Root/
1 | /* |
2 | * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) |
3 | * |
4 | * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
5 | * |
6 | * Interactivity improvements by Mike Galbraith |
7 | * (C) 2007 Mike Galbraith <efault@gmx.de> |
8 | * |
9 | * Various enhancements by Dmitry Adamushko. |
10 | * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> |
11 | * |
12 | * Group scheduling enhancements by Srivatsa Vaddagiri |
13 | * Copyright IBM Corporation, 2007 |
14 | * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> |
15 | * |
16 | * Scaled math optimizations by Thomas Gleixner |
17 | * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> |
18 | * |
19 | * Adaptive scheduling granularity, math enhancements by Peter Zijlstra |
20 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
21 | */ |
22 | |
23 | #include <linux/latencytop.h> |
24 | #include <linux/sched.h> |
25 | |
26 | /* |
27 | * Targeted preemption latency for CPU-bound tasks: |
28 | * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) |
29 | * |
30 | * NOTE: this latency value is not the same as the concept of |
31 | * 'timeslice length' - timeslices in CFS are of variable length |
32 | * and have no persistent notion like in traditional, time-slice |
33 | * based scheduling concepts. |
34 | * |
35 | * (to see the precise effective timeslice length of your workload, |
36 | * run vmstat and monitor the context-switches (cs) field) |
37 | */ |
38 | unsigned int sysctl_sched_latency = 6000000ULL; |
39 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; |
40 | |
41 | /* |
42 | * The initial- and re-scaling of tunables is configurable |
43 | * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) |
44 | * |
45 | * Options are: |
46 | * SCHED_TUNABLESCALING_NONE - unscaled, always *1 |
47 | * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) |
48 | * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus |
49 | */ |
50 | enum sched_tunable_scaling sysctl_sched_tunable_scaling |
51 | = SCHED_TUNABLESCALING_LOG; |
52 | |
53 | /* |
54 | * Minimal preemption granularity for CPU-bound tasks: |
55 | * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) |
56 | */ |
57 | unsigned int sysctl_sched_min_granularity = 750000ULL; |
58 | unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; |
59 | |
60 | /* |
61 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
62 | */ |
63 | static unsigned int sched_nr_latency = 8; |
64 | |
65 | /* |
66 | * After fork, child runs first. If set to 0 (default) then |
67 | * parent will (try to) run first. |
68 | */ |
69 | unsigned int sysctl_sched_child_runs_first __read_mostly; |
70 | |
71 | /* |
72 | * sys_sched_yield() compat mode |
73 | * |
74 | * This option switches the agressive yield implementation of the |
75 | * old scheduler back on. |
76 | */ |
77 | unsigned int __read_mostly sysctl_sched_compat_yield; |
78 | |
79 | /* |
80 | * SCHED_OTHER wake-up granularity. |
81 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) |
82 | * |
83 | * This option delays the preemption effects of decoupled workloads |
84 | * and reduces their over-scheduling. Synchronous workloads will still |
85 | * have immediate wakeup/sleep latencies. |
86 | */ |
87 | unsigned int sysctl_sched_wakeup_granularity = 1000000UL; |
88 | unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; |
89 | |
90 | const_debug unsigned int sysctl_sched_migration_cost = 500000UL; |
91 | |
92 | /* |
93 | * The exponential sliding window over which load is averaged for shares |
94 | * distribution. |
95 | * (default: 10msec) |
96 | */ |
97 | unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; |
98 | |
99 | static const struct sched_class fair_sched_class; |
100 | |
101 | /************************************************************** |
102 | * CFS operations on generic schedulable entities: |
103 | */ |
104 | |
105 | #ifdef CONFIG_FAIR_GROUP_SCHED |
106 | |
107 | /* cpu runqueue to which this cfs_rq is attached */ |
108 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
109 | { |
110 | return cfs_rq->rq; |
111 | } |
112 | |
113 | /* An entity is a task if it doesn't "own" a runqueue */ |
114 | #define entity_is_task(se) (!se->my_q) |
115 | |
116 | static inline struct task_struct *task_of(struct sched_entity *se) |
117 | { |
118 | #ifdef CONFIG_SCHED_DEBUG |
119 | WARN_ON_ONCE(!entity_is_task(se)); |
120 | #endif |
121 | return container_of(se, struct task_struct, se); |
122 | } |
123 | |
124 | /* Walk up scheduling entities hierarchy */ |
125 | #define for_each_sched_entity(se) \ |
126 | for (; se; se = se->parent) |
127 | |
128 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
129 | { |
130 | return p->se.cfs_rq; |
131 | } |
132 | |
133 | /* runqueue on which this entity is (to be) queued */ |
134 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
135 | { |
136 | return se->cfs_rq; |
137 | } |
138 | |
139 | /* runqueue "owned" by this group */ |
140 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
141 | { |
142 | return grp->my_q; |
143 | } |
144 | |
145 | /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on |
146 | * another cpu ('this_cpu') |
147 | */ |
148 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) |
149 | { |
150 | return cfs_rq->tg->cfs_rq[this_cpu]; |
151 | } |
152 | |
153 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
154 | { |
155 | if (!cfs_rq->on_list) { |
156 | /* |
157 | * Ensure we either appear before our parent (if already |
158 | * enqueued) or force our parent to appear after us when it is |
159 | * enqueued. The fact that we always enqueue bottom-up |
160 | * reduces this to two cases. |
161 | */ |
162 | if (cfs_rq->tg->parent && |
163 | cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { |
164 | list_add_rcu(&cfs_rq->leaf_cfs_rq_list, |
165 | &rq_of(cfs_rq)->leaf_cfs_rq_list); |
166 | } else { |
167 | list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, |
168 | &rq_of(cfs_rq)->leaf_cfs_rq_list); |
169 | } |
170 | |
171 | cfs_rq->on_list = 1; |
172 | } |
173 | } |
174 | |
175 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
176 | { |
177 | if (cfs_rq->on_list) { |
178 | list_del_rcu(&cfs_rq->leaf_cfs_rq_list); |
179 | cfs_rq->on_list = 0; |
180 | } |
181 | } |
182 | |
183 | /* Iterate thr' all leaf cfs_rq's on a runqueue */ |
184 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ |
185 | list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) |
186 | |
187 | /* Do the two (enqueued) entities belong to the same group ? */ |
188 | static inline int |
189 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
190 | { |
191 | if (se->cfs_rq == pse->cfs_rq) |
192 | return 1; |
193 | |
194 | return 0; |
195 | } |
196 | |
197 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
198 | { |
199 | return se->parent; |
200 | } |
201 | |
202 | /* return depth at which a sched entity is present in the hierarchy */ |
203 | static inline int depth_se(struct sched_entity *se) |
204 | { |
205 | int depth = 0; |
206 | |
207 | for_each_sched_entity(se) |
208 | depth++; |
209 | |
210 | return depth; |
211 | } |
212 | |
213 | static void |
214 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
215 | { |
216 | int se_depth, pse_depth; |
217 | |
218 | /* |
219 | * preemption test can be made between sibling entities who are in the |
220 | * same cfs_rq i.e who have a common parent. Walk up the hierarchy of |
221 | * both tasks until we find their ancestors who are siblings of common |
222 | * parent. |
223 | */ |
224 | |
225 | /* First walk up until both entities are at same depth */ |
226 | se_depth = depth_se(*se); |
227 | pse_depth = depth_se(*pse); |
228 | |
229 | while (se_depth > pse_depth) { |
230 | se_depth--; |
231 | *se = parent_entity(*se); |
232 | } |
233 | |
234 | while (pse_depth > se_depth) { |
235 | pse_depth--; |
236 | *pse = parent_entity(*pse); |
237 | } |
238 | |
239 | while (!is_same_group(*se, *pse)) { |
240 | *se = parent_entity(*se); |
241 | *pse = parent_entity(*pse); |
242 | } |
243 | } |
244 | |
245 | #else /* !CONFIG_FAIR_GROUP_SCHED */ |
246 | |
247 | static inline struct task_struct *task_of(struct sched_entity *se) |
248 | { |
249 | return container_of(se, struct task_struct, se); |
250 | } |
251 | |
252 | static inline struct rq *rq_of(struct cfs_rq *cfs_rq) |
253 | { |
254 | return container_of(cfs_rq, struct rq, cfs); |
255 | } |
256 | |
257 | #define entity_is_task(se) 1 |
258 | |
259 | #define for_each_sched_entity(se) \ |
260 | for (; se; se = NULL) |
261 | |
262 | static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) |
263 | { |
264 | return &task_rq(p)->cfs; |
265 | } |
266 | |
267 | static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) |
268 | { |
269 | struct task_struct *p = task_of(se); |
270 | struct rq *rq = task_rq(p); |
271 | |
272 | return &rq->cfs; |
273 | } |
274 | |
275 | /* runqueue "owned" by this group */ |
276 | static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) |
277 | { |
278 | return NULL; |
279 | } |
280 | |
281 | static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu) |
282 | { |
283 | return &cpu_rq(this_cpu)->cfs; |
284 | } |
285 | |
286 | static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
287 | { |
288 | } |
289 | |
290 | static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) |
291 | { |
292 | } |
293 | |
294 | #define for_each_leaf_cfs_rq(rq, cfs_rq) \ |
295 | for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) |
296 | |
297 | static inline int |
298 | is_same_group(struct sched_entity *se, struct sched_entity *pse) |
299 | { |
300 | return 1; |
301 | } |
302 | |
303 | static inline struct sched_entity *parent_entity(struct sched_entity *se) |
304 | { |
305 | return NULL; |
306 | } |
307 | |
308 | static inline void |
309 | find_matching_se(struct sched_entity **se, struct sched_entity **pse) |
310 | { |
311 | } |
312 | |
313 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
314 | |
315 | |
316 | /************************************************************** |
317 | * Scheduling class tree data structure manipulation methods: |
318 | */ |
319 | |
320 | static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) |
321 | { |
322 | s64 delta = (s64)(vruntime - min_vruntime); |
323 | if (delta > 0) |
324 | min_vruntime = vruntime; |
325 | |
326 | return min_vruntime; |
327 | } |
328 | |
329 | static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) |
330 | { |
331 | s64 delta = (s64)(vruntime - min_vruntime); |
332 | if (delta < 0) |
333 | min_vruntime = vruntime; |
334 | |
335 | return min_vruntime; |
336 | } |
337 | |
338 | static inline int entity_before(struct sched_entity *a, |
339 | struct sched_entity *b) |
340 | { |
341 | return (s64)(a->vruntime - b->vruntime) < 0; |
342 | } |
343 | |
344 | static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) |
345 | { |
346 | return se->vruntime - cfs_rq->min_vruntime; |
347 | } |
348 | |
349 | static void update_min_vruntime(struct cfs_rq *cfs_rq) |
350 | { |
351 | u64 vruntime = cfs_rq->min_vruntime; |
352 | |
353 | if (cfs_rq->curr) |
354 | vruntime = cfs_rq->curr->vruntime; |
355 | |
356 | if (cfs_rq->rb_leftmost) { |
357 | struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, |
358 | struct sched_entity, |
359 | run_node); |
360 | |
361 | if (!cfs_rq->curr) |
362 | vruntime = se->vruntime; |
363 | else |
364 | vruntime = min_vruntime(vruntime, se->vruntime); |
365 | } |
366 | |
367 | cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); |
368 | } |
369 | |
370 | /* |
371 | * Enqueue an entity into the rb-tree: |
372 | */ |
373 | static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
374 | { |
375 | struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; |
376 | struct rb_node *parent = NULL; |
377 | struct sched_entity *entry; |
378 | s64 key = entity_key(cfs_rq, se); |
379 | int leftmost = 1; |
380 | |
381 | /* |
382 | * Find the right place in the rbtree: |
383 | */ |
384 | while (*link) { |
385 | parent = *link; |
386 | entry = rb_entry(parent, struct sched_entity, run_node); |
387 | /* |
388 | * We dont care about collisions. Nodes with |
389 | * the same key stay together. |
390 | */ |
391 | if (key < entity_key(cfs_rq, entry)) { |
392 | link = &parent->rb_left; |
393 | } else { |
394 | link = &parent->rb_right; |
395 | leftmost = 0; |
396 | } |
397 | } |
398 | |
399 | /* |
400 | * Maintain a cache of leftmost tree entries (it is frequently |
401 | * used): |
402 | */ |
403 | if (leftmost) |
404 | cfs_rq->rb_leftmost = &se->run_node; |
405 | |
406 | rb_link_node(&se->run_node, parent, link); |
407 | rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); |
408 | } |
409 | |
410 | static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
411 | { |
412 | if (cfs_rq->rb_leftmost == &se->run_node) { |
413 | struct rb_node *next_node; |
414 | |
415 | next_node = rb_next(&se->run_node); |
416 | cfs_rq->rb_leftmost = next_node; |
417 | } |
418 | |
419 | rb_erase(&se->run_node, &cfs_rq->tasks_timeline); |
420 | } |
421 | |
422 | static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq) |
423 | { |
424 | struct rb_node *left = cfs_rq->rb_leftmost; |
425 | |
426 | if (!left) |
427 | return NULL; |
428 | |
429 | return rb_entry(left, struct sched_entity, run_node); |
430 | } |
431 | |
432 | static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) |
433 | { |
434 | struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); |
435 | |
436 | if (!last) |
437 | return NULL; |
438 | |
439 | return rb_entry(last, struct sched_entity, run_node); |
440 | } |
441 | |
442 | /************************************************************** |
443 | * Scheduling class statistics methods: |
444 | */ |
445 | |
446 | #ifdef CONFIG_SCHED_DEBUG |
447 | int sched_proc_update_handler(struct ctl_table *table, int write, |
448 | void __user *buffer, size_t *lenp, |
449 | loff_t *ppos) |
450 | { |
451 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
452 | int factor = get_update_sysctl_factor(); |
453 | |
454 | if (ret || !write) |
455 | return ret; |
456 | |
457 | sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, |
458 | sysctl_sched_min_granularity); |
459 | |
460 | #define WRT_SYSCTL(name) \ |
461 | (normalized_sysctl_##name = sysctl_##name / (factor)) |
462 | WRT_SYSCTL(sched_min_granularity); |
463 | WRT_SYSCTL(sched_latency); |
464 | WRT_SYSCTL(sched_wakeup_granularity); |
465 | #undef WRT_SYSCTL |
466 | |
467 | return 0; |
468 | } |
469 | #endif |
470 | |
471 | /* |
472 | * delta /= w |
473 | */ |
