Root/kernel/sched_fair.c

1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25
26/*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51    = SCHED_TUNABLESCALING_LOG;
52
53/*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
59
60/*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63static unsigned int sched_nr_latency = 8;
64
65/*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
79/*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99static const struct sched_class fair_sched_class;
100
101/**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
105#ifdef CONFIG_FAIR_GROUP_SCHED
106
107/* cpu runqueue to which this cfs_rq is attached */
108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109{
110    return cfs_rq->rq;
111}
112
113/* An entity is a task if it doesn't "own" a runqueue */
114#define entity_is_task(se) (!se->my_q)
115
116static inline struct task_struct *task_of(struct sched_entity *se)
117{
118#ifdef CONFIG_SCHED_DEBUG
119    WARN_ON_ONCE(!entity_is_task(se));
120#endif
121    return container_of(se, struct task_struct, se);
122}
123
124/* Walk up scheduling entities hierarchy */
125#define for_each_sched_entity(se) \
126        for (; se; se = se->parent)
127
128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129{
130    return p->se.cfs_rq;
131}
132
133/* runqueue on which this entity is (to be) queued */
134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135{
136    return se->cfs_rq;
137}
138
139/* runqueue "owned" by this group */
140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141{
142    return grp->my_q;
143}
144
145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149{
150    return cfs_rq->tg->cfs_rq[this_cpu];
151}
152
153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154{
155    if (!cfs_rq->on_list) {
156        /*
157         * Ensure we either appear before our parent (if already
158         * enqueued) or force our parent to appear after us when it is
159         * enqueued. The fact that we always enqueue bottom-up
160         * reduces this to two cases.
161         */
162        if (cfs_rq->tg->parent &&
163            cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164            list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165                &rq_of(cfs_rq)->leaf_cfs_rq_list);
166        } else {
167            list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168                &rq_of(cfs_rq)->leaf_cfs_rq_list);
169        }
170
171        cfs_rq->on_list = 1;
172    }
173}
174
175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176{
177    if (cfs_rq->on_list) {
178        list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179        cfs_rq->on_list = 0;
180    }
181}
182
183/* Iterate thr' all leaf cfs_rq's on a runqueue */
184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
185    list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187/* Do the two (enqueued) entities belong to the same group ? */
188static inline int
189is_same_group(struct sched_entity *se, struct sched_entity *pse)
190{
191    if (se->cfs_rq == pse->cfs_rq)
192        return 1;
193
194    return 0;
195}
196
197static inline struct sched_entity *parent_entity(struct sched_entity *se)
198{
199    return se->parent;
200}
201
202/* return depth at which a sched entity is present in the hierarchy */
203static inline int depth_se(struct sched_entity *se)
204{
205    int depth = 0;
206
207    for_each_sched_entity(se)
208        depth++;
209
210    return depth;
211}
212
213static void
214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215{
216    int se_depth, pse_depth;
217
218    /*
219     * preemption test can be made between sibling entities who are in the
220     * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221     * both tasks until we find their ancestors who are siblings of common
222     * parent.
223     */
224
225    /* First walk up until both entities are at same depth */
226    se_depth = depth_se(*se);
227    pse_depth = depth_se(*pse);
228
229    while (se_depth > pse_depth) {
230        se_depth--;
231        *se = parent_entity(*se);
232    }
233
234    while (pse_depth > se_depth) {
235        pse_depth--;
236        *pse = parent_entity(*pse);
237    }
238
239    while (!is_same_group(*se, *pse)) {
240        *se = parent_entity(*se);
241        *pse = parent_entity(*pse);
242    }
243}
244
245#else /* !CONFIG_FAIR_GROUP_SCHED */
246
247static inline struct task_struct *task_of(struct sched_entity *se)
248{
249    return container_of(se, struct task_struct, se);
250}
251
252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253{
254    return container_of(cfs_rq, struct rq, cfs);
255}
256
257#define entity_is_task(se) 1
258
259#define for_each_sched_entity(se) \
260        for (; se; se = NULL)
261
262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263{
264    return &task_rq(p)->cfs;
265}
266
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269    struct task_struct *p = task_of(se);
270    struct rq *rq = task_rq(p);
271
272    return &rq->cfs;
273}
274
275/* runqueue "owned" by this group */
276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277{
278    return NULL;
279}
280
281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282{
283    return &cpu_rq(this_cpu)->cfs;
284}
285
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288}
289
290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292}
293
294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
295        for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300    return 1;
301}
302
303static inline struct sched_entity *parent_entity(struct sched_entity *se)
304{
305    return NULL;
306}
307
308static inline void
309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310{
311}
312
313#endif /* CONFIG_FAIR_GROUP_SCHED */
314
315
316/**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
321{
322    s64 delta = (s64)(vruntime - min_vruntime);
323    if (delta > 0)
324        min_vruntime = vruntime;
325
326    return min_vruntime;
327}
328
329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
330{
331    s64 delta = (s64)(vruntime - min_vruntime);
332    if (delta < 0)
333        min_vruntime = vruntime;
334
335    return min_vruntime;
336}
337
338static inline int entity_before(struct sched_entity *a,
339                struct sched_entity *b)
340{
341    return (s64)(a->vruntime - b->vruntime) < 0;
342}
343
344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
345{
346    return se->vruntime - cfs_rq->min_vruntime;
347}
348
349static void update_min_vruntime(struct cfs_rq *cfs_rq)
350{
351    u64 vruntime = cfs_rq->min_vruntime;
352
353    if (cfs_rq->curr)
354        vruntime = cfs_rq->curr->vruntime;
355
356    if (cfs_rq->rb_leftmost) {
357        struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358                           struct sched_entity,
359                           run_node);
360
361        if (!cfs_rq->curr)
362            vruntime = se->vruntime;
363        else
364            vruntime = min_vruntime(vruntime, se->vruntime);
365    }
366
367    cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368}
369
370/*
371 * Enqueue an entity into the rb-tree:
372 */
373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
374{
375    struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376    struct rb_node *parent = NULL;
377    struct sched_entity *entry;
378    s64 key = entity_key(cfs_rq, se);
379    int leftmost = 1;
380
381    /*
382     * Find the right place in the rbtree:
383     */
384    while (*link) {
385        parent = *link;
386        entry = rb_entry(parent, struct sched_entity, run_node);
387        /*
388         * We dont care about collisions. Nodes with
389         * the same key stay together.
390         */
391        if (key < entity_key(cfs_rq, entry)) {
392            link = &parent->rb_left;
393        } else {
394            link = &parent->rb_right;
395            leftmost = 0;
396        }
397    }
398
399    /*
400     * Maintain a cache of leftmost tree entries (it is frequently
401     * used):
402     */
403    if (leftmost)
404        cfs_rq->rb_leftmost = &se->run_node;
405
406    rb_link_node(&se->run_node, parent, link);
407    rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
408}
409
410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
411{
412    if (cfs_rq->rb_leftmost == &se->run_node) {
413        struct rb_node *next_node;
414
415        next_node = rb_next(&se->run_node);
416        cfs_rq->rb_leftmost = next_node;
417    }
418
419    rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
420}
421
422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423{
424    struct rb_node *left = cfs_rq->rb_leftmost;
425
426    if (!left)
427        return NULL;
428
429    return rb_entry(left, struct sched_entity, run_node);
430}
431
432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
433{
434    struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
435
436    if (!last)
437        return NULL;
438
439    return rb_entry(last, struct sched_entity, run_node);
440}
441
442/**************************************************************
443 * Scheduling class statistics methods:
444 */
445
446#ifdef CONFIG_SCHED_DEBUG
447int sched_proc_update_handler(struct ctl_table *table, int write,
448        void __user *buffer, size_t *lenp,
449        loff_t *ppos)
450{
451    int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452    int factor = get_update_sysctl_factor();
453
454    if (ret || !write)
455        return ret;
456
457    sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458                    sysctl_sched_min_granularity);
459
460#define WRT_SYSCTL(name) \
461    (normalized_sysctl_##name = sysctl_##name / (factor))
462    WRT_SYSCTL(sched_min_granularity);
463    WRT_SYSCTL(sched_latency);
464    WRT_SYSCTL(sched_wakeup_granularity);
465#undef WRT_SYSCTL
466
467    return 0;
468}
469#endif
470
471/*
472 * delta /= w
473 */
474static inline unsigned long
475calc_delta_fair(unsigned long delta, struct sched_entity *se)
476{
477    if (unlikely(se->load.weight != NICE_0_LOAD))
478        delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
479
480    return delta;
481}
482
483/*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
491static u64 __sched_period(unsigned long nr_running)
492{
493    u64 period = sysctl_sched_latency;
494    unsigned long nr_latency = sched_nr_latency;
495
496    if (unlikely(nr_running > nr_latency)) {
497        period = sysctl_sched_min_granularity;
498        period *= nr_running;
499    }
500
501    return period;
502}
503
504/*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
508 * s = p*P[w/rw]
509 */
510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
511{
512    u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
513
514    for_each_sched_entity(se) {
515        struct load_weight *load;
516        struct load_weight lw;
517
518        cfs_rq = cfs_rq_of(se);
519        load = &cfs_rq->load;
520
521        if (unlikely(!se->on_rq)) {
522            lw = cfs_rq->load;
523
524            update_load_add(&lw, se->load.weight);
525            load = &lw;
526        }
527        slice = calc_delta_mine(slice, se->load.weight, load);
528    }
529    return slice;
530}
531
532/*
533 * We calculate the vruntime slice of a to be inserted task
534 *
535 * vs = s/w
536 */
537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
538{
539    return calc_delta_fair(sched_slice(cfs_rq, se), se);
540}
541
542static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
544
545/*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549static inline void
550__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551          unsigned long delta_exec)
552{
553    unsigned long delta_exec_weighted;
554
555    schedstat_set(curr->statistics.exec_max,
556              max((u64)delta_exec, curr->statistics.exec_max));
557
558    curr->sum_exec_runtime += delta_exec;
559    schedstat_add(cfs_rq, exec_clock, delta_exec);
560    delta_exec_weighted = calc_delta_fair(delta_exec, curr);
561
562    curr->vruntime += delta_exec_weighted;
563    update_min_vruntime(cfs_rq);
564
565#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566    cfs_rq->load_unacc_exec_time += delta_exec;
567#endif
568}
569
570static void update_curr(struct cfs_rq *cfs_rq)
571{
572    struct sched_entity *curr = cfs_rq->curr;
573    u64 now = rq_of(cfs_rq)->clock_task;
574    unsigned long delta_exec;
575
576    if (unlikely(!curr))
577        return;
578
579    /*
580     * Get the amount of time the current task was running
581     * since the last time we changed load (this cannot
582     * overflow on 32 bits):
583     */
584    delta_exec = (unsigned long)(now - curr->exec_start);
585    if (!delta_exec)
586        return;
587
588    __update_curr(cfs_rq, curr, delta_exec);
589    curr->exec_start = now;
590
591    if (entity_is_task(curr)) {
592        struct task_struct *curtask = task_of(curr);
593
594        trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595        cpuacct_charge(curtask, delta_exec);
596        account_group_exec_runtime(curtask, delta_exec);
597    }
598}
599
600static inline void
601update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602{
603    schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
604}
605
606/*
607 * Task is being enqueued - update stats:
608 */
609static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
610{
611    /*
612     * Are we enqueueing a waiting task? (for current tasks
613     * a dequeue/enqueue event is a NOP)
614     */
615    if (se != cfs_rq->curr)
616        update_stats_wait_start(cfs_rq, se);
617}
618
619static void
620update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
621{
622    schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623            rq_of(cfs_rq)->clock - se->statistics.wait_start));
624    schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625    schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626            rq_of(cfs_rq)->clock - se->statistics.wait_start);
627#ifdef CONFIG_SCHEDSTATS
628    if (entity_is_task(se)) {
629        trace_sched_stat_wait(task_of(se),
630            rq_of(cfs_rq)->clock - se->statistics.wait_start);
631    }
632#endif
633    schedstat_set(se->statistics.wait_start, 0);
634}
635
636static inline void
637update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
638{
639    /*
640     * Mark the end of the wait period if dequeueing a
641     * waiting task:
642     */
643    if (se != cfs_rq->curr)
644        update_stats_wait_end(cfs_rq, se);
645}
646
647/*
648 * We are picking a new current task - update its stats:
649 */
650static inline void
651update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
652{
653    /*
654     * We are starting a new run period:
655     */
656    se->exec_start = rq_of(cfs_rq)->clock_task;
657}
658
659/**************************************************
660 * Scheduling class queueing methods:
661 */
662
663#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664static void
665add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
666{
667    cfs_rq->task_weight += weight;
668}
669#else
670static inline void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673}
674#endif
675
676static void
677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
678{
679    update_load_add(&cfs_rq->load, se->load.weight);
680    if (!parent_entity(se))
681        inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682    if (entity_is_task(se)) {
683        add_cfs_task_weight(cfs_rq, se->load.weight);
684        list_add(&se->group_node, &cfs_rq->tasks);
685    }
686    cfs_rq->nr_running++;
687}
688
689static void
690account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
691{
692    update_load_sub(&cfs_rq->load, se->load.weight);
693    if (!parent_entity(se))
694        dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695    if (entity_is_task(se)) {
696        add_cfs_task_weight(cfs_rq, -se->load.weight);
697        list_del_init(&se->group_node);
698    }
699    cfs_rq->nr_running--;
700}
701
702#ifdef CONFIG_FAIR_GROUP_SCHED
703# ifdef CONFIG_SMP
704static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
705                        int global_update)
706{
707    struct task_group *tg = cfs_rq->tg;
708    long load_avg;
709
710    load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
711    load_avg -= cfs_rq->load_contribution;
712
713    if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
714        atomic_add(load_avg, &tg->load_weight);
715        cfs_rq->load_contribution += load_avg;
716    }
717}
718
719static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
720{
721    u64 period = sysctl_sched_shares_window;
722    u64 now, delta;
723    unsigned long load = cfs_rq->load.weight;
724
725    if (cfs_rq->tg == &root_task_group)
726        return;
727
728    now = rq_of(cfs_rq)->clock_task;
729    delta = now - cfs_rq->load_stamp;
730
731    /* truncate load history at 4 idle periods */
732    if (cfs_rq->load_stamp > cfs_rq->load_last &&
733        now - cfs_rq->load_last > 4 * period) {
734        cfs_rq->load_period = 0;
735        cfs_rq->load_avg = 0;
736    }
737
738    cfs_rq->load_stamp = now;
739    cfs_rq->load_unacc_exec_time = 0;
740    cfs_rq->load_period += delta;
741    if (load) {
742        cfs_rq->load_last = now;
743        cfs_rq->load_avg += delta * load;
744    }
745
746    /* consider updating load contribution on each fold or truncate */
747    if (global_update || cfs_rq->load_period > period
748        || !cfs_rq->load_period)
749        update_cfs_rq_load_contribution(cfs_rq, global_update);
750
751    while (cfs_rq->load_period > period) {
752        /*
753         * Inline assembly required to prevent the compiler
754         * optimising this loop into a divmod call.
