on this completion |
4287 | * @x: holds the state of this particular completion |
4288 | * |
4289 | * This will wake up all threads waiting on this particular completion event. |
4290 | * |
4291 | * It may be assumed that this function implies a write memory barrier before |
4292 | * changing the task state if and only if any tasks are woken up. |
4293 | */ |
4294 | void complete_all(struct completion *x) |
4295 | { |
4296 | unsigned long flags; |
4297 | |
4298 | spin_lock_irqsave(&x->wait.lock, flags); |
4299 | x->done += UINT_MAX/2; |
4300 | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); |
4301 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4302 | } |
4303 | EXPORT_SYMBOL(complete_all); |
4304 | |
4305 | static inline long __sched |
4306 | do_wait_for_common(struct completion *x, long timeout, int state) |
4307 | { |
4308 | if (!x->done) { |
4309 | DECLARE_WAITQUEUE(wait, current); |
4310 | |
4311 | __add_wait_queue_tail_exclusive(&x->wait, &wait); |
4312 | do { |
4313 | if (signal_pending_state(state, current)) { |
4314 | timeout = -ERESTARTSYS; |
4315 | break; |
4316 | } |
4317 | __set_current_state(state); |
4318 | spin_unlock_irq(&x->wait.lock); |
4319 | timeout = schedule_timeout(timeout); |
4320 | spin_lock_irq(&x->wait.lock); |
4321 | } while (!x->done && timeout); |
4322 | __remove_wait_queue(&x->wait, &wait); |
4323 | if (!x->done) |
4324 | return timeout; |
4325 | } |
4326 | x->done--; |
4327 | return timeout ?: 1; |
4328 | } |
4329 | |
4330 | static long __sched |
4331 | wait_for_common(struct completion *x, long timeout, int state) |
4332 | { |
4333 | might_sleep(); |
4334 | |
4335 | spin_lock_irq(&x->wait.lock); |
4336 | timeout = do_wait_for_common(x, timeout, state); |
4337 | spin_unlock_irq(&x->wait.lock); |
4338 | return timeout; |
4339 | } |
4340 | |
4341 | /** |
4342 | * wait_for_completion: - waits for completion of a task |
4343 | * @x: holds the state of this particular completion |
4344 | * |
4345 | * This waits to be signaled for completion of a specific task. It is NOT |
4346 | * interruptible and there is no timeout. |
4347 | * |
4348 | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout |
4349 | * and interrupt capability. Also see complete(). |
4350 | */ |
4351 | void __sched wait_for_completion(struct completion *x) |
4352 | { |
4353 | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); |
4354 | } |
4355 | EXPORT_SYMBOL(wait_for_completion); |
4356 | |
4357 | /** |
4358 | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) |
4359 | * @x: holds the state of this particular completion |
4360 | * @timeout: timeout value in jiffies |
4361 | * |
4362 | * This waits for either a completion of a specific task to be signaled or for a |
4363 | * specified timeout to expire. The timeout is in jiffies. It is not |
4364 | * interruptible. |
4365 | */ |
4366 | unsigned long __sched |
4367 | wait_for_completion_timeout(struct completion *x, unsigned long timeout) |
4368 | { |
4369 | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); |
4370 | } |
4371 | EXPORT_SYMBOL(wait_for_completion_timeout); |
4372 | |
4373 | /** |
4374 | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) |
4375 | * @x: holds the state of this particular completion |
4376 | * |
4377 | * This waits for completion of a specific task to be signaled. It is |
4378 | * interruptible. |
4379 | */ |
4380 | int __sched wait_for_completion_interruptible(struct completion *x) |
4381 | { |
4382 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); |
4383 | if (t == -ERESTARTSYS) |
4384 | return t; |
4385 | return 0; |
4386 | } |
4387 | EXPORT_SYMBOL(wait_for_completion_interruptible); |
4388 | |
4389 | /** |
4390 | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) |
4391 | * @x: holds the state of this particular completion |
4392 | * @timeout: timeout value in jiffies |
4393 | * |
4394 | * This waits for either a completion of a specific task to be signaled or for a |
4395 | * specified timeout to expire. It is interruptible. The timeout is in jiffies. |
4396 | */ |
4397 | long __sched |
4398 | wait_for_completion_interruptible_timeout(struct completion *x, |
4399 | unsigned long timeout) |
4400 | { |
4401 | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); |
4402 | } |
4403 | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); |
4404 | |
4405 | /** |
4406 | * wait_for_completion_killable: - waits for completion of a task (killable) |
4407 | * @x: holds the state of this particular completion |
4408 | * |
4409 | * This waits to be signaled for completion of a specific task. It can be |
4410 | * interrupted by a kill signal. |
4411 | */ |
4412 | int __sched wait_for_completion_killable(struct completion *x) |
4413 | { |
4414 | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); |
4415 | if (t == -ERESTARTSYS) |
4416 | return t; |
4417 | return 0; |
4418 | } |
4419 | EXPORT_SYMBOL(wait_for_completion_killable); |
4420 | |
4421 | /** |
4422 | * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) |
4423 | * @x: holds the state of this particular completion |
4424 | * @timeout: timeout value in jiffies |
4425 | * |
4426 | * This waits for either a completion of a specific task to be |
4427 | * signaled or for a specified timeout to expire. It can be |
4428 | * interrupted by a kill signal. The timeout is in jiffies. |
4429 | */ |
4430 | long __sched |
4431 | wait_for_completion_killable_timeout(struct completion *x, |
4432 | unsigned long timeout) |
4433 | { |
4434 | return wait_for_common(x, timeout, TASK_KILLABLE); |
4435 | } |
4436 | EXPORT_SYMBOL(wait_for_completion_killable_timeout); |
4437 | |
4438 | /** |
4439 | * try_wait_for_completion - try to decrement a completion without blocking |
4440 | * @x: completion structure |
4441 | * |
4442 | * Returns: 0 if a decrement cannot be done without blocking |
4443 | * 1 if a decrement succeeded. |
4444 | * |
4445 | * If a completion is being used as a counting completion, |
4446 | * attempt to decrement the counter without blocking. This |
4447 | * enables us to avoid waiting if the resource the completion |
4448 | * is protecting is not available. |
4449 | */ |
4450 | bool try_wait_for_completion(struct completion *x) |
4451 | { |
4452 | unsigned long flags; |
4453 | int ret = 1; |
4454 | |
4455 | spin_lock_irqsave(&x->wait.lock, flags); |
4456 | if (!x->done) |
4457 | ret = 0; |
4458 | else |
4459 | x->done--; |
4460 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4461 | return ret; |
4462 | } |
4463 | EXPORT_SYMBOL(try_wait_for_completion); |
4464 | |
4465 | /** |
4466 | * completion_done - Test to see if a completion has any waiters |
4467 | * @x: completion structure |
4468 | * |
4469 | * Returns: 0 if there are waiters (wait_for_completion() in progress) |
4470 | * 1 if there are no waiters. |
4471 | * |
4472 | */ |
4473 | bool completion_done(struct completion *x) |
4474 | { |
4475 | unsigned long flags; |
4476 | int ret = 1; |
4477 | |
4478 | spin_lock_irqsave(&x->wait.lock, flags); |
4479 | if (!x->done) |
4480 | ret = 0; |
4481 | spin_unlock_irqrestore(&x->wait.lock, flags); |
4482 | return ret; |
4483 | } |
4484 | EXPORT_SYMBOL(completion_done); |
4485 | |
4486 | static long __sched |
4487 | sleep_on_common(wait_queue_head_t *q, int state, long timeout) |
4488 | { |
4489 | unsigned long flags; |
4490 | wait_queue_t wait; |
4491 | |
4492 | init_waitqueue_entry(&wait, current); |
4493 | |
4494 | __set_current_state(state); |
4495 | |
4496 | spin_lock_irqsave(&q->lock, flags); |
4497 | __add_wait_queue(q, &wait); |
4498 | spin_unlock(&q->lock); |
4499 | timeout = schedule_timeout(timeout); |
4500 | spin_lock_irq(&q->lock); |
4501 | __remove_wait_queue(q, &wait); |
4502 | spin_unlock_irqrestore(&q->lock, flags); |
4503 | |
4504 | return timeout; |
4505 | } |
4506 | |
4507 | void __sched interruptible_sleep_on(wait_queue_head_t *q) |
4508 | { |
4509 | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
4510 | } |
4511 | EXPORT_SYMBOL(interruptible_sleep_on); |
4512 | |
4513 | long __sched |
4514 | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) |