474 | static inline unsigned long |
475 | calc_delta_fair(unsigned long delta, struct sched_entity *se) |
476 | { |
477 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
478 | delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); |
479 | |
480 | return delta; |
481 | } |
482 | |
483 | /* |
484 | * The idea is to set a period in which each task runs once. |
485 | * |
486 | * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch |
487 | * this period because otherwise the slices get too small. |
488 | * |
489 | * p = (nr <= nl) ? l : l*nr/nl |
490 | */ |
491 | static u64 __sched_period(unsigned long nr_running) |
492 | { |
493 | u64 period = sysctl_sched_latency; |
494 | unsigned long nr_latency = sched_nr_latency; |
495 | |
496 | if (unlikely(nr_running > nr_latency)) { |
497 | period = sysctl_sched_min_granularity; |
498 | period *= nr_running; |
499 | } |
500 | |
501 | return period; |
502 | } |
503 | |
504 | /* |
505 | * We calculate the wall-time slice from the period by taking a part |
506 | * proportional to the weight. |
507 | * |
508 | * s = p*P[w/rw] |
509 | */ |
510 | static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
511 | { |
512 | u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); |
513 | |
514 | for_each_sched_entity(se) { |
515 | struct load_weight *load; |
516 | struct load_weight lw; |
517 | |
518 | cfs_rq = cfs_rq_of(se); |
519 | load = &cfs_rq->load; |
520 | |
521 | if (unlikely(!se->on_rq)) { |
522 | lw = cfs_rq->load; |
523 | |
524 | update_load_add(&lw, se->load.weight); |
525 | load = &lw; |
526 | } |
527 | slice = calc_delta_mine(slice, se->load.weight, load); |
528 | } |
529 | return slice; |
530 | } |
531 | |
532 | /* |
533 | * We calculate the vruntime slice of a to be inserted task |
534 | * |
535 | * vs = s/w |
536 | */ |
537 | static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) |
538 | { |
539 | return calc_delta_fair(sched_slice(cfs_rq, se), se); |
540 | } |
541 | |
542 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); |
543 | static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta); |
544 | |
545 | /* |
546 | * Update the current task's runtime statistics. Skip current tasks that |
547 | * are not in our scheduling class. |
548 | */ |
549 | static inline void |
550 | __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, |
551 | unsigned long delta_exec) |
552 | { |
553 | unsigned long delta_exec_weighted; |
554 | |
555 | schedstat_set(curr->statistics.exec_max, |
556 | max((u64)delta_exec, curr->statistics.exec_max)); |
557 | |
558 | curr->sum_exec_runtime += delta_exec; |
559 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
560 | delta_exec_weighted = calc_delta_fair(delta_exec, curr); |
561 | |
562 | curr->vruntime += delta_exec_weighted; |
563 | update_min_vruntime(cfs_rq); |
564 | |
565 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED |
566 | cfs_rq->load_unacc_exec_time += delta_exec; |
567 | #endif |
568 | } |
569 | |
570 | static void update_curr(struct cfs_rq *cfs_rq) |
571 | { |
572 | struct sched_entity *curr = cfs_rq->curr; |
573 | u64 now = rq_of(cfs_rq)->clock_task; |
574 | unsigned long delta_exec; |
575 | |
576 | if (unlikely(!curr)) |
577 | return; |
578 | |
579 | /* |
580 | * Get the amount of time the current task was running |
581 | * since the last time we changed load (this cannot |
582 | * overflow on 32 bits): |
583 | */ |
584 | delta_exec = (unsigned long)(now - curr->exec_start); |
585 | if (!delta_exec) |
586 | return; |
587 | |
588 | __update_curr(cfs_rq, curr, delta_exec); |
589 | curr->exec_start = now; |
590 | |
591 | if (entity_is_task(curr)) { |
592 | struct task_struct *curtask = task_of(curr); |
593 | |
594 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); |
595 | cpuacct_charge(curtask, delta_exec); |
596 | account_group_exec_runtime(curtask, delta_exec); |
597 | } |
598 | } |
599 | |
600 | static inline void |
601 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
602 | { |
603 | schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); |
604 | } |
605 | |
606 | /* |
607 | * Task is being enqueued - update stats: |
608 | */ |
609 | static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
610 | { |
611 | /* |
612 | * Are we enqueueing a waiting task? (for current tasks |
613 | * a dequeue/enqueue event is a NOP) |
614 | */ |
615 | if (se != cfs_rq->curr) |
616 | update_stats_wait_start(cfs_rq, se); |
617 | } |
618 | |
619 | static void |
620 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
621 | { |
622 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, |
623 | rq_of(cfs_rq)->clock - se->statistics.wait_start)); |
624 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); |
625 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + |
626 | rq_of(cfs_rq)->clock - se->statistics.wait_start); |
627 | #ifdef CONFIG_SCHEDSTATS |
628 | if (entity_is_task(se)) { |
629 | trace_sched_stat_wait(task_of(se), |
630 | rq_of(cfs_rq)->clock - se->statistics.wait_start); |
631 | } |
632 | #endif |
633 | schedstat_set(se->statistics.wait_start, 0); |
634 | } |
635 | |
636 | static inline void |
637 | update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
638 | { |
639 | /* |
640 | * Mark the end of the wait period if dequeueing a |
641 | * waiting task: |
642 | */ |
643 | if (se != cfs_rq->curr) |
644 | update_stats_wait_end(cfs_rq, se); |
645 | } |
646 | |
647 | /* |
648 | * We are picking a new current task - update its stats: |
649 | */ |
650 | static inline void |
651 | update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
652 | { |
653 | /* |
654 | * We are starting a new run period: |
655 | */ |
656 | se->exec_start = rq_of(cfs_rq)->clock_task; |
657 | } |
658 | |
659 | /************************************************** |
660 | * Scheduling class queueing methods: |
661 | */ |
662 | |
663 | #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED |
664 | static void |
665 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) |
666 | { |
667 | cfs_rq->task_weight += weight; |
668 | } |
669 | #else |
670 | static inline void |
671 | add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) |
672 | { |
673 | } |
674 | #endif |
675 | |
676 | static void |
677 | account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
678 | { |
679 | update_load_add(&cfs_rq->load, se->load.weight); |
680 | if (!parent_entity(se)) |
681 | inc_cpu_load(rq_of(cfs_rq), se->load.weight); |
682 | if (entity_is_task(se)) { |
683 | add_cfs_task_weight(cfs_rq, se->load.weight); |
684 | list_add(&se->group_node, &cfs_rq->tasks); |
685 | } |
686 | cfs_rq->nr_running++; |
687 | } |
688 | |
689 | static void |
690 | account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) |
691 | { |
692 | update_load_sub(&cfs_rq->load, se->load.weight); |
693 | if (!parent_entity(se)) |
694 | dec_cpu_load(rq_of(cfs_rq), se->load.weight); |
695 | if (entity_is_task(se)) { |
696 | add_cfs_task_weight(cfs_rq, -se->load.weight); |
697 | list_del_init(&se->group_node); |
698 | } |
699 | cfs_rq->nr_running--; |
700 | } |
701 | |
702 | #ifdef CONFIG_FAIR_GROUP_SCHED |
703 | # ifdef CONFIG_SMP |
704 | static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, |
705 | int global_update) |
706 | { |
707 | struct task_group *tg = cfs_rq->tg; |
708 | long load_avg; |
709 | |
710 | load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); |
711 | load_avg -= cfs_rq->load_contribution; |
712 | |
713 | if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { |
714 | atomic_add(load_avg, &tg->load_weight); |
715 | cfs_rq->load_contribution += load_avg; |
716 | } |
717 | } |
718 | |
719 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) |
720 | { |
721 | u64 period = sysctl_sched_shares_window; |
722 | u64 now, delta; |
723 | unsigned long load = cfs_rq->load.weight; |
724 | |
725 | if (cfs_rq->tg == &root_task_group) |
726 | return; |
727 | |
728 | now = rq_of(cfs_rq)->clock_task; |
729 | delta = now - cfs_rq->load_stamp; |
730 | |
731 | /* truncate load history at 4 idle periods */ |
732 | if (cfs_rq->load_stamp > cfs_rq->load_last && |
733 | now - cfs_rq->load_last > 4 * period) { |
734 | cfs_rq->load_period = 0; |
735 | cfs_rq->load_avg = 0; |
736 | } |
737 | |
738 | cfs_rq->load_stamp = now; |
739 | cfs_rq->load_unacc_exec_time = 0; |
740 | cfs_rq->load_period += delta; |
741 | if (load) { |
742 | cfs_rq->load_last = now; |
743 | cfs_rq->load_avg += delta * load; |
744 | } |
745 | |
746 | /* consider updating load contribution on each fold or truncate */ |
747 | if (global_update || cfs_rq->load_period > period |
748 | || !cfs_rq->load_period) |
749 | update_cfs_rq_load_contribution(cfs_rq, global_update); |
750 | |
751 | while (cfs_rq->load_period > period) { |
752 | /* |
753 | * Inline assembly required to prevent the compiler |
754 | * optimising this loop into a divmod call. |
755 | * See __iter_div_u64_rem() for another example of this. |
756 | */ |
757 | asm("" : "+rm" (cfs_rq->load_period)); |
758 | cfs_rq->load_period /= 2; |
759 | cfs_rq->load_avg /= 2; |
760 | } |
761 | |
762 | if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) |
763 | list_del_leaf_cfs_rq(cfs_rq); |
764 | } |
765 | |
766 | static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg, |
767 | long weight_delta) |
768 | { |
769 | long load_weight, load, shares; |
770 | |
771 | load = cfs_rq->load.weight + weight_delta; |
772 | |
773 | load_weight = atomic_read(&tg->load_weight); |
774 | load_weight -= cfs_rq->load_contribution; |
775 | load_weight += load; |
776 | |
777 | shares = (tg->shares * load); |
778 | if (load_weight) |
779 | shares /= load_weight; |
780 | |
781 | if (shares < MIN_SHARES) |
782 | shares = MIN_SHARES; |
783 | if (shares > tg->shares) |
784 | shares = tg->shares; |
785 | |
786 | return shares; |
787 | } |
788 | |
789 | static void update_entity_shares_tick(struct cfs_rq *cfs_rq) |
790 | { |
791 | if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { |
792 | update_cfs_load(cfs_rq, 0); |
793 | update_cfs_shares(cfs_rq, 0); |
794 | } |
795 | } |
796 | # else /* CONFIG_SMP */ |
797 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) |
798 | { |
799 | } |
800 | |
801 | static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg, |
802 | long weight_delta) |
803 | { |
804 | return tg->shares; |
805 | } |
806 | |
807 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) |
808 | { |
809 | } |
810 | # endif /* CONFIG_SMP */ |
811 | static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, |
812 | unsigned long weight) |
813 | { |
814 | if (se->on_rq) { |
815 | /* commit outstanding execution time */ |
816 | if (cfs_rq->curr == se) |
817 | update_curr(cfs_rq); |
818 | account_entity_dequeue(cfs_rq, se); |
819 | } |
820 | |
821 | update_load_set(&se->load, weight); |
822 | |
823 | if (se->on_rq) |
824 | account_entity_enqueue(cfs_rq, se); |
825 | } |
826 | |
827 | static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta) |
828 | { |
829 | struct task_group *tg; |
830 | struct sched_entity *se; |
831 | long shares; |
832 | |
833 | tg = cfs_rq->tg; |
834 | se = tg->se[cpu_of(rq_of(cfs_rq))]; |
835 | if (!se) |
836 | return; |
837 | #ifndef CONFIG_SMP |
838 | if (likely(se->load.weight == tg->shares)) |
839 | return; |
840 | #endif |
841 | shares = calc_cfs_shares(cfs_rq, tg, weight_delta); |
842 | |
843 | reweight_entity(cfs_rq_of(se), se, shares); |
844 | } |
845 | #else /* CONFIG_FAIR_GROUP_SCHED */ |
846 | static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) |
847 | { |
848 | } |
849 | |
850 | static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta) |
851 | { |
852 | } |
853 | |
854 | static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) |
855 | { |
856 | } |
857 | #endif /* CONFIG_FAIR_GROUP_SCHED */ |
858 | |
859 | static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) |
860 | { |
861 | #ifdef CONFIG_SCHEDSTATS |
862 | struct task_struct *tsk = NULL; |
863 | |
864 | if (entity_is_task(se)) |
865 | tsk = task_of(se); |
866 | |
867 | if (se->statistics.sleep_start) { |
868 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; |
869 | |
870 | if ((s64)delta < 0) |
871 | delta = 0; |
872 | |
873 | if (unlikely(delta > se->statistics.sleep_max)) |
874 | se->statistics.sleep_max = delta; |
875 | |
876 | se->statistics.sleep_start = 0; |
877 | se->statistics.sum_sleep_runtime += delta; |
878 | |
879 | if (tsk) { |
880 | account_scheduler_latency(tsk, delta >> 10, 1); |
881 | trace_sched_stat_sleep(tsk, delta); |
882 | } |
883 | } |
884 | if (se->statistics.block_start) { |
885 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; |
886 | |
887 | if ((s64)delta < 0) |
888 | delta = 0; |
889 | |
890 | if (unlikely(delta > se->statistics.block_max)) |
891 | se->statistics.block_max = delta; |
892 | |
893 | se->statistics.block_start = 0; |
894 | se->statistics.sum_sleep_runtime += delta; |
895 | |
896 | if (tsk) { |
897 | if (tsk->in_iowait) { |
898 | se->statistics.iowait_sum += delta; |
899 | se->statistics.iowait_count++; |
900 | trace_sched_stat_iowait(tsk, delta); |
901 | } |
902 | |
903 | /* |
904 | * Blocking time is in units of nanosecs, so shift by |
905 | * 20 to get a milliseconds-range estimation of the |
906 | * amount of time that the task spent sleeping: |
907 | */ |
908 | if (unlikely(prof_on == SLEEP_PROFILING)) { |
909 | profile_hits(SLEEP_PROFILING, |
910 | (void *)get_wchan(tsk), |
911 | delta >> 20); |
912 | } |
913 | account_scheduler_latency(tsk, delta >> 10, 0); |
914 | } |
915 | } |
916 | #endif |
917 | } |
918 | |
919 | static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) |
920 | { |
921 | #ifdef CONFIG_SCHED_DEBUG |
922 | s64 d = se->vruntime - cfs_rq->min_vruntime; |
923 | |
924 | if (d < 0) |
925 | d = -d; |
926 | |
927 | if (d > 3*sysctl_sched_latency) |
928 | schedstat_inc(cfs_rq, nr_spread_over); |
929 | #endif |
930 | } |
931 | |
932 | static void |
933 | place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) |
934 | { |
935 | u64 vruntime = cfs_rq->min_vruntime; |
936 | |
937 | /* |
938 | * The 'current' period is already promised to the current tasks, |
939 | * however the extra weight of the new task will slow them down a |
940 | * little, place the new task so that it fits in the slot that |
941 | * stays open at the end. |
942 | */ |
943 | if (initial && sched_feat(START_DEBIT)) |
944 | vruntime += sched_vslice(cfs_rq, se); |
945 | |
946 | /* sleeps up to a single latency don't count. */ |
947 | if (!initial) { |
948 | unsigned long thresh = sysctl_sched_latency; |