755         * See __iter_div_u64_rem() for another example of this.
756         */
757        asm("" : "+rm" (cfs_rq->load_period));
758        cfs_rq->load_period /= 2;
759        cfs_rq->load_avg /= 2;
760    }
761
762    if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
763        list_del_leaf_cfs_rq(cfs_rq);
764}
765
766static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
767                long weight_delta)
768{
769    long load_weight, load, shares;
770
771    load = cfs_rq->load.weight + weight_delta;
772
773    load_weight = atomic_read(&tg->load_weight);
774    load_weight -= cfs_rq->load_contribution;
775    load_weight += load;
776
777    shares = (tg->shares * load);
778    if (load_weight)
779        shares /= load_weight;
780
781    if (shares < MIN_SHARES)
782        shares = MIN_SHARES;
783    if (shares > tg->shares)
784        shares = tg->shares;
785
786    return shares;
787}
788
789static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
790{
791    if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
792        update_cfs_load(cfs_rq, 0);
793        update_cfs_shares(cfs_rq, 0);
794    }
795}
796# else /* CONFIG_SMP */
797static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
798{
799}
800
801static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
802                long weight_delta)
803{
804    return tg->shares;
805}
806
807static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
808{
809}
810# endif /* CONFIG_SMP */
811static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
812                unsigned long weight)
813{
814    if (se->on_rq) {
815        /* commit outstanding execution time */
816        if (cfs_rq->curr == se)
817            update_curr(cfs_rq);
818        account_entity_dequeue(cfs_rq, se);
819    }
820
821    update_load_set(&se->load, weight);
822
823    if (se->on_rq)
824        account_entity_enqueue(cfs_rq, se);
825}
826
827static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
828{
829    struct task_group *tg;
830    struct sched_entity *se;
831    long shares;
832
833    tg = cfs_rq->tg;
834    se = tg->se[cpu_of(rq_of(cfs_rq))];
835    if (!se)
836        return;
837#ifndef CONFIG_SMP
838    if (likely(se->load.weight == tg->shares))
839        return;
840#endif
841    shares = calc_cfs_shares(cfs_rq, tg, weight_delta);
842
843    reweight_entity(cfs_rq_of(se), se, shares);
844}
845#else /* CONFIG_FAIR_GROUP_SCHED */
846static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
847{
848}
849
850static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
851{
852}
853
854static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
855{
856}
857#endif /* CONFIG_FAIR_GROUP_SCHED */
858
859static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
860{
861#ifdef CONFIG_SCHEDSTATS
862    struct task_struct *tsk = NULL;
863
864    if (entity_is_task(se))
865        tsk = task_of(se);
866
867    if (se->statistics.sleep_start) {
868        u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
869
870        if ((s64)delta < 0)
871            delta = 0;
872
873        if (unlikely(delta > se->statistics.sleep_max))
874            se->statistics.sleep_max = delta;
875
876        se->statistics.sleep_start = 0;
877        se->statistics.sum_sleep_runtime += delta;
878
879        if (tsk) {
880            account_scheduler_latency(tsk, delta >> 10, 1);
881            trace_sched_stat_sleep(tsk, delta);
882        }
883    }
884    if (se->statistics.block_start) {
885        u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
886
887        if ((s64)delta < 0)
888            delta = 0;
889
890        if (unlikely(delta > se->statistics.block_max))
891            se->statistics.block_max = delta;
892
893        se->statistics.block_start = 0;
894        se->statistics.sum_sleep_runtime += delta;
895
896        if (tsk) {
897            if (tsk->in_iowait) {
898                se->statistics.iowait_sum += delta;
899                se->statistics.iowait_count++;
900                trace_sched_stat_iowait(tsk, delta);
901            }
902
903            /*
904             * Blocking time is in units of nanosecs, so shift by
905             * 20 to get a milliseconds-range estimation of the
906             * amount of time that the task spent sleeping:
907             */
908            if (unlikely(prof_on == SLEEP_PROFILING)) {
909                profile_hits(SLEEP_PROFILING,
910                        (void *)get_wchan(tsk),
911                        delta >> 20);
912            }
913            account_scheduler_latency(tsk, delta >> 10, 0);
914        }
915    }
916#endif
917}
918
919static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
920{
921#ifdef CONFIG_SCHED_DEBUG
922    s64 d = se->vruntime - cfs_rq->min_vruntime;
923
924    if (d < 0)
925        d = -d;
926
927    if (d > 3*sysctl_sched_latency)
928        schedstat_inc(cfs_rq, nr_spread_over);
929#endif
930}
931
932static void
933place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
934{
935    u64 vruntime = cfs_rq->min_vruntime;
936
937    /*
938     * The 'current' period is already promised to the current tasks,
939     * however the extra weight of the new task will slow them down a
940     * little, place the new task so that it fits in the slot that
941     * stays open at the end.
942     */
943    if (initial && sched_feat(START_DEBIT))
944        vruntime += sched_vslice(cfs_rq, se);
945
946    /* sleeps up to a single latency don't count. */
947    if (!initial) {
948        unsigned long thresh = sysctl_sched_latency;
949
950        /*
951         * Halve their sleep time's effect, to allow
952         * for a gentler effect of sleepers:
953         */
954        if (sched_feat(GENTLE_FAIR_SLEEPERS))
955            thresh >>= 1;
956
957        vruntime -= thresh;
958    }
959
960    /* ensure we never gain time by being placed backwards. */
961    vruntime = max_vruntime(se->vruntime, vruntime);
962
963    se->vruntime = vruntime;
964}
965
966static void
967enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
968{
969    /*
970     * Update the normalized vruntime before updating min_vruntime
971     * through callig update_curr().
972     */
973    if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
974        se->vruntime += cfs_rq->min_vruntime;
975
976    /*
977     * Update run-time statistics of the 'current'.
978     */
979    update_curr(cfs_rq);
980    update_cfs_load(cfs_rq, 0);
981    update_cfs_shares(cfs_rq, se->load.weight);
982    account_entity_enqueue(cfs_rq, se);
983
984    if (flags & ENQUEUE_WAKEUP) {
985        place_entity(cfs_rq, se, 0);
986        enqueue_sleeper(cfs_rq, se);
987    }
988
989    update_stats_enqueue(cfs_rq, se);
990    check_spread(cfs_rq, se);
991    if (se != cfs_rq->curr)
992        __enqueue_entity(cfs_rq, se);
993    se->on_rq = 1;
994
995    if (cfs_rq->nr_running == 1)
996        list_add_leaf_cfs_rq(cfs_rq);
997}
998
999static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1000{
1001    if (!se || cfs_rq->last == se)
1002        cfs_rq->last = NULL;
1003
1004    if (!se || cfs_rq->next == se)
1005        cfs_rq->next = NULL;
1006}
1007
1008static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1009{
1010    for_each_sched_entity(se)
1011        __clear_buddies(cfs_rq_of(se), se);
1012}
1013
1014static void
1015dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1016{
1017    /*
1018     * Update run-time statistics of the 'current'.
1019     */
1020    update_curr(cfs_rq);
1021
1022    update_stats_dequeue(cfs_rq, se);
1023    if (flags & DEQUEUE_SLEEP) {
1024#ifdef CONFIG_SCHEDSTATS
1025        if (entity_is_task(se)) {
1026            struct task_struct *tsk = task_of(se);
1027
1028            if (tsk->state & TASK_INTERRUPTIBLE)
1029                se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1030            if (tsk->state & TASK_UNINTERRUPTIBLE)
1031                se->statistics.block_start = rq_of(cfs_rq)->clock;
1032        }
1033#endif
1034    }
1035
1036    clear_buddies(cfs_rq, se);
1037
1038    if (se != cfs_rq->curr)
1039        __dequeue_entity(cfs_rq, se);
1040    se->on_rq = 0;
1041    update_cfs_load(cfs_rq, 0);
1042    account_entity_dequeue(cfs_rq, se);
1043    update_min_vruntime(cfs_rq);
1044    update_cfs_shares(cfs_rq, 0);
1045
1046    /*
1047     * Normalize the entity after updating the min_vruntime because the
1048     * update can refer to the ->curr item and we need to reflect this
1049     * movement in our normalized position.
1050     */
1051    if (!(flags & DEQUEUE_SLEEP))
1052        se->vruntime -= cfs_rq->min_vruntime;
1053}
1054
1055/*
1056 * Preempt the current task with a newly woken task if needed:
1057 */
1058static void
1059check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1060{
1061    unsigned long ideal_runtime, delta_exec;
1062
1063    ideal_runtime = sched_slice(cfs_rq, curr);
1064    delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1065    if (delta_exec > ideal_runtime) {
1066        resched_task(rq_of(cfs_rq)->curr);
1067        /*
1068         * The current task ran long enough, ensure it doesn't get
1069         * re-elected due to buddy favours.
1070         */
1071        clear_buddies(cfs_rq, curr);
1072        return;
1073    }
1074
1075    /*
1076     * Ensure that a task that missed wakeup preemption by a
1077     * narrow margin doesn't have to wait for a full slice.
1078     * This also mitigates buddy induced latencies under load.
1079     */
1080    if (!sched_feat(WAKEUP_PREEMPT))
1081        return;
1082
1083    if (delta_exec < sysctl_sched_min_granularity)
1084        return;
1085
1086    if (cfs_rq->nr_running > 1) {
1087        struct sched_entity *se = __pick_next_entity(cfs_rq);
1088        s64 delta = curr->vruntime - se->vruntime;
1089
1090        if (delta < 0)
1091            return;
1092
1093        if (delta > ideal_runtime)
1094            resched_task(rq_of(cfs_rq)->curr);
1095    }
1096}
1097
1098static void
1099set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1100{
1101    /* 'current' is not kept within the tree. */
1102    if (se->on_rq) {
1103        /*
1104         * Any task has to be enqueued before it get to execute on
1105         * a CPU. So account for the time it spent waiting on the
1106         * runqueue.
1107         */
1108        update_stats_wait_end(cfs_rq, se);
1109        __dequeue_entity(cfs_rq, se);
1110    }
1111
1112    update_stats_curr_start(cfs_rq, se);
1113    cfs_rq->curr = se;
1114#ifdef CONFIG_SCHEDSTATS
1115    /*
1116     * Track our maximum slice length, if the CPU's load is at
1117     * least twice that of our own weight (i.e. dont track it
1118     * when there are only lesser-weight tasks around):
1119     */
1120    if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1121        se->statistics.slice_max = max(se->statistics.slice_max,
1122            se->sum_exec_runtime - se->prev_sum_exec_runtime);
1123    }
1124#endif
1125    se->prev_sum_exec_runtime = se->sum_exec_runtime;
1126}
1127
1128static int
1129wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1130
1131static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1132{
1133    struct sched_entity *se = __pick_next_entity(cfs_rq);
1134    struct sched_entity *left = se;
1135
1136    if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1137        se = cfs_rq->next;
1138
1139    /*
1140     * Prefer last buddy, try to return the CPU to a preempted task.
1141     */
1142    if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1143        se = cfs_rq->last;
1144
1145    clear_buddies(cfs_rq, se);
1146
1147    return se;
1148}
1149
1150static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1151{
1152    /*
1153     * If still on the runqueue then deactivate_task()
1154     * was not called and update_curr() has to be done:
1155     */
1156    if (prev->on_rq)
1157        update_curr(cfs_rq);
1158
1159    check_spread(cfs_rq, prev);
1160    if (prev->on_rq) {
1161        update_stats_wait_start(cfs_rq, prev);
1162        /* Put 'current' back into the tree. */
1163        __enqueue_entity(cfs_rq, prev);
1164    }
1165    cfs_rq->curr = NULL;
1166}
1167
1168static void
1169entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1170{
1171    /*
1172     * Update run-time statistics of the 'current'.
1173     */
1174    update_curr(cfs_rq);
1175
1176    /*
1177     * Update share accounting for long-running entities.
1178     */
1179    update_entity_shares_tick(cfs_rq);
1180
1181#ifdef CONFIG_SCHED_HRTICK
1182    /*
1183     * queued ticks are scheduled to match the slice, so don't bother
1184     * validating it and just reschedule.
1185     */
1186    if (queued) {
1187        resched_task(rq_of(cfs_rq)->curr);
1188        return;
1189    }
1190    /*
1191     * don't let the period tick interfere with the hrtick preemption
1192     */
1193    if (!sched_feat(DOUBLE_TICK) &&
1194            hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1195        return;
1196#endif
1197
1198    if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1199        check_preempt_tick(cfs_rq, curr);
1200}
1201
1202/**************************************************
1203 * CFS operations on tasks:
1204 */
1205
1206#ifdef CONFIG_SCHED_HRTICK
1207static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1208{
1209    struct sched_entity *se = &p->se;
1210    struct cfs_rq *cfs_rq = cfs_rq_of(se);
1211
1212    WARN_ON(task_rq(p) != rq);
1213
1214    if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1215        u64 slice = sched_slice(cfs_rq, se);
1216        u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1217        s64 delta = slice - ran;
1218
1219        if (delta < 0) {
1220            if (rq->curr == p)
1221                resched_task(p);
1222            return;
1223        }
1224
1225        /*
1226         * Don't schedule slices shorter than 10000ns, that just
1227         * doesn't make sense. Rely on vruntime for fairness.
1228         */
1229        if (rq->curr != p)
1230            delta = max_t(s64, 10000LL, delta);
1231
1232        hrtick_start(rq, delta);
1233    }
1234}
1235
1236/*
1237 * called from enqueue/dequeue and updates the hrtick when the
1238 * current task is from our class and nr_running is low enough
1239 * to matter.
1240 */
1241static void hrtick_update(struct rq *rq)
1242{
1243    struct task_struct *curr = rq->curr;
1244
1245    if (curr->sched_class != &fair_sched_class)
1246        return;
1247
1248    if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1249        hrtick_start_fair(rq, curr);
1250}
1251#else /* !CONFIG_SCHED_HRTICK */
1252static inline void
1253hrtick_start_fair(struct rq *rq, struct task_struct *p)
1254{
1255}
1256
1257static inline void hrtick_update(struct rq *rq)
1258{
1259}
1260#endif
1261
1262/*
1263 * The enqueue_task method is called before nr_running is
1264 * increased. Here we update the fair scheduling stats and
1265 * then put the task into the rbtree:
1266 */
1267static void
1268enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1269{
1270    struct cfs_rq *cfs_rq;
1271    struct sched_entity *se = &p->se;
1272
1273    for_each_sched_entity(se) {
1274        if (se->on_rq)
1275            break;
1276        cfs_rq = cfs_rq_of(se);
1277        enqueue_entity(cfs_rq, se, flags);
1278        flags = ENQUEUE_WAKEUP;
1279    }
1280
1281    for_each_sched_entity(se) {
1282        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1283
1284        update_cfs_load(cfs_rq, 0);
1285        update_cfs_shares(cfs_rq, 0);
1286    }
1287
1288    hrtick_update(rq);
1289}
1290
1291/*
1292 * The dequeue_task method is called before nr_running is
1293 * decreased. We remove the task from the rbtree and
1294 * update the fair scheduling stats:
1295 */
1296static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1297{
1298    struct cfs_rq *cfs_rq;
1299    struct sched_entity *se = &p->se;
1300
1301    for_each_sched_entity(se) {
1302        cfs_rq = cfs_rq_of(se);
1303        dequeue_entity(cfs_rq, se, flags);
1304
1305        /* Don't dequeue parent if it has other entities besides us */
1306        if (cfs_rq->load.weight)
1307            break;
1308        flags |= DEQUEUE_SLEEP;
1309    }
1310
1311    for_each_sched_entity(se) {
1312        struct cfs_rq *cfs_rq = cfs_rq_of(se);
1313
1314        update_cfs_load(cfs_rq, 0);
1315        update_cfs_shares(cfs_rq, 0);
1316    }
1317
1318    hrtick_update(rq);
1319}
1320
1321/*
1322 * sched_yield() support is very simple - we dequeue and enqueue.