4515 | { |
4516 | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); |
4517 | } |
4518 | EXPORT_SYMBOL(interruptible_sleep_on_timeout); |
4519 | |
4520 | void __sched sleep_on(wait_queue_head_t *q) |
4521 | { |
4522 | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); |
4523 | } |
4524 | EXPORT_SYMBOL(sleep_on); |
4525 | |
4526 | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) |
4527 | { |
4528 | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); |
4529 | } |
4530 | EXPORT_SYMBOL(sleep_on_timeout); |
4531 | |
4532 | #ifdef CONFIG_RT_MUTEXES |
4533 | |
4534 | /* |
4535 | * rt_mutex_setprio - set the current priority of a task |
4536 | * @p: task |
4537 | * @prio: prio value (kernel-internal form) |
4538 | * |
4539 | * This function changes the 'effective' priority of a task. It does |
4540 | * not touch ->normal_prio like __setscheduler(). |
4541 | * |
4542 | * Used by the rt_mutex code to implement priority inheritance logic. |
4543 | */ |
4544 | void rt_mutex_setprio(struct task_struct *p, int prio) |
4545 | { |
4546 | unsigned long flags; |
4547 | int oldprio, on_rq, running; |
4548 | struct rq *rq; |
4549 | const struct sched_class *prev_class; |
4550 | |
4551 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
4552 | |
4553 | rq = task_rq_lock(p, &flags); |
4554 | |
4555 | trace_sched_pi_setprio(p, prio); |
4556 | oldprio = p->prio; |
4557 | prev_class = p->sched_class; |
4558 | on_rq = p->se.on_rq; |
4559 | running = task_current(rq, p); |
4560 | if (on_rq) |
4561 | dequeue_task(rq, p, 0); |
4562 | if (running) |
4563 | p->sched_class->put_prev_task(rq, p); |
4564 | |
4565 | if (rt_prio(prio)) |
4566 | p->sched_class = &rt_sched_class; |
4567 | else |
4568 | p->sched_class = &fair_sched_class; |
4569 | |
4570 | p->prio = prio; |
4571 | |
4572 | if (running) |
4573 | p->sched_class->set_curr_task(rq); |
4574 | if (on_rq) { |
4575 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
4576 | |
4577 | check_class_changed(rq, p, prev_class, oldprio, running); |
4578 | } |
4579 | task_rq_unlock(rq, &flags); |
4580 | } |
4581 | |
4582 | #endif |
4583 | |
4584 | void set_user_nice(struct task_struct *p, long nice) |
4585 | { |
4586 | int old_prio, delta, on_rq; |
4587 | unsigned long flags; |
4588 | struct rq *rq; |
4589 | |
4590 | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) |
4591 | return; |
4592 | /* |
4593 | * We have to be careful, if called from sys_setpriority(), |
4594 | * the task might be in the middle of scheduling on another CPU. |
4595 | */ |
4596 | rq = task_rq_lock(p, &flags); |
4597 | /* |
4598 | * The RT priorities are set via sched_setscheduler(), but we still |
4599 | * allow the 'normal' nice value to be set - but as expected |
4600 | * it wont have any effect on scheduling until the task is |
4601 | * SCHED_FIFO/SCHED_RR: |
4602 | */ |
4603 | if (task_has_rt_policy(p)) { |
4604 | p->static_prio = NICE_TO_PRIO(nice); |
4605 | goto out_unlock; |
4606 | } |
4607 | on_rq = p->se.on_rq; |
4608 | if (on_rq) |
4609 | dequeue_task(rq, p, 0); |
4610 | |
4611 | p->static_prio = NICE_TO_PRIO(nice); |
4612 | set_load_weight(p); |
4613 | old_prio = p->prio; |
4614 | p->prio = effective_prio(p); |
4615 | delta = p->prio - old_prio; |
4616 | |
4617 | if (on_rq) { |
4618 | enqueue_task(rq, p, 0); |
4619 | /* |
4620 | * If the task increased its priority or is running and |
4621 | * lowered its priority, then reschedule its CPU: |
4622 | */ |
4623 | if (delta < 0 || (delta > 0 && task_running(rq, p))) |
4624 | resched_task(rq->curr); |
4625 | } |
4626 | out_unlock: |
4627 | task_rq_unlock(rq, &flags); |
4628 | } |
4629 | EXPORT_SYMBOL(set_user_nice); |
4630 | |
4631 | /* |
4632 | * can_nice - check if a task can reduce its nice value |
4633 | * @p: task |
4634 | * @nice: nice value |
4635 | */ |
4636 | int can_nice(const struct task_struct *p, const int nice) |
4637 | { |
4638 | /* convert nice value [19,-20] to rlimit style value [1,40] */ |
4639 | int nice_rlim = 20 - nice; |
4640 | |
4641 | return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) || |
4642 | capable(CAP_SYS_NICE)); |
4643 | } |
4644 | |
4645 | #ifdef __ARCH_WANT_SYS_NICE |
4646 | |
4647 | /* |
4648 | * sys_nice - change the priority of the current process. |
4649 | * @increment: priority increment |
4650 | * |
4651 | * sys_setpriority is a more generic, but much slower function that |
4652 | * does similar things. |
4653 | */ |
4654 | SYSCALL_DEFINE1(nice, int, increment) |
4655 | { |
4656 | long nice, retval; |
4657 | |
4658 | /* |
4659 | * Setpriority might change our priority at the same moment. |
4660 | * We don't have to worry. Conceptually one call occurs first |
4661 | * and we have a single winner. |
4662 | */ |
4663 | if (increment < -40) |
4664 | increment = -40; |
4665 | if (increment > 40) |
4666 | increment = 40; |
4667 | |
4668 | nice = TASK_NICE(current) + increment; |
4669 | if (nice < -20) |
4670 | nice = -20; |
4671 | if (nice > 19) |
4672 | nice = 19; |
4673 | |
4674 | if (increment < 0 && !can_nice(current, nice)) |
4675 | return -EPERM; |
4676 | |
4677 | retval = security_task_setnice(current, nice); |
4678 | if (retval) |
4679 | return retval; |
4680 | |
4681 | set_user_nice(current, nice); |
4682 | return 0; |
4683 | } |
4684 | |
4685 | #endif |
4686 | |
4687 | /** |
4688 | * task_prio - return the priority value of a given task. |
4689 | * @p: the task in question. |
4690 | * |
4691 | * This is the priority value as seen by users in /proc. |
4692 | * RT tasks are offset by -200. Normal tasks are centered |
4693 | * around 0, value goes from -16 to +15. |
4694 | */ |
4695 | int task_prio(const struct task_struct *p) |
4696 | { |
4697 | return p->prio - MAX_RT_PRIO; |
4698 | } |
4699 | |
4700 | /** |
4701 | * task_nice - return the nice value of a given task. |
4702 | * @p: the task in question. |
4703 | */ |
4704 | int task_nice(const struct task_struct *p) |
4705 | { |
4706 | return TASK_NICE(p); |
4707 | } |
4708 | EXPORT_SYMBOL(task_nice); |
4709 | |
4710 | /** |
4711 | * idle_cpu - is a given cpu idle currently? |
4712 | * @cpu: the processor in question. |
4713 | */ |
4714 | int idle_cpu(int cpu) |
4715 | { |
4716 | return cpu_curr(cpu) == cpu_rq(cpu)->idle; |
4717 | } |
4718 | |
4719 | /** |
4720 | * idle_task - return the idle task for a given cpu. |
4721 | * @cpu: the processor in question. |
4722 | */ |
4723 | struct task_struct *idle_task(int cpu) |
4724 | { |
4725 | return cpu_rq(cpu)->idle; |
4726 | } |
4727 | |
4728 | /** |
4729 | * find_process_by_pid - find a process with a matching PID value. |
4730 | * @pid: the pid in question. |
4731 | */ |
4732 | static struct task_struct *find_process_by_pid(pid_t pid) |
4733 | { |
4734 | return pid ? find_task_by_vpid(pid) : current; |
4735 | } |
4736 | |
4737 | /* Actually do priority change: must hold rq lock. */ |
4738 | static void |
4739 | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) |
4740 | { |
4741 | BUG_ON(p->se.on_rq); |
4742 | |
4743 | p->policy = policy; |
4744 | p->rt_priority = prio; |
4745 | p->normal_prio = normal_prio(p); |
4746 | /* we are holding p->pi_lock already */ |
4747 | p->prio = rt_mutex_getprio(p); |
4748 | if (rt_prio(p->prio)) |
4749 | p->sched_class = &rt_sched_class; |
4750 | else |
4751 | p->sched_class = &fair_sched_class; |
4752 | set_load_weight(p); |
4753 | } |
4754 | |
4755 | /* |
4756 | * check the target process has a UID that matches the current process's |
4757 | */ |
4758 | static bool check_same_owner(struct task_struct *p) |
4759 | { |
4760 | const struct cred *cred = current_cred(), *pcred; |
4761 | bool match; |
4762 | |
4763 | rcu_read_lock(); |
4764 | pcred = __task_cred(p); |
4765 | match = (cred->euid == pcred->euid || |
4766 | cred->euid == pcred->uid); |
4767 | rcu_read_unlock(); |
4768 | return match; |
4769 | } |
4770 | |
4771 | static int __sched_setscheduler(struct task_struct *p, int policy, |
4772 | const struct sched_param *param, bool user) |
4773 | { |
4774 | int retval, oldprio, oldpolicy = -1, on_rq, running; |
4775 | unsigned long flags; |