949 | |
950 | /* |
951 | * Halve their sleep time's effect, to allow |
952 | * for a gentler effect of sleepers: |
953 | */ |
954 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) |
955 | thresh >>= 1; |
956 | |
957 | vruntime -= thresh; |
958 | } |
959 | |
960 | /* ensure we never gain time by being placed backwards. */ |
961 | vruntime = max_vruntime(se->vruntime, vruntime); |
962 | |
963 | se->vruntime = vruntime; |
964 | } |
965 | |
966 | static void |
967 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
968 | { |
969 | /* |
970 | * Update the normalized vruntime before updating min_vruntime |
971 | * through callig update_curr(). |
972 | */ |
973 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) |
974 | se->vruntime += cfs_rq->min_vruntime; |
975 | |
976 | /* |
977 | * Update run-time statistics of the 'current'. |
978 | */ |
979 | update_curr(cfs_rq); |
980 | update_cfs_load(cfs_rq, 0); |
981 | update_cfs_shares(cfs_rq, se->load.weight); |
982 | account_entity_enqueue(cfs_rq, se); |
983 | |
984 | if (flags & ENQUEUE_WAKEUP) { |
985 | place_entity(cfs_rq, se, 0); |
986 | enqueue_sleeper(cfs_rq, se); |
987 | } |
988 | |
989 | update_stats_enqueue(cfs_rq, se); |
990 | check_spread(cfs_rq, se); |
991 | if (se != cfs_rq->curr) |
992 | __enqueue_entity(cfs_rq, se); |
993 | se->on_rq = 1; |
994 | |
995 | if (cfs_rq->nr_running == 1) |
996 | list_add_leaf_cfs_rq(cfs_rq); |
997 | } |
998 | |
999 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
1000 | { |
1001 | if (!se || cfs_rq->last == se) |
1002 | cfs_rq->last = NULL; |
1003 | |
1004 | if (!se || cfs_rq->next == se) |
1005 | cfs_rq->next = NULL; |
1006 | } |
1007 | |
1008 | static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
1009 | { |
1010 | for_each_sched_entity(se) |
1011 | __clear_buddies(cfs_rq_of(se), se); |
1012 | } |
1013 | |
1014 | static void |
1015 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
1016 | { |
1017 | /* |
1018 | * Update run-time statistics of the 'current'. |
1019 | */ |
1020 | update_curr(cfs_rq); |
1021 | |
1022 | update_stats_dequeue(cfs_rq, se); |
1023 | if (flags & DEQUEUE_SLEEP) { |
1024 | #ifdef CONFIG_SCHEDSTATS |
1025 | if (entity_is_task(se)) { |
1026 | struct task_struct *tsk = task_of(se); |
1027 | |
1028 | if (tsk->state & TASK_INTERRUPTIBLE) |
1029 | se->statistics.sleep_start = rq_of(cfs_rq)->clock; |
1030 | if (tsk->state & TASK_UNINTERRUPTIBLE) |
1031 | se->statistics.block_start = rq_of(cfs_rq)->clock; |
1032 | } |
1033 | #endif |
1034 | } |
1035 | |
1036 | clear_buddies(cfs_rq, se); |
1037 | |
1038 | if (se != cfs_rq->curr) |
1039 | __dequeue_entity(cfs_rq, se); |
1040 | se->on_rq = 0; |
1041 | update_cfs_load(cfs_rq, 0); |
1042 | account_entity_dequeue(cfs_rq, se); |
1043 | update_min_vruntime(cfs_rq); |
1044 | update_cfs_shares(cfs_rq, 0); |
1045 | |
1046 | /* |
1047 | * Normalize the entity after updating the min_vruntime because the |
1048 | * update can refer to the ->curr item and we need to reflect this |
1049 | * movement in our normalized position. |
1050 | */ |
1051 | if (!(flags & DEQUEUE_SLEEP)) |
1052 | se->vruntime -= cfs_rq->min_vruntime; |
1053 | } |
1054 | |
1055 | /* |
1056 | * Preempt the current task with a newly woken task if needed: |
1057 | */ |
1058 | static void |
1059 | check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) |
1060 | { |
1061 | unsigned long ideal_runtime, delta_exec; |
1062 | |
1063 | ideal_runtime = sched_slice(cfs_rq, curr); |
1064 | delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; |
1065 | if (delta_exec > ideal_runtime) { |
1066 | resched_task(rq_of(cfs_rq)->curr); |
1067 | /* |
1068 | * The current task ran long enough, ensure it doesn't get |
1069 | * re-elected due to buddy favours. |
1070 | */ |
1071 | clear_buddies(cfs_rq, curr); |
1072 | return; |
1073 | } |
1074 | |
1075 | /* |
1076 | * Ensure that a task that missed wakeup preemption by a |
1077 | * narrow margin doesn't have to wait for a full slice. |
1078 | * This also mitigates buddy induced latencies under load. |
1079 | */ |
1080 | if (!sched_feat(WAKEUP_PREEMPT)) |
1081 | return; |
1082 | |
1083 | if (delta_exec < sysctl_sched_min_granularity) |
1084 | return; |
1085 | |
1086 | if (cfs_rq->nr_running > 1) { |
1087 | struct sched_entity *se = __pick_next_entity(cfs_rq); |
1088 | s64 delta = curr->vruntime - se->vruntime; |
1089 | |
1090 | if (delta < 0) |
1091 | return; |
1092 | |
1093 | if (delta > ideal_runtime) |
1094 | resched_task(rq_of(cfs_rq)->curr); |
1095 | } |
1096 | } |
1097 | |
1098 | static void |
1099 | set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) |
1100 | { |
1101 | /* 'current' is not kept within the tree. */ |
1102 | if (se->on_rq) { |
1103 | /* |
1104 | * Any task has to be enqueued before it get to execute on |
1105 | * a CPU. So account for the time it spent waiting on the |
1106 | * runqueue. |
1107 | */ |
1108 | update_stats_wait_end(cfs_rq, se); |
1109 | __dequeue_entity(cfs_rq, se); |
1110 | } |
1111 | |
1112 | update_stats_curr_start(cfs_rq, se); |
1113 | cfs_rq->curr = se; |
1114 | #ifdef CONFIG_SCHEDSTATS |
1115 | /* |
1116 | * Track our maximum slice length, if the CPU's load is at |
1117 | * least twice that of our own weight (i.e. dont track it |
1118 | * when there are only lesser-weight tasks around): |
1119 | */ |
1120 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
1121 | se->statistics.slice_max = max(se->statistics.slice_max, |
1122 | se->sum_exec_runtime - se->prev_sum_exec_runtime); |
1123 | } |
1124 | #endif |
1125 | se->prev_sum_exec_runtime = se->sum_exec_runtime; |
1126 | } |
1127 | |
1128 | static int |
1129 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); |
1130 | |
1131 | static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) |
1132 | { |
1133 | struct sched_entity *se = __pick_next_entity(cfs_rq); |
1134 | struct sched_entity *left = se; |
1135 | |
1136 | if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) |
1137 | se = cfs_rq->next; |
1138 | |
1139 | /* |
1140 | * Prefer last buddy, try to return the CPU to a preempted task. |
1141 | */ |
1142 | if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) |
1143 | se = cfs_rq->last; |
1144 | |
1145 | clear_buddies(cfs_rq, se); |
1146 | |
1147 | return se; |
1148 | } |
1149 | |
1150 | static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) |
1151 | { |
1152 | /* |
1153 | * If still on the runqueue then deactivate_task() |
1154 | * was not called and update_curr() has to be done: |
1155 | */ |
1156 | if (prev->on_rq) |
1157 | update_curr(cfs_rq); |
1158 | |
1159 | check_spread(cfs_rq, prev); |
1160 | if (prev->on_rq) { |
1161 | update_stats_wait_start(cfs_rq, prev); |
1162 | /* Put 'current' back into the tree. */ |
1163 | __enqueue_entity(cfs_rq, prev); |
1164 | } |
1165 | cfs_rq->curr = NULL; |
1166 | } |
1167 | |
1168 | static void |
1169 | entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) |
1170 | { |
1171 | /* |
1172 | * Update run-time statistics of the 'current'. |
1173 | */ |
1174 | update_curr(cfs_rq); |
1175 | |
1176 | /* |
1177 | * Update share accounting for long-running entities. |
1178 | */ |
1179 | update_entity_shares_tick(cfs_rq); |
1180 | |
1181 | #ifdef CONFIG_SCHED_HRTICK |
1182 | /* |
1183 | * queued ticks are scheduled to match the slice, so don't bother |
1184 | * validating it and just reschedule. |
1185 | */ |
1186 | if (queued) { |
1187 | resched_task(rq_of(cfs_rq)->curr); |
1188 | return; |
1189 | } |
1190 | /* |
1191 | * don't let the period tick interfere with the hrtick preemption |
1192 | */ |
1193 | if (!sched_feat(DOUBLE_TICK) && |
1194 | hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) |
1195 | return; |
1196 | #endif |
1197 | |
1198 | if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT)) |
1199 | check_preempt_tick(cfs_rq, curr); |
1200 | } |
1201 | |
1202 | /************************************************** |
1203 | * CFS operations on tasks: |
1204 | */ |
1205 | |
1206 | #ifdef CONFIG_SCHED_HRTICK |
1207 | static void hrtick_start_fair(struct rq *rq, struct task_struct *p) |
1208 | { |
1209 | struct sched_entity *se = &p->se; |
1210 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
1211 | |
1212 | WARN_ON(task_rq(p) != rq); |
1213 | |
1214 | if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) { |
1215 | u64 slice = sched_slice(cfs_rq, se); |
1216 | u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; |
1217 | s64 delta = slice - ran; |
1218 | |
1219 | if (delta < 0) { |
1220 | if (rq->curr == p) |
1221 | resched_task(p); |
1222 | return; |
1223 | } |
1224 | |
1225 | /* |
1226 | * Don't schedule slices shorter than 10000ns, that just |
1227 | * doesn't make sense. Rely on vruntime for fairness. |
1228 | */ |
1229 | if (rq->curr != p) |
1230 | delta = max_t(s64, 10000LL, delta); |
1231 | |
1232 | hrtick_start(rq, delta); |
1233 | } |
1234 | } |
1235 | |
1236 | /* |
1237 | * called from enqueue/dequeue and updates the hrtick when the |
1238 | * current task is from our class and nr_running is low enough |
1239 | * to matter. |
1240 | */ |
1241 | static void hrtick_update(struct rq *rq) |
1242 | { |
1243 | struct task_struct *curr = rq->curr; |
1244 | |
1245 | if (curr->sched_class != &fair_sched_class) |
1246 | return; |
1247 | |
1248 | if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) |
1249 | hrtick_start_fair(rq, curr); |
1250 | } |
1251 | #else /* !CONFIG_SCHED_HRTICK */ |
1252 | static inline void |
1253 | hrtick_start_fair(struct rq *rq, struct task_struct *p) |
1254 | { |
1255 | } |
1256 | |
1257 | static inline void hrtick_update(struct rq *rq) |
1258 | { |
1259 | } |
1260 | #endif |
1261 | |
1262 | /* |
1263 | * The enqueue_task method is called before nr_running is |
1264 | * increased. Here we update the fair scheduling stats and |
1265 | * then put the task into the rbtree: |
1266 | */ |
1267 | static void |
1268 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
1269 | { |
1270 | struct cfs_rq *cfs_rq; |
1271 | struct sched_entity *se = &p->se; |
1272 | |
1273 | for_each_sched_entity(se) { |
1274 | if (se->on_rq) |
1275 | break; |
1276 | cfs_rq = cfs_rq_of(se); |
1277 | enqueue_entity(cfs_rq, se, flags); |
1278 | flags = ENQUEUE_WAKEUP; |
1279 | } |
1280 | |
1281 | for_each_sched_entity(se) { |
1282 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
1283 | |
1284 | update_cfs_load(cfs_rq, 0); |
1285 | update_cfs_shares(cfs_rq, 0); |
1286 | } |
1287 | |
1288 | hrtick_update(rq); |
1289 | } |
1290 | |
1291 | /* |
1292 | * The dequeue_task method is called before nr_running is |
1293 | * decreased. We remove the task from the rbtree and |
1294 | * update the fair scheduling stats: |
1295 | */ |
1296 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
1297 | { |
1298 | struct cfs_rq *cfs_rq; |
1299 | struct sched_entity *se = &p->se; |
1300 | |
1301 | for_each_sched_entity(se) { |
1302 | cfs_rq = cfs_rq_of(se); |
1303 | dequeue_entity(cfs_rq, se, flags); |
1304 | |
1305 | /* Don't dequeue parent if it has other entities besides us */ |
1306 | if (cfs_rq->load.weight) |
1307 | break; |
1308 | flags |= DEQUEUE_SLEEP; |
1309 | } |
1310 | |
1311 | for_each_sched_entity(se) { |
1312 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
1313 | |
1314 | update_cfs_load(cfs_rq, 0); |
1315 | update_cfs_shares(cfs_rq, 0); |
1316 | } |
1317 | |
1318 | hrtick_update(rq); |
1319 | } |
1320 | |
1321 | /* |
1322 | * sched_yield() support is very simple - we dequeue and enqueue. |
1323 | * |
1324 | * If compat_yield is turned on then we requeue to the end of the tree. |
1325 | */ |
1326 | static void yield_task_fair(struct rq *rq) |
1327 | { |
1328 | struct task_struct *curr = rq->curr; |
1329 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1330 | struct sched_entity *rightmost, *se = &curr->se; |
1331 | |
1332 | /* |
1333 | * Are we the only task in the tree? |
1334 | */ |
1335 | if (unlikely(cfs_rq->nr_running == 1)) |
1336 | return; |
1337 | |
1338 | clear_buddies(cfs_rq, se); |
1339 | |
1340 | if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) { |
1341 | update_rq_clock(rq); |
1342 | /* |
1343 | * Update run-time statistics of the 'current'. |
1344 | */ |
1345 | update_curr(cfs_rq); |
1346 | |
1347 | return; |
1348 | } |
1349 | /* |
1350 | * Find the rightmost entry in the rbtree: |
1351 | */ |
1352 | rightmost = __pick_last_entity(cfs_rq); |
1353 | /* |
1354 | * Already in the rightmost position? |
1355 | */ |
1356 | if (unlikely(!rightmost || entity_before(rightmost, se))) |
1357 | return; |
1358 | |
1359 | /* |
1360 | * Minimally necessary key value to be last in the tree: |
1361 | * Upon rescheduling, sched_class::put_prev_task() will place |
1362 | * 'current' within the tree based on its new key value. |
1363 | */ |
1364 | se->vruntime = rightmost->vruntime + 1; |
1365 | } |
1366 | |
1367 | #ifdef CONFIG_SMP |
1368 | |
1369 | static void task_waking_fair(struct rq *rq, struct task_struct *p) |
1370 | { |
1371 | struct sched_entity *se = &p->se; |
1372 | struct cfs_rq *cfs_rq = cfs_rq_of(se); |
1373 | |
1374 | se->vruntime -= cfs_rq->min_vruntime; |
1375 | } |
1376 | |
1377 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1378 | /* |
1379 | * effective_load() calculates the load change as seen from the root_task_group |
1380 | * |
1381 | * Adding load to a group doesn't make a group heavier, but can cause movement |
1382 | * of group shares between cpus. Assuming the shares were perfectly aligned one |
1383 | * can calculate the shift in shares. |
1384 | */ |
1385 | static long effective_load(struct task_group *tg, int cpu, long wl, long wg) |
1386 | { |
1387 | struct sched_entity *se = tg->se[cpu]; |
1388 | |
1389 | if (!tg->parent) |
1390 | return wl; |
1391 | |
1392 | for_each_sched_entity(se) { |
1393 | long lw, w; |
1394 | |
1395 | tg = se->my_q->tg; |
1396 | w = se->my_q->load.weight; |
1397 | |
1398 | /* use this cpu's instantaneous contribution */ |
1399 | lw = atomic_read(&tg->load_weight); |
1400 | lw -= se->my_q->load_contribution; |
1401 | lw += w + wg; |
1402 | |
1403 | wl += w; |
1404 | |
1405 | if (lw > 0 && wl < lw) |
1406 | wl = (wl * tg->shares) / lw; |
1407 | else |
1408 | wl = tg->shares; |
1409 | |
1410 | /* zero point is MIN_SHARES */ |
1411 | if (wl < MIN_SHARES) |
1412 | wl = MIN_SHARES; |
1413 | wl -= se->load.weight; |
1414 | wg = 0; |
1415 | } |
1416 | |
1417 | return wl; |
1418 | } |
1419 | |
1420 | #else |
1421 | |
1422 | static inline unsigned long effective_load(struct task_group *tg, int cpu, |
1423 | unsigned long wl, unsigned long wg) |