1323 *
1324 * If compat_yield is turned on then we requeue to the end of the tree.
1325 */
1326static void yield_task_fair(struct rq *rq)
1327{
1328    struct task_struct *curr = rq->curr;
1329    struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1330    struct sched_entity *rightmost, *se = &curr->se;
1331
1332    /*
1333     * Are we the only task in the tree?
1334     */
1335    if (unlikely(cfs_rq->nr_running == 1))
1336        return;
1337
1338    clear_buddies(cfs_rq, se);
1339
1340    if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1341        update_rq_clock(rq);
1342        /*
1343         * Update run-time statistics of the 'current'.
1344         */
1345        update_curr(cfs_rq);
1346
1347        return;
1348    }
1349    /*
1350     * Find the rightmost entry in the rbtree:
1351     */
1352    rightmost = __pick_last_entity(cfs_rq);
1353    /*
1354     * Already in the rightmost position?
1355     */
1356    if (unlikely(!rightmost || entity_before(rightmost, se)))
1357        return;
1358
1359    /*
1360     * Minimally necessary key value to be last in the tree:
1361     * Upon rescheduling, sched_class::put_prev_task() will place
1362     * 'current' within the tree based on its new key value.
1363     */
1364    se->vruntime = rightmost->vruntime + 1;
1365}
1366
1367#ifdef CONFIG_SMP
1368
1369static void task_waking_fair(struct rq *rq, struct task_struct *p)
1370{
1371    struct sched_entity *se = &p->se;
1372    struct cfs_rq *cfs_rq = cfs_rq_of(se);
1373
1374    se->vruntime -= cfs_rq->min_vruntime;
1375}
1376
1377#ifdef CONFIG_FAIR_GROUP_SCHED
1378/*
1379 * effective_load() calculates the load change as seen from the root_task_group
1380 *
1381 * Adding load to a group doesn't make a group heavier, but can cause movement
1382 * of group shares between cpus. Assuming the shares were perfectly aligned one
1383 * can calculate the shift in shares.
1384 */
1385static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1386{
1387    struct sched_entity *se = tg->se[cpu];
1388
1389    if (!tg->parent)
1390        return wl;
1391
1392    for_each_sched_entity(se) {
1393        long lw, w;
1394
1395        tg = se->my_q->tg;
1396        w = se->my_q->load.weight;
1397
1398        /* use this cpu's instantaneous contribution */
1399        lw = atomic_read(&tg->load_weight);
1400        lw -= se->my_q->load_contribution;
1401        lw += w + wg;
1402
1403        wl += w;
1404
1405        if (lw > 0 && wl < lw)
1406            wl = (wl * tg->shares) / lw;
1407        else
1408            wl = tg->shares;
1409
1410        /* zero point is MIN_SHARES */
1411        if (wl < MIN_SHARES)
1412            wl = MIN_SHARES;
1413        wl -= se->load.weight;
1414        wg = 0;
1415    }
1416
1417    return wl;
1418}
1419
1420#else
1421
1422static inline unsigned long effective_load(struct task_group *tg, int cpu,
1423        unsigned long wl, unsigned long wg)
1424{
1425    return wl;
1426}
1427
1428#endif
1429
1430static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1431{
1432    s64 this_load, load;
1433    int idx, this_cpu, prev_cpu;
1434    unsigned long tl_per_task;
1435    struct task_group *tg;
1436    unsigned long weight;
1437    int balanced;
1438
1439    idx = sd->wake_idx;
1440    this_cpu = smp_processor_id();
1441    prev_cpu = task_cpu(p);
1442    load = source_load(prev_cpu, idx);
1443    this_load = target_load(this_cpu, idx);
1444
1445    /*
1446     * If sync wakeup then subtract the (maximum possible)
1447     * effect of the currently running task from the load
1448     * of the current CPU:
1449     */
1450    rcu_read_lock();
1451    if (sync) {
1452        tg = task_group(current);
1453        weight = current->se.load.weight;
1454
1455        this_load += effective_load(tg, this_cpu, -weight, -weight);
1456        load += effective_load(tg, prev_cpu, 0, -weight);
1457    }
1458
1459    tg = task_group(p);
1460    weight = p->se.load.weight;
1461
1462    /*
1463     * In low-load situations, where prev_cpu is idle and this_cpu is idle
1464     * due to the sync cause above having dropped this_load to 0, we'll
1465     * always have an imbalance, but there's really nothing you can do
1466     * about that, so that's good too.
1467     *
1468     * Otherwise check if either cpus are near enough in load to allow this
1469     * task to be woken on this_cpu.
1470     */
1471    if (this_load > 0) {
1472        s64 this_eff_load, prev_eff_load;
1473
1474        this_eff_load = 100;
1475        this_eff_load *= power_of(prev_cpu);
1476        this_eff_load *= this_load +
1477            effective_load(tg, this_cpu, weight, weight);
1478
1479        prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1480        prev_eff_load *= power_of(this_cpu);
1481        prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1482
1483        balanced = this_eff_load <= prev_eff_load;
1484    } else
1485        balanced = true;
1486    rcu_read_unlock();
1487
1488    /*
1489     * If the currently running task will sleep within
1490     * a reasonable amount of time then attract this newly
1491     * woken task:
1492     */
1493    if (sync && balanced)
1494        return 1;
1495
1496    schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1497    tl_per_task = cpu_avg_load_per_task(this_cpu);
1498
1499    if (balanced ||
1500        (this_load <= load &&
1501         this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1502        /*
1503         * This domain has SD_WAKE_AFFINE and
1504         * p is cache cold in this domain, and
1505         * there is no bad imbalance.
1506         */
1507        schedstat_inc(sd, ttwu_move_affine);
1508        schedstat_inc(p, se.statistics.nr_wakeups_affine);
1509
1510        return 1;
1511    }
1512    return 0;
1513}
1514
1515/*
1516 * find_idlest_group finds and returns the least busy CPU group within the
1517 * domain.
1518 */
1519static struct sched_group *
1520find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1521          int this_cpu, int load_idx)
1522{
1523    struct sched_group *idlest = NULL, *group = sd->groups;
1524    unsigned long min_load = ULONG_MAX, this_load = 0;
1525    int imbalance = 100 + (sd->imbalance_pct-100)/2;
1526
1527    do {
1528        unsigned long load, avg_load;
1529        int local_group;
1530        int i;
1531
1532        /* Skip over this group if it has no CPUs allowed */
1533        if (!cpumask_intersects(sched_group_cpus(group),
1534                    &p->cpus_allowed))
1535            continue;
1536
1537        local_group = cpumask_test_cpu(this_cpu,
1538                           sched_group_cpus(group));
1539
1540        /* Tally up the load of all CPUs in the group */
1541        avg_load = 0;
1542
1543        for_each_cpu(i, sched_group_cpus(group)) {
1544            /* Bias balancing toward cpus of our domain */
1545            if (local_group)
1546                load = source_load(i, load_idx);
1547            else
1548                load = target_load(i, load_idx);
1549
1550            avg_load += load;
1551        }
1552
1553        /* Adjust by relative CPU power of the group */
1554        avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1555
1556        if (local_group) {
1557            this_load = avg_load;
1558        } else if (avg_load < min_load) {
1559            min_load = avg_load;
1560            idlest = group;
1561        }
1562    } while (group = group->next, group != sd->groups);
1563
1564    if (!idlest || 100*this_load < imbalance*min_load)
1565        return NULL;
1566    return idlest;
1567}
1568
1569/*
1570 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1571 */
1572static int
1573find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1574{
1575    unsigned long load, min_load = ULONG_MAX;
1576    int idlest = -1;
1577    int i;
1578
1579    /* Traverse only the allowed CPUs */
1580    for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1581        load = weighted_cpuload(i);
1582
1583        if (load < min_load || (load == min_load && i == this_cpu)) {
1584            min_load = load;
1585            idlest = i;
1586        }
1587    }
1588
1589    return idlest;
1590}
1591
1592/*
1593 * Try and locate an idle CPU in the sched_domain.
1594 */
1595static int select_idle_sibling(struct task_struct *p, int target)
1596{
1597    int cpu = smp_processor_id();
1598    int prev_cpu = task_cpu(p);
1599    struct sched_domain *sd;
1600    int i;
1601
1602    /*
1603     * If the task is going to be woken-up on this cpu and if it is
1604     * already idle, then it is the right target.
1605     */
1606    if (target == cpu && idle_cpu(cpu))
1607        return cpu;
1608
1609    /*
1610     * If the task is going to be woken-up on the cpu where it previously
1611     * ran and if it is currently idle, then it the right target.
1612     */
1613    if (target == prev_cpu && idle_cpu(prev_cpu))
1614        return prev_cpu;
1615
1616    /*
1617     * Otherwise, iterate the domains and find an elegible idle cpu.
1618     */
1619    for_each_domain(target, sd) {
1620        if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1621            break;
1622
1623        for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1624            if (idle_cpu(i)) {
1625                target = i;
1626                break;
1627            }
1628        }
1629
1630        /*
1631         * Lets stop looking for an idle sibling when we reached
1632         * the domain that spans the current cpu and prev_cpu.
1633         */
1634        if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1635            cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1636            break;
1637    }
1638
1639    return target;
1640}
1641
1642/*
1643 * sched_balance_self: balance the current task (running on cpu) in domains
1644 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1645 * SD_BALANCE_EXEC.
1646 *
1647 * Balance, ie. select the least loaded group.
1648 *
1649 * Returns the target CPU number, or the same CPU if no balancing is needed.
1650 *
1651 * preempt must be disabled.
1652 */
1653static int
1654select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1655{
1656    struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1657    int cpu = smp_processor_id();
1658    int prev_cpu = task_cpu(p);
1659    int new_cpu = cpu;
1660    int want_affine = 0;
1661    int want_sd = 1;
1662    int sync = wake_flags & WF_SYNC;
1663
1664    if (sd_flag & SD_BALANCE_WAKE) {
1665        if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1666            want_affine = 1;
1667        new_cpu = prev_cpu;
1668    }
1669
1670    for_each_domain(cpu, tmp) {
1671        if (!(tmp->flags & SD_LOAD_BALANCE))
1672            continue;
1673
1674        /*
1675         * If power savings logic is enabled for a domain, see if we
1676         * are not overloaded, if so, don't balance wider.
1677         */
1678        if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1679            unsigned long power = 0;
1680            unsigned long nr_running = 0;
1681            unsigned long capacity;
1682            int i;
1683
1684            for_each_cpu(i, sched_domain_span(tmp)) {
1685                power += power_of(i);
1686                nr_running += cpu_rq(i)->cfs.nr_running;
1687            }
1688
1689            capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1690
1691            if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1692                nr_running /= 2;
1693
1694            if (nr_running < capacity)
1695                want_sd = 0;
1696        }
1697
1698        /*
1699         * If both cpu and prev_cpu are part of this domain,
1700         * cpu is a valid SD_WAKE_AFFINE target.
1701         */
1702        if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1703            cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1704            affine_sd = tmp;
1705            want_affine = 0;
1706        }
1707
1708        if (!want_sd && !want_affine)
1709            break;
1710
1711        if (!(tmp->flags & sd_flag))
1712            continue;
1713
1714        if (want_sd)
1715            sd = tmp;
1716    }
1717
1718    if (affine_sd) {
1719        if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1720            return select_idle_sibling(p, cpu);
1721        else
1722            return select_idle_sibling(p, prev_cpu);
1723    }
1724
1725    while (sd) {
1726        int load_idx = sd->forkexec_idx;
1727        struct sched_group *group;
1728        int weight;
1729
1730        if (!(sd->flags & sd_flag)) {
1731            sd = sd->child;
1732            continue;
1733        }
1734
1735        if (sd_flag & SD_BALANCE_WAKE)
1736            load_idx = sd->wake_idx;
1737
1738        group = find_idlest_group(sd, p, cpu, load_idx);
1739        if (!group) {
1740            sd = sd->child;
1741            continue;
1742        }
1743
1744        new_cpu = find_idlest_cpu(group, p, cpu);
1745        if (new_cpu == -1 || new_cpu == cpu) {
1746            /* Now try balancing at a lower domain level of cpu */
1747            sd = sd->child;
1748            continue;
1749        }
1750
1751        /* Now try balancing at a lower domain level of new_cpu */
1752        cpu = new_cpu;
1753        weight = sd->span_weight;
1754        sd = NULL;
1755        for_each_domain(cpu, tmp) {
1756            if (weight <= tmp->span_weight)
1757                break;
1758            if (tmp->flags & sd_flag)
1759                sd = tmp;
1760        }
1761        /* while loop will break here if sd == NULL */
1762    }
1763
1764    return new_cpu;
1765}
1766#endif /* CONFIG_SMP */
1767
1768static unsigned long
1769wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1770{
1771    unsigned long gran = sysctl_sched_wakeup_granularity;
1772
1773    /*
1774     * Since its curr running now, convert the gran from real-time
1775     * to virtual-time in his units.
1776     *
1777     * By using 'se' instead of 'curr' we penalize light tasks, so
1778     * they get preempted easier. That is, if 'se' < 'curr' then
1779     * the resulting gran will be larger, therefore penalizing the
1780     * lighter, if otoh 'se' > 'curr' then the resulting gran will
1781     * be smaller, again penalizing the lighter task.
1782     *
1783     * This is especially important for buddies when the leftmost
1784     * task is higher priority than the buddy.
1785     */
1786    if (unlikely(se->load.weight != NICE_0_LOAD))
1787        gran = calc_delta_fair(gran, se);
1788
1789    return gran;
1790}
1791
1792/*
1793 * Should 'se' preempt 'curr'.