4776 | const struct sched_class *prev_class; |
4777 | struct rq *rq; |
4778 | int reset_on_fork; |
4779 | |
4780 | /* may grab non-irq protected spin_locks */ |
4781 | BUG_ON(in_interrupt()); |
4782 | recheck: |
4783 | /* double check policy once rq lock held */ |
4784 | if (policy < 0) { |
4785 | reset_on_fork = p->sched_reset_on_fork; |
4786 | policy = oldpolicy = p->policy; |
4787 | } else { |
4788 | reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); |
4789 | policy &= ~SCHED_RESET_ON_FORK; |
4790 | |
4791 | if (policy != SCHED_FIFO && policy != SCHED_RR && |
4792 | policy != SCHED_NORMAL && policy != SCHED_BATCH && |
4793 | policy != SCHED_IDLE) |
4794 | return -EINVAL; |
4795 | } |
4796 | |
4797 | /* |
4798 | * Valid priorities for SCHED_FIFO and SCHED_RR are |
4799 | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, |
4800 | * SCHED_BATCH and SCHED_IDLE is 0. |
4801 | */ |
4802 | if (param->sched_priority < 0 || |
4803 | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || |
4804 | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) |
4805 | return -EINVAL; |
4806 | if (rt_policy(policy) != (param->sched_priority != 0)) |
4807 | return -EINVAL; |
4808 | |
4809 | /* |
4810 | * Allow unprivileged RT tasks to decrease priority: |
4811 | */ |
4812 | if (user && !capable(CAP_SYS_NICE)) { |
4813 | if (rt_policy(policy)) { |
4814 | unsigned long rlim_rtprio = |
4815 | task_rlimit(p, RLIMIT_RTPRIO); |
4816 | |
4817 | /* can't set/change the rt policy */ |
4818 | if (policy != p->policy && !rlim_rtprio) |
4819 | return -EPERM; |
4820 | |
4821 | /* can't increase priority */ |
4822 | if (param->sched_priority > p->rt_priority && |
4823 | param->sched_priority > rlim_rtprio) |
4824 | return -EPERM; |
4825 | } |
4826 | /* |
4827 | * Like positive nice levels, dont allow tasks to |
4828 | * move out of SCHED_IDLE either: |
4829 | */ |
4830 | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) |
4831 | return -EPERM; |
4832 | |
4833 | /* can't change other user's priorities */ |
4834 | if (!check_same_owner(p)) |
4835 | return -EPERM; |
4836 | |
4837 | /* Normal users shall not reset the sched_reset_on_fork flag */ |
4838 | if (p->sched_reset_on_fork && !reset_on_fork) |
4839 | return -EPERM; |
4840 | } |
4841 | |
4842 | if (user) { |
4843 | retval = security_task_setscheduler(p); |
4844 | if (retval) |
4845 | return retval; |
4846 | } |
4847 | |
4848 | /* |
4849 | * make sure no PI-waiters arrive (or leave) while we are |
4850 | * changing the priority of the task: |
4851 | */ |
4852 | raw_spin_lock_irqsave(&p->pi_lock, flags); |
4853 | /* |
4854 | * To be able to change p->policy safely, the apropriate |
4855 | * runqueue lock must be held. |
4856 | */ |
4857 | rq = __task_rq_lock(p); |
4858 | |
4859 | /* |
4860 | * Changing the policy of the stop threads its a very bad idea |
4861 | */ |
4862 | if (p == rq->stop) { |
4863 | __task_rq_unlock(rq); |
4864 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4865 | return -EINVAL; |
4866 | } |
4867 | |
4868 | #ifdef CONFIG_RT_GROUP_SCHED |
4869 | if (user) { |
4870 | /* |
4871 | * Do not allow realtime tasks into groups that have no runtime |
4872 | * assigned. |
4873 | */ |
4874 | if (rt_bandwidth_enabled() && rt_policy(policy) && |
4875 | task_group(p)->rt_bandwidth.rt_runtime == 0 && |
4876 | !task_group_is_autogroup(task_group(p))) { |
4877 | __task_rq_unlock(rq); |
4878 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4879 | return -EPERM; |
4880 | } |
4881 | } |
4882 | #endif |
4883 | |
4884 | /* recheck policy now with rq lock held */ |
4885 | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { |
4886 | policy = oldpolicy = -1; |
4887 | __task_rq_unlock(rq); |
4888 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4889 | goto recheck; |
4890 | } |
4891 | on_rq = p->se.on_rq; |
4892 | running = task_current(rq, p); |
4893 | if (on_rq) |
4894 | deactivate_task(rq, p, 0); |
4895 | if (running) |
4896 | p->sched_class->put_prev_task(rq, p); |
4897 | |
4898 | p->sched_reset_on_fork = reset_on_fork; |
4899 | |
4900 | oldprio = p->prio; |
4901 | prev_class = p->sched_class; |
4902 | __setscheduler(rq, p, policy, param->sched_priority); |
4903 | |
4904 | if (running) |
4905 | p->sched_class->set_curr_task(rq); |
4906 | if (on_rq) { |
4907 | activate_task(rq, p, 0); |
4908 | |
4909 | check_class_changed(rq, p, prev_class, oldprio, running); |
4910 | } |
4911 | __task_rq_unlock(rq); |
4912 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4913 | |
4914 | rt_mutex_adjust_pi(p); |
4915 | |
4916 | return 0; |
4917 | } |
4918 | |
4919 | /** |
4920 | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. |
4921 | * @p: the task in question. |
4922 | * @policy: new policy. |
4923 | * @param: structure containing the new RT priority. |
4924 | * |
4925 | * NOTE that the task may be already dead. |
4926 | */ |
4927 | int sched_setscheduler(struct task_struct *p, int policy, |
4928 | const struct sched_param *param) |
4929 | { |
4930 | return __sched_setscheduler(p, policy, param, true); |
4931 | } |
4932 | EXPORT_SYMBOL_GPL(sched_setscheduler); |
4933 | |
4934 | /** |
4935 | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. |
4936 | * @p: the task in question. |
4937 | * @policy: new policy. |
4938 | * @param: structure containing the new RT priority. |
4939 | * |
4940 | * Just like sched_setscheduler, only don't bother checking if the |
4941 | * current context has permission. For example, this is needed in |
4942 | * stop_machine(): we create temporary high priority worker threads, |
4943 | * but our caller might not have that capability. |
4944 | */ |
4945 | int sched_setscheduler_nocheck(struct task_struct *p, int policy, |
4946 | const struct sched_param *param) |
4947 | { |
4948 | return __sched_setscheduler(p, policy, param, false); |
4949 | } |
4950 | |
4951 | static int |
4952 | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) |
4953 | { |
4954 | struct sched_param lparam; |
4955 | struct task_struct *p; |
4956 | int retval; |
4957 | |
4958 | if (!param || pid < 0) |
4959 | return -EINVAL; |
4960 | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) |
4961 | return -EFAULT; |
4962 | |
4963 | rcu_read_lock(); |
4964 | retval = -ESRCH; |
4965 | p = find_process_by_pid(pid); |
4966 | if (p != NULL) |
4967 | retval = sched_setscheduler(p, policy, &lparam); |
4968 | rcu_read_unlock(); |
4969 | |
4970 | return retval; |
4971 | } |
4972 | |
4973 | /** |
4974 | * sys_sched_setscheduler - set/change the scheduler policy and RT priority |
4975 | * @pid: the pid in question. |
4976 | * @policy: new policy. |
4977 | * @param: structure containing the new RT priority. |
4978 | */ |
4979 | SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, |
4980 | struct sched_param __user *, param) |
4981 | { |
4982 | /* negative values for policy are not valid */ |
4983 | if (policy < 0) |
4984 | return -EINVAL; |
4985 | |
4986 | return do_sched_setscheduler(pid, policy, param); |
4987 | } |
4988 | |
4989 | /** |
4990 | * sys_sched_setparam - set/change the RT priority of a thread |
4991 | * @pid: the pid in question. |
4992 | * @param: structure containing the new RT priority. |
4993 | */ |
4994 | SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) |
4995 | { |
4996 | return do_sched_setscheduler(pid, -1, param); |
4997 | } |
4998 | |
4999 | /** |
5000 | * sys_sched_getscheduler - get the policy (scheduling class) of a thread |
5001 | * @pid: the pid in question. |
5002 | */ |
5003 | SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) |
5004 | { |
5005 | struct task_struct *p; |
5006 | int retval; |
5007 | |
5008 | if (pid < 0) |
5009 | return -EINVAL; |
5010 | |
5011 | retval = -ESRCH; |
5012 | rcu_read_lock(); |
5013 | p = find_process_by_pid(pid); |
5014 | if (p) { |
5015 | retval = security_task_getscheduler(p); |
5016 | if (!retval) |
5017 | retval = p->policy |
5018 | | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0); |
5019 | } |
5020 | rcu_read_unlock(); |
5021 | return retval; |
5022 | } |
5023 | |
5024 | /** |
5025 | * sys_sched_getparam - get the RT priority of a thread |