1424 | { |
1425 | return wl; |
1426 | } |
1427 | |
1428 | #endif |
1429 | |
1430 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
1431 | { |
1432 | s64 this_load, load; |
1433 | int idx, this_cpu, prev_cpu; |
1434 | unsigned long tl_per_task; |
1435 | struct task_group *tg; |
1436 | unsigned long weight; |
1437 | int balanced; |
1438 | |
1439 | idx = sd->wake_idx; |
1440 | this_cpu = smp_processor_id(); |
1441 | prev_cpu = task_cpu(p); |
1442 | load = source_load(prev_cpu, idx); |
1443 | this_load = target_load(this_cpu, idx); |
1444 | |
1445 | /* |
1446 | * If sync wakeup then subtract the (maximum possible) |
1447 | * effect of the currently running task from the load |
1448 | * of the current CPU: |
1449 | */ |
1450 | rcu_read_lock(); |
1451 | if (sync) { |
1452 | tg = task_group(current); |
1453 | weight = current->se.load.weight; |
1454 | |
1455 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
1456 | load += effective_load(tg, prev_cpu, 0, -weight); |
1457 | } |
1458 | |
1459 | tg = task_group(p); |
1460 | weight = p->se.load.weight; |
1461 | |
1462 | /* |
1463 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
1464 | * due to the sync cause above having dropped this_load to 0, we'll |
1465 | * always have an imbalance, but there's really nothing you can do |
1466 | * about that, so that's good too. |
1467 | * |
1468 | * Otherwise check if either cpus are near enough in load to allow this |
1469 | * task to be woken on this_cpu. |
1470 | */ |
1471 | if (this_load > 0) { |
1472 | s64 this_eff_load, prev_eff_load; |
1473 | |
1474 | this_eff_load = 100; |
1475 | this_eff_load *= power_of(prev_cpu); |
1476 | this_eff_load *= this_load + |
1477 | effective_load(tg, this_cpu, weight, weight); |
1478 | |
1479 | prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; |
1480 | prev_eff_load *= power_of(this_cpu); |
1481 | prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); |
1482 | |
1483 | balanced = this_eff_load <= prev_eff_load; |
1484 | } else |
1485 | balanced = true; |
1486 | rcu_read_unlock(); |
1487 | |
1488 | /* |
1489 | * If the currently running task will sleep within |
1490 | * a reasonable amount of time then attract this newly |
1491 | * woken task: |
1492 | */ |
1493 | if (sync && balanced) |
1494 | return 1; |
1495 | |
1496 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); |
1497 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1498 | |
1499 | if (balanced || |
1500 | (this_load <= load && |
1501 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { |
1502 | /* |
1503 | * This domain has SD_WAKE_AFFINE and |
1504 | * p is cache cold in this domain, and |
1505 | * there is no bad imbalance. |
1506 | */ |
1507 | schedstat_inc(sd, ttwu_move_affine); |
1508 | schedstat_inc(p, se.statistics.nr_wakeups_affine); |
1509 | |
1510 | return 1; |
1511 | } |
1512 | return 0; |
1513 | } |
1514 | |
1515 | /* |
1516 | * find_idlest_group finds and returns the least busy CPU group within the |
1517 | * domain. |
1518 | */ |
1519 | static struct sched_group * |
1520 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, |
1521 | int this_cpu, int load_idx) |
1522 | { |
1523 | struct sched_group *idlest = NULL, *group = sd->groups; |
1524 | unsigned long min_load = ULONG_MAX, this_load = 0; |
1525 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
1526 | |
1527 | do { |
1528 | unsigned long load, avg_load; |
1529 | int local_group; |
1530 | int i; |
1531 | |
1532 | /* Skip over this group if it has no CPUs allowed */ |
1533 | if (!cpumask_intersects(sched_group_cpus(group), |
1534 | &p->cpus_allowed)) |
1535 | continue; |
1536 | |
1537 | local_group = cpumask_test_cpu(this_cpu, |
1538 | sched_group_cpus(group)); |
1539 | |
1540 | /* Tally up the load of all CPUs in the group */ |
1541 | avg_load = 0; |
1542 | |
1543 | for_each_cpu(i, sched_group_cpus(group)) { |
1544 | /* Bias balancing toward cpus of our domain */ |
1545 | if (local_group) |
1546 | load = source_load(i, load_idx); |
1547 | else |
1548 | load = target_load(i, load_idx); |
1549 | |
1550 | avg_load += load; |
1551 | } |
1552 | |
1553 | /* Adjust by relative CPU power of the group */ |
1554 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; |
1555 | |
1556 | if (local_group) { |
1557 | this_load = avg_load; |
1558 | } else if (avg_load < min_load) { |
1559 | min_load = avg_load; |
1560 | idlest = group; |
1561 | } |
1562 | } while (group = group->next, group != sd->groups); |
1563 | |
1564 | if (!idlest || 100*this_load < imbalance*min_load) |
1565 | return NULL; |
1566 | return idlest; |
1567 | } |
1568 | |
1569 | /* |
1570 | * find_idlest_cpu - find the idlest cpu among the cpus in group. |
1571 | */ |
1572 | static int |
1573 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) |
1574 | { |
1575 | unsigned long load, min_load = ULONG_MAX; |
1576 | int idlest = -1; |
1577 | int i; |
1578 | |
1579 | /* Traverse only the allowed CPUs */ |
1580 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { |
1581 | load = weighted_cpuload(i); |
1582 | |
1583 | if (load < min_load || (load == min_load && i == this_cpu)) { |
1584 | min_load = load; |
1585 | idlest = i; |
1586 | } |
1587 | } |
1588 | |
1589 | return idlest; |
1590 | } |
1591 | |
1592 | /* |
1593 | * Try and locate an idle CPU in the sched_domain. |
1594 | */ |
1595 | static int select_idle_sibling(struct task_struct *p, int target) |
1596 | { |
1597 | int cpu = smp_processor_id(); |
1598 | int prev_cpu = task_cpu(p); |
1599 | struct sched_domain *sd; |
1600 | int i; |
1601 | |
1602 | /* |
1603 | * If the task is going to be woken-up on this cpu and if it is |
1604 | * already idle, then it is the right target. |
1605 | */ |
1606 | if (target == cpu && idle_cpu(cpu)) |
1607 | return cpu; |
1608 | |
1609 | /* |
1610 | * If the task is going to be woken-up on the cpu where it previously |
1611 | * ran and if it is currently idle, then it the right target. |
1612 | */ |
1613 | if (target == prev_cpu && idle_cpu(prev_cpu)) |
1614 | return prev_cpu; |
1615 | |
1616 | /* |
1617 | * Otherwise, iterate the domains and find an elegible idle cpu. |
1618 | */ |
1619 | for_each_domain(target, sd) { |
1620 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) |
1621 | break; |
1622 | |
1623 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { |
1624 | if (idle_cpu(i)) { |
1625 | target = i; |
1626 | break; |
1627 | } |
1628 | } |
1629 | |
1630 | /* |
1631 | * Lets stop looking for an idle sibling when we reached |
1632 | * the domain that spans the current cpu and prev_cpu. |
1633 | */ |
1634 | if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && |
1635 | cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) |
1636 | break; |
1637 | } |
1638 | |
1639 | return target; |
1640 | } |
1641 | |
1642 | /* |
1643 | * sched_balance_self: balance the current task (running on cpu) in domains |
1644 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
1645 | * SD_BALANCE_EXEC. |
1646 | * |
1647 | * Balance, ie. select the least loaded group. |
1648 | * |
1649 | * Returns the target CPU number, or the same CPU if no balancing is needed. |
1650 | * |
1651 | * preempt must be disabled. |
1652 | */ |
1653 | static int |
1654 | select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags) |
1655 | { |
1656 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; |
1657 | int cpu = smp_processor_id(); |
1658 | int prev_cpu = task_cpu(p); |
1659 | int new_cpu = cpu; |
1660 | int want_affine = 0; |
1661 | int want_sd = 1; |
1662 | int sync = wake_flags & WF_SYNC; |
1663 | |
1664 | if (sd_flag & SD_BALANCE_WAKE) { |
1665 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) |
1666 | want_affine = 1; |
1667 | new_cpu = prev_cpu; |
1668 | } |
1669 | |
1670 | for_each_domain(cpu, tmp) { |
1671 | if (!(tmp->flags & SD_LOAD_BALANCE)) |
1672 | continue; |
1673 | |
1674 | /* |
1675 | * If power savings logic is enabled for a domain, see if we |
1676 | * are not overloaded, if so, don't balance wider. |
1677 | */ |
1678 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { |
1679 | unsigned long power = 0; |
1680 | unsigned long nr_running = 0; |
1681 | unsigned long capacity; |
1682 | int i; |
1683 | |
1684 | for_each_cpu(i, sched_domain_span(tmp)) { |
1685 | power += power_of(i); |
1686 | nr_running += cpu_rq(i)->cfs.nr_running; |
1687 | } |
1688 | |
1689 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); |
1690 | |
1691 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) |
1692 | nr_running /= 2; |
1693 | |
1694 | if (nr_running < capacity) |
1695 | want_sd = 0; |
1696 | } |
1697 | |
1698 | /* |
1699 | * If both cpu and prev_cpu are part of this domain, |
1700 | * cpu is a valid SD_WAKE_AFFINE target. |
1701 | */ |
1702 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
1703 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { |
1704 | affine_sd = tmp; |
1705 | want_affine = 0; |
1706 | } |
1707 | |
1708 | if (!want_sd && !want_affine) |
1709 | break; |
1710 | |
1711 | if (!(tmp->flags & sd_flag)) |
1712 | continue; |
1713 | |
1714 | if (want_sd) |
1715 | sd = tmp; |
1716 | } |
1717 | |
1718 | if (affine_sd) { |
1719 | if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) |
1720 | return select_idle_sibling(p, cpu); |
1721 | else |
1722 | return select_idle_sibling(p, prev_cpu); |
1723 | } |
1724 | |
1725 | while (sd) { |
1726 | int load_idx = sd->forkexec_idx; |
1727 | struct sched_group *group; |
1728 | int weight; |
1729 | |
1730 | if (!(sd->flags & sd_flag)) { |
1731 | sd = sd->child; |
1732 | continue; |
1733 | } |
1734 | |
1735 | if (sd_flag & SD_BALANCE_WAKE) |
1736 | load_idx = sd->wake_idx; |
1737 | |
1738 | group = find_idlest_group(sd, p, cpu, load_idx); |
1739 | if (!group) { |
1740 | sd = sd->child; |
1741 | continue; |
1742 | } |
1743 | |
1744 | new_cpu = find_idlest_cpu(group, p, cpu); |
1745 | if (new_cpu == -1 || new_cpu == cpu) { |
1746 | /* Now try balancing at a lower domain level of cpu */ |
1747 | sd = sd->child; |
1748 | continue; |
1749 | } |
1750 | |
1751 | /* Now try balancing at a lower domain level of new_cpu */ |
1752 | cpu = new_cpu; |
1753 | weight = sd->span_weight; |
1754 | sd = NULL; |
1755 | for_each_domain(cpu, tmp) { |
1756 | if (weight <= tmp->span_weight) |
1757 | break; |
1758 | if (tmp->flags & sd_flag) |
1759 | sd = tmp; |
1760 | } |
1761 | /* while loop will break here if sd == NULL */ |
1762 | } |
1763 | |
1764 | return new_cpu; |
1765 | } |
1766 | #endif /* CONFIG_SMP */ |
1767 | |
1768 | static unsigned long |
1769 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) |
1770 | { |
1771 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1772 | |
1773 | /* |
1774 | * Since its curr running now, convert the gran from real-time |
1775 | * to virtual-time in his units. |
1776 | * |
1777 | * By using 'se' instead of 'curr' we penalize light tasks, so |
1778 | * they get preempted easier. That is, if 'se' < 'curr' then |
1779 | * the resulting gran will be larger, therefore penalizing the |
1780 | * lighter, if otoh 'se' > 'curr' then the resulting gran will |
1781 | * be smaller, again penalizing the lighter task. |
1782 | * |
1783 | * This is especially important for buddies when the leftmost |
1784 | * task is higher priority than the buddy. |
1785 | */ |
1786 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
1787 | gran = calc_delta_fair(gran, se); |
1788 | |
1789 | return gran; |
1790 | } |
1791 | |
1792 | /* |
1793 | * Should 'se' preempt 'curr'. |
1794 | * |
1795 | * |s1 |
1796 | * |s2 |
1797 | * |s3 |
1798 | * g |
1799 | * |<--->|c |
1800 | * |
1801 | * w(c, s1) = -1 |
1802 | * w(c, s2) = 0 |
1803 | * w(c, s3) = 1 |
1804 | * |
1805 | */ |
1806 | static int |
1807 | wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) |
1808 | { |
1809 | s64 gran, vdiff = curr->vruntime - se->vruntime; |
1810 | |
1811 | if (vdiff <= 0) |
1812 | return -1; |
1813 | |
1814 | gran = wakeup_gran(curr, se); |
1815 | if (vdiff > gran) |
1816 | return 1; |
1817 | |
1818 | return 0; |
1819 | } |
1820 | |
1821 | static void set_last_buddy(struct sched_entity *se) |
1822 | { |
1823 | if (likely(task_of(se)->policy != SCHED_IDLE)) { |
1824 | for_each_sched_entity(se) |
1825 | cfs_rq_of(se)->last = se; |
1826 | } |
1827 | } |
1828 | |
1829 | static void set_next_buddy(struct sched_entity *se) |
1830 | { |
1831 | if (likely(task_of(se)->policy != SCHED_IDLE)) { |
1832 | for_each_sched_entity(se) |
1833 | cfs_rq_of(se)->next = se; |
1834 | } |
1835 | } |
1836 | |
1837 | /* |
1838 | * Preempt the current task with a newly woken task if needed: |
1839 | */ |
1840 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
1841 | { |
1842 | struct task_struct *curr = rq->curr; |
1843 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1844 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1845 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
1846 | |
1847 | if (unlikely(se == pse)) |
1848 | return; |
1849 | |
1850 | if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) |
1851 | set_next_buddy(pse); |
1852 | |
1853 | /* |
1854 | * We can come here with TIF_NEED_RESCHED already set from new task |
1855 | * wake up path. |
1856 | */ |
1857 | if (test_tsk_need_resched(curr)) |
1858 | return; |
1859 | |
1860 | /* |
1861 | * Batch and idle tasks do not preempt (their preemption is driven by |
1862 | * the tick): |
1863 | */ |
1864 | if (unlikely(p->policy != SCHED_NORMAL)) |
1865 | return; |
1866 | |
1867 | /* Idle tasks are by definition preempted by everybody. */ |
1868 | if (unlikely(curr->policy == SCHED_IDLE)) |
1869 | goto preempt; |
1870 | |
1871 | if (!sched_feat(WAKEUP_PREEMPT)) |
1872 | return; |
1873 | |
1874 | update_curr(cfs_rq); |
1875 | find_matching_se(&se, &pse); |
1876 | BUG_ON(!pse); |
1877 | if (wakeup_preempt_entity(se, pse) == 1) |
1878 | goto preempt; |
1879 | |
1880 | return; |
1881 | |
1882 | preempt: |
1883 | resched_task(curr); |
1884 | /* |
1885 | * Only set the backward buddy when the current task is still |
1886 | * on the rq. This can happen when a wakeup gets interleaved |
1887 | * with schedule on the ->pre_schedule() or idle_balance() |
1888 | * point, either of which can * drop the rq lock. |
1889 | * |
1890 | * Also, during early boot the idle thread is in the fair class, |
1891 | * for obvious reasons its a bad idea to schedule back to it. |
1892 | */ |
1893 | if (unlikely(!se->on_rq || curr == rq->idle)) |
1894 | return; |
1895 | |
1896 | if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) |
1897 | set_last_buddy(se); |
1898 | } |
1899 | |