1794 *
1795 * |s1
1796 * |s2
1797 * |s3
1798 * g
1799 * |<--->|c
1800 *
1801 * w(c, s1) = -1
1802 * w(c, s2) = 0
1803 * w(c, s3) = 1
1804 *
1805 */
1806static int
1807wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1808{
1809    s64 gran, vdiff = curr->vruntime - se->vruntime;
1810
1811    if (vdiff <= 0)
1812        return -1;
1813
1814    gran = wakeup_gran(curr, se);
1815    if (vdiff > gran)
1816        return 1;
1817
1818    return 0;
1819}
1820
1821static void set_last_buddy(struct sched_entity *se)
1822{
1823    if (likely(task_of(se)->policy != SCHED_IDLE)) {
1824        for_each_sched_entity(se)
1825            cfs_rq_of(se)->last = se;
1826    }
1827}
1828
1829static void set_next_buddy(struct sched_entity *se)
1830{
1831    if (likely(task_of(se)->policy != SCHED_IDLE)) {
1832        for_each_sched_entity(se)
1833            cfs_rq_of(se)->next = se;
1834    }
1835}
1836
1837/*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
1840static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1841{
1842    struct task_struct *curr = rq->curr;
1843    struct sched_entity *se = &curr->se, *pse = &p->se;
1844    struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1845    int scale = cfs_rq->nr_running >= sched_nr_latency;
1846
1847    if (unlikely(se == pse))
1848        return;
1849
1850    if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1851        set_next_buddy(pse);
1852
1853    /*
1854     * We can come here with TIF_NEED_RESCHED already set from new task
1855     * wake up path.
1856     */
1857    if (test_tsk_need_resched(curr))
1858        return;
1859
1860    /*
1861     * Batch and idle tasks do not preempt (their preemption is driven by
1862     * the tick):
1863     */
1864    if (unlikely(p->policy != SCHED_NORMAL))
1865        return;
1866
1867    /* Idle tasks are by definition preempted by everybody. */
1868    if (unlikely(curr->policy == SCHED_IDLE))
1869        goto preempt;
1870
1871    if (!sched_feat(WAKEUP_PREEMPT))
1872        return;
1873
1874    update_curr(cfs_rq);
1875    find_matching_se(&se, &pse);
1876    BUG_ON(!pse);
1877    if (wakeup_preempt_entity(se, pse) == 1)
1878        goto preempt;
1879
1880    return;
1881
1882preempt:
1883    resched_task(curr);
1884    /*
1885     * Only set the backward buddy when the current task is still
1886     * on the rq. This can happen when a wakeup gets interleaved
1887     * with schedule on the ->pre_schedule() or idle_balance()
1888     * point, either of which can * drop the rq lock.
1889     *
1890     * Also, during early boot the idle thread is in the fair class,
1891     * for obvious reasons its a bad idea to schedule back to it.
1892     */
1893    if (unlikely(!se->on_rq || curr == rq->idle))
1894        return;
1895
1896    if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1897        set_last_buddy(se);
1898}
1899
1900static struct task_struct *pick_next_task_fair(struct rq *rq)
1901{
1902    struct task_struct *p;
1903    struct cfs_rq *cfs_rq = &rq->cfs;
1904    struct sched_entity *se;
1905
1906    if (!cfs_rq->nr_running)
1907        return NULL;
1908
1909    do {
1910        se = pick_next_entity(cfs_rq);
1911        set_next_entity(cfs_rq, se);
1912        cfs_rq = group_cfs_rq(se);
1913    } while (cfs_rq);
1914
1915    p = task_of(se);
1916    hrtick_start_fair(rq, p);
1917
1918    return p;
1919}
1920
1921/*
1922 * Account for a descheduled task:
1923 */
1924static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1925{
1926    struct sched_entity *se = &prev->se;
1927    struct cfs_rq *cfs_rq;
1928
1929    for_each_sched_entity(se) {
1930        cfs_rq = cfs_rq_of(se);
1931        put_prev_entity(cfs_rq, se);
1932    }
1933}
1934
1935#ifdef CONFIG_SMP
1936/**************************************************
1937 * Fair scheduling class load-balancing methods:
1938 */
1939
1940/*
1941 * pull_task - move a task from a remote runqueue to the local runqueue.
1942 * Both runqueues must be locked.
1943 */
1944static void pull_task(struct rq *src_rq, struct task_struct *p,
1945              struct rq *this_rq, int this_cpu)
1946{
1947    deactivate_task(src_rq, p, 0);
1948    set_task_cpu(p, this_cpu);
1949    activate_task(this_rq, p, 0);
1950    check_preempt_curr(this_rq, p, 0);
1951}
1952
1953/*
1954 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1955 */
1956static
1957int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1958             struct sched_domain *sd, enum cpu_idle_type idle,
1959             int *all_pinned)
1960{
1961    int tsk_cache_hot = 0;
1962    /*
1963     * We do not migrate tasks that are:
1964     * 1) running (obviously), or
1965     * 2) cannot be migrated to this CPU due to cpus_allowed, or
1966     * 3) are cache-hot on their current CPU.
1967     */
1968    if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1969        schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1970        return 0;
1971    }
1972    *all_pinned = 0;
1973
1974    if (task_running(rq, p)) {
1975        schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1976        return 0;
1977    }
1978
1979    /*
1980     * Aggressive migration if:
1981     * 1) task is cache cold, or
1982     * 2) too many balance attempts have failed.
1983     */
1984
1985    tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1986    if (!tsk_cache_hot ||
1987        sd->nr_balance_failed > sd->cache_nice_tries) {
1988#ifdef CONFIG_SCHEDSTATS
1989        if (tsk_cache_hot) {
1990            schedstat_inc(sd, lb_hot_gained[idle]);
1991            schedstat_inc(p, se.statistics.nr_forced_migrations);
1992        }
1993#endif
1994        return 1;
1995    }
1996
1997    if (tsk_cache_hot) {
1998        schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1999        return 0;
2000    }
2001    return 1;
2002}
2003
2004/*
2005 * move_one_task tries to move exactly one task from busiest to this_rq, as
2006 * part of active balancing operations within "domain".
2007 * Returns 1 if successful and 0 otherwise.
2008 *
2009 * Called with both runqueues locked.
2010 */
2011static int
2012move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2013          struct sched_domain *sd, enum cpu_idle_type idle)
2014{
2015    struct task_struct *p, *n;
2016    struct cfs_rq *cfs_rq;
2017    int pinned = 0;
2018
2019    for_each_leaf_cfs_rq(busiest, cfs_rq) {
2020        list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2021
2022            if (!can_migrate_task(p, busiest, this_cpu,
2023                        sd, idle, &pinned))
2024                continue;
2025
2026            pull_task(busiest, p, this_rq, this_cpu);
2027            /*
2028             * Right now, this is only the second place pull_task()
2029             * is called, so we can safely collect pull_task()
2030             * stats here rather than inside pull_task().
2031             */
2032            schedstat_inc(sd, lb_gained[idle]);
2033            return 1;
2034        }
2035    }
2036
2037    return 0;
2038}
2039
2040static unsigned long
2041balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2042          unsigned long max_load_move, struct sched_domain *sd,
2043          enum cpu_idle_type idle, int *all_pinned,
2044          int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2045{
2046    int loops = 0, pulled = 0, pinned = 0;
2047    long rem_load_move = max_load_move;
2048    struct task_struct *p, *n;
2049
2050    if (max_load_move == 0)
2051        goto out;
2052
2053    pinned = 1;
2054
2055    list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2056        if (loops++ > sysctl_sched_nr_migrate)
2057            break;
2058
2059        if ((p->se.load.weight >> 1) > rem_load_move ||
2060            !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2061            continue;
2062
2063        pull_task(busiest, p, this_rq, this_cpu);
2064        pulled++;
2065        rem_load_move -= p->se.load.weight;
2066
2067#ifdef CONFIG_PREEMPT
2068        /*
2069         * NEWIDLE balancing is a source of latency, so preemptible
2070         * kernels will stop after the first task is pulled to minimize
2071         * the critical section.
2072         */
2073        if (idle == CPU_NEWLY_IDLE)
2074            break;
2075#endif
2076
2077        /*
2078         * We only want to steal up to the prescribed amount of
2079         * weighted load.
2080         */
2081        if (rem_load_move <= 0)
2082            break;
2083
2084        if (p->prio < *this_best_prio)
2085            *this_best_prio = p->prio;
2086    }
2087out:
2088    /*
2089     * Right now, this is one of only two places pull_task() is called,
2090     * so we can safely collect pull_task() stats here rather than
2091     * inside pull_task().
2092     */
2093    schedstat_add(sd, lb_gained[idle], pulled);
2094
2095    if (all_pinned)
2096        *all_pinned = pinned;
2097
2098    return max_load_move - rem_load_move;
2099}
2100
2101#ifdef CONFIG_FAIR_GROUP_SCHED
2102/*
2103 * update tg->load_weight by folding this cpu's load_avg
2104 */
2105static int update_shares_cpu(struct task_group *tg, int cpu)
2106{
2107    struct cfs_rq *cfs_rq;
2108    unsigned long flags;
2109    struct rq *rq;
2110
2111    if (!tg->se[cpu])
2112        return 0;
2113
2114    rq = cpu_rq(cpu);
2115    cfs_rq = tg->cfs_rq[cpu];
2116
2117    raw_spin_lock_irqsave(&rq->lock, flags);
2118
2119    update_rq_clock(rq);
2120    update_cfs_load(cfs_rq, 1);
2121
2122    /*
2123     * We need to update shares after updating tg->load_weight in
2124     * order to adjust the weight of groups with long running tasks.
2125     */
2126    update_cfs_shares(cfs_rq, 0);
2127
2128    raw_spin_unlock_irqrestore(&rq->lock, flags);
2129
2130    return 0;
2131}
2132
2133static void update_shares(int cpu)
2134{
2135    struct cfs_rq *cfs_rq;
2136    struct rq *rq = cpu_rq(cpu);
2137
2138    rcu_read_lock();
2139    for_each_leaf_cfs_rq(rq, cfs_rq)
2140        update_shares_cpu(cfs_rq->tg, cpu);
2141    rcu_read_unlock();
2142}
2143
2144static unsigned long
2145load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146          unsigned long max_load_move,
2147          struct sched_domain *sd, enum cpu_idle_type idle,
2148          int *all_pinned, int *this_best_prio)
2149{
2150    long rem_load_move = max_load_move;
2151    int busiest_cpu = cpu_of(busiest);
2152    struct task_group *tg;
2153
2154    rcu_read_lock();
2155    update_h_load(busiest_cpu);
2156
2157    list_for_each_entry_rcu(tg, &task_groups, list) {
2158        struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2159        unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2160        unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2161        u64 rem_load, moved_load;
2162
2163        /*
2164         * empty group
2165         */
2166        if (!busiest_cfs_rq->task_weight)
2167            continue;
2168
2169        rem_load = (u64)rem_load_move * busiest_weight;
2170        rem_load = div_u64(rem_load, busiest_h_load + 1);
2171
2172        moved_load = balance_tasks(this_rq, this_cpu, busiest,
2173                rem_load, sd, idle, all_pinned, this_best_prio,
2174                busiest_cfs_rq);
2175
2176        if (!moved_load)
2177            continue;
2178
2179        moved_load *= busiest_h_load;
2180        moved_load = div_u64(moved_load, busiest_weight + 1);
2181
2182        rem_load_move -= moved_load;
2183        if (rem_load_move < 0)
2184            break;
2185    }
2186    rcu_read_unlock();
2187
2188    return max_load_move - rem_load_move;
2189}
2190#else
2191static inline void update_shares(int cpu)
2192{
2193}
2194
2195static unsigned long
2196load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2197          unsigned long max_load_move,
2198          struct sched_domain *sd, enum cpu_idle_type idle,
2199          int *all_pinned, int *this_best_prio)
2200{
2201    return balance_tasks(this_rq, this_cpu, busiest,
2202            max_load_move, sd, idle, all_pinned,
2203            this_best_prio, &busiest->cfs);
2204}
2205#endif
2206
2207/*
2208 * move_tasks tries to move up to max_load_move weighted load from busiest to
2209 * this_rq, as part of a balancing operation within domain "sd".
2210 * Returns 1 if successful and 0 otherwise.
2211 *
2212 * Called with both runqueues locked.
2213 */
2214static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2215              unsigned long max_load_move,
2216              struct sched_domain *sd, enum cpu_idle_type idle,
2217              int *all_pinned)
2218{
2219    unsigned long total_load_moved = 0, load_moved;
2220    int this_best_prio = this_rq->curr->prio;
2221
2222    do {
2223        load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2224                max_load_move - total_load_moved,
2225                sd, idle, all_pinned, &this_best_prio);
2226
2227        total_load_moved += load_moved;
2228
2229#ifdef CONFIG_PREEMPT
2230        /*
2231         * NEWIDLE balancing is a source of latency, so preemptible
2232         * kernels will stop after the first task is pulled to minimize
2233         * the critical section.
2234         */
2235        if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2236            break;
2237
2238        if (raw_spin_is_contended(&this_rq->lock) ||
2239                raw_spin_is_contended(&busiest->lock))
2240            break;
2241#endif
2242    } while (load_moved && max_load_move > total_load_moved);
2243
2244    return total_load_moved > 0;
2245}
2246
2247/********** Helpers for find_busiest_group ************************/
2248/*
2249 * sd_lb_stats - Structure to store the statistics of a sched_domain
2250 * during load balancing.
2251 */
2252struct sd_lb_stats {
2253    struct sched_group *busiest; /* Busiest group in this sd */
2254    struct sched_group *this; /* Local group in this sd */
2255    unsigned long total_load; /* Total load of all groups in sd */
2256    unsigned long total_pwr; /* Total power of all groups in sd */
2257    unsigned long avg_load; /* Average load across all groups in sd */
2258
2259    /** Statistics of this group */
2260    unsigned long this_load;
2261    unsigned long this_load_per_task;
2262    unsigned long this_nr_running;
2263    unsigned long this_has_capacity;
2264    unsigned int this_idle_cpus;
2265
2266    /* Statistics of the busiest group */
2267    unsigned int busiest_idle_cpus;
2268    unsigned long max_load;
2269    unsigned long busiest_load_per_task;
2270    unsigned long busiest_nr_running;
2271    unsigned long busiest_group_capacity;
2272    unsigned long busiest_has_capacity;
2273    unsigned int busiest_group_weight;
2274
2275    int group_imb; /* Is there imbalance in this sd */
2276#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2277    int power_savings_balance; /* Is powersave balance needed for this sd */
2278    struct sched_group *group_min; /* Least loaded group in sd */
2279    struct sched_group *group_leader; /* Group which relieves group_min */
2280    unsigned long min_load_per_task; /* load_per_task in group_min */
2281    unsigned long leader_nr_running; /* Nr running of group_leader */
2282    unsigned long min_nr_running; /* Nr running of group_min */
2283#endif
2284};
2285
2286/*
2287 * sg_lb_stats - stats of a sched_group required for load_balancing
2288 */
2289struct sg_lb_stats {
2290    unsigned long avg_load; /*Avg load across the CPUs of the group */
2291    unsigned long group_load; /* Total load over the CPUs of the group */
2292    unsigned long sum_nr_running; /* Nr tasks running in the group */
2293    unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2294    unsigned long group_capacity;
2295    unsigned long idle_cpus;
2296    unsigned long group_weight;
2297    int group_imb; /* Is there an imbalance in the group ? */
2298    int group_has_capacity; /* Is there extra capacity in the group? */
2299};
2300
2301/**
2302 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2303 * @group: The group whose first cpu is to be returned.