5026 | * @pid: the pid in question. |
5027 | * @param: structure containing the RT priority. |
5028 | */ |
5029 | SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) |
5030 | { |
5031 | struct sched_param lp; |
5032 | struct task_struct *p; |
5033 | int retval; |
5034 | |
5035 | if (!param || pid < 0) |
5036 | return -EINVAL; |
5037 | |
5038 | rcu_read_lock(); |
5039 | p = find_process_by_pid(pid); |
5040 | retval = -ESRCH; |
5041 | if (!p) |
5042 | goto out_unlock; |
5043 | |
5044 | retval = security_task_getscheduler(p); |
5045 | if (retval) |
5046 | goto out_unlock; |
5047 | |
5048 | lp.sched_priority = p->rt_priority; |
5049 | rcu_read_unlock(); |
5050 | |
5051 | /* |
5052 | * This one might sleep, we cannot do it with a spinlock held ... |
5053 | */ |
5054 | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; |
5055 | |
5056 | return retval; |
5057 | |
5058 | out_unlock: |
5059 | rcu_read_unlock(); |
5060 | return retval; |
5061 | } |
5062 | |
5063 | long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) |
5064 | { |
5065 | cpumask_var_t cpus_allowed, new_mask; |
5066 | struct task_struct *p; |
5067 | int retval; |
5068 | |
5069 | get_online_cpus(); |
5070 | rcu_read_lock(); |
5071 | |
5072 | p = find_process_by_pid(pid); |
5073 | if (!p) { |
5074 | rcu_read_unlock(); |
5075 | put_online_cpus(); |
5076 | return -ESRCH; |
5077 | } |
5078 | |
5079 | /* Prevent p going away */ |
5080 | get_task_struct(p); |
5081 | rcu_read_unlock(); |
5082 | |
5083 | if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) { |
5084 | retval = -ENOMEM; |
5085 | goto out_put_task; |
5086 | } |
5087 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { |
5088 | retval = -ENOMEM; |
5089 | goto out_free_cpus_allowed; |
5090 | } |
5091 | retval = -EPERM; |
5092 | if (!check_same_owner(p) && !capable(CAP_SYS_NICE)) |
5093 | goto out_unlock; |
5094 | |
5095 | retval = security_task_setscheduler(p); |
5096 | if (retval) |
5097 | goto out_unlock; |
5098 | |
5099 | cpuset_cpus_allowed(p, cpus_allowed); |
5100 | cpumask_and(new_mask, in_mask, cpus_allowed); |
5101 | again: |
5102 | retval = set_cpus_allowed_ptr(p, new_mask); |
5103 | |
5104 | if (!retval) { |
5105 | cpuset_cpus_allowed(p, cpus_allowed); |
5106 | if (!cpumask_subset(new_mask, cpus_allowed)) { |
5107 | /* |
5108 | * We must have raced with a concurrent cpuset |
5109 | * update. Just reset the cpus_allowed to the |
5110 | * cpuset's cpus_allowed |
5111 | */ |
5112 | cpumask_copy(new_mask, cpus_allowed); |
5113 | goto again; |
5114 | } |
5115 | } |
5116 | out_unlock: |
5117 | free_cpumask_var(new_mask); |
5118 | out_free_cpus_allowed: |
5119 | free_cpumask_var(cpus_allowed); |
5120 | out_put_task: |
5121 | put_task_struct(p); |
5122 | put_online_cpus(); |
5123 | return retval; |
5124 | } |
5125 | |
5126 | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, |
5127 | struct cpumask *new_mask) |
5128 | { |
5129 | if (len < cpumask_size()) |
5130 | cpumask_clear(new_mask); |
5131 | else if (len > cpumask_size()) |
5132 | len = cpumask_size(); |
5133 | |
5134 | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; |
5135 | } |
5136 | |
5137 | /** |
5138 | * sys_sched_setaffinity - set the cpu affinity of a process |
5139 | * @pid: pid of the process |
5140 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
5141 | * @user_mask_ptr: user-space pointer to the new cpu mask |
5142 | */ |
5143 | SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, |
5144 | unsigned long __user *, user_mask_ptr) |
5145 | { |
5146 | cpumask_var_t new_mask; |
5147 | int retval; |
5148 | |
5149 | if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) |
5150 | return -ENOMEM; |
5151 | |
5152 | retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); |
5153 | if (retval == 0) |
5154 | retval = sched_setaffinity(pid, new_mask); |
5155 | free_cpumask_var(new_mask); |
5156 | return retval; |
5157 | } |
5158 | |
5159 | long sched_getaffinity(pid_t pid, struct cpumask *mask) |
5160 | { |
5161 | struct task_struct *p; |
5162 | unsigned long flags; |
5163 | struct rq *rq; |
5164 | int retval; |
5165 | |
5166 | get_online_cpus(); |
5167 | rcu_read_lock(); |
5168 | |
5169 | retval = -ESRCH; |
5170 | p = find_process_by_pid(pid); |
5171 | if (!p) |
5172 | goto out_unlock; |
5173 | |
5174 | retval = security_task_getscheduler(p); |
5175 | if (retval) |
5176 | goto out_unlock; |
5177 | |
5178 | rq = task_rq_lock(p, &flags); |
5179 | cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); |
5180 | task_rq_unlock(rq, &flags); |
5181 | |
5182 | out_unlock: |
5183 | rcu_read_unlock(); |
5184 | put_online_cpus(); |
5185 | |
5186 | return retval; |
5187 | } |
5188 | |
5189 | /** |
5190 | * sys_sched_getaffinity - get the cpu affinity of a process |
5191 | * @pid: pid of the process |
5192 | * @len: length in bytes of the bitmask pointed to by user_mask_ptr |
5193 | * @user_mask_ptr: user-space pointer to hold the current cpu mask |
5194 | */ |
5195 | SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, |
5196 | unsigned long __user *, user_mask_ptr) |
5197 | { |
5198 | int ret; |
5199 | cpumask_var_t mask; |
5200 | |
5201 | if ((len * BITS_PER_BYTE) < nr_cpu_ids) |
5202 | return -EINVAL; |
5203 | if (len & (sizeof(unsigned long)-1)) |
5204 | return -EINVAL; |
5205 | |
5206 | if (!alloc_cpumask_var(&mask, GFP_KERNEL)) |
5207 | return -ENOMEM; |
5208 | |
5209 | ret = sched_getaffinity(pid, mask); |
5210 | if (ret == 0) { |
5211 | size_t retlen = min_t(size_t, len, cpumask_size()); |
5212 | |
5213 | if (copy_to_user(user_mask_ptr, mask, retlen)) |
5214 | ret = -EFAULT; |
5215 | else |
5216 | ret = retlen; |
5217 | } |
5218 | free_cpumask_var(mask); |
5219 | |
5220 | return ret; |
5221 | } |
5222 | |
5223 | /** |
5224 | * sys_sched_yield - yield the current processor to other threads. |
5225 | * |
5226 | * This function yields the current CPU to other tasks. If there are no |
5227 | * other threads running on this CPU then this function will return. |
5228 | */ |
5229 | SYSCALL_DEFINE0(sched_yield) |
5230 | { |
5231 | struct rq *rq = this_rq_lock(); |
5232 | |
5233 | schedstat_inc(rq, yld_count); |
5234 | current->sched_class->yield_task(rq); |
5235 | |
5236 | /* |
5237 | * Since we are going to call schedule() anyway, there's |
5238 | * no need to preempt or enable interrupts: |
5239 | */ |
5240 | __release(rq->lock); |
5241 | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); |
5242 | do_raw_spin_unlock(&rq->lock); |
5243 | preempt_enable_no_resched(); |
5244 | |
5245 | schedule(); |
5246 | |
5247 | return 0; |
5248 | } |
5249 | |
5250 | static inline int should_resched(void) |
5251 | { |
5252 | return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); |
5253 | } |
5254 | |
5255 | static void __cond_resched(void) |
5256 | { |
5257 | add_preempt_count(PREEMPT_ACTIVE); |
5258 | schedule(); |
5259 | sub_preempt_count(PREEMPT_ACTIVE); |
5260 | } |
5261 | |
5262 | int __sched _cond_resched(void) |
5263 | { |
5264 | if (should_resched()) { |
5265 | __cond_resched(); |
5266 | return 1; |
5267 | } |
5268 | return 0; |
5269 | } |
5270 | EXPORT_SYMBOL(_cond_resched); |
5271 | |
5272 | /* |
5273 | * __cond_resched_lock() - if a reschedule is pending, drop the given lock, |
5274 | * call schedule, and on return reacquire the lock. |
5275 | * |
5276 | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level |
5277 | * operations here to prevent schedule() from being called twice (once via |
5278 | * spin_unlock(), once by hand). |
5279 | */ |
5280 | int __cond_resched_lock(spinlock_t *lock) |
5281 | { |
5282 | int resched = should_resched(); |
5283 | int ret = 0; |
5284 | |
5285 | lockdep_assert_held(lock); |
5286 | |
5287 | if (spin_needbreak(lock) || resched) { |
5288 | spin_unlock(lock); |
5289 | if (resched) |
5290 | __cond_resched(); |
5291 | else |
5292 | cpu_relax(); |
5293 | ret = 1; |
5294 | spin_lock(lock); |
5295 | } |
5296 | return ret; |
5297 | } |
5298 | EXPORT_SYMBOL(__cond_resched_lock); |
5299 | |
5300 | int __sched __cond_resched_softirq(void) |
5301 | { |
5302 | BUG_ON(!in_softirq()); |