1900 | static struct task_struct *pick_next_task_fair(struct rq *rq) |
1901 | { |
1902 | struct task_struct *p; |
1903 | struct cfs_rq *cfs_rq = &rq->cfs; |
1904 | struct sched_entity *se; |
1905 | |
1906 | if (!cfs_rq->nr_running) |
1907 | return NULL; |
1908 | |
1909 | do { |
1910 | se = pick_next_entity(cfs_rq); |
1911 | set_next_entity(cfs_rq, se); |
1912 | cfs_rq = group_cfs_rq(se); |
1913 | } while (cfs_rq); |
1914 | |
1915 | p = task_of(se); |
1916 | hrtick_start_fair(rq, p); |
1917 | |
1918 | return p; |
1919 | } |
1920 | |
1921 | /* |
1922 | * Account for a descheduled task: |
1923 | */ |
1924 | static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) |
1925 | { |
1926 | struct sched_entity *se = &prev->se; |
1927 | struct cfs_rq *cfs_rq; |
1928 | |
1929 | for_each_sched_entity(se) { |
1930 | cfs_rq = cfs_rq_of(se); |
1931 | put_prev_entity(cfs_rq, se); |
1932 | } |
1933 | } |
1934 | |
1935 | #ifdef CONFIG_SMP |
1936 | /************************************************** |
1937 | * Fair scheduling class load-balancing methods: |
1938 | */ |
1939 | |
1940 | /* |
1941 | * pull_task - move a task from a remote runqueue to the local runqueue. |
1942 | * Both runqueues must be locked. |
1943 | */ |
1944 | static void pull_task(struct rq *src_rq, struct task_struct *p, |
1945 | struct rq *this_rq, int this_cpu) |
1946 | { |
1947 | deactivate_task(src_rq, p, 0); |
1948 | set_task_cpu(p, this_cpu); |
1949 | activate_task(this_rq, p, 0); |
1950 | check_preempt_curr(this_rq, p, 0); |
1951 | } |
1952 | |
1953 | /* |
1954 | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? |
1955 | */ |
1956 | static |
1957 | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, |
1958 | struct sched_domain *sd, enum cpu_idle_type idle, |
1959 | int *all_pinned) |
1960 | { |
1961 | int tsk_cache_hot = 0; |
1962 | /* |
1963 | * We do not migrate tasks that are: |
1964 | * 1) running (obviously), or |
1965 | * 2) cannot be migrated to this CPU due to cpus_allowed, or |
1966 | * 3) are cache-hot on their current CPU. |
1967 | */ |
1968 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { |
1969 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); |
1970 | return 0; |
1971 | } |
1972 | *all_pinned = 0; |
1973 | |
1974 | if (task_running(rq, p)) { |
1975 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); |
1976 | return 0; |
1977 | } |
1978 | |
1979 | /* |
1980 | * Aggressive migration if: |
1981 | * 1) task is cache cold, or |
1982 | * 2) too many balance attempts have failed. |
1983 | */ |
1984 | |
1985 | tsk_cache_hot = task_hot(p, rq->clock_task, sd); |
1986 | if (!tsk_cache_hot || |
1987 | sd->nr_balance_failed > sd->cache_nice_tries) { |
1988 | #ifdef CONFIG_SCHEDSTATS |
1989 | if (tsk_cache_hot) { |
1990 | schedstat_inc(sd, lb_hot_gained[idle]); |
1991 | schedstat_inc(p, se.statistics.nr_forced_migrations); |
1992 | } |
1993 | #endif |
1994 | return 1; |
1995 | } |
1996 | |
1997 | if (tsk_cache_hot) { |
1998 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); |
1999 | return 0; |
2000 | } |
2001 | return 1; |
2002 | } |
2003 | |
2004 | /* |
2005 | * move_one_task tries to move exactly one task from busiest to this_rq, as |
2006 | * part of active balancing operations within "domain". |
2007 | * Returns 1 if successful and 0 otherwise. |
2008 | * |
2009 | * Called with both runqueues locked. |
2010 | */ |
2011 | static int |
2012 | move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2013 | struct sched_domain *sd, enum cpu_idle_type idle) |
2014 | { |
2015 | struct task_struct *p, *n; |
2016 | struct cfs_rq *cfs_rq; |
2017 | int pinned = 0; |
2018 | |
2019 | for_each_leaf_cfs_rq(busiest, cfs_rq) { |
2020 | list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { |
2021 | |
2022 | if (!can_migrate_task(p, busiest, this_cpu, |
2023 | sd, idle, &pinned)) |
2024 | continue; |
2025 | |
2026 | pull_task(busiest, p, this_rq, this_cpu); |
2027 | /* |
2028 | * Right now, this is only the second place pull_task() |
2029 | * is called, so we can safely collect pull_task() |
2030 | * stats here rather than inside pull_task(). |
2031 | */ |
2032 | schedstat_inc(sd, lb_gained[idle]); |
2033 | return 1; |
2034 | } |
2035 | } |
2036 | |
2037 | return 0; |
2038 | } |
2039 | |
2040 | static unsigned long |
2041 | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2042 | unsigned long max_load_move, struct sched_domain *sd, |
2043 | enum cpu_idle_type idle, int *all_pinned, |
2044 | int *this_best_prio, struct cfs_rq *busiest_cfs_rq) |
2045 | { |
2046 | int loops = 0, pulled = 0, pinned = 0; |
2047 | long rem_load_move = max_load_move; |
2048 | struct task_struct *p, *n; |
2049 | |
2050 | if (max_load_move == 0) |
2051 | goto out; |
2052 | |
2053 | pinned = 1; |
2054 | |
2055 | list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { |
2056 | if (loops++ > sysctl_sched_nr_migrate) |
2057 | break; |
2058 | |
2059 | if ((p->se.load.weight >> 1) > rem_load_move || |
2060 | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) |
2061 | continue; |
2062 | |
2063 | pull_task(busiest, p, this_rq, this_cpu); |
2064 | pulled++; |
2065 | rem_load_move -= p->se.load.weight; |
2066 | |
2067 | #ifdef CONFIG_PREEMPT |
2068 | /* |
2069 | * NEWIDLE balancing is a source of latency, so preemptible |
2070 | * kernels will stop after the first task is pulled to minimize |
2071 | * the critical section. |
2072 | */ |
2073 | if (idle == CPU_NEWLY_IDLE) |
2074 | break; |
2075 | #endif |
2076 | |
2077 | /* |
2078 | * We only want to steal up to the prescribed amount of |
2079 | * weighted load. |
2080 | */ |
2081 | if (rem_load_move <= 0) |
2082 | break; |
2083 | |
2084 | if (p->prio < *this_best_prio) |
2085 | *this_best_prio = p->prio; |
2086 | } |
2087 | out: |
2088 | /* |
2089 | * Right now, this is one of only two places pull_task() is called, |
2090 | * so we can safely collect pull_task() stats here rather than |
2091 | * inside pull_task(). |
2092 | */ |
2093 | schedstat_add(sd, lb_gained[idle], pulled); |
2094 | |
2095 | if (all_pinned) |
2096 | *all_pinned = pinned; |
2097 | |
2098 | return max_load_move - rem_load_move; |
2099 | } |
2100 | |
2101 | #ifdef CONFIG_FAIR_GROUP_SCHED |
2102 | /* |
2103 | * update tg->load_weight by folding this cpu's load_avg |
2104 | */ |
2105 | static int update_shares_cpu(struct task_group *tg, int cpu) |
2106 | { |
2107 | struct cfs_rq *cfs_rq; |
2108 | unsigned long flags; |
2109 | struct rq *rq; |
2110 | |
2111 | if (!tg->se[cpu]) |
2112 | return 0; |
2113 | |
2114 | rq = cpu_rq(cpu); |
2115 | cfs_rq = tg->cfs_rq[cpu]; |
2116 | |
2117 | raw_spin_lock_irqsave(&rq->lock, flags); |
2118 | |
2119 | update_rq_clock(rq); |
2120 | update_cfs_load(cfs_rq, 1); |
2121 | |
2122 | /* |
2123 | * We need to update shares after updating tg->load_weight in |
2124 | * order to adjust the weight of groups with long running tasks. |
2125 | */ |
2126 | update_cfs_shares(cfs_rq, 0); |
2127 | |
2128 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
2129 | |
2130 | return 0; |
2131 | } |
2132 | |
2133 | static void update_shares(int cpu) |
2134 | { |
2135 | struct cfs_rq *cfs_rq; |
2136 | struct rq *rq = cpu_rq(cpu); |
2137 | |
2138 | rcu_read_lock(); |
2139 | for_each_leaf_cfs_rq(rq, cfs_rq) |
2140 | update_shares_cpu(cfs_rq->tg, cpu); |
2141 | rcu_read_unlock(); |
2142 | } |
2143 | |
2144 | static unsigned long |
2145 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2146 | unsigned long max_load_move, |
2147 | struct sched_domain *sd, enum cpu_idle_type idle, |
2148 | int *all_pinned, int *this_best_prio) |
2149 | { |
2150 | long rem_load_move = max_load_move; |
2151 | int busiest_cpu = cpu_of(busiest); |
2152 | struct task_group *tg; |
2153 | |
2154 | rcu_read_lock(); |
2155 | update_h_load(busiest_cpu); |
2156 | |
2157 | list_for_each_entry_rcu(tg, &task_groups, list) { |
2158 | struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu]; |
2159 | unsigned long busiest_h_load = busiest_cfs_rq->h_load; |
2160 | unsigned long busiest_weight = busiest_cfs_rq->load.weight; |
2161 | u64 rem_load, moved_load; |
2162 | |
2163 | /* |
2164 | * empty group |
2165 | */ |
2166 | if (!busiest_cfs_rq->task_weight) |
2167 | continue; |
2168 | |
2169 | rem_load = (u64)rem_load_move * busiest_weight; |
2170 | rem_load = div_u64(rem_load, busiest_h_load + 1); |
2171 | |
2172 | moved_load = balance_tasks(this_rq, this_cpu, busiest, |
2173 | rem_load, sd, idle, all_pinned, this_best_prio, |
2174 | busiest_cfs_rq); |
2175 | |
2176 | if (!moved_load) |
2177 | continue; |
2178 | |
2179 | moved_load *= busiest_h_load; |
2180 | moved_load = div_u64(moved_load, busiest_weight + 1); |
2181 | |
2182 | rem_load_move -= moved_load; |
2183 | if (rem_load_move < 0) |
2184 | break; |
2185 | } |
2186 | rcu_read_unlock(); |
2187 | |
2188 | return max_load_move - rem_load_move; |
2189 | } |
2190 | #else |
2191 | static inline void update_shares(int cpu) |
2192 | { |
2193 | } |
2194 | |
2195 | static unsigned long |
2196 | load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2197 | unsigned long max_load_move, |
2198 | struct sched_domain *sd, enum cpu_idle_type idle, |
2199 | int *all_pinned, int *this_best_prio) |
2200 | { |
2201 | return balance_tasks(this_rq, this_cpu, busiest, |
2202 | max_load_move, sd, idle, all_pinned, |
2203 | this_best_prio, &busiest->cfs); |
2204 | } |
2205 | #endif |
2206 | |
2207 | /* |
2208 | * move_tasks tries to move up to max_load_move weighted load from busiest to |
2209 | * this_rq, as part of a balancing operation within domain "sd". |
2210 | * Returns 1 if successful and 0 otherwise. |
2211 | * |
2212 | * Called with both runqueues locked. |
2213 | */ |
2214 | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, |
2215 | unsigned long max_load_move, |
2216 | struct sched_domain *sd, enum cpu_idle_type idle, |
2217 | int *all_pinned) |
2218 | { |
2219 | unsigned long total_load_moved = 0, load_moved; |
2220 | int this_best_prio = this_rq->curr->prio; |
2221 | |
2222 | do { |
2223 | load_moved = load_balance_fair(this_rq, this_cpu, busiest, |
2224 | max_load_move - total_load_moved, |
2225 | sd, idle, all_pinned, &this_best_prio); |
2226 | |
2227 | total_load_moved += load_moved; |
2228 | |
2229 | #ifdef CONFIG_PREEMPT |
2230 | /* |
2231 | * NEWIDLE balancing is a source of latency, so preemptible |
2232 | * kernels will stop after the first task is pulled to minimize |
2233 | * the critical section. |
2234 | */ |
2235 | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) |
2236 | break; |
2237 | |
2238 | if (raw_spin_is_contended(&this_rq->lock) || |
2239 | raw_spin_is_contended(&busiest->lock)) |
2240 | break; |
2241 | #endif |
2242 | } while (load_moved && max_load_move > total_load_moved); |
2243 | |
2244 | return total_load_moved > 0; |
2245 | } |
2246 | |
2247 | /********** Helpers for find_busiest_group ************************/ |
2248 | /* |
2249 | * sd_lb_stats - Structure to store the statistics of a sched_domain |
2250 | * during load balancing. |
2251 | */ |
2252 | struct sd_lb_stats { |
2253 | struct sched_group *busiest; /* Busiest group in this sd */ |
2254 | struct sched_group *this; /* Local group in this sd */ |
2255 | unsigned long total_load; /* Total load of all groups in sd */ |
2256 | unsigned long total_pwr; /* Total power of all groups in sd */ |
2257 | unsigned long avg_load; /* Average load across all groups in sd */ |
2258 | |
2259 | /** Statistics of this group */ |
2260 | unsigned long this_load; |
2261 | unsigned long this_load_per_task; |
2262 | unsigned long this_nr_running; |
2263 | unsigned long this_has_capacity; |
2264 | unsigned int this_idle_cpus; |
2265 | |
2266 | /* Statistics of the busiest group */ |
2267 | unsigned int busiest_idle_cpus; |
2268 | unsigned long max_load; |
2269 | unsigned long busiest_load_per_task; |
2270 | unsigned long busiest_nr_running; |
2271 | unsigned long busiest_group_capacity; |
2272 | unsigned long busiest_has_capacity; |
2273 | unsigned int busiest_group_weight; |
2274 | |
2275 | int group_imb; /* Is there imbalance in this sd */ |
2276 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
2277 | int power_savings_balance; /* Is powersave balance needed for this sd */ |
2278 | struct sched_group *group_min; /* Least loaded group in sd */ |
2279 | struct sched_group *group_leader; /* Group which relieves group_min */ |
2280 | unsigned long min_load_per_task; /* load_per_task in group_min */ |
2281 | unsigned long leader_nr_running; /* Nr running of group_leader */ |
2282 | unsigned long min_nr_running; /* Nr running of group_min */ |
2283 | #endif |
2284 | }; |
2285 | |
2286 | /* |
2287 | * sg_lb_stats - stats of a sched_group required for load_balancing |
2288 | */ |
2289 | struct sg_lb_stats { |
2290 | unsigned long avg_load; /*Avg load across the CPUs of the group */ |
2291 | unsigned long group_load; /* Total load over the CPUs of the group */ |
2292 | unsigned long sum_nr_running; /* Nr tasks running in the group */ |
2293 | unsigned long sum_weighted_load; /* Weighted load of group's tasks */ |
2294 | unsigned long group_capacity; |
2295 | unsigned long idle_cpus; |
2296 | unsigned long group_weight; |
2297 | int group_imb; /* Is there an imbalance in the group ? */ |
2298 | int group_has_capacity; /* Is there extra capacity in the group? */ |
2299 | }; |
2300 | |
2301 | /** |
2302 | * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. |
2303 | * @group: The group whose first cpu is to be returned. |
2304 | */ |
2305 | static inline unsigned int group_first_cpu(struct sched_group *group) |
2306 | { |
2307 | return cpumask_first(sched_group_cpus(group)); |
2308 | } |
2309 | |
2310 | /** |
2311 | * get_sd_load_idx - Obtain the load index for a given sched domain. |
2312 | * @sd: The sched_domain whose load_idx is to be obtained. |
2313 | * @idle: The Idle status of the CPU for whose sd load_icx is obtained. |
2314 | */ |
2315 | static inline int get_sd_load_idx(struct sched_domain *sd, |
2316 | enum cpu_idle_type idle) |
2317 | { |
2318 | int load_idx; |
2319 | |
2320 | switch (idle) { |
2321 | case CPU_NOT_IDLE: |
2322 | load_idx = sd->busy_idx; |
2323 | break; |
2324 | |
2325 | case CPU_NEWLY_IDLE: |
2326 | load_idx = sd->newidle_idx; |
2327 | break; |
2328 | default: |
2329 | load_idx = sd->idle_idx; |
2330 | break; |
2331 | } |
2332 | |
2333 | return load_idx; |
2334 | } |
2335 | |
2336 | |
2337 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
2338 | /** |
2339 | * init_sd_power_savings_stats - Initialize power savings statistics for |