2304 */
2305static inline unsigned int group_first_cpu(struct sched_group *group)
2306{
2307    return cpumask_first(sched_group_cpus(group));
2308}
2309
2310/**
2311 * get_sd_load_idx - Obtain the load index for a given sched domain.
2312 * @sd: The sched_domain whose load_idx is to be obtained.
2313 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2314 */
2315static inline int get_sd_load_idx(struct sched_domain *sd,
2316                    enum cpu_idle_type idle)
2317{
2318    int load_idx;
2319
2320    switch (idle) {
2321    case CPU_NOT_IDLE:
2322        load_idx = sd->busy_idx;
2323        break;
2324
2325    case CPU_NEWLY_IDLE:
2326        load_idx = sd->newidle_idx;
2327        break;
2328    default:
2329        load_idx = sd->idle_idx;
2330        break;
2331    }
2332
2333    return load_idx;
2334}
2335
2336
2337#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2338/**
2339 * init_sd_power_savings_stats - Initialize power savings statistics for
2340 * the given sched_domain, during load balancing.
2341 *
2342 * @sd: Sched domain whose power-savings statistics are to be initialized.
2343 * @sds: Variable containing the statistics for sd.
2344 * @idle: Idle status of the CPU at which we're performing load-balancing.
2345 */
2346static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2347    struct sd_lb_stats *sds, enum cpu_idle_type idle)
2348{
2349    /*
2350     * Busy processors will not participate in power savings
2351     * balance.
2352     */
2353    if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2354        sds->power_savings_balance = 0;
2355    else {
2356        sds->power_savings_balance = 1;
2357        sds->min_nr_running = ULONG_MAX;
2358        sds->leader_nr_running = 0;
2359    }
2360}
2361
2362/**
2363 * update_sd_power_savings_stats - Update the power saving stats for a
2364 * sched_domain while performing load balancing.
2365 *
2366 * @group: sched_group belonging to the sched_domain under consideration.
2367 * @sds: Variable containing the statistics of the sched_domain
2368 * @local_group: Does group contain the CPU for which we're performing
2369 * load balancing ?
2370 * @sgs: Variable containing the statistics of the group.
2371 */
2372static inline void update_sd_power_savings_stats(struct sched_group *group,
2373    struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2374{
2375
2376    if (!sds->power_savings_balance)
2377        return;
2378
2379    /*
2380     * If the local group is idle or completely loaded
2381     * no need to do power savings balance at this domain
2382     */
2383    if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2384                !sds->this_nr_running))
2385        sds->power_savings_balance = 0;
2386
2387    /*
2388     * If a group is already running at full capacity or idle,
2389     * don't include that group in power savings calculations
2390     */
2391    if (!sds->power_savings_balance ||
2392        sgs->sum_nr_running >= sgs->group_capacity ||
2393        !sgs->sum_nr_running)
2394        return;
2395
2396    /*
2397     * Calculate the group which has the least non-idle load.
2398     * This is the group from where we need to pick up the load
2399     * for saving power
2400     */
2401    if ((sgs->sum_nr_running < sds->min_nr_running) ||
2402        (sgs->sum_nr_running == sds->min_nr_running &&
2403         group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2404        sds->group_min = group;
2405        sds->min_nr_running = sgs->sum_nr_running;
2406        sds->min_load_per_task = sgs->sum_weighted_load /
2407                        sgs->sum_nr_running;
2408    }
2409
2410    /*
2411     * Calculate the group which is almost near its
2412     * capacity but still has some space to pick up some load
2413     * from other group and save more power
2414     */
2415    if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2416        return;
2417
2418    if (sgs->sum_nr_running > sds->leader_nr_running ||
2419        (sgs->sum_nr_running == sds->leader_nr_running &&
2420         group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2421        sds->group_leader = group;
2422        sds->leader_nr_running = sgs->sum_nr_running;
2423    }
2424}
2425
2426/**
2427 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2428 * @sds: Variable containing the statistics of the sched_domain
2429 * under consideration.
2430 * @this_cpu: Cpu at which we're currently performing load-balancing.
2431 * @imbalance: Variable to store the imbalance.
2432 *
2433 * Description:
2434 * Check if we have potential to perform some power-savings balance.
2435 * If yes, set the busiest group to be the least loaded group in the
2436 * sched_domain, so that it's CPUs can be put to idle.
2437 *
2438 * Returns 1 if there is potential to perform power-savings balance.
2439 * Else returns 0.
2440 */
2441static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2442                    int this_cpu, unsigned long *imbalance)
2443{
2444    if (!sds->power_savings_balance)
2445        return 0;
2446
2447    if (sds->this != sds->group_leader ||
2448            sds->group_leader == sds->group_min)
2449        return 0;
2450
2451    *imbalance = sds->min_load_per_task;
2452    sds->busiest = sds->group_min;
2453
2454    return 1;
2455
2456}
2457#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2458static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2459    struct sd_lb_stats *sds, enum cpu_idle_type idle)
2460{
2461    return;
2462}
2463
2464static inline void update_sd_power_savings_stats(struct sched_group *group,
2465    struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2466{
2467    return;
2468}
2469
2470static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2471                    int this_cpu, unsigned long *imbalance)
2472{
2473    return 0;
2474}
2475#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2476
2477
2478unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2479{
2480    return SCHED_LOAD_SCALE;
2481}
2482
2483unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2484{
2485    return default_scale_freq_power(sd, cpu);
2486}
2487
2488unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2489{
2490    unsigned long weight = sd->span_weight;
2491    unsigned long smt_gain = sd->smt_gain;
2492
2493    smt_gain /= weight;
2494
2495    return smt_gain;
2496}
2497
2498unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2499{
2500    return default_scale_smt_power(sd, cpu);
2501}
2502
2503unsigned long scale_rt_power(int cpu)
2504{
2505    struct rq *rq = cpu_rq(cpu);
2506    u64 total, available;
2507
2508    total = sched_avg_period() + (rq->clock - rq->age_stamp);
2509
2510    if (unlikely(total < rq->rt_avg)) {
2511        /* Ensures that power won't end up being negative */
2512        available = 0;
2513    } else {
2514        available = total - rq->rt_avg;
2515    }
2516
2517    if (unlikely((s64)total < SCHED_LOAD_SCALE))
2518        total = SCHED_LOAD_SCALE;
2519
2520    total >>= SCHED_LOAD_SHIFT;
2521
2522    return div_u64(available, total);
2523}
2524
2525static void update_cpu_power(struct sched_domain *sd, int cpu)
2526{
2527    unsigned long weight = sd->span_weight;
2528    unsigned long power = SCHED_LOAD_SCALE;
2529    struct sched_group *sdg = sd->groups;
2530
2531    if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2532        if (sched_feat(ARCH_POWER))
2533            power *= arch_scale_smt_power(sd, cpu);
2534        else
2535            power *= default_scale_smt_power(sd, cpu);
2536
2537        power >>= SCHED_LOAD_SHIFT;
2538    }
2539
2540    sdg->cpu_power_orig = power;
2541
2542    if (sched_feat(ARCH_POWER))
2543        power *= arch_scale_freq_power(sd, cpu);
2544    else
2545        power *= default_scale_freq_power(sd, cpu);
2546
2547    power >>= SCHED_LOAD_SHIFT;
2548
2549    power *= scale_rt_power(cpu);
2550    power >>= SCHED_LOAD_SHIFT;
2551
2552    if (!power)
2553        power = 1;
2554
2555    cpu_rq(cpu)->cpu_power = power;
2556    sdg->cpu_power = power;
2557}
2558
2559static void update_group_power(struct sched_domain *sd, int cpu)
2560{
2561    struct sched_domain *child = sd->child;
2562    struct sched_group *group, *sdg = sd->groups;
2563    unsigned long power;
2564
2565    if (!child) {
2566        update_cpu_power(sd, cpu);
2567        return;
2568    }
2569
2570    power = 0;
2571
2572    group = child->groups;
2573    do {
2574        power += group->cpu_power;
2575        group = group->next;
2576    } while (group != child->groups);
2577
2578    sdg->cpu_power = power;
2579}
2580
2581/*
2582 * Try and fix up capacity for tiny siblings, this is needed when
2583 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2584 * which on its own isn't powerful enough.
2585 *
2586 * See update_sd_pick_busiest() and check_asym_packing().
2587 */
2588static inline int
2589fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2590{
2591    /*
2592     * Only siblings can have significantly less than SCHED_LOAD_SCALE
2593     */
2594    if (sd->level != SD_LV_SIBLING)
2595        return 0;
2596
2597    /*
2598     * If ~90% of the cpu_power is still there, we're good.
2599     */
2600    if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2601        return 1;
2602
2603    return 0;
2604}
2605
2606/**
2607 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2608 * @sd: The sched_domain whose statistics are to be updated.
2609 * @group: sched_group whose statistics are to be updated.
2610 * @this_cpu: Cpu for which load balance is currently performed.
2611 * @idle: Idle status of this_cpu
2612 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2613 * @sd_idle: Idle status of the sched_domain containing group.
2614 * @local_group: Does group contain this_cpu.
2615 * @cpus: Set of cpus considered for load balancing.
2616 * @balance: Should we balance.
2617 * @sgs: variable to hold the statistics for this group.
2618 */
2619static inline void update_sg_lb_stats(struct sched_domain *sd,
2620            struct sched_group *group, int this_cpu,
2621            enum cpu_idle_type idle, int load_idx, int *sd_idle,
2622            int local_group, const struct cpumask *cpus,
2623            int *balance, struct sg_lb_stats *sgs)
2624{
2625    unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2626    int i;
2627    unsigned int balance_cpu = -1, first_idle_cpu = 0;
2628    unsigned long avg_load_per_task = 0;
2629
2630    if (local_group)
2631        balance_cpu = group_first_cpu(group);
2632
2633    /* Tally up the load of all CPUs in the group */
2634    max_cpu_load = 0;
2635    min_cpu_load = ~0UL;
2636    max_nr_running = 0;
2637
2638    for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2639        struct rq *rq = cpu_rq(i);
2640
2641        if (*sd_idle && rq->nr_running)
2642            *sd_idle = 0;
2643
2644        /* Bias balancing toward cpus of our domain */
2645        if (local_group) {
2646            if (idle_cpu(i) && !first_idle_cpu) {
2647                first_idle_cpu = 1;
2648                balance_cpu = i;
2649            }
2650
2651            load = target_load(i, load_idx);
2652        } else {
2653            load = source_load(i, load_idx);
2654            if (load > max_cpu_load) {
2655                max_cpu_load = load;
2656                max_nr_running = rq->nr_running;
2657            }
2658            if (min_cpu_load > load)
2659                min_cpu_load = load;
2660        }
2661
2662        sgs->group_load += load;
2663        sgs->sum_nr_running += rq->nr_running;
2664        sgs->sum_weighted_load += weighted_cpuload(i);
2665        if (idle_cpu(i))
2666            sgs->idle_cpus++;
2667    }
2668
2669    /*
2670     * First idle cpu or the first cpu(busiest) in this sched group
2671     * is eligible for doing load balancing at this and above
2672     * domains. In the newly idle case, we will allow all the cpu's
2673     * to do the newly idle load balance.
2674     */
2675    if (idle != CPU_NEWLY_IDLE && local_group) {
2676        if (balance_cpu != this_cpu) {
2677            *balance = 0;
2678            return;
2679        }
2680        update_group_power(sd, this_cpu);
2681    }
2682
2683    /* Adjust by relative CPU power of the group */
2684    sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2685
2686    /*
2687     * Consider the group unbalanced when the imbalance is larger
2688     * than the average weight of two tasks.
2689     *
2690     * APZ: with cgroup the avg task weight can vary wildly and
2691     * might not be a suitable number - should we keep a
2692     * normalized nr_running number somewhere that negates
2693     * the hierarchy?
2694     */
2695    if (sgs->sum_nr_running)
2696        avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2697
2698    if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2699        sgs->group_imb = 1;
2700
2701    sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2702    if (!sgs->group_capacity)
2703        sgs->group_capacity = fix_small_capacity(sd, group);
2704    sgs->group_weight = group->group_weight;
2705
2706    if (sgs->group_capacity > sgs->sum_nr_running)
2707        sgs->group_has_capacity = 1;
2708}
2709
2710/**
2711 * update_sd_pick_busiest - return 1 on busiest group
2712 * @sd: sched_domain whose statistics are to be checked
2713 * @sds: sched_domain statistics
2714 * @sg: sched_group candidate to be checked for being the busiest
2715 * @sgs: sched_group statistics
2716 * @this_cpu: the current cpu
2717 *
2718 * Determine if @sg is a busier group than the previously selected
2719 * busiest group.
2720 */
2721static bool update_sd_pick_busiest(struct sched_domain *sd,
2722                   struct sd_lb_stats *sds,
2723                   struct sched_group *sg,
2724                   struct sg_lb_stats *sgs,
2725                   int this_cpu)
2726{
2727    if (sgs->avg_load <= sds->max_load)
2728        return false;
2729
2730    if (sgs->sum_nr_running > sgs->group_capacity)
2731        return true;
2732
2733    if (sgs->group_imb)
2734        return true;
2735
2736    /*
2737     * ASYM_PACKING needs to move all the work to the lowest
2738     * numbered CPUs in the group, therefore mark all groups
2739     * higher than ourself as busy.
2740     */
2741    if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2742        this_cpu < group_first_cpu(sg)) {
2743        if (!sds->busiest)
2744            return true;
2745
2746        if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2747            return true;
2748    }
2749
2750    return false;
2751}
2752
2753/**
2754 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2755 * @sd: sched_domain whose statistics are to be updated.
2756 * @this_cpu: Cpu for which load balance is currently performed.
2757 * @idle: Idle status of this_cpu
2758 * @sd_idle: Idle status of the sched_domain containing sg.
2759 * @cpus: Set of cpus considered for load balancing.
2760 * @balance: Should we balance.
2761 * @sds: variable to hold the statistics for this sched_domain.
2762 */
2763static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2764            enum cpu_idle_type idle, int *sd_idle,
2765            const struct cpumask *cpus, int *balance,
2766            struct sd_lb_stats *sds)
2767{
2768    struct sched_domain *child = sd->child;
2769    struct sched_group *sg = sd->groups;
2770    struct sg_lb_stats sgs;
2771    int load_idx, prefer_sibling = 0;
2772
2773    if (child && child->flags & SD_PREFER_SIBLING)
2774        prefer_sibling = 1;
2775
2776    init_sd_power_savings_stats(sd, sds, idle);
2777    load_idx = get_sd_load_idx(sd, idle);
2778
2779    do {
2780        int local_group;
2781
2782        local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2783        memset(&sgs, 0, sizeof(sgs));
2784        update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2785                local_group, cpus, balance, &sgs);
2786
2787        if (local_group && !(*balance))
2788            return;
2789
2790        sds->total_load += sgs.group_load;
2791        sds->total_pwr += sg->cpu_power;
2792
2793        /*
2794         * In case the child domain prefers tasks go to siblings
2795         * first, lower the sg capacity to one so that we'll try
2796         * and move all the excess tasks away. We lower the capacity
2797         * of a group only if the local group has the capacity to fit
2798         * these excess tasks, i.e. nr_running < group_capacity. The
2799         * extra check prevents the case where you always pull from the
2800         * heaviest group when it is already under-utilized (possible
2801         * with a large weight task outweighs the tasks on the system).