5303 | |
5304 | if (should_resched()) { |
5305 | local_bh_enable(); |
5306 | __cond_resched(); |
5307 | local_bh_disable(); |
5308 | return 1; |
5309 | } |
5310 | return 0; |
5311 | } |
5312 | EXPORT_SYMBOL(__cond_resched_softirq); |
5313 | |
5314 | /** |
5315 | * yield - yield the current processor to other threads. |
5316 | * |
5317 | * This is a shortcut for kernel-space yielding - it marks the |
5318 | * thread runnable and calls sys_sched_yield(). |
5319 | */ |
5320 | void __sched yield(void) |
5321 | { |
5322 | set_current_state(TASK_RUNNING); |
5323 | sys_sched_yield(); |
5324 | } |
5325 | EXPORT_SYMBOL(yield); |
5326 | |
5327 | /* |
5328 | * This task is about to go to sleep on IO. Increment rq->nr_iowait so |
5329 | * that process accounting knows that this is a task in IO wait state. |
5330 | */ |
5331 | void __sched io_schedule(void) |
5332 | { |
5333 | struct rq *rq = raw_rq(); |
5334 | |
5335 | delayacct_blkio_start(); |
5336 | atomic_inc(&rq->nr_iowait); |
5337 | current->in_iowait = 1; |
5338 | schedule(); |
5339 | current->in_iowait = 0; |
5340 | atomic_dec(&rq->nr_iowait); |
5341 | delayacct_blkio_end(); |
5342 | } |
5343 | EXPORT_SYMBOL(io_schedule); |
5344 | |
5345 | long __sched io_schedule_timeout(long timeout) |
5346 | { |
5347 | struct rq *rq = raw_rq(); |
5348 | long ret; |
5349 | |
5350 | delayacct_blkio_start(); |
5351 | atomic_inc(&rq->nr_iowait); |
5352 | current->in_iowait = 1; |
5353 | ret = schedule_timeout(timeout); |
5354 | current->in_iowait = 0; |
5355 | atomic_dec(&rq->nr_iowait); |
5356 | delayacct_blkio_end(); |
5357 | return ret; |
5358 | } |
5359 | |
5360 | /** |
5361 | * sys_sched_get_priority_max - return maximum RT priority. |
5362 | * @policy: scheduling class. |
5363 | * |
5364 | * this syscall returns the maximum rt_priority that can be used |
5365 | * by a given scheduling class. |
5366 | */ |
5367 | SYSCALL_DEFINE1(sched_get_priority_max, int, policy) |
5368 | { |
5369 | int ret = -EINVAL; |
5370 | |
5371 | switch (policy) { |
5372 | case SCHED_FIFO: |
5373 | case SCHED_RR: |
5374 | ret = MAX_USER_RT_PRIO-1; |
5375 | break; |
5376 | case SCHED_NORMAL: |
5377 | case SCHED_BATCH: |
5378 | case SCHED_IDLE: |
5379 | ret = 0; |
5380 | break; |
5381 | } |
5382 | return ret; |
5383 | } |
5384 | |
5385 | /** |
5386 | * sys_sched_get_priority_min - return minimum RT priority. |
5387 | * @policy: scheduling class. |
5388 | * |
5389 | * this syscall returns the minimum rt_priority that can be used |
5390 | * by a given scheduling class. |
5391 | */ |
5392 | SYSCALL_DEFINE1(sched_get_priority_min, int, policy) |
5393 | { |
5394 | int ret = -EINVAL; |
5395 | |
5396 | switch (policy) { |
5397 | case SCHED_FIFO: |
5398 | case SCHED_RR: |
5399 | ret = 1; |
5400 | break; |
5401 | case SCHED_NORMAL: |
5402 | case SCHED_BATCH: |
5403 | case SCHED_IDLE: |
5404 | ret = 0; |
5405 | } |
5406 | return ret; |
5407 | } |
5408 | |
5409 | /** |
5410 | * sys_sched_rr_get_interval - return the default timeslice of a process. |
5411 | * @pid: pid of the process. |
5412 | * @interval: userspace pointer to the timeslice value. |
5413 | * |
5414 | * this syscall writes the default timeslice value of a given process |
5415 | * into the user-space timespec buffer. A value of '0' means infinity. |
5416 | */ |
5417 | SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, |
5418 | struct timespec __user *, interval) |
5419 | { |
5420 | struct task_struct *p; |
5421 | unsigned int time_slice; |
5422 | unsigned long flags; |
5423 | struct rq *rq; |
5424 | int retval; |
5425 | struct timespec t; |
5426 | |
5427 | if (pid < 0) |
5428 | return -EINVAL; |
5429 | |
5430 | retval = -ESRCH; |
5431 | rcu_read_lock(); |
5432 | p = find_process_by_pid(pid); |
5433 | if (!p) |
5434 | goto out_unlock; |
5435 | |
5436 | retval = security_task_getscheduler(p); |
5437 | if (retval) |
5438 | goto out_unlock; |
5439 | |
5440 | rq = task_rq_lock(p, &flags); |
5441 | time_slice = p->sched_class->get_rr_interval(rq, p); |
5442 | task_rq_unlock(rq, &flags); |
5443 | |
5444 | rcu_read_unlock(); |
5445 | jiffies_to_timespec(time_slice, &t); |
5446 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
5447 | return retval; |
5448 | |
5449 | out_unlock: |
5450 | rcu_read_unlock(); |
5451 | return retval; |
5452 | } |
5453 | |
5454 | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; |
5455 | |
5456 | void sched_show_task(struct task_struct *p) |
5457 | { |
5458 | unsigned long free = 0; |
5459 | unsigned state; |
5460 | |
5461 | state = p->state ? __ffs(p->state) + 1 : 0; |
5462 | printk(KERN_INFO "%-15.15s %c", p->comm, |
5463 | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); |
5464 | #if BITS_PER_LONG == 32 |
5465 | if (state == TASK_RUNNING) |
5466 | printk(KERN_CONT " running "); |
5467 | else |
5468 | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); |
5469 | #else |
5470 | if (state == TASK_RUNNING) |
5471 | printk(KERN_CONT " running task "); |
5472 | else |
5473 | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); |
5474 | #endif |
5475 | #ifdef CONFIG_DEBUG_STACK_USAGE |
5476 | free = stack_not_used(p); |
5477 | #endif |
5478 | printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free, |
5479 | task_pid_nr(p), task_pid_nr(p->real_parent), |
5480 | (unsigned long)task_thread_info(p)->flags); |
5481 | |
5482 | show_stack(p, NULL); |
5483 | } |
5484 | |
5485 | void show_state_filter(unsigned long state_filter) |
5486 | { |
5487 | struct task_struct *g, *p; |
5488 | |
5489 | #if BITS_PER_LONG == 32 |
5490 | printk(KERN_INFO |
5491 | " task PC stack pid father\n"); |
5492 | #else |
5493 | printk(KERN_INFO |
5494 | " task PC stack pid father\n"); |
5495 | #endif |
5496 | read_lock(&tasklist_lock); |
5497 | do_each_thread(g, p) { |
5498 | /* |
5499 | * reset the NMI-timeout, listing all files on a slow |
5500 | * console might take alot of time: |
5501 | */ |
5502 | touch_nmi_watchdog(); |
5503 | if (!state_filter || (p->state & state_filter)) |
5504 | sched_show_task(p); |
5505 | } while_each_thread(g, p); |
5506 | |
5507 | touch_all_softlockup_watchdogs(); |
5508 | |
5509 | #ifdef CONFIG_SCHED_DEBUG |
5510 | sysrq_sched_debug_show(); |
5511 | #endif |
5512 | read_unlock(&tasklist_lock); |
5513 | /* |
5514 | * Only show locks if all tasks are dumped: |
5515 | */ |
5516 | if (!state_filter) |
5517 | debug_show_all_locks(); |
5518 | } |
5519 | |
5520 | void __cpuinit init_idle_bootup_task(struct task_struct *idle) |
5521 | { |
5522 | idle->sched_class = &idle_sched_class; |
5523 | } |
5524 | |
5525 | /** |
5526 | * init_idle - set up an idle thread for a given CPU |
5527 | * @idle: task in question |
5528 | * @cpu: cpu the idle task belongs to |
5529 | * |
5530 | * NOTE: this function does not set the idle thread's NEED_RESCHED |
5531 | * flag, to make booting more robust. |
5532 | */ |
5533 | void __cpuinit init_idle(struct task_struct *idle, int cpu) |
5534 | { |
5535 | struct rq *rq = cpu_rq(cpu); |
5536 | unsigned long flags; |
5537 | |
5538 | raw_spin_lock_irqsave(&rq->lock, flags); |
5539 | |
5540 | __sched_fork(idle); |
5541 | idle->state = TASK_RUNNING; |
5542 | idle->se.exec_start = sched_clock(); |
5543 | |
5544 | cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu)); |
5545 | /* |
5546 | * We're having a chicken and egg problem, even though we are |
5547 | * holding rq->lock, the cpu isn't yet set to this cpu so the |
5548 | * lockdep check in task_group() will fail. |
5549 | * |
5550 | * Similar case to sched_fork(). / Alternatively we could |
5551 | * use task_rq_lock() here and obtain the other rq->lock. |
5552 | * |
5553 | * Silence PROVE_RCU |
5554 | */ |
5555 | rcu_read_lock(); |
5556 | __set_task_cpu(idle, cpu); |
5557 | rcu_read_unlock(); |
5558 | |
5559 | rq->curr = rq->idle = idle; |
5560 | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) |
5561 | idle->oncpu = 1; |
5562 | #endif |
5563 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
5564 | |
5565 | /* Set the preempt count _outside_ the spinlocks! */ |
5566 | #if defined(CONFIG_PREEMPT) |
5567 | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); |