2340 | * the given sched_domain, during load balancing. |
2341 | * |
2342 | * @sd: Sched domain whose power-savings statistics are to be initialized. |
2343 | * @sds: Variable containing the statistics for sd. |
2344 | * @idle: Idle status of the CPU at which we're performing load-balancing. |
2345 | */ |
2346 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, |
2347 | struct sd_lb_stats *sds, enum cpu_idle_type idle) |
2348 | { |
2349 | /* |
2350 | * Busy processors will not participate in power savings |
2351 | * balance. |
2352 | */ |
2353 | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) |
2354 | sds->power_savings_balance = 0; |
2355 | else { |
2356 | sds->power_savings_balance = 1; |
2357 | sds->min_nr_running = ULONG_MAX; |
2358 | sds->leader_nr_running = 0; |
2359 | } |
2360 | } |
2361 | |
2362 | /** |
2363 | * update_sd_power_savings_stats - Update the power saving stats for a |
2364 | * sched_domain while performing load balancing. |
2365 | * |
2366 | * @group: sched_group belonging to the sched_domain under consideration. |
2367 | * @sds: Variable containing the statistics of the sched_domain |
2368 | * @local_group: Does group contain the CPU for which we're performing |
2369 | * load balancing ? |
2370 | * @sgs: Variable containing the statistics of the group. |
2371 | */ |
2372 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
2373 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
2374 | { |
2375 | |
2376 | if (!sds->power_savings_balance) |
2377 | return; |
2378 | |
2379 | /* |
2380 | * If the local group is idle or completely loaded |
2381 | * no need to do power savings balance at this domain |
2382 | */ |
2383 | if (local_group && (sds->this_nr_running >= sgs->group_capacity || |
2384 | !sds->this_nr_running)) |
2385 | sds->power_savings_balance = 0; |
2386 | |
2387 | /* |
2388 | * If a group is already running at full capacity or idle, |
2389 | * don't include that group in power savings calculations |
2390 | */ |
2391 | if (!sds->power_savings_balance || |
2392 | sgs->sum_nr_running >= sgs->group_capacity || |
2393 | !sgs->sum_nr_running) |
2394 | return; |
2395 | |
2396 | /* |
2397 | * Calculate the group which has the least non-idle load. |
2398 | * This is the group from where we need to pick up the load |
2399 | * for saving power |
2400 | */ |
2401 | if ((sgs->sum_nr_running < sds->min_nr_running) || |
2402 | (sgs->sum_nr_running == sds->min_nr_running && |
2403 | group_first_cpu(group) > group_first_cpu(sds->group_min))) { |
2404 | sds->group_min = group; |
2405 | sds->min_nr_running = sgs->sum_nr_running; |
2406 | sds->min_load_per_task = sgs->sum_weighted_load / |
2407 | sgs->sum_nr_running; |
2408 | } |
2409 | |
2410 | /* |
2411 | * Calculate the group which is almost near its |
2412 | * capacity but still has some space to pick up some load |
2413 | * from other group and save more power |
2414 | */ |
2415 | if (sgs->sum_nr_running + 1 > sgs->group_capacity) |
2416 | return; |
2417 | |
2418 | if (sgs->sum_nr_running > sds->leader_nr_running || |
2419 | (sgs->sum_nr_running == sds->leader_nr_running && |
2420 | group_first_cpu(group) < group_first_cpu(sds->group_leader))) { |
2421 | sds->group_leader = group; |
2422 | sds->leader_nr_running = sgs->sum_nr_running; |
2423 | } |
2424 | } |
2425 | |
2426 | /** |
2427 | * check_power_save_busiest_group - see if there is potential for some power-savings balance |
2428 | * @sds: Variable containing the statistics of the sched_domain |
2429 | * under consideration. |
2430 | * @this_cpu: Cpu at which we're currently performing load-balancing. |
2431 | * @imbalance: Variable to store the imbalance. |
2432 | * |
2433 | * Description: |
2434 | * Check if we have potential to perform some power-savings balance. |
2435 | * If yes, set the busiest group to be the least loaded group in the |
2436 | * sched_domain, so that it's CPUs can be put to idle. |
2437 | * |
2438 | * Returns 1 if there is potential to perform power-savings balance. |
2439 | * Else returns 0. |
2440 | */ |
2441 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, |
2442 | int this_cpu, unsigned long *imbalance) |
2443 | { |
2444 | if (!sds->power_savings_balance) |
2445 | return 0; |
2446 | |
2447 | if (sds->this != sds->group_leader || |
2448 | sds->group_leader == sds->group_min) |
2449 | return 0; |
2450 | |
2451 | *imbalance = sds->min_load_per_task; |
2452 | sds->busiest = sds->group_min; |
2453 | |
2454 | return 1; |
2455 | |
2456 | } |
2457 | #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
2458 | static inline void init_sd_power_savings_stats(struct sched_domain *sd, |
2459 | struct sd_lb_stats *sds, enum cpu_idle_type idle) |
2460 | { |
2461 | return; |
2462 | } |
2463 | |
2464 | static inline void update_sd_power_savings_stats(struct sched_group *group, |
2465 | struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) |
2466 | { |
2467 | return; |
2468 | } |
2469 | |
2470 | static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, |
2471 | int this_cpu, unsigned long *imbalance) |
2472 | { |
2473 | return 0; |
2474 | } |
2475 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
2476 | |
2477 | |
2478 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) |
2479 | { |
2480 | return SCHED_LOAD_SCALE; |
2481 | } |
2482 | |
2483 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) |
2484 | { |
2485 | return default_scale_freq_power(sd, cpu); |
2486 | } |
2487 | |
2488 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) |
2489 | { |
2490 | unsigned long weight = sd->span_weight; |
2491 | unsigned long smt_gain = sd->smt_gain; |
2492 | |
2493 | smt_gain /= weight; |
2494 | |
2495 | return smt_gain; |
2496 | } |
2497 | |
2498 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) |
2499 | { |
2500 | return default_scale_smt_power(sd, cpu); |
2501 | } |
2502 | |
2503 | unsigned long scale_rt_power(int cpu) |
2504 | { |
2505 | struct rq *rq = cpu_rq(cpu); |
2506 | u64 total, available; |
2507 | |
2508 | total = sched_avg_period() + (rq->clock - rq->age_stamp); |
2509 | |
2510 | if (unlikely(total < rq->rt_avg)) { |
2511 | /* Ensures that power won't end up being negative */ |
2512 | available = 0; |
2513 | } else { |
2514 | available = total - rq->rt_avg; |
2515 | } |
2516 | |
2517 | if (unlikely((s64)total < SCHED_LOAD_SCALE)) |
2518 | total = SCHED_LOAD_SCALE; |
2519 | |
2520 | total >>= SCHED_LOAD_SHIFT; |
2521 | |
2522 | return div_u64(available, total); |
2523 | } |
2524 | |
2525 | static void update_cpu_power(struct sched_domain *sd, int cpu) |
2526 | { |
2527 | unsigned long weight = sd->span_weight; |
2528 | unsigned long power = SCHED_LOAD_SCALE; |
2529 | struct sched_group *sdg = sd->groups; |
2530 | |
2531 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
2532 | if (sched_feat(ARCH_POWER)) |
2533 | power *= arch_scale_smt_power(sd, cpu); |
2534 | else |
2535 | power *= default_scale_smt_power(sd, cpu); |
2536 | |
2537 | power >>= SCHED_LOAD_SHIFT; |
2538 | } |
2539 | |
2540 | sdg->cpu_power_orig = power; |
2541 | |
2542 | if (sched_feat(ARCH_POWER)) |
2543 | power *= arch_scale_freq_power(sd, cpu); |
2544 | else |
2545 | power *= default_scale_freq_power(sd, cpu); |
2546 | |
2547 | power >>= SCHED_LOAD_SHIFT; |
2548 | |
2549 | power *= scale_rt_power(cpu); |
2550 | power >>= SCHED_LOAD_SHIFT; |
2551 | |
2552 | if (!power) |
2553 | power = 1; |
2554 | |
2555 | cpu_rq(cpu)->cpu_power = power; |
2556 | sdg->cpu_power = power; |
2557 | } |
2558 | |
2559 | static void update_group_power(struct sched_domain *sd, int cpu) |
2560 | { |
2561 | struct sched_domain *child = sd->child; |
2562 | struct sched_group *group, *sdg = sd->groups; |
2563 | unsigned long power; |
2564 | |
2565 | if (!child) { |
2566 | update_cpu_power(sd, cpu); |
2567 | return; |
2568 | } |
2569 | |
2570 | power = 0; |
2571 | |
2572 | group = child->groups; |
2573 | do { |
2574 | power += group->cpu_power; |
2575 | group = group->next; |
2576 | } while (group != child->groups); |
2577 | |
2578 | sdg->cpu_power = power; |
2579 | } |
2580 | |
2581 | /* |
2582 | * Try and fix up capacity for tiny siblings, this is needed when |
2583 | * things like SD_ASYM_PACKING need f_b_g to select another sibling |
2584 | * which on its own isn't powerful enough. |
2585 | * |
2586 | * See update_sd_pick_busiest() and check_asym_packing(). |
2587 | */ |
2588 | static inline int |
2589 | fix_small_capacity(struct sched_domain *sd, struct sched_group *group) |
2590 | { |
2591 | /* |
2592 | * Only siblings can have significantly less than SCHED_LOAD_SCALE |
2593 | */ |
2594 | if (sd->level != SD_LV_SIBLING) |
2595 | return 0; |
2596 | |
2597 | /* |
2598 | * If ~90% of the cpu_power is still there, we're good. |
2599 | */ |
2600 | if (group->cpu_power * 32 > group->cpu_power_orig * 29) |
2601 | return 1; |
2602 | |
2603 | return 0; |
2604 | } |
2605 | |
2606 | /** |
2607 | * update_sg_lb_stats - Update sched_group's statistics for load balancing. |
2608 | * @sd: The sched_domain whose statistics are to be updated. |
2609 | * @group: sched_group whose statistics are to be updated. |
2610 | * @this_cpu: Cpu for which load balance is currently performed. |
2611 | * @idle: Idle status of this_cpu |
2612 | * @load_idx: Load index of sched_domain of this_cpu for load calc. |
2613 | * @sd_idle: Idle status of the sched_domain containing group. |
2614 | * @local_group: Does group contain this_cpu. |
2615 | * @cpus: Set of cpus considered for load balancing. |
2616 | * @balance: Should we balance. |
2617 | * @sgs: variable to hold the statistics for this group. |
2618 | */ |
2619 | static inline void update_sg_lb_stats(struct sched_domain *sd, |
2620 | struct sched_group *group, int this_cpu, |
2621 | enum cpu_idle_type idle, int load_idx, int *sd_idle, |
2622 | int local_group, const struct cpumask *cpus, |
2623 | int *balance, struct sg_lb_stats *sgs) |
2624 | { |
2625 | unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; |
2626 | int i; |
2627 | unsigned int balance_cpu = -1, first_idle_cpu = 0; |
2628 | unsigned long avg_load_per_task = 0; |
2629 | |
2630 | if (local_group) |
2631 | balance_cpu = group_first_cpu(group); |
2632 | |
2633 | /* Tally up the load of all CPUs in the group */ |
2634 | max_cpu_load = 0; |
2635 | min_cpu_load = ~0UL; |
2636 | max_nr_running = 0; |
2637 | |
2638 | for_each_cpu_and(i, sched_group_cpus(group), cpus) { |
2639 | struct rq *rq = cpu_rq(i); |
2640 | |
2641 | if (*sd_idle && rq->nr_running) |
2642 | *sd_idle = 0; |
2643 | |
2644 | /* Bias balancing toward cpus of our domain */ |
2645 | if (local_group) { |
2646 | if (idle_cpu(i) && !first_idle_cpu) { |
2647 | first_idle_cpu = 1; |
2648 | balance_cpu = i; |
2649 | } |
2650 | |
2651 | load = target_load(i, load_idx); |
2652 | } else { |
2653 | load = source_load(i, load_idx); |
2654 | if (load > max_cpu_load) { |
2655 | max_cpu_load = load; |
2656 | max_nr_running = rq->nr_running; |
2657 | } |
2658 | if (min_cpu_load > load) |
2659 | min_cpu_load = load; |
2660 | } |
2661 | |
2662 | sgs->group_load += load; |
2663 | sgs->sum_nr_running += rq->nr_running; |
2664 | sgs->sum_weighted_load += weighted_cpuload(i); |
2665 | if (idle_cpu(i)) |
2666 | sgs->idle_cpus++; |
2667 | } |
2668 | |
2669 | /* |
2670 | * First idle cpu or the first cpu(busiest) in this sched group |
2671 | * is eligible for doing load balancing at this and above |
2672 | * domains. In the newly idle case, we will allow all the cpu's |
2673 | * to do the newly idle load balance. |
2674 | */ |
2675 | if (idle != CPU_NEWLY_IDLE && local_group) { |
2676 | if (balance_cpu != this_cpu) { |
2677 | *balance = 0; |
2678 | return; |
2679 | } |
2680 | update_group_power(sd, this_cpu); |
2681 | } |
2682 | |
2683 | /* Adjust by relative CPU power of the group */ |
2684 | sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power; |
2685 | |
2686 | /* |
2687 | * Consider the group unbalanced when the imbalance is larger |
2688 | * than the average weight of two tasks. |
2689 | * |
2690 | * APZ: with cgroup the avg task weight can vary wildly and |
2691 | * might not be a suitable number - should we keep a |
2692 | * normalized nr_running number somewhere that negates |
2693 | * the hierarchy? |
2694 | */ |
2695 | if (sgs->sum_nr_running) |
2696 | avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; |
2697 | |
2698 | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1) |
2699 | sgs->group_imb = 1; |
2700 | |
2701 | sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE); |
2702 | if (!sgs->group_capacity) |
2703 | sgs->group_capacity = fix_small_capacity(sd, group); |
2704 | sgs->group_weight = group->group_weight; |
2705 | |
2706 | if (sgs->group_capacity > sgs->sum_nr_running) |
2707 | sgs->group_has_capacity = 1; |
2708 | } |
2709 | |
2710 | /** |
2711 | * update_sd_pick_busiest - return 1 on busiest group |
2712 | * @sd: sched_domain whose statistics are to be checked |
2713 | * @sds: sched_domain statistics |
2714 | * @sg: sched_group candidate to be checked for being the busiest |
2715 | * @sgs: sched_group statistics |
2716 | * @this_cpu: the current cpu |
2717 | * |
2718 | * Determine if @sg is a busier group than the previously selected |
2719 | * busiest group. |
2720 | */ |
2721 | static bool update_sd_pick_busiest(struct sched_domain *sd, |
2722 | struct sd_lb_stats *sds, |
2723 | struct sched_group *sg, |
2724 | struct sg_lb_stats *sgs, |
2725 | int this_cpu) |
2726 | { |
2727 | if (sgs->avg_load <= sds->max_load) |
2728 | return false; |
2729 | |
2730 | if (sgs->sum_nr_running > sgs->group_capacity) |
2731 | return true; |
2732 | |
2733 | if (sgs->group_imb) |
2734 | return true; |
2735 | |
2736 | /* |
2737 | * ASYM_PACKING needs to move all the work to the lowest |
2738 | * numbered CPUs in the group, therefore mark all groups |
2739 | * higher than ourself as busy. |
2740 | */ |
2741 | if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && |
2742 | this_cpu < group_first_cpu(sg)) { |
2743 | if (!sds->busiest) |
2744 | return true; |
2745 | |
2746 | if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) |
2747 | return true; |
2748 | } |
2749 | |
2750 | return false; |
2751 | } |
2752 | |
2753 | /** |
2754 | * update_sd_lb_stats - Update sched_group's statistics for load balancing. |
2755 | * @sd: sched_domain whose statistics are to be updated. |
2756 | * @this_cpu: Cpu for which load balance is currently performed. |
2757 | * @idle: Idle status of this_cpu |
2758 | * @sd_idle: Idle status of the sched_domain containing sg. |
2759 | * @cpus: Set of cpus considered for load balancing. |