2802         */
2803        if (prefer_sibling && !local_group && sds->this_has_capacity)
2804            sgs.group_capacity = min(sgs.group_capacity, 1UL);
2805
2806        if (local_group) {
2807            sds->this_load = sgs.avg_load;
2808            sds->this = sg;
2809            sds->this_nr_running = sgs.sum_nr_running;
2810            sds->this_load_per_task = sgs.sum_weighted_load;
2811            sds->this_has_capacity = sgs.group_has_capacity;
2812            sds->this_idle_cpus = sgs.idle_cpus;
2813        } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2814            sds->max_load = sgs.avg_load;
2815            sds->busiest = sg;
2816            sds->busiest_nr_running = sgs.sum_nr_running;
2817            sds->busiest_idle_cpus = sgs.idle_cpus;
2818            sds->busiest_group_capacity = sgs.group_capacity;
2819            sds->busiest_load_per_task = sgs.sum_weighted_load;
2820            sds->busiest_has_capacity = sgs.group_has_capacity;
2821            sds->busiest_group_weight = sgs.group_weight;
2822            sds->group_imb = sgs.group_imb;
2823        }
2824
2825        update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2826        sg = sg->next;
2827    } while (sg != sd->groups);
2828}
2829
2830int __weak arch_sd_sibling_asym_packing(void)
2831{
2832       return 0*SD_ASYM_PACKING;
2833}
2834
2835/**
2836 * check_asym_packing - Check to see if the group is packed into the
2837 * sched doman.
2838 *
2839 * This is primarily intended to used at the sibling level. Some
2840 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2841 * case of POWER7, it can move to lower SMT modes only when higher
2842 * threads are idle. When in lower SMT modes, the threads will
2843 * perform better since they share less core resources. Hence when we
2844 * have idle threads, we want them to be the higher ones.
2845 *
2846 * This packing function is run on idle threads. It checks to see if
2847 * the busiest CPU in this domain (core in the P7 case) has a higher
2848 * CPU number than the packing function is being run on. Here we are
2849 * assuming lower CPU number will be equivalent to lower a SMT thread
2850 * number.
2851 *
2852 * Returns 1 when packing is required and a task should be moved to
2853 * this CPU. The amount of the imbalance is returned in *imbalance.
2854 *
2855 * @sd: The sched_domain whose packing is to be checked.
2856 * @sds: Statistics of the sched_domain which is to be packed
2857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2858 * @imbalance: returns amount of imbalanced due to packing.
2859 */
2860static int check_asym_packing(struct sched_domain *sd,
2861                  struct sd_lb_stats *sds,
2862                  int this_cpu, unsigned long *imbalance)
2863{
2864    int busiest_cpu;
2865
2866    if (!(sd->flags & SD_ASYM_PACKING))
2867        return 0;
2868
2869    if (!sds->busiest)
2870        return 0;
2871
2872    busiest_cpu = group_first_cpu(sds->busiest);
2873    if (this_cpu > busiest_cpu)
2874        return 0;
2875
2876    *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2877                       SCHED_LOAD_SCALE);
2878    return 1;
2879}
2880
2881/**
2882 * fix_small_imbalance - Calculate the minor imbalance that exists
2883 * amongst the groups of a sched_domain, during
2884 * load balancing.
2885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2887 * @imbalance: Variable to store the imbalance.
2888 */
2889static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2890                int this_cpu, unsigned long *imbalance)
2891{
2892    unsigned long tmp, pwr_now = 0, pwr_move = 0;
2893    unsigned int imbn = 2;
2894    unsigned long scaled_busy_load_per_task;
2895
2896    if (sds->this_nr_running) {
2897        sds->this_load_per_task /= sds->this_nr_running;
2898        if (sds->busiest_load_per_task >
2899                sds->this_load_per_task)
2900            imbn = 1;
2901    } else
2902        sds->this_load_per_task =
2903            cpu_avg_load_per_task(this_cpu);
2904
2905    scaled_busy_load_per_task = sds->busiest_load_per_task
2906                         * SCHED_LOAD_SCALE;
2907    scaled_busy_load_per_task /= sds->busiest->cpu_power;
2908
2909    if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2910            (scaled_busy_load_per_task * imbn)) {
2911        *imbalance = sds->busiest_load_per_task;
2912        return;
2913    }
2914
2915    /*
2916     * OK, we don't have enough imbalance to justify moving tasks,
2917     * however we may be able to increase total CPU power used by
2918     * moving them.
2919     */
2920
2921    pwr_now += sds->busiest->cpu_power *
2922            min(sds->busiest_load_per_task, sds->max_load);
2923    pwr_now += sds->this->cpu_power *
2924            min(sds->this_load_per_task, sds->this_load);
2925    pwr_now /= SCHED_LOAD_SCALE;
2926
2927    /* Amount of load we'd subtract */
2928    tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2929        sds->busiest->cpu_power;
2930    if (sds->max_load > tmp)
2931        pwr_move += sds->busiest->cpu_power *
2932            min(sds->busiest_load_per_task, sds->max_load - tmp);
2933
2934    /* Amount of load we'd add */
2935    if (sds->max_load * sds->busiest->cpu_power <
2936        sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2937        tmp = (sds->max_load * sds->busiest->cpu_power) /
2938            sds->this->cpu_power;
2939    else
2940        tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2941            sds->this->cpu_power;
2942    pwr_move += sds->this->cpu_power *
2943            min(sds->this_load_per_task, sds->this_load + tmp);
2944    pwr_move /= SCHED_LOAD_SCALE;
2945
2946    /* Move if we gain throughput */
2947    if (pwr_move > pwr_now)
2948        *imbalance = sds->busiest_load_per_task;
2949}
2950
2951/**
2952 * calculate_imbalance - Calculate the amount of imbalance present within the
2953 * groups of a given sched_domain during load balance.
2954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2955 * @this_cpu: Cpu for which currently load balance is being performed.
2956 * @imbalance: The variable to store the imbalance.
2957 */
2958static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2959        unsigned long *imbalance)
2960{
2961    unsigned long max_pull, load_above_capacity = ~0UL;
2962
2963    sds->busiest_load_per_task /= sds->busiest_nr_running;
2964    if (sds->group_imb) {
2965        sds->busiest_load_per_task =
2966            min(sds->busiest_load_per_task, sds->avg_load);
2967    }
2968
2969    /*
2970     * In the presence of smp nice balancing, certain scenarios can have
2971     * max load less than avg load(as we skip the groups at or below
2972     * its cpu_power, while calculating max_load..)
2973     */
2974    if (sds->max_load < sds->avg_load) {
2975        *imbalance = 0;
2976        return fix_small_imbalance(sds, this_cpu, imbalance);
2977    }
2978
2979    if (!sds->group_imb) {
2980        /*
2981         * Don't want to pull so many tasks that a group would go idle.
2982         */
2983        load_above_capacity = (sds->busiest_nr_running -
2984                        sds->busiest_group_capacity);
2985
2986        load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2987
2988        load_above_capacity /= sds->busiest->cpu_power;
2989    }
2990
2991    /*
2992     * We're trying to get all the cpus to the average_load, so we don't
2993     * want to push ourselves above the average load, nor do we wish to
2994     * reduce the max loaded cpu below the average load. At the same time,
2995     * we also don't want to reduce the group load below the group capacity
2996     * (so that we can implement power-savings policies etc). Thus we look
2997     * for the minimum possible imbalance.
2998     * Be careful of negative numbers as they'll appear as very large values
2999     * with unsigned longs.
3000     */
3001    max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3002
3003    /* How much load to actually move to equalise the imbalance */
3004    *imbalance = min(max_pull * sds->busiest->cpu_power,
3005        (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3006            / SCHED_LOAD_SCALE;
3007
3008    /*
3009     * if *imbalance is less than the average load per runnable task
3010     * there is no gaurantee that any tasks will be moved so we'll have
3011     * a think about bumping its value to force at least one task to be
3012     * moved
3013     */
3014    if (*imbalance < sds->busiest_load_per_task)
3015        return fix_small_imbalance(sds, this_cpu, imbalance);
3016
3017}
3018
3019/******* find_busiest_group() helpers end here *********************/
3020
3021/**
3022 * find_busiest_group - Returns the busiest group within the sched_domain
3023 * if there is an imbalance. If there isn't an imbalance, and
3024 * the user has opted for power-savings, it returns a group whose
3025 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3026 * such a group exists.
3027 *
3028 * Also calculates the amount of weighted load which should be moved
3029 * to restore balance.
3030 *
3031 * @sd: The sched_domain whose busiest group is to be returned.
3032 * @this_cpu: The cpu for which load balancing is currently being performed.
3033 * @imbalance: Variable which stores amount of weighted load which should
3034 * be moved to restore balance/put a group to idle.
3035 * @idle: The idle status of this_cpu.
3036 * @sd_idle: The idleness of sd
3037 * @cpus: The set of CPUs under consideration for load-balancing.
3038 * @balance: Pointer to a variable indicating if this_cpu
3039 * is the appropriate cpu to perform load balancing at this_level.
3040 *
3041 * Returns: - the busiest group if imbalance exists.
3042 * - If no imbalance and user has opted for power-savings balance,
3043 * return the least loaded group whose CPUs can be
3044 * put to idle by rebalancing its tasks onto our group.
3045 */
3046static struct sched_group *
3047find_busiest_group(struct sched_domain *sd, int this_cpu,
3048           unsigned long *imbalance, enum cpu_idle_type idle,
3049           int *sd_idle, const struct cpumask *cpus, int *balance)
3050{
3051    struct sd_lb_stats sds;
3052
3053    memset(&sds, 0, sizeof(sds));
3054
3055    /*
3056     * Compute the various statistics relavent for load balancing at
3057     * this level.
3058     */
3059    update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3060                    balance, &sds);
3061
3062    /* Cases where imbalance does not exist from POV of this_cpu */
3063    /* 1) this_cpu is not the appropriate cpu to perform load balancing
3064     * at this level.
3065     * 2) There is no busy sibling group to pull from.
3066     * 3) This group is the busiest group.
3067     * 4) This group is more busy than the avg busieness at this
3068     * sched_domain.
3069     * 5) The imbalance is within the specified limit.
3070     *
3071     * Note: when doing newidle balance, if the local group has excess
3072     * capacity (i.e. nr_running < group_capacity) and the busiest group
3073     * does not have any capacity, we force a load balance to pull tasks
3074     * to the local group. In this case, we skip past checks 3, 4 and 5.
3075     */
3076    if (!(*balance))
3077        goto ret;
3078
3079    if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3080        check_asym_packing(sd, &sds, this_cpu, imbalance))
3081        return sds.busiest;
3082
3083    if (!sds.busiest || sds.busiest_nr_running == 0)
3084        goto out_balanced;
3085
3086    /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3087    if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3088            !sds.busiest_has_capacity)
3089        goto force_balance;
3090
3091    if (sds.this_load >= sds.max_load)
3092        goto out_balanced;
3093
3094    sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3095
3096    if (sds.this_load >= sds.avg_load)
3097        goto out_balanced;
3098
3099    /*
3100     * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3101     * And to check for busy balance use !idle_cpu instead of
3102     * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3103     * even when they are idle.
3104     */
3105    if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3106        if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3107            goto out_balanced;
3108    } else {
3109        /*
3110         * This cpu is idle. If the busiest group load doesn't
3111         * have more tasks than the number of available cpu's and
3112         * there is no imbalance between this and busiest group
3113         * wrt to idle cpu's, it is balanced.
3114         */
3115        if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3116            sds.busiest_nr_running <= sds.busiest_group_weight)
3117            goto out_balanced;
3118    }
3119
3120force_balance:
3121    /* Looks like there is an imbalance. Compute it */
3122    calculate_imbalance(&sds, this_cpu, imbalance);
3123    return sds.busiest;
3124
3125out_balanced:
3126    /*
3127     * There is no obvious imbalance. But check if we can do some balancing
3128     * to save power.
3129     */
3130    if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3131        return sds.busiest;
3132ret:
3133    *imbalance = 0;
3134    return NULL;
3135}
3136
3137/*
3138 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3139 */
3140static struct rq *
3141find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3142           enum cpu_idle_type idle, unsigned long imbalance,
3143           const struct cpumask *cpus)
3144{
3145    struct rq *busiest = NULL, *rq;
3146    unsigned long max_load = 0;
3147    int i;
3148
3149    for_each_cpu(i, sched_group_cpus(group)) {
3150        unsigned long power = power_of(i);
3151        unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3152        unsigned long wl;
3153
3154        if (!capacity)
3155            capacity = fix_small_capacity(sd, group);
3156
3157        if (!cpumask_test_cpu(i, cpus))
3158            continue;
3159
3160        rq = cpu_rq(i);
3161        wl = weighted_cpuload(i);
3162
3163        /*
3164         * When comparing with imbalance, use weighted_cpuload()
3165         * which is not scaled with the cpu power.
3166         */
3167        if (capacity && rq->nr_running == 1 && wl > imbalance)
3168            continue;
3169
3170        /*
3171         * For the load comparisons with the other cpu's, consider
3172         * the weighted_cpuload() scaled with the cpu power, so that
3173         * the load can be moved away from the cpu that is potentially
3174         * running at a lower capacity.
3175         */
3176        wl = (wl * SCHED_LOAD_SCALE) / power;
3177
3178        if (wl > max_load) {
3179            max_load = wl;
3180            busiest = rq;
3181        }
3182    }
3183
3184    return busiest;
3185}
3186
3187/*
3188 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3189 * so long as it is large enough.
3190 */
3191#define MAX_PINNED_INTERVAL 512
3192
3193/* Working cpumask for load_balance and load_balance_newidle. */
3194static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3195
3196static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3197                   int busiest_cpu, int this_cpu)
3198{
3199    if (idle == CPU_NEWLY_IDLE) {
3200
3201        /*
3202         * ASYM_PACKING needs to force migrate tasks from busy but
3203         * higher numbered CPUs in order to pack all tasks in the
3204         * lowest numbered CPUs.
3205         */
3206        if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3207            return 1;
3208
3209        /*
3210         * The only task running in a non-idle cpu can be moved to this
3211         * cpu in an attempt to completely freeup the other CPU
3212         * package.
3213         *
3214         * The package power saving logic comes from
3215         * find_busiest_group(). If there are no imbalance, then
3216         * f_b_g() will return NULL. However when sched_mc={1,2} then
3217         * f_b_g() will select a group from which a running task may be
3218         * pulled to this cpu in order to make the other package idle.
3219         * If there is no opportunity to make a package idle and if
3220         * there are no imbalance, then f_b_g() will return NULL and no
3221         * action will be taken in load_balance_newidle().
3222         *
3223         * Under normal task pull operation due to imbalance, there
3224         * will be more than one task in the source run queue and
3225         * move_tasks() will succeed. ld_moved will be true and this
3226         * active balance code will not be triggered.