5568 | #else |
5569 | task_thread_info(idle)->preempt_count = 0; |
5570 | #endif |
5571 | /* |
5572 | * The idle tasks have their own, simple scheduling class: |
5573 | */ |
5574 | idle->sched_class = &idle_sched_class; |
5575 | ftrace_graph_init_task(idle); |
5576 | } |
5577 | |
5578 | /* |
5579 | * In a system that switches off the HZ timer nohz_cpu_mask |
5580 | * indicates which cpus entered this state. This is used |
5581 | * in the rcu update to wait only for active cpus. For system |
5582 | * which do not switch off the HZ timer nohz_cpu_mask should |
5583 | * always be CPU_BITS_NONE. |
5584 | */ |
5585 | cpumask_var_t nohz_cpu_mask; |
5586 | |
5587 | /* |
5588 | * Increase the granularity value when there are more CPUs, |
5589 | * because with more CPUs the 'effective latency' as visible |
5590 | * to users decreases. But the relationship is not linear, |
5591 | * so pick a second-best guess by going with the log2 of the |
5592 | * number of CPUs. |
5593 | * |
5594 | * This idea comes from the SD scheduler of Con Kolivas: |
5595 | */ |
5596 | static int get_update_sysctl_factor(void) |
5597 | { |
5598 | unsigned int cpus = min_t(int, num_online_cpus(), 8); |
5599 | unsigned int factor; |
5600 | |
5601 | switch (sysctl_sched_tunable_scaling) { |
5602 | case SCHED_TUNABLESCALING_NONE: |
5603 | factor = 1; |
5604 | break; |
5605 | case SCHED_TUNABLESCALING_LINEAR: |
5606 | factor = cpus; |
5607 | break; |
5608 | case SCHED_TUNABLESCALING_LOG: |
5609 | default: |
5610 | factor = 1 + ilog2(cpus); |
5611 | break; |
5612 | } |
5613 | |
5614 | return factor; |
5615 | } |
5616 | |
5617 | static void update_sysctl(void) |
5618 | { |
5619 | unsigned int factor = get_update_sysctl_factor(); |
5620 | |
5621 | #define SET_SYSCTL(name) \ |
5622 | (sysctl_##name = (factor) * normalized_sysctl_##name) |
5623 | SET_SYSCTL(sched_min_granularity); |
5624 | SET_SYSCTL(sched_latency); |
5625 | SET_SYSCTL(sched_wakeup_granularity); |
5626 | #undef SET_SYSCTL |
5627 | } |
5628 | |
5629 | static inline void sched_init_granularity(void) |
5630 | { |
5631 | update_sysctl(); |
5632 | } |
5633 | |
5634 | #ifdef CONFIG_SMP |
5635 | /* |
5636 | * This is how migration works: |
5637 | * |
5638 | * 1) we invoke migration_cpu_stop() on the target CPU using |
5639 | * stop_one_cpu(). |
5640 | * 2) stopper starts to run (implicitly forcing the migrated thread |
5641 | * off the CPU) |
5642 | * 3) it checks whether the migrated task is still in the wrong runqueue. |
5643 | * 4) if it's in the wrong runqueue then the migration thread removes |
5644 | * it and puts it into the right queue. |
5645 | * 5) stopper completes and stop_one_cpu() returns and the migration |
5646 | * is done. |
5647 | */ |
5648 | |
5649 | /* |
5650 | * Change a given task's CPU affinity. Migrate the thread to a |
5651 | * proper CPU and schedule it away if the CPU it's executing on |
5652 | * is removed from the allowed bitmask. |
5653 | * |
5654 | * NOTE: the caller must have a valid reference to the task, the |
5655 | * task must not exit() & deallocate itself prematurely. The |
5656 | * call is not atomic; no spinlocks may be held. |
5657 | */ |
5658 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
5659 | { |
5660 | unsigned long flags; |
5661 | struct rq *rq; |
5662 | unsigned int dest_cpu; |
5663 | int ret = 0; |
5664 | |
5665 | /* |
5666 | * Serialize against TASK_WAKING so that ttwu() and wunt() can |
5667 | * drop the rq->lock and still rely on ->cpus_allowed. |
5668 | */ |
5669 | again: |
5670 | while (task_is_waking(p)) |
5671 | cpu_relax(); |
5672 | rq = task_rq_lock(p, &flags); |
5673 | if (task_is_waking(p)) { |
5674 | task_rq_unlock(rq, &flags); |
5675 | goto again; |
5676 | } |
5677 | |
5678 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
5679 | ret = -EINVAL; |
5680 | goto out; |
5681 | } |
5682 | |
5683 | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && |
5684 | !cpumask_equal(&p->cpus_allowed, new_mask))) { |
5685 | ret = -EINVAL; |
5686 | goto out; |
5687 | } |
5688 | |
5689 | if (p->sched_class->set_cpus_allowed) |
5690 | p->sched_class->set_cpus_allowed(p, new_mask); |
5691 | else { |
5692 | cpumask_copy(&p->cpus_allowed, new_mask); |
5693 | p->rt.nr_cpus_allowed = cpumask_weight(new_mask); |
5694 | } |
5695 | |
5696 | /* Can the task run on the task's current CPU? If so, we're done */ |
5697 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
5698 | goto out; |
5699 | |
5700 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
5701 | if (migrate_task(p, rq)) { |
5702 | struct migration_arg arg = { p, dest_cpu }; |
5703 | /* Need help from migration thread: drop lock and wait. */ |
5704 | task_rq_unlock(rq, &flags); |
5705 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
5706 | tlb_migrate_finish(p->mm); |
5707 | return 0; |
5708 | } |
5709 | out: |
5710 | task_rq_unlock(rq, &flags); |
5711 | |
5712 | return ret; |
5713 | } |
5714 | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); |
5715 | |
5716 | /* |
5717 | * Move (not current) task off this cpu, onto dest cpu. We're doing |
5718 | * this because either it can't run here any more (set_cpus_allowed() |
5719 | * away from this CPU, or CPU going down), or because we're |
5720 | * attempting to rebalance this task on exec (sched_exec). |
5721 | * |
5722 | * So we race with normal scheduler movements, but that's OK, as long |
5723 | * as the task is no longer on this CPU. |
5724 | * |
5725 | * Returns non-zero if task was successfully migrated. |
5726 | */ |
5727 | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) |
5728 | { |
5729 | struct rq *rq_dest, *rq_src; |
5730 | int ret = 0; |
5731 | |
5732 | if (unlikely(!cpu_active(dest_cpu))) |
5733 | return ret; |
5734 | |
5735 | rq_src = cpu_rq(src_cpu); |
5736 | rq_dest = cpu_rq(dest_cpu); |
5737 | |
5738 | double_rq_lock(rq_src, rq_dest); |
5739 | /* Already moved. */ |
5740 | if (task_cpu(p) != src_cpu) |
5741 | goto done; |
5742 | /* Affinity changed (again). */ |
5743 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)) |
5744 | goto fail; |
5745 | |
5746 | /* |
5747 | * If we're not on a rq, the next wake-up will ensure we're |
5748 | * placed properly. |
5749 | */ |
5750 | if (p->se.on_rq) { |
5751 | deactivate_task(rq_src, p, 0); |
5752 | set_task_cpu(p, dest_cpu); |
5753 | activate_task(rq_dest, p, 0); |
5754 | check_preempt_curr(rq_dest, p, 0); |
5755 | } |
5756 | done: |
5757 | ret = 1; |
5758 | fail: |
5759 | double_rq_unlock(rq_src, rq_dest); |
5760 | return ret; |
5761 | } |
5762 | |
5763 | /* |
5764 | * migration_cpu_stop - this will be executed by a highprio stopper thread |
5765 | * and performs thread migration by bumping thread off CPU then |
5766 | * 'pushing' onto another runqueue. |
5767 | */ |
5768 | static int migration_cpu_stop(void *data) |
5769 | { |
5770 | struct migration_arg *arg = data; |
5771 | |
5772 | /* |
5773 | * The original target cpu might have gone down and we might |
5774 | * be on another cpu but it doesn't matter. |
5775 | */ |
5776 | local_irq_disable(); |
5777 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
5778 | local_irq_enable(); |
5779 | return 0; |
5780 | } |
5781 | |
5782 | #ifdef CONFIG_HOTPLUG_CPU |
5783 | |
5784 | /* |
5785 | * Ensures that the idle task is using init_mm right before its cpu goes |
5786 | * offline. |
5787 | */ |
5788 | void idle_task_exit(void) |
5789 | { |
5790 | struct mm_struct *mm = current->active_mm; |
5791 | |
5792 | BUG_ON(cpu_online(smp_processor_id())); |
5793 | |
5794 | if (mm != &init_mm) |
5795 | switch_mm(mm, &init_mm, current); |
5796 | mmdrop(mm); |
5797 | } |
5798 | |
5799 | /* |
5800 | * While a dead CPU has no uninterruptible tasks queued at this point, |
5801 | * it might still have a nonzero ->nr_uninterruptible counter, because |
5802 | * for performance reasons the counter is not stricly tracking tasks to |
5803 | * their home CPUs. So we just add the counter to another CPU's counter, |
5804 | * to keep the global sum constant after CPU-down: |
5805 | */ |
5806 | static void migrate_nr_uninterruptible(struct rq *rq_src) |