2760 | * @balance: Should we balance. |
2761 | * @sds: variable to hold the statistics for this sched_domain. |
2762 | */ |
2763 | static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, |
2764 | enum cpu_idle_type idle, int *sd_idle, |
2765 | const struct cpumask *cpus, int *balance, |
2766 | struct sd_lb_stats *sds) |
2767 | { |
2768 | struct sched_domain *child = sd->child; |
2769 | struct sched_group *sg = sd->groups; |
2770 | struct sg_lb_stats sgs; |
2771 | int load_idx, prefer_sibling = 0; |
2772 | |
2773 | if (child && child->flags & SD_PREFER_SIBLING) |
2774 | prefer_sibling = 1; |
2775 | |
2776 | init_sd_power_savings_stats(sd, sds, idle); |
2777 | load_idx = get_sd_load_idx(sd, idle); |
2778 | |
2779 | do { |
2780 | int local_group; |
2781 | |
2782 | local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); |
2783 | memset(&sgs, 0, sizeof(sgs)); |
2784 | update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle, |
2785 | local_group, cpus, balance, &sgs); |
2786 | |
2787 | if (local_group && !(*balance)) |
2788 | return; |
2789 | |
2790 | sds->total_load += sgs.group_load; |
2791 | sds->total_pwr += sg->cpu_power; |
2792 | |
2793 | /* |
2794 | * In case the child domain prefers tasks go to siblings |
2795 | * first, lower the sg capacity to one so that we'll try |
2796 | * and move all the excess tasks away. We lower the capacity |
2797 | * of a group only if the local group has the capacity to fit |
2798 | * these excess tasks, i.e. nr_running < group_capacity. The |
2799 | * extra check prevents the case where you always pull from the |
2800 | * heaviest group when it is already under-utilized (possible |
2801 | * with a large weight task outweighs the tasks on the system). |
2802 | */ |
2803 | if (prefer_sibling && !local_group && sds->this_has_capacity) |
2804 | sgs.group_capacity = min(sgs.group_capacity, 1UL); |
2805 | |
2806 | if (local_group) { |
2807 | sds->this_load = sgs.avg_load; |
2808 | sds->this = sg; |
2809 | sds->this_nr_running = sgs.sum_nr_running; |
2810 | sds->this_load_per_task = sgs.sum_weighted_load; |
2811 | sds->this_has_capacity = sgs.group_has_capacity; |
2812 | sds->this_idle_cpus = sgs.idle_cpus; |
2813 | } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { |
2814 | sds->max_load = sgs.avg_load; |
2815 | sds->busiest = sg; |
2816 | sds->busiest_nr_running = sgs.sum_nr_running; |
2817 | sds->busiest_idle_cpus = sgs.idle_cpus; |
2818 | sds->busiest_group_capacity = sgs.group_capacity; |
2819 | sds->busiest_load_per_task = sgs.sum_weighted_load; |
2820 | sds->busiest_has_capacity = sgs.group_has_capacity; |
2821 | sds->busiest_group_weight = sgs.group_weight; |
2822 | sds->group_imb = sgs.group_imb; |
2823 | } |
2824 | |
2825 | update_sd_power_savings_stats(sg, sds, local_group, &sgs); |
2826 | sg = sg->next; |
2827 | } while (sg != sd->groups); |
2828 | } |
2829 | |
2830 | int __weak arch_sd_sibling_asym_packing(void) |
2831 | { |
2832 | return 0*SD_ASYM_PACKING; |
2833 | } |
2834 | |
2835 | /** |
2836 | * check_asym_packing - Check to see if the group is packed into the |
2837 | * sched doman. |
2838 | * |
2839 | * This is primarily intended to used at the sibling level. Some |
2840 | * cores like POWER7 prefer to use lower numbered SMT threads. In the |
2841 | * case of POWER7, it can move to lower SMT modes only when higher |
2842 | * threads are idle. When in lower SMT modes, the threads will |
2843 | * perform better since they share less core resources. Hence when we |
2844 | * have idle threads, we want them to be the higher ones. |
2845 | * |
2846 | * This packing function is run on idle threads. It checks to see if |
2847 | * the busiest CPU in this domain (core in the P7 case) has a higher |
2848 | * CPU number than the packing function is being run on. Here we are |
2849 | * assuming lower CPU number will be equivalent to lower a SMT thread |
2850 | * number. |
2851 | * |
2852 | * Returns 1 when packing is required and a task should be moved to |
2853 | * this CPU. The amount of the imbalance is returned in *imbalance. |
2854 | * |
2855 | * @sd: The sched_domain whose packing is to be checked. |
2856 | * @sds: Statistics of the sched_domain which is to be packed |
2857 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. |
2858 | * @imbalance: returns amount of imbalanced due to packing. |
2859 | */ |
2860 | static int check_asym_packing(struct sched_domain *sd, |
2861 | struct sd_lb_stats *sds, |
2862 | int this_cpu, unsigned long *imbalance) |
2863 | { |
2864 | int busiest_cpu; |
2865 | |
2866 | if (!(sd->flags & SD_ASYM_PACKING)) |
2867 | return 0; |
2868 | |
2869 | if (!sds->busiest) |
2870 | return 0; |
2871 | |
2872 | busiest_cpu = group_first_cpu(sds->busiest); |
2873 | if (this_cpu > busiest_cpu) |
2874 | return 0; |
2875 | |
2876 | *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power, |
2877 | SCHED_LOAD_SCALE); |
2878 | return 1; |
2879 | } |
2880 | |
2881 | /** |
2882 | * fix_small_imbalance - Calculate the minor imbalance that exists |
2883 | * amongst the groups of a sched_domain, during |
2884 | * load balancing. |
2885 | * @sds: Statistics of the sched_domain whose imbalance is to be calculated. |
2886 | * @this_cpu: The cpu at whose sched_domain we're performing load-balance. |
2887 | * @imbalance: Variable to store the imbalance. |
2888 | */ |
2889 | static inline void fix_small_imbalance(struct sd_lb_stats *sds, |
2890 | int this_cpu, unsigned long *imbalance) |
2891 | { |
2892 | unsigned long tmp, pwr_now = 0, pwr_move = 0; |
2893 | unsigned int imbn = 2; |
2894 | unsigned long scaled_busy_load_per_task; |
2895 | |
2896 | if (sds->this_nr_running) { |
2897 | sds->this_load_per_task /= sds->this_nr_running; |
2898 | if (sds->busiest_load_per_task > |
2899 | sds->this_load_per_task) |
2900 | imbn = 1; |
2901 | } else |
2902 | sds->this_load_per_task = |
2903 | cpu_avg_load_per_task(this_cpu); |
2904 | |
2905 | scaled_busy_load_per_task = sds->busiest_load_per_task |
2906 | * SCHED_LOAD_SCALE; |
2907 | scaled_busy_load_per_task /= sds->busiest->cpu_power; |
2908 | |
2909 | if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= |
2910 | (scaled_busy_load_per_task * imbn)) { |
2911 | *imbalance = sds->busiest_load_per_task; |
2912 | return; |
2913 | } |
2914 | |
2915 | /* |
2916 | * OK, we don't have enough imbalance to justify moving tasks, |
2917 | * however we may be able to increase total CPU power used by |
2918 | * moving them. |
2919 | */ |
2920 | |
2921 | pwr_now += sds->busiest->cpu_power * |
2922 | min(sds->busiest_load_per_task, sds->max_load); |
2923 | pwr_now += sds->this->cpu_power * |
2924 | min(sds->this_load_per_task, sds->this_load); |
2925 | pwr_now /= SCHED_LOAD_SCALE; |
2926 | |
2927 | /* Amount of load we'd subtract */ |
2928 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
2929 | sds->busiest->cpu_power; |
2930 | if (sds->max_load > tmp) |
2931 | pwr_move += sds->busiest->cpu_power * |
2932 | min(sds->busiest_load_per_task, sds->max_load - tmp); |
2933 | |
2934 | /* Amount of load we'd add */ |
2935 | if (sds->max_load * sds->busiest->cpu_power < |
2936 | sds->busiest_load_per_task * SCHED_LOAD_SCALE) |
2937 | tmp = (sds->max_load * sds->busiest->cpu_power) / |
2938 | sds->this->cpu_power; |
2939 | else |
2940 | tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) / |
2941 | sds->this->cpu_power; |
2942 | pwr_move += sds->this->cpu_power * |
2943 | min(sds->this_load_per_task, sds->this_load + tmp); |
2944 | pwr_move /= SCHED_LOAD_SCALE; |
2945 | |
2946 | /* Move if we gain throughput */ |
2947 | if (pwr_move > pwr_now) |
2948 | *imbalance = sds->busiest_load_per_task; |
2949 | } |
2950 | |
2951 | /** |
2952 | * calculate_imbalance - Calculate the amount of imbalance present within the |
2953 | * groups of a given sched_domain during load balance. |
2954 | * @sds: statistics of the sched_domain whose imbalance is to be calculated. |
2955 | * @this_cpu: Cpu for which currently load balance is being performed. |
2956 | * @imbalance: The variable to store the imbalance. |
2957 | */ |
2958 | static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, |
2959 | unsigned long *imbalance) |
2960 | { |
2961 | unsigned long max_pull, load_above_capacity = ~0UL; |
2962 | |
2963 | sds->busiest_load_per_task /= sds->busiest_nr_running; |
2964 | if (sds->group_imb) { |
2965 | sds->busiest_load_per_task = |
2966 | min(sds->busiest_load_per_task, sds->avg_load); |
2967 | } |
2968 | |
2969 | /* |
2970 | * In the presence of smp nice balancing, certain scenarios can have |
2971 | * max load less than avg load(as we skip the groups at or below |
2972 | * its cpu_power, while calculating max_load..) |
2973 | */ |
2974 | if (sds->max_load < sds->avg_load) { |
2975 | *imbalance = 0; |
2976 | return fix_small_imbalance(sds, this_cpu, imbalance); |
2977 | } |
2978 | |
2979 | if (!sds->group_imb) { |
2980 | /* |
2981 | * Don't want to pull so many tasks that a group would go idle. |
2982 | */ |
2983 | load_above_capacity = (sds->busiest_nr_running - |
2984 | sds->busiest_group_capacity); |
2985 | |
2986 | load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE); |
2987 | |
2988 | load_above_capacity /= sds->busiest->cpu_power; |
2989 | } |
2990 | |
2991 | /* |
2992 | * We're trying to get all the cpus to the average_load, so we don't |
2993 | * want to push ourselves above the average load, nor do we wish to |
2994 | * reduce the max loaded cpu below the average load. At the same time, |
2995 | * we also don't want to reduce the group load below the group capacity |
2996 | * (so that we can implement power-savings policies etc). Thus we look |
2997 | * for the minimum possible imbalance. |
2998 | * Be careful of negative numbers as they'll appear as very large values |
2999 | * with unsigned longs. |
3000 | */ |
3001 | max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); |
3002 | |
3003 | /* How much load to actually move to equalise the imbalance */ |
3004 | *imbalance = min(max_pull * sds->busiest->cpu_power, |
3005 | (sds->avg_load - sds->this_load) * sds->this->cpu_power) |
3006 | / SCHED_LOAD_SCALE; |
3007 | |
3008 | /* |
3009 | * if *imbalance is less than the average load per runnable task |
3010 | * there is no gaurantee that any tasks will be moved so we'll have |
3011 | * a think about bumping its value to force at least one task to be |
3012 | * moved |
3013 | */ |
3014 | if (*imbalance < sds->busiest_load_per_task) |
3015 | return fix_small_imbalance(sds, this_cpu, imbalance); |
3016 | |
3017 | } |
3018 | |
3019 | /******* find_busiest_group() helpers end here *********************/ |
3020 | |
3021 | /** |
3022 | * find_busiest_group - Returns the busiest group within the sched_domain |
3023 | * if there is an imbalance. If there isn't an imbalance, and |
3024 | * the user has opted for power-savings, it returns a group whose |
3025 | * CPUs can be put to idle by rebalancing those tasks elsewhere, if |
3026 | * such a group exists. |
3027 | * |
3028 | * Also calculates the amount of weighted load which should be moved |
3029 | * to restore balance. |
3030 | * |
3031 | * @sd: The sched_domain whose busiest group is to be returned. |
3032 | * @this_cpu: The cpu for which load balancing is currently being performed. |
3033 | * @imbalance: Variable which stores amount of weighted load which should |
3034 | * be moved to restore balance/put a group to idle. |
3035 | * @idle: The idle status of this_cpu. |
3036 | * @sd_idle: The idleness of sd |
3037 | * @cpus: The set of CPUs under consideration for load-balancing. |
3038 | * @balance: Pointer to a variable indicating if this_cpu |
3039 | * is the appropriate cpu to perform load balancing at this_level. |
3040 | * |
3041 | * Returns: - the busiest group if imbalance exists. |
3042 | * - If no imbalance and user has opted for power-savings balance, |
3043 | * return the least loaded group whose CPUs can be |
3044 | * put to idle by rebalancing its tasks onto our group. |
3045 | */ |
3046 | static struct sched_group * |
3047 | find_busiest_group(struct sched_domain *sd, int this_cpu, |
3048 | unsigned long *imbalance, enum cpu_idle_type idle, |
3049 | int *sd_idle, const struct cpumask *cpus, int *balance) |
3050 | { |
3051 | struct sd_lb_stats sds; |
3052 | |
3053 | memset(&sds, 0, sizeof(sds)); |
3054 | |
3055 | /* |
3056 | * Compute the various statistics relavent for load balancing at |
3057 | * this level. |
3058 | */ |
3059 | update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, |
3060 | balance, &sds); |
3061 | |
3062 | /* Cases where imbalance does not exist from POV of this_cpu */ |
3063 | /* 1) this_cpu is not the appropriate cpu to perform load balancing |
3064 | * at this level. |
3065 | * 2) There is no busy sibling group to pull from. |
3066 | * 3) This group is the busiest group. |
3067 | * 4) This group is more busy than the avg busieness at this |
3068 | * sched_domain. |
3069 | * 5) The imbalance is within the specified limit. |
3070 | * |
3071 | * Note: when doing newidle balance, if the local group has excess |
3072 | * capacity (i.e. nr_running < group_capacity) and the busiest group |
3073 | * does not have any capacity, we force a load balance to pull tasks |
3074 | * to the local group. In this case, we skip past checks 3, 4 and 5. |
3075 | */ |
3076 | if (!(*balance)) |
3077 | goto ret; |
3078 | |
3079 | if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && |
3080 | check_asym_packing(sd, &sds, this_cpu, imbalance)) |
3081 | return sds.busiest; |
3082 | |
3083 | if (!sds.busiest || sds.busiest_nr_running == 0) |
3084 | goto out_balanced; |
3085 | |
3086 | /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ |
3087 | if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && |
3088 | !sds.busiest_has_capacity) |
3089 | goto force_balance; |
3090 | |
3091 | if (sds.this_load >= sds.max_load) |
3092 | goto out_balanced; |
3093 | |
3094 | sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; |
3095 | |
3096 | if (sds.this_load >= sds.avg_load) |
3097 | goto out_balanced; |
3098 | |
3099 | /* |
3100 | * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative. |
3101 | * And to check for busy balance use !idle_cpu instead of |
3102 | * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE |
3103 | * even when they are idle. |
3104 | */ |
3105 | if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) { |
3106 | if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) |
3107 | goto out_balanced; |
3108 | } else { |
3109 | /* |