3227         */
3228        if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3229            !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3230            return 0;
3231
3232        if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3233            return 0;
3234    }
3235
3236    return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3237}
3238
3239static int active_load_balance_cpu_stop(void *data);
3240
3241/*
3242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3243 * tasks if there is an imbalance.
3244 */
3245static int load_balance(int this_cpu, struct rq *this_rq,
3246            struct sched_domain *sd, enum cpu_idle_type idle,
3247            int *balance)
3248{
3249    int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3250    struct sched_group *group;
3251    unsigned long imbalance;
3252    struct rq *busiest;
3253    unsigned long flags;
3254    struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3255
3256    cpumask_copy(cpus, cpu_active_mask);
3257
3258    /*
3259     * When power savings policy is enabled for the parent domain, idle
3260     * sibling can pick up load irrespective of busy siblings. In this case,
3261     * let the state of idle sibling percolate up as CPU_IDLE, instead of
3262     * portraying it as CPU_NOT_IDLE.
3263     */
3264    if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3265        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3266        sd_idle = 1;
3267
3268    schedstat_inc(sd, lb_count[idle]);
3269
3270redo:
3271    group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3272                   cpus, balance);
3273
3274    if (*balance == 0)
3275        goto out_balanced;
3276
3277    if (!group) {
3278        schedstat_inc(sd, lb_nobusyg[idle]);
3279        goto out_balanced;
3280    }
3281
3282    busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3283    if (!busiest) {
3284        schedstat_inc(sd, lb_nobusyq[idle]);
3285        goto out_balanced;
3286    }
3287
3288    BUG_ON(busiest == this_rq);
3289
3290    schedstat_add(sd, lb_imbalance[idle], imbalance);
3291
3292    ld_moved = 0;
3293    if (busiest->nr_running > 1) {
3294        /*
3295         * Attempt to move tasks. If find_busiest_group has found
3296         * an imbalance but busiest->nr_running <= 1, the group is
3297         * still unbalanced. ld_moved simply stays zero, so it is
3298         * correctly treated as an imbalance.
3299         */
3300        local_irq_save(flags);
3301        double_rq_lock(this_rq, busiest);
3302        ld_moved = move_tasks(this_rq, this_cpu, busiest,
3303                      imbalance, sd, idle, &all_pinned);
3304        double_rq_unlock(this_rq, busiest);
3305        local_irq_restore(flags);
3306
3307        /*
3308         * some other cpu did the load balance for us.
3309         */
3310        if (ld_moved && this_cpu != smp_processor_id())
3311            resched_cpu(this_cpu);
3312
3313        /* All tasks on this runqueue were pinned by CPU affinity */
3314        if (unlikely(all_pinned)) {
3315            cpumask_clear_cpu(cpu_of(busiest), cpus);
3316            if (!cpumask_empty(cpus))
3317                goto redo;
3318            goto out_balanced;
3319        }
3320    }
3321
3322    if (!ld_moved) {
3323        schedstat_inc(sd, lb_failed[idle]);
3324        /*
3325         * Increment the failure counter only on periodic balance.
3326         * We do not want newidle balance, which can be very
3327         * frequent, pollute the failure counter causing
3328         * excessive cache_hot migrations and active balances.
3329         */
3330        if (idle != CPU_NEWLY_IDLE)
3331            sd->nr_balance_failed++;
3332
3333        if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3334                    this_cpu)) {
3335            raw_spin_lock_irqsave(&busiest->lock, flags);
3336
3337            /* don't kick the active_load_balance_cpu_stop,
3338             * if the curr task on busiest cpu can't be
3339             * moved to this_cpu
3340             */
3341            if (!cpumask_test_cpu(this_cpu,
3342                          &busiest->curr->cpus_allowed)) {
3343                raw_spin_unlock_irqrestore(&busiest->lock,
3344                                flags);
3345                all_pinned = 1;
3346                goto out_one_pinned;
3347            }
3348
3349            /*
3350             * ->active_balance synchronizes accesses to
3351             * ->active_balance_work. Once set, it's cleared
3352             * only after active load balance is finished.
3353             */
3354            if (!busiest->active_balance) {
3355                busiest->active_balance = 1;
3356                busiest->push_cpu = this_cpu;
3357                active_balance = 1;
3358            }
3359            raw_spin_unlock_irqrestore(&busiest->lock, flags);
3360
3361            if (active_balance)
3362                stop_one_cpu_nowait(cpu_of(busiest),
3363                    active_load_balance_cpu_stop, busiest,
3364                    &busiest->active_balance_work);
3365
3366            /*
3367             * We've kicked active balancing, reset the failure
3368             * counter.
3369             */
3370            sd->nr_balance_failed = sd->cache_nice_tries+1;
3371        }
3372    } else
3373        sd->nr_balance_failed = 0;
3374
3375    if (likely(!active_balance)) {
3376        /* We were unbalanced, so reset the balancing interval */
3377        sd->balance_interval = sd->min_interval;
3378    } else {
3379        /*
3380         * If we've begun active balancing, start to back off. This
3381         * case may not be covered by the all_pinned logic if there
3382         * is only 1 task on the busy runqueue (because we don't call
3383         * move_tasks).
3384         */
3385        if (sd->balance_interval < sd->max_interval)
3386            sd->balance_interval *= 2;
3387    }
3388
3389    if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3390        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3391        ld_moved = -1;
3392
3393    goto out;
3394
3395out_balanced:
3396    schedstat_inc(sd, lb_balanced[idle]);
3397
3398    sd->nr_balance_failed = 0;
3399
3400out_one_pinned:
3401    /* tune up the balancing interval */
3402    if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3403            (sd->balance_interval < sd->max_interval))
3404        sd->balance_interval *= 2;
3405
3406    if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3407        !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3408        ld_moved = -1;
3409    else
3410        ld_moved = 0;
3411out:
3412    return ld_moved;
3413}
3414
3415/*
3416 * idle_balance is called by schedule() if this_cpu is about to become
3417 * idle. Attempts to pull tasks from other CPUs.
3418 */
3419static void idle_balance(int this_cpu, struct rq *this_rq)
3420{
3421    struct sched_domain *sd;
3422    int pulled_task = 0;
3423    unsigned long next_balance = jiffies + HZ;
3424
3425    this_rq->idle_stamp = this_rq->clock;
3426
3427    if (this_rq->avg_idle < sysctl_sched_migration_cost)
3428        return;
3429
3430    /*
3431     * Drop the rq->lock, but keep IRQ/preempt disabled.
3432     */
3433    raw_spin_unlock(&this_rq->lock);
3434
3435    update_shares(this_cpu);
3436    for_each_domain(this_cpu, sd) {
3437        unsigned long interval;
3438        int balance = 1;
3439
3440        if (!(sd->flags & SD_LOAD_BALANCE))
3441            continue;
3442
3443        if (sd->flags & SD_BALANCE_NEWIDLE) {
3444            /* If we've pulled tasks over stop searching: */
3445            pulled_task = load_balance(this_cpu, this_rq,
3446                           sd, CPU_NEWLY_IDLE, &balance);
3447        }
3448
3449        interval = msecs_to_jiffies(sd->balance_interval);
3450        if (time_after(next_balance, sd->last_balance + interval))
3451            next_balance = sd->last_balance + interval;
3452        if (pulled_task) {
3453            this_rq->idle_stamp = 0;
3454            break;
3455        }
3456    }
3457
3458    raw_spin_lock(&this_rq->lock);
3459
3460    if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3461        /*
3462         * We are going idle. next_balance may be set based on
3463         * a busy processor. So reset next_balance.
3464         */
3465        this_rq->next_balance = next_balance;
3466    }
3467}
3468
3469/*
3470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3471 * running tasks off the busiest CPU onto idle CPUs. It requires at
3472 * least 1 task to be running on each physical CPU where possible, and
3473 * avoids physical / logical imbalances.
3474 */
3475static int active_load_balance_cpu_stop(void *data)
3476{
3477    struct rq *busiest_rq = data;
3478    int busiest_cpu = cpu_of(busiest_rq);
3479    int target_cpu = busiest_rq->push_cpu;
3480    struct rq *target_rq = cpu_rq(target_cpu);
3481    struct sched_domain *sd;
3482
3483    raw_spin_lock_irq(&busiest_rq->lock);
3484
3485    /* make sure the requested cpu hasn't gone down in the meantime */
3486    if (unlikely(busiest_cpu != smp_processor_id() ||
3487             !busiest_rq->active_balance))
3488        goto out_unlock;
3489
3490    /* Is there any task to move? */
3491    if (busiest_rq->nr_running <= 1)
3492        goto out_unlock;
3493
3494    /*
3495     * This condition is "impossible", if it occurs
3496     * we need to fix it. Originally reported by
3497     * Bjorn Helgaas on a 128-cpu setup.
3498     */
3499    BUG_ON(busiest_rq == target_rq);
3500
3501    /* move a task from busiest_rq to target_rq */
3502    double_lock_balance(busiest_rq, target_rq);
3503
3504    /* Search for an sd spanning us and the target CPU. */
3505    for_each_domain(target_cpu, sd) {
3506        if ((sd->flags & SD_LOAD_BALANCE) &&
3507            cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3508                break;
3509    }
3510
3511    if (likely(sd)) {
3512        schedstat_inc(sd, alb_count);
3513
3514        if (move_one_task(target_rq, target_cpu, busiest_rq,
3515                  sd, CPU_IDLE))
3516            schedstat_inc(sd, alb_pushed);
3517        else
3518            schedstat_inc(sd, alb_failed);
3519    }
3520    double_unlock_balance(busiest_rq, target_rq);
3521out_unlock:
3522    busiest_rq->active_balance = 0;
3523    raw_spin_unlock_irq(&busiest_rq->lock);
3524    return 0;
3525}
3526
3527#ifdef CONFIG_NO_HZ
3528
3529static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3530
3531static void trigger_sched_softirq(void *data)
3532{
3533    raise_softirq_irqoff(SCHED_SOFTIRQ);
3534}
3535
3536static inline void init_sched_softirq_csd(struct call_single_data *csd)
3537{
3538    csd->func = trigger_sched_softirq;
3539    csd->info = NULL;
3540    csd->flags = 0;
3541    csd->priv = 0;
3542}
3543
3544/*
3545 * idle load balancing details
3546 * - One of the idle CPUs nominates itself as idle load_balancer, while
3547 * entering idle.
3548 * - This idle load balancer CPU will also go into tickless mode when
3549 * it is idle, just like all other idle CPUs
3550 * - When one of the busy CPUs notice that there may be an idle rebalancing
3551 * needed, they will kick the idle load balancer, which then does idle
3552 * load balancing for all the idle CPUs.
3553 */
3554static struct {
3555    atomic_t load_balancer;
3556    atomic_t first_pick_cpu;
3557    atomic_t second_pick_cpu;
3558    cpumask_var_t idle_cpus_mask;
3559    cpumask_var_t grp_idle_mask;
3560    unsigned long next_balance; /* in jiffy units */
3561} nohz ____cacheline_aligned;
3562
3563int get_nohz_load_balancer(void)
3564{
3565    return atomic_read(&nohz.load_balancer);
3566}
3567
3568#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3569/**
3570 * lowest_flag_domain - Return lowest sched_domain containing flag.
3571 * @cpu: The cpu whose lowest level of sched domain is to
3572 * be returned.
3573 * @flag: The flag to check for the lowest sched_domain
3574 * for the given cpu.
3575 *
3576 * Returns the lowest sched_domain of a cpu which contains the given flag.
3577 */
3578static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3579{
3580    struct sched_domain *sd;
3581
3582    for_each_domain(cpu, sd)
3583        if (sd && (sd->flags & flag))
3584            break;
3585
3586    return sd;
3587}
3588
3589/**
3590 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3591 * @cpu: The cpu whose domains we're iterating over.
3592 * @sd: variable holding the value of the power_savings_sd
3593 * for cpu.
3594 * @flag: The flag to filter the sched_domains to be iterated.
3595 *
3596 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3597 * set, starting from the lowest sched_domain to the highest.
3598 */
3599#define for_each_flag_domain(cpu, sd, flag) \
3600    for (sd = lowest_flag_domain(cpu, flag); \
3601        (sd && (sd->flags & flag)); sd = sd->parent)
3602
3603/**
3604 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3605 * @ilb_group: group to be checked for semi-idleness
3606 *
3607 * Returns: 1 if the group is semi-idle. 0 otherwise.
3608 *
3609 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3610 * and atleast one non-idle CPU. This helper function checks if the given
3611 * sched_group is semi-idle or not.
3612 */
3613static inline int is_semi_idle_group(struct sched_group *ilb_group)
3614{
3615    cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3616                    sched_group_cpus(ilb_group));
3617
3618    /*
3619     * A sched_group is semi-idle when it has atleast one busy cpu
3620     * and atleast one idle cpu.
3621     */
3622    if (cpumask_empty(nohz.grp_idle_mask))
3623        return 0;
3624
3625    if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3626        return 0;
3627
3628    return 1;
3629}
3630/**
3631 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3632 * @cpu: The cpu which is nominating a new idle_load_balancer.
3633 *
3634 * Returns: Returns the id of the idle load balancer if it exists,
3635 * Else, returns >= nr_cpu_ids.
3636 *
3637 * This algorithm picks the idle load balancer such that it belongs to a
3638 * semi-idle powersavings sched_domain. The idea is to try and avoid
3639 * completely idle packages/cores just for the purpose of idle load balancing
3640 * when there are other idle cpu's which are better suited for that job.
3641 */
3642static int find_new_ilb(int cpu)
3643{
3644    struct sched_domain *sd;
3645    struct sched_group *ilb_group;
3646
3647    /*
3648     * Have idle load balancer selection from semi-idle packages only
3649     * when power-aware load balancing is enabled
3650     */
3651    if (!(sched_smt_power_savings || sched_mc_power_savings))
3652        goto out_done;
3653
3654    /*
3655     * Optimize for the case when we have no idle CPUs or only one
3656     * idle CPU. Don't walk the sched_domain hierarchy in such cases
3657     */
3658    if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3659        goto out_done;
3660
3661    for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3662        ilb_group = sd->groups;
3663
3664        do {
3665            if (is_semi_idle_group(ilb_group))
3666                return cpumask_first(nohz.grp_idle_mask);
3667
3668            ilb_group = ilb_group->next;
3669
3670        } while (ilb_group != sd->groups);
3671    }
3672
3673out_done:
3674    return nr_cpu_ids;
3675}
3676#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3677static inline int find_new_ilb(int call_cpu)
3678{
3679    return nr_cpu_ids;
3680}
3681#endif
3682
3683/*
3684 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3685 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3686 * CPU (if there is one).
3687 */
3688static void nohz_balancer_kick(int cpu)
3689{
3690    int ilb_cpu;
3691
3692    nohz.next_balance++;
3693
3694    ilb_cpu = get_nohz_load_balancer();
3695
3696    if (ilb_cpu >= nr_cpu_ids) {
3697        ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3698        if (ilb_cpu >= nr_cpu_ids)
3699            return;
3700    }
3701
3702    if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3703        struct call_single_data *cp;
3704
3705        cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3706        cp = &per_cpu(remote_sched_softirq_cb, cpu);
3707        __smp_call_function_single(ilb_cpu, cp, 0);
3708    }
3709    return;
3710}
3711
3712/*
3713 * This routine will try to nominate the ilb (idle load balancing)
3714 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3715 * load balancing on behalf of all those cpus.