5807 | { |
5808 | struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask)); |
5809 | |
5810 | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; |
5811 | rq_src->nr_uninterruptible = 0; |
5812 | } |
5813 | |
5814 | /* |
5815 | * remove the tasks which were accounted by rq from calc_load_tasks. |
5816 | */ |
5817 | static void calc_global_load_remove(struct rq *rq) |
5818 | { |
5819 | atomic_long_sub(rq->calc_load_active, &calc_load_tasks); |
5820 | rq->calc_load_active = 0; |
5821 | } |
5822 | |
5823 | /* |
5824 | * Migrate all tasks from the rq, sleeping tasks will be migrated by |
5825 | * try_to_wake_up()->select_task_rq(). |
5826 | * |
5827 | * Called with rq->lock held even though we'er in stop_machine() and |
5828 | * there's no concurrency possible, we hold the required locks anyway |
5829 | * because of lock validation efforts. |
5830 | */ |
5831 | static void migrate_tasks(unsigned int dead_cpu) |
5832 | { |
5833 | struct rq *rq = cpu_rq(dead_cpu); |
5834 | struct task_struct *next, *stop = rq->stop; |
5835 | int dest_cpu; |
5836 | |
5837 | /* |
5838 | * Fudge the rq selection such that the below task selection loop |
5839 | * doesn't get stuck on the currently eligible stop task. |
5840 | * |
5841 | * We're currently inside stop_machine() and the rq is either stuck |
5842 | * in the stop_machine_cpu_stop() loop, or we're executing this code, |
5843 | * either way we should never end up calling schedule() until we're |
5844 | * done here. |
5845 | */ |
5846 | rq->stop = NULL; |
5847 | |
5848 | for ( ; ; ) { |
5849 | /* |
5850 | * There's this thread running, bail when that's the only |
5851 | * remaining thread. |
5852 | */ |
5853 | if (rq->nr_running == 1) |
5854 | break; |
5855 | |
5856 | next = pick_next_task(rq); |
5857 | BUG_ON(!next); |
5858 | next->sched_class->put_prev_task(rq, next); |
5859 | |
5860 | /* Find suitable destination for @next, with force if needed. */ |
5861 | dest_cpu = select_fallback_rq(dead_cpu, next); |
5862 | raw_spin_unlock(&rq->lock); |
5863 | |
5864 | __migrate_task(next, dead_cpu, dest_cpu); |
5865 | |
5866 | raw_spin_lock(&rq->lock); |
5867 | } |
5868 | |
5869 | rq->stop = stop; |
5870 | } |
5871 | |
5872 | #endif /* CONFIG_HOTPLUG_CPU */ |
5873 | |
5874 | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
5875 | |
5876 | static struct ctl_table sd_ctl_dir[] = { |
5877 | { |
5878 | .procname = "sched_domain", |
5879 | .mode = 0555, |
5880 | }, |
5881 | {} |
5882 | }; |
5883 | |
5884 | static struct ctl_table sd_ctl_root[] = { |
5885 | { |
5886 | .procname = "kernel", |
5887 | .mode = 0555, |
5888 | .child = sd_ctl_dir, |
5889 | }, |
5890 | {} |
5891 | }; |
5892 | |
5893 | static struct ctl_table *sd_alloc_ctl_entry(int n) |
5894 | { |
5895 | struct ctl_table *entry = |
5896 | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); |
5897 | |
5898 | return entry; |
5899 | } |
5900 | |
5901 | static void sd_free_ctl_entry(struct ctl_table **tablep) |
5902 | { |
5903 | struct ctl_table *entry; |
5904 | |
5905 | /* |
5906 | * In the intermediate directories, both the child directory and |
5907 | * procname are dynamically allocated and could fail but the mode |
5908 | * will always be set. In the lowest directory the names are |
5909 | * static strings and all have proc handlers. |
5910 | */ |
5911 | for (entry = *tablep; entry->mode; entry++) { |
5912 | if (entry->child) |
5913 | sd_free_ctl_entry(&entry->child); |
5914 | if (entry->proc_handler == NULL) |
5915 | kfree(entry->procname); |
5916 | } |
5917 | |
5918 | kfree(*tablep); |
5919 | *tablep = NULL; |
5920 | } |
5921 | |
5922 | static void |
5923 | set_table_entry(struct ctl_table *entry, |
5924 | const char *procname, void *data, int maxlen, |
5925 | mode_t mode, proc_handler *proc_handler) |
5926 | { |
5927 | entry->procname = procname; |
5928 | entry->data = data; |
5929 | entry->maxlen = maxlen; |
5930 | entry->mode = mode; |
5931 | entry->proc_handler = proc_handler; |
5932 | } |
5933 | |
5934 | static struct ctl_table * |
5935 | sd_alloc_ctl_domain_table(struct sched_domain *sd) |
5936 | { |
5937 | struct ctl_table *table = sd_alloc_ctl_entry(13); |
5938 | |
5939 | if (table == NULL) |
5940 | return NULL; |
5941 | |
5942 | set_table_entry(&table[0], "min_interval", &sd->min_interval, |
5943 | sizeof(long), 0644, proc_doulongvec_minmax); |
5944 | set_table_entry(&table[1], "max_interval", &sd->max_interval, |
5945 | sizeof(long), 0644, proc_doulongvec_minmax); |
5946 | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, |
5947 | sizeof(int), 0644, proc_dointvec_minmax); |
5948 | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, |
5949 | sizeof(int), 0644, proc_dointvec_minmax); |
5950 | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, |
5951 | sizeof(int), 0644, proc_dointvec_minmax); |
5952 | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, |
5953 | sizeof(int), 0644, proc_dointvec_minmax); |
5954 | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, |
5955 | sizeof(int), 0644, proc_dointvec_minmax); |
5956 | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, |
5957 | sizeof(int), 0644, proc_dointvec_minmax); |
5958 | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, |
5959 | sizeof(int), 0644, proc_dointvec_minmax); |
5960 | set_table_entry(&table[9], "cache_nice_tries", |
5961 | &sd->cache_nice_tries, |
5962 | sizeof(int), 0644, proc_dointvec_minmax); |
5963 | set_table_entry(&table[10], "flags", &sd->flags, |
5964 | sizeof(int), 0644, proc_dointvec_minmax); |
5965 | set_table_entry(&table[11], "name", sd->name, |
5966 | CORENAME_MAX_SIZE, 0444, proc_dostring); |
5967 | /* &table[12] is terminator */ |
5968 | |
5969 | return table; |
5970 | } |
5971 | |
5972 | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) |
5973 | { |
5974 | struct ctl_table *entry, *table; |
5975 | struct sched_domain *sd; |
5976 | int domain_num = 0, i; |
5977 | char buf[32]; |
5978 | |
5979 | for_each_domain(cpu, sd) |
5980 | domain_num++; |
5981 | entry = table = sd_alloc_ctl_entry(domain_num + 1); |
5982 | if (table == NULL) |
5983 | return NULL; |
5984 | |
5985 | i = 0; |
5986 | for_each_domain(cpu, sd) { |
5987 | snprintf(buf, 32, "domain%d", i); |
5988 | entry->procname = kstrdup(buf, GFP_KERNEL); |
5989 | entry->mode = 0555; |
5990 | entry->child = sd_alloc_ctl_domain_table(sd); |
5991 | entry++; |
5992 | i++; |
5993 | } |
5994 | return table; |
5995 | } |
5996 | |
5997 | static struct ctl_table_header *sd_sysctl_header; |
5998 | static void register_sched_domain_sysctl(void) |
5999 | { |
6000 | int i, cpu_num = num_possible_cpus(); |
6001 | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); |
6002 | char buf[32]; |
6003 | |
6004 | WARN_ON(sd_ctl_dir[0].child); |
6005 | sd_ctl_dir[0].child = entry; |
6006 | |
6007 | if (entry == NULL) |
6008 | return; |
6009 | |
6010 | for_each_possible_cpu(i) { |
6011 | snprintf(buf, 32, "cpu%d", i); |
6012 | entry->procname = kstrdup(buf, GFP_KERNEL); |
6013 | entry->mode = 0555; |
6014 | entry->child = sd_alloc_ctl_cpu_table(i); |
6015 | entry++; |
6016 | } |
6017 | |
6018 | WARN_ON(sd_sysctl_header); |
6019 | sd_sysctl_header = register_sysctl_table(sd_ctl_root); |
6020 | } |
6021 | |
6022 | /* may be called multiple times per register */ |
6023 | static void unregister_sched_domain_sysctl(void) |
6024 | { |
6025 | if (sd_sysctl_header) |
6026 | unregister_sysctl_table(sd_sysctl_header); |
6027 | sd_sysctl_header = NULL; |
6028 | if (sd_ctl_dir[0].child) |
6029 | sd_free_ctl_entry(&sd_ctl_dir[0].child); |
6030 | } |
6031 | #else |
6032 | static void register_sched_domain_sysctl(void) |
6033 | { |
6034 | } |
6035 | static void unregister_sched_domain_sysctl(void) |
6036 | { |
6037 | } |
6038 | #endif |
6039 | |
6040 | static void set_rq_online(struct rq *rq) |
6041 | { |
6042 | if (!rq->online) { |
6043 | const struct sched_class *class; |
6044 | |
6045 | cpumask_set_cpu(rq->cpu, rq->rd->online); |
6046 | rq->online = 1; |
6047 | |
6048 | for_each_class(class) { |
6049 | if (class->rq_online) |
6050 | class->rq_online(rq); |
6051 | } |