3716 *
3717 * When the ilb owner becomes busy, we will not have new ilb owner until some
3718 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3719 * idle load balancing by kicking one of the idle CPUs.
3720 *
3721 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3722 * ilb owner CPU in future (when there is a need for idle load balancing on
3723 * behalf of all idle CPUs).
3724 */
3725void select_nohz_load_balancer(int stop_tick)
3726{
3727    int cpu = smp_processor_id();
3728
3729    if (stop_tick) {
3730        if (!cpu_active(cpu)) {
3731            if (atomic_read(&nohz.load_balancer) != cpu)
3732                return;
3733
3734            /*
3735             * If we are going offline and still the leader,
3736             * give up!
3737             */
3738            if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3739                       nr_cpu_ids) != cpu)
3740                BUG();
3741
3742            return;
3743        }
3744
3745        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3746
3747        if (atomic_read(&nohz.first_pick_cpu) == cpu)
3748            atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3749        if (atomic_read(&nohz.second_pick_cpu) == cpu)
3750            atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3751
3752        if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3753            int new_ilb;
3754
3755            /* make me the ilb owner */
3756            if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3757                       cpu) != nr_cpu_ids)
3758                return;
3759
3760            /*
3761             * Check to see if there is a more power-efficient
3762             * ilb.
3763             */
3764            new_ilb = find_new_ilb(cpu);
3765            if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3766                atomic_set(&nohz.load_balancer, nr_cpu_ids);
3767                resched_cpu(new_ilb);
3768                return;
3769            }
3770            return;
3771        }
3772    } else {
3773        if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3774            return;
3775
3776        cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3777
3778        if (atomic_read(&nohz.load_balancer) == cpu)
3779            if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3780                       nr_cpu_ids) != cpu)
3781                BUG();
3782    }
3783    return;
3784}
3785#endif
3786
3787static DEFINE_SPINLOCK(balancing);
3788
3789/*
3790 * It checks each scheduling domain to see if it is due to be balanced,
3791 * and initiates a balancing operation if so.
3792 *
3793 * Balancing parameters are set up in arch_init_sched_domains.
3794 */
3795static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3796{
3797    int balance = 1;
3798    struct rq *rq = cpu_rq(cpu);
3799    unsigned long interval;
3800    struct sched_domain *sd;
3801    /* Earliest time when we have to do rebalance again */
3802    unsigned long next_balance = jiffies + 60*HZ;
3803    int update_next_balance = 0;
3804    int need_serialize;
3805
3806    update_shares(cpu);
3807
3808    for_each_domain(cpu, sd) {
3809        if (!(sd->flags & SD_LOAD_BALANCE))
3810            continue;
3811
3812        interval = sd->balance_interval;
3813        if (idle != CPU_IDLE)
3814            interval *= sd->busy_factor;
3815
3816        /* scale ms to jiffies */
3817        interval = msecs_to_jiffies(interval);
3818        if (unlikely(!interval))
3819            interval = 1;
3820        if (interval > HZ*NR_CPUS/10)
3821            interval = HZ*NR_CPUS/10;
3822
3823        need_serialize = sd->flags & SD_SERIALIZE;
3824
3825        if (need_serialize) {
3826            if (!spin_trylock(&balancing))
3827                goto out;
3828        }
3829
3830        if (time_after_eq(jiffies, sd->last_balance + interval)) {
3831            if (load_balance(cpu, rq, sd, idle, &balance)) {
3832                /*
3833                 * We've pulled tasks over so either we're no
3834                 * longer idle, or one of our SMT siblings is
3835                 * not idle.
3836                 */
3837                idle = CPU_NOT_IDLE;
3838            }
3839            sd->last_balance = jiffies;
3840        }
3841        if (need_serialize)
3842            spin_unlock(&balancing);
3843out:
3844        if (time_after(next_balance, sd->last_balance + interval)) {
3845            next_balance = sd->last_balance + interval;
3846            update_next_balance = 1;
3847        }
3848
3849        /*
3850         * Stop the load balance at this level. There is another
3851         * CPU in our sched group which is doing load balancing more
3852         * actively.
3853         */
3854        if (!balance)
3855            break;
3856    }
3857
3858    /*
3859     * next_balance will be updated only when there is a need.
3860     * When the cpu is attached to null domain for ex, it will not be
3861     * updated.
3862     */
3863    if (likely(update_next_balance))
3864        rq->next_balance = next_balance;
3865}
3866
3867#ifdef CONFIG_NO_HZ
3868/*
3869 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3870 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3871 */
3872static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3873{
3874    struct rq *this_rq = cpu_rq(this_cpu);
3875    struct rq *rq;
3876    int balance_cpu;
3877
3878    if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3879        return;
3880
3881    for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3882        if (balance_cpu == this_cpu)
3883            continue;
3884
3885        /*
3886         * If this cpu gets work to do, stop the load balancing
3887         * work being done for other cpus. Next load
3888         * balancing owner will pick it up.
3889         */
3890        if (need_resched()) {
3891            this_rq->nohz_balance_kick = 0;
3892            break;
3893        }
3894
3895        raw_spin_lock_irq(&this_rq->lock);
3896        update_rq_clock(this_rq);
3897        update_cpu_load(this_rq);
3898        raw_spin_unlock_irq(&this_rq->lock);
3899
3900        rebalance_domains(balance_cpu, CPU_IDLE);
3901
3902        rq = cpu_rq(balance_cpu);
3903        if (time_after(this_rq->next_balance, rq->next_balance))
3904            this_rq->next_balance = rq->next_balance;
3905    }
3906    nohz.next_balance = this_rq->next_balance;
3907    this_rq->nohz_balance_kick = 0;
3908}
3909
3910/*
3911 * Current heuristic for kicking the idle load balancer
3912 * - first_pick_cpu is the one of the busy CPUs. It will kick
3913 * idle load balancer when it has more than one process active. This
3914 * eliminates the need for idle load balancing altogether when we have
3915 * only one running process in the system (common case).
3916 * - If there are more than one busy CPU, idle load balancer may have
3917 * to run for active_load_balance to happen (i.e., two busy CPUs are
3918 * SMT or core siblings and can run better if they move to different
3919 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3920 * which will kick idle load balancer as soon as it has any load.
3921 */
3922static inline int nohz_kick_needed(struct rq *rq, int cpu)
3923{
3924    unsigned long now = jiffies;
3925    int ret;
3926    int first_pick_cpu, second_pick_cpu;
3927
3928    if (time_before(now, nohz.next_balance))
3929        return 0;
3930
3931    if (rq->idle_at_tick)
3932        return 0;
3933
3934    first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3935    second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3936
3937    if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3938        second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3939        return 0;
3940
3941    ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3942    if (ret == nr_cpu_ids || ret == cpu) {
3943        atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3944        if (rq->nr_running > 1)
3945            return 1;
3946    } else {
3947        ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3948        if (ret == nr_cpu_ids || ret == cpu) {
3949            if (rq->nr_running)
3950                return 1;
3951        }
3952    }
3953    return 0;
3954}
3955#else
3956static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3957#endif
3958
3959/*
3960 * run_rebalance_domains is triggered when needed from the scheduler tick.
3961 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3962 */
3963static void run_rebalance_domains(struct softirq_action *h)
3964{
3965    int this_cpu = smp_processor_id();
3966    struct rq *this_rq = cpu_rq(this_cpu);
3967    enum cpu_idle_type idle = this_rq->idle_at_tick ?
3968                        CPU_IDLE : CPU_NOT_IDLE;
3969
3970    rebalance_domains(this_cpu, idle);
3971
3972    /*
3973     * If this cpu has a pending nohz_balance_kick, then do the
3974     * balancing on behalf of the other idle cpus whose ticks are
3975     * stopped.
3976     */
3977    nohz_idle_balance(this_cpu, idle);
3978}
3979
3980static inline int on_null_domain(int cpu)
3981{
3982    return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3983}
3984
3985/*
3986 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3987 */
3988static inline void trigger_load_balance(struct rq *rq, int cpu)
3989{
3990    /* Don't need to rebalance while attached to NULL domain */
3991    if (time_after_eq(jiffies, rq->next_balance) &&
3992        likely(!on_null_domain(cpu)))
3993        raise_softirq(SCHED_SOFTIRQ);
3994#ifdef CONFIG_NO_HZ
3995    else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3996        nohz_balancer_kick(cpu);
3997#endif
3998}
3999
4000static void rq_online_fair(struct rq *rq)
4001{
4002    update_sysctl();
4003}
4004
4005static void rq_offline_fair(struct rq *rq)
4006{
4007    update_sysctl();
4008}
4009
4010#else /* CONFIG_SMP */
4011
4012/*
4013 * on UP we do not need to balance between CPUs:
4014 */
4015static inline void idle_balance(int cpu, struct rq *rq)
4016{
4017}
4018
4019#endif /* CONFIG_SMP */
4020
4021/*
4022 * scheduler tick hitting a task of our scheduling class:
4023 */
4024static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4025{
4026    struct cfs_rq *cfs_rq;
4027    struct sched_entity *se = &curr->se;
4028
4029    for_each_sched_entity(se) {
4030        cfs_rq = cfs_rq_of(se);
4031        entity_tick(cfs_rq, se, queued);
4032    }
4033}
4034
4035/*
4036 * called on fork with the child task as argument from the parent's context
4037 * - child not yet on the tasklist
4038 * - preemption disabled
4039 */
4040static void task_fork_fair(struct task_struct *p)
4041{
4042    struct cfs_rq *cfs_rq = task_cfs_rq(current);
4043    struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4044    int this_cpu = smp_processor_id();
4045    struct rq *rq = this_rq();
4046    unsigned long flags;
4047
4048    raw_spin_lock_irqsave(&rq->lock, flags);
4049
4050    update_rq_clock(rq);
4051
4052    if (unlikely(task_cpu(p) != this_cpu)) {
4053        rcu_read_lock();
4054        __set_task_cpu(p, this_cpu);
4055        rcu_read_unlock();
4056    }
4057
4058    update_curr(cfs_rq);
4059
4060    if (curr)
4061        se->vruntime = curr->vruntime;
4062    place_entity(cfs_rq, se, 1);
4063
4064    if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4065        /*
4066         * Upon rescheduling, sched_class::put_prev_task() will place
4067         * 'current' within the tree based on its new key value.
4068         */
4069        swap(curr->vruntime, se->vruntime);
4070        resched_task(rq->curr);
4071    }
4072
4073    se->vruntime -= cfs_rq->min_vruntime;
4074
4075    raw_spin_unlock_irqrestore(&rq->lock, flags);
4076}
4077
4078/*
4079 * Priority of the task has changed. Check to see if we preempt
4080 * the current task.
4081 */
4082static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4083                  int oldprio, int running)
4084{
4085    /*
4086     * Reschedule if we are currently running on this runqueue and
4087     * our priority decreased, or if we are not currently running on
4088     * this runqueue and our priority is higher than the current's
4089     */
4090    if (running) {
4091        if (p->prio > oldprio)
4092            resched_task(rq->curr);
4093    } else
4094        check_preempt_curr(rq, p, 0);
4095}
4096
4097/*
4098 * We switched to the sched_fair class.
4099 */
4100static void switched_to_fair(struct rq *rq, struct task_struct *p,
4101                 int running)
4102{
4103    /*
4104     * We were most likely switched from sched_rt, so
4105     * kick off the schedule if running, otherwise just see
4106     * if we can still preempt the current task.
4107     */
4108    if (running)
4109        resched_task(rq->curr);
4110    else
4111        check_preempt_curr(rq, p, 0);
4112}
4113
4114/* Account for a task changing its policy or group.
4115 *
4116 * This routine is mostly called to set cfs_rq->curr field when a task
4117 * migrates between groups/classes.
4118 */
4119static void set_curr_task_fair(struct rq *rq)
4120{
4121    struct sched_entity *se = &rq->curr->se;
4122
4123    for_each_sched_entity(se)
4124        set_next_entity(cfs_rq_of(se), se);
4125}
4126
4127#ifdef CONFIG_FAIR_GROUP_SCHED
4128static void task_move_group_fair(struct task_struct *p, int on_rq)
4129{
4130    /*
4131     * If the task was not on the rq at the time of this cgroup movement
4132     * it must have been asleep, sleeping tasks keep their ->vruntime
4133     * absolute on their old rq until wakeup (needed for the fair sleeper
4134     * bonus in place_entity()).
4135     *
4136     * If it was on the rq, we've just 'preempted' it, which does convert
4137     * ->vruntime to a relative base.
4138     *
4139     * Make sure both cases convert their relative position when migrating
4140     * to another cgroup's rq. This does somewhat interfere with the
4141     * fair sleeper stuff for the first placement, but who cares.
4142     */
4143    if (!on_rq)
4144        p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4145    set_task_rq(p, task_cpu(p));
4146    if (!on_rq)
4147        p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4148}
4149#endif
4150
4151static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4152{
4153    struct sched_entity *se = &task->se;
4154    unsigned int rr_interval = 0;
4155
4156    /*
4157     * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4158     * idle runqueue:
4159     */
4160    if (rq->cfs.load.weight)
4161        rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4162
4163    return rr_interval;
4164}
4165
4166/*
4167 * All the scheduling class methods:
4168 */
4169static const struct sched_class fair_sched_class = {
4170    .next = &idle_sched_class,
4171    .enqueue_task = enqueue_task_fair,
4172    .dequeue_task = dequeue_task_fair,
4173    .yield_task = yield_task_fair,
4174
4175    .check_preempt_curr = check_preempt_wakeup,
4176
4177    .pick_next_task = pick_next_task_fair,
4178    .put_prev_task = put_prev_task_fair,
4179
4180#ifdef CONFIG_SMP
4181    .select_task_rq = select_task_rq_fair,
4182
4183    .rq_online = rq_online_fair,
4184    .rq_offline = rq_offline_fair,
4185
4186    .task_waking = task_waking_fair,
4187#endif
4188
4189    .set_curr_task = set_curr_task_fair,
4190    .task_tick = task_tick_fair,
4191    .task_fork = task_fork_fair,
4192
4193    .prio_changed = prio_changed_fair,
4194    .switched_to = switched_to_fair,
4195
4196    .get_rr_interval = get_rr_interval_fair,
4197
4198#ifdef CONFIG_FAIR_GROUP_SCHED
4199    .task_move_group = task_move_group_fair,
4200#endif
4201};
4202
4203#ifdef CONFIG_SCHED_DEBUG
4204static void print_cfs_stats(struct seq_file *m, int cpu)
4205{
4206    struct cfs_rq *cfs_rq;
4207
4208    rcu_read_lock();
4209    for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4210        print_cfs_rq(m, cpu, cfs_rq);
4211    rcu_read_unlock();
4212}
4213#endif
4214

Archive Download this file



interactive