6052 | } |
6053 | } |
6054 | |
6055 | static void set_rq_offline(struct rq *rq) |
6056 | { |
6057 | if (rq->online) { |
6058 | const struct sched_class *class; |
6059 | |
6060 | for_each_class(class) { |
6061 | if (class->rq_offline) |
6062 | class->rq_offline(rq); |
6063 | } |
6064 | |
6065 | cpumask_clear_cpu(rq->cpu, rq->rd->online); |
6066 | rq->online = 0; |
6067 | } |
6068 | } |
6069 | |
6070 | /* |
6071 | * migration_call - callback that gets triggered when a CPU is added. |
6072 | * Here we can start up the necessary migration thread for the new CPU. |
6073 | */ |
6074 | static int __cpuinit |
6075 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
6076 | { |
6077 | int cpu = (long)hcpu; |
6078 | unsigned long flags; |
6079 | struct rq *rq = cpu_rq(cpu); |
6080 | |
6081 | switch (action & ~CPU_TASKS_FROZEN) { |
6082 | |
6083 | case CPU_UP_PREPARE: |
6084 | rq->calc_load_update = calc_load_update; |
6085 | break; |
6086 | |
6087 | case CPU_ONLINE: |
6088 | /* Update our root-domain */ |
6089 | raw_spin_lock_irqsave(&rq->lock, flags); |
6090 | if (rq->rd) { |
6091 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
6092 | |
6093 | set_rq_online(rq); |
6094 | } |
6095 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
6096 | break; |
6097 | |
6098 | #ifdef CONFIG_HOTPLUG_CPU |
6099 | case CPU_DYING: |
6100 | /* Update our root-domain */ |
6101 | raw_spin_lock_irqsave(&rq->lock, flags); |
6102 | if (rq->rd) { |
6103 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
6104 | set_rq_offline(rq); |
6105 | } |
6106 | migrate_tasks(cpu); |
6107 | BUG_ON(rq->nr_running != 1); /* the migration thread */ |
6108 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
6109 | |
6110 | migrate_nr_uninterruptible(rq); |
6111 | calc_global_load_remove(rq); |
6112 | break; |
6113 | #endif |
6114 | } |
6115 | return NOTIFY_OK; |
6116 | } |
6117 | |
6118 | /* |
6119 | * Register at high priority so that task migration (migrate_all_tasks) |
6120 | * happens before everything else. This has to be lower priority than |
6121 | * the notifier in the perf_event subsystem, though. |
6122 | */ |
6123 | static struct notifier_block __cpuinitdata migration_notifier = { |
6124 | .notifier_call = migration_call, |
6125 | .priority = CPU_PRI_MIGRATION, |
6126 | }; |
6127 | |
6128 | static int __cpuinit sched_cpu_active(struct notifier_block *nfb, |
6129 | unsigned long action, void *hcpu) |
6130 | { |
6131 | switch (action & ~CPU_TASKS_FROZEN) { |
6132 | case CPU_ONLINE: |
6133 | case CPU_DOWN_FAILED: |
6134 | set_cpu_active((long)hcpu, true); |
6135 | return NOTIFY_OK; |
6136 | default: |
6137 | return NOTIFY_DONE; |
6138 | } |
6139 | } |
6140 | |
6141 | static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb, |
6142 | unsigned long action, void *hcpu) |
6143 | { |
6144 | switch (action & ~CPU_TASKS_FROZEN) { |
6145 | case CPU_DOWN_PREPARE: |
6146 | set_cpu_active((long)hcpu, false); |
6147 | return NOTIFY_OK; |
6148 | default: |
6149 | return NOTIFY_DONE; |
6150 | } |
6151 | } |
6152 | |
6153 | static int __init migration_init(void) |
6154 | { |
6155 | void *cpu = (void *)(long)smp_processor_id(); |
6156 | int err; |
6157 | |
6158 | /* Initialize migration for the boot CPU */ |
6159 | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); |
6160 | BUG_ON(err == NOTIFY_BAD); |
6161 | migration_call(&migration_notifier, CPU_ONLINE, cpu); |
6162 | register_cpu_notifier(&migration_notifier); |
6163 | |
6164 | /* Register cpu active notifiers */ |
6165 | cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE); |
6166 | cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE); |
6167 | |
6168 | return 0; |
6169 | } |
6170 | early_initcall(migration_init); |
6171 | #endif |
6172 | |
6173 | #ifdef CONFIG_SMP |
6174 | |
6175 | #ifdef CONFIG_SCHED_DEBUG |
6176 | |
6177 | static __read_mostly int sched_domain_debug_enabled; |
6178 | |
6179 | static int __init sched_domain_debug_setup(char *str) |
6180 | { |
6181 | sched_domain_debug_enabled = 1; |
6182 | |
6183 | return 0; |
6184 | } |
6185 | early_param("sched_debug", sched_domain_debug_setup); |
6186 | |
6187 | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, |
6188 | struct cpumask *groupmask) |
6189 | { |
6190 | struct sched_group *group = sd->groups; |
6191 | char str[256]; |
6192 | |
6193 | cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd)); |
6194 | cpumask_clear(groupmask); |
6195 | |
6196 | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); |
6197 | |
6198 | if (!(sd->flags & SD_LOAD_BALANCE)) { |
6199 | printk("does not load-balance\n"); |
6200 | if (sd->parent) |
6201 | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" |
6202 | " has parent"); |
6203 | return -1; |
6204 | } |
6205 | |
6206 | printk(KERN_CONT "span %s level %s\n", str, sd->name); |
6207 | |
6208 | if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { |
6209 | printk(KERN_ERR "ERROR: domain->span does not contain " |
6210 | "CPU%d\n", cpu); |
6211 | } |
6212 | if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { |
6213 | printk(KERN_ERR "ERROR: domain->groups does not contain" |
6214 | " CPU%d\n", cpu); |
6215 | } |
6216 | |
6217 | printk(KERN_DEBUG "%*s groups:", level + 1, ""); |
6218 | do { |
6219 | if (!group) { |
6220 | printk("\n"); |
6221 | printk(KERN_ERR "ERROR: group is NULL\n"); |
6222 | break; |
6223 | } |
6224 | |
6225 | if (!group->cpu_power) { |
6226 | printk(KERN_CONT "\n"); |
6227 | printk(KERN_ERR "ERROR: domain->cpu_power not " |
6228 | "set\n"); |
6229 | break; |
6230 | } |
6231 | |
6232 | if (!cpumask_weight(sched_group_cpus(group))) { |
6233 | printk(KERN_CONT "\n"); |
6234 | printk(KERN_ERR "ERROR: empty group\n"); |
6235 | break; |
6236 | } |
6237 | |
6238 | if (cpumask_intersects(groupmask, sched_group_cpus(group))) { |
6239 | printk(KERN_CONT "\n"); |
6240 | printk(KERN_ERR "ERROR: repeated CPUs\n"); |
6241 | break; |
6242 | } |
6243 | |
6244 | cpumask_or(groupmask, groupmask, sched_group_cpus(group)); |
6245 | |
6246 | cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group)); |
6247 | |
6248 | printk(KERN_CONT " %s", str); |
6249 | if (group->cpu_power != SCHED_LOAD_SCALE) { |
6250 | printk(KERN_CONT " (cpu_power = %d)", |
6251 | group->cpu_power); |
6252 | } |
6253 | |
6254 | group = group->next; |
6255 | } while (group != sd->groups); |
6256 | printk(KERN_CONT "\n"); |
6257 | |
6258 | if (!cpumask_equal(sched_domain_span(sd), groupmask)) |
6259 | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); |
6260 | |
6261 | if (sd->parent && |
6262 | !cpumask_subset(groupmask, sched_domain_span(sd->parent))) |
6263 | printk(KERN_ERR "ERROR: parent span is not a superset " |
6264 | "of domain->span\n"); |
6265 | return 0; |
6266 | } |
6267 | |
6268 | static void sched_domain_debug(struct sched_domain *sd, int cpu) |
6269 | { |
6270 | cpumask_var_t groupmask; |
6271 | int level = 0; |
6272 | |
6273 | if (!sched_domain_debug_enabled) |
6274 | return; |
6275 | |
6276 | if (!sd) { |
6277 | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); |
6278 | return; |
6279 | } |
6280 | |
6281 | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); |
6282 | |
6283 | if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) { |
6284 | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); |
6285 | return; |
6286 | } |
6287 | |
6288 | for (;;) { |
6289 | if (sched_domain_debug_one(sd, cpu, level, groupmask)) |
6290 | break; |
6291 | level++; |
6292 | sd = sd->parent; |
6293 | if (!sd) |
6294 | break; |
6295 | } |
6296 | free_cpumask_var(groupmask); |
6297 | } |
6298 | #else /* !CONFIG_SCHED_DEBUG */ |
6299 | # define sched_domain_debug(sd, cpu) do { } while (0) |
6300 | #endif /* CONFIG_SCHED_DEBUG */ |
6301 | |
6302 | static int sd_degenerate(struct sched_domain *sd) |
6303 | { |
6304 | if (cpumask_weight(sched_domain_span(sd)) == 1) |
6305 | return 1; |
6306 | |
6307 | /* Following flags need at least 2 groups */ |
6308 | if (sd->flags & (SD_LOAD_BALANCE | |
6309 | SD_BALANCE_NEWIDLE | |
6310 | SD_BALANCE_FORK | |
6311 | SD_BALANCE_EXEC | |
6312 | SD_SHARE_CPUPOWER | |
6313 | |