3110 | * This cpu is idle. If the busiest group load doesn't |
3111 | * have more tasks than the number of available cpu's and |
3112 | * there is no imbalance between this and busiest group |
3113 | * wrt to idle cpu's, it is balanced. |
3114 | */ |
3115 | if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && |
3116 | sds.busiest_nr_running <= sds.busiest_group_weight) |
3117 | goto out_balanced; |
3118 | } |
3119 | |
3120 | force_balance: |
3121 | /* Looks like there is an imbalance. Compute it */ |
3122 | calculate_imbalance(&sds, this_cpu, imbalance); |
3123 | return sds.busiest; |
3124 | |
3125 | out_balanced: |
3126 | /* |
3127 | * There is no obvious imbalance. But check if we can do some balancing |
3128 | * to save power. |
3129 | */ |
3130 | if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) |
3131 | return sds.busiest; |
3132 | ret: |
3133 | *imbalance = 0; |
3134 | return NULL; |
3135 | } |
3136 | |
3137 | /* |
3138 | * find_busiest_queue - find the busiest runqueue among the cpus in group. |
3139 | */ |
3140 | static struct rq * |
3141 | find_busiest_queue(struct sched_domain *sd, struct sched_group *group, |
3142 | enum cpu_idle_type idle, unsigned long imbalance, |
3143 | const struct cpumask *cpus) |
3144 | { |
3145 | struct rq *busiest = NULL, *rq; |
3146 | unsigned long max_load = 0; |
3147 | int i; |
3148 | |
3149 | for_each_cpu(i, sched_group_cpus(group)) { |
3150 | unsigned long power = power_of(i); |
3151 | unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); |
3152 | unsigned long wl; |
3153 | |
3154 | if (!capacity) |
3155 | capacity = fix_small_capacity(sd, group); |
3156 | |
3157 | if (!cpumask_test_cpu(i, cpus)) |
3158 | continue; |
3159 | |
3160 | rq = cpu_rq(i); |
3161 | wl = weighted_cpuload(i); |
3162 | |
3163 | /* |
3164 | * When comparing with imbalance, use weighted_cpuload() |
3165 | * which is not scaled with the cpu power. |
3166 | */ |
3167 | if (capacity && rq->nr_running == 1 && wl > imbalance) |
3168 | continue; |
3169 | |
3170 | /* |
3171 | * For the load comparisons with the other cpu's, consider |
3172 | * the weighted_cpuload() scaled with the cpu power, so that |
3173 | * the load can be moved away from the cpu that is potentially |
3174 | * running at a lower capacity. |
3175 | */ |
3176 | wl = (wl * SCHED_LOAD_SCALE) / power; |
3177 | |
3178 | if (wl > max_load) { |
3179 | max_load = wl; |
3180 | busiest = rq; |
3181 | } |
3182 | } |
3183 | |
3184 | return busiest; |
3185 | } |
3186 | |
3187 | /* |
3188 | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but |
3189 | * so long as it is large enough. |
3190 | */ |
3191 | #define MAX_PINNED_INTERVAL 512 |
3192 | |
3193 | /* Working cpumask for load_balance and load_balance_newidle. */ |
3194 | static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); |
3195 | |
3196 | static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle, |
3197 | int busiest_cpu, int this_cpu) |
3198 | { |
3199 | if (idle == CPU_NEWLY_IDLE) { |
3200 | |
3201 | /* |
3202 | * ASYM_PACKING needs to force migrate tasks from busy but |
3203 | * higher numbered CPUs in order to pack all tasks in the |
3204 | * lowest numbered CPUs. |
3205 | */ |
3206 | if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) |
3207 | return 1; |
3208 | |
3209 | /* |
3210 | * The only task running in a non-idle cpu can be moved to this |
3211 | * cpu in an attempt to completely freeup the other CPU |
3212 | * package. |
3213 | * |
3214 | * The package power saving logic comes from |
3215 | * find_busiest_group(). If there are no imbalance, then |
3216 | * f_b_g() will return NULL. However when sched_mc={1,2} then |
3217 | * f_b_g() will select a group from which a running task may be |
3218 | * pulled to this cpu in order to make the other package idle. |
3219 | * If there is no opportunity to make a package idle and if |
3220 | * there are no imbalance, then f_b_g() will return NULL and no |
3221 | * action will be taken in load_balance_newidle(). |
3222 | * |
3223 | * Under normal task pull operation due to imbalance, there |
3224 | * will be more than one task in the source run queue and |
3225 | * move_tasks() will succeed. ld_moved will be true and this |
3226 | * active balance code will not be triggered. |
3227 | */ |
3228 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3229 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3230 | return 0; |
3231 | |
3232 | if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) |
3233 | return 0; |
3234 | } |
3235 | |
3236 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
3237 | } |
3238 | |
3239 | static int active_load_balance_cpu_stop(void *data); |
3240 | |
3241 | /* |
3242 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
3243 | * tasks if there is an imbalance. |
3244 | */ |
3245 | static int load_balance(int this_cpu, struct rq *this_rq, |
3246 | struct sched_domain *sd, enum cpu_idle_type idle, |
3247 | int *balance) |
3248 | { |
3249 | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; |
3250 | struct sched_group *group; |
3251 | unsigned long imbalance; |
3252 | struct rq *busiest; |
3253 | unsigned long flags; |
3254 | struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); |
3255 | |
3256 | cpumask_copy(cpus, cpu_active_mask); |
3257 | |
3258 | /* |
3259 | * When power savings policy is enabled for the parent domain, idle |
3260 | * sibling can pick up load irrespective of busy siblings. In this case, |
3261 | * let the state of idle sibling percolate up as CPU_IDLE, instead of |
3262 | * portraying it as CPU_NOT_IDLE. |
3263 | */ |
3264 | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && |
3265 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3266 | sd_idle = 1; |
3267 | |
3268 | schedstat_inc(sd, lb_count[idle]); |
3269 | |
3270 | redo: |
3271 | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, |
3272 | cpus, balance); |
3273 | |
3274 | if (*balance == 0) |
3275 | goto out_balanced; |
3276 | |
3277 | if (!group) { |
3278 | schedstat_inc(sd, lb_nobusyg[idle]); |
3279 | goto out_balanced; |
3280 | } |
3281 | |
3282 | busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); |
3283 | if (!busiest) { |
3284 | schedstat_inc(sd, lb_nobusyq[idle]); |
3285 | goto out_balanced; |
3286 | } |
3287 | |
3288 | BUG_ON(busiest == this_rq); |
3289 | |
3290 | schedstat_add(sd, lb_imbalance[idle], imbalance); |
3291 | |
3292 | ld_moved = 0; |
3293 | if (busiest->nr_running > 1) { |
3294 | /* |
3295 | * Attempt to move tasks. If find_busiest_group has found |
3296 | * an imbalance but busiest->nr_running <= 1, the group is |
3297 | * still unbalanced. ld_moved simply stays zero, so it is |
3298 | * correctly treated as an imbalance. |
3299 | */ |
3300 | local_irq_save(flags); |
3301 | double_rq_lock(this_rq, busiest); |
3302 | ld_moved = move_tasks(this_rq, this_cpu, busiest, |
3303 | imbalance, sd, idle, &all_pinned); |
3304 | double_rq_unlock(this_rq, busiest); |
3305 | local_irq_restore(flags); |
3306 | |
3307 | /* |
3308 | * some other cpu did the load balance for us. |
3309 | */ |
3310 | if (ld_moved && this_cpu != smp_processor_id()) |
3311 | resched_cpu(this_cpu); |
3312 | |
3313 | /* All tasks on this runqueue were pinned by CPU affinity */ |
3314 | if (unlikely(all_pinned)) { |
3315 | cpumask_clear_cpu(cpu_of(busiest), cpus); |
3316 | if (!cpumask_empty(cpus)) |
3317 | goto redo; |
3318 | goto out_balanced; |
3319 | } |
3320 | } |
3321 | |
3322 | if (!ld_moved) { |
3323 | schedstat_inc(sd, lb_failed[idle]); |
3324 | /* |
3325 | * Increment the failure counter only on periodic balance. |
3326 | * We do not want newidle balance, which can be very |
3327 | * frequent, pollute the failure counter causing |
3328 | * excessive cache_hot migrations and active balances. |
3329 | */ |
3330 | if (idle != CPU_NEWLY_IDLE) |
3331 | sd->nr_balance_failed++; |
3332 | |
3333 | if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest), |
3334 | this_cpu)) { |
3335 | raw_spin_lock_irqsave(&busiest->lock, flags); |
3336 | |
3337 | /* don't kick the active_load_balance_cpu_stop, |
3338 | * if the curr task on busiest cpu can't be |
3339 | * moved to this_cpu |
3340 | */ |
3341 | if (!cpumask_test_cpu(this_cpu, |
3342 | &busiest->curr->cpus_allowed)) { |
3343 | raw_spin_unlock_irqrestore(&busiest->lock, |
3344 | flags); |
3345 | all_pinned = 1; |
3346 | goto out_one_pinned; |
3347 | } |
3348 | |
3349 | /* |
3350 | * ->active_balance synchronizes accesses to |
3351 | * ->active_balance_work. Once set, it's cleared |
3352 | * only after active load balance is finished. |
3353 | */ |
3354 | if (!busiest->active_balance) { |
3355 | busiest->active_balance = 1; |
3356 | busiest->push_cpu = this_cpu; |
3357 | active_balance = 1; |
3358 | } |
3359 | raw_spin_unlock_irqrestore(&busiest->lock, flags); |
3360 | |
3361 | if (active_balance) |
3362 | stop_one_cpu_nowait(cpu_of(busiest), |
3363 | active_load_balance_cpu_stop, busiest, |
3364 | &busiest->active_balance_work); |
3365 | |
3366 | /* |
3367 | * We've kicked active balancing, reset the failure |
3368 | * counter. |
3369 | */ |
3370 | sd->nr_balance_failed = sd->cache_nice_tries+1; |
3371 | } |
3372 | } else |
3373 | sd->nr_balance_failed = 0; |
3374 | |
3375 | if (likely(!active_balance)) { |
3376 | /* We were unbalanced, so reset the balancing interval */ |
3377 | sd->balance_interval = sd->min_interval; |
3378 | } else { |
3379 | /* |
3380 | * If we've begun active balancing, start to back off. This |
3381 | * case may not be covered by the all_pinned logic if there |
3382 | * is only 1 task on the busy runqueue (because we don't call |
3383 | * move_tasks). |
3384 | */ |
3385 | if (sd->balance_interval < sd->max_interval) |
3386 | sd->balance_interval *= 2; |
3387 | } |
3388 | |
3389 | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3390 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3391 | ld_moved = -1; |
3392 | |
3393 | goto out; |
3394 | |
3395 | out_balanced: |
3396 | schedstat_inc(sd, lb_balanced[idle]); |
3397 | |
3398 | sd->nr_balance_failed = 0; |
3399 | |
3400 | out_one_pinned: |
3401 | /* tune up the balancing interval */ |
3402 | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || |
3403 | (sd->balance_interval < sd->max_interval)) |
3404 | sd->balance_interval *= 2; |
3405 | |
3406 | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && |
3407 | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) |
3408 | ld_moved = -1; |
3409 | else |
3410 | ld_moved = 0; |
3411 | out: |
3412 | return ld_moved; |
3413 | } |
3414 | |
3415 | /* |
3416 | * idle_balance is called by schedule() if this_cpu is about to become |
3417 | * idle. Attempts to pull tasks from other CPUs. |
3418 | */ |
3419 | static void idle_balance(int this_cpu, struct rq *this_rq) |
3420 | { |
3421 | struct sched_domain *sd; |
3422 | int pulled_task = 0; |
3423 | unsigned long next_balance = jiffies + HZ; |
3424 | |
3425 | this_rq->idle_stamp = this_rq->clock; |
3426 | |
3427 | if (this_rq->avg_idle < sysctl_sched_migration_cost) |
3428 | return; |
3429 | |
3430 | /* |
3431 | * Drop the rq->lock, but keep IRQ/preempt disabled. |
3432 | */ |
3433 | raw_spin_unlock(&this_rq->lock); |
3434 | |
3435 | update_shares(this_cpu); |
3436 | for_each_domain(this_cpu, sd) { |
3437 | unsigned long interval; |
3438 | int balance = 1; |
3439 | |
3440 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3441 | continue; |
3442 | |
3443 | if (sd->flags & SD_BALANCE_NEWIDLE) { |
3444 | /* If we've pulled tasks over stop searching: */ |
3445 | pulled_task = load_balance(this_cpu, this_rq, |
3446 | sd, CPU_NEWLY_IDLE, &balance); |
3447 | } |
3448 | |
3449 | interval = msecs_to_jiffies(sd->balance_interval); |
3450 | if (time_after(next_balance, sd->last_balance + interval)) |
3451 | next_balance = sd->last_balance + interval; |
3452 | if (pulled_task) { |
3453 | this_rq->idle_stamp = 0; |
3454 | break; |
3455 | } |
3456 | } |
3457 | |
3458 | raw_spin_lock(&this_rq->lock); |
3459 | |
3460 | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { |
3461 | /* |
3462 | * We are going idle. next_balance may be set based on |
3463 | * a busy processor. So reset next_balance. |
3464 | */ |
3465 | this_rq->next_balance = next_balance; |
3466 | } |
3467 | } |
3468 | |
3469 | /* |
3470 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes |
3471 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
3472 | * least 1 task to be running on each physical CPU where possible, and |
3473 | * avoids physical / logical imbalances. |
3474 | */ |
3475 | static int active_load_balance_cpu_stop(void *data) |
3476 | { |
3477 | struct rq *busiest_rq = data; |
3478 | int busiest_cpu = cpu_of(busiest_rq); |
3479 | int target_cpu = busiest_rq->push_cpu; |
3480 | struct rq *target_rq = cpu_rq(target_cpu); |
3481 | struct sched_domain *sd; |
3482 | |
3483 | raw_spin_lock_irq(&busiest_rq->lock); |
3484 | |
3485 | /* make sure the requested cpu hasn't gone down in the meantime */ |
3486 | if (unlikely(busiest_cpu != smp_processor_id() || |
3487 | !busiest_rq->active_balance)) |
3488 | goto out_unlock; |
3489 | |
3490 | /* Is there any task to move? */ |
3491 | if (busiest_rq->nr_running <= 1) |
3492 | goto out_unlock; |
3493 | |
3494 | /* |
3495 | * This condition is "impossible", if it occurs |
3496 | * we need to fix it. Originally reported by |
3497 | * Bjorn Helgaas on a 128-cpu setup. |
3498 | */ |
3499 | BUG_ON(busiest_rq == target_rq); |
3500 | |
3501 | /* move a task from busiest_rq to target_rq */ |
3502 | double_lock_balance(busiest_rq, target_rq); |
3503 | |
3504 | /* Search for an sd spanning us and the target CPU. */ |
3505 | for_each_domain(target_cpu, sd) { |
3506 | if ((sd->flags & SD_LOAD_BALANCE) && |
3507 | cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) |
3508 | break; |
3509 | } |
3510 | |
3511 | if (likely(sd)) { |
3512 | schedstat_inc(sd, alb_count); |
3513 | |
3514 | if (move_one_task(target_rq, target_cpu, busiest_rq, |
3515 | sd, CPU_IDLE)) |
3516 | schedstat_inc(sd, alb_pushed); |
3517 | else |
3518 | schedstat_inc(sd, alb_failed); |
3519 | } |
3520 | double_unlock_balance(busiest_rq, target_rq); |
3521 | out_unlock: |
3522 | busiest_rq->active_balance = 0; |
3523 | raw_spin_unlock_irq(&busiest_rq->lock); |
3524 | return 0; |
3525 | } |
3526 | |
3527 | #ifdef CONFIG_NO_HZ |
3528 | |
3529 | static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb); |
3530 | |
3531 | static void trigger_sched_softirq(void *data) |
3532 | { |
3533 | raise_softirq_irqoff(SCHED_SOFTIRQ); |
3534 | } |
3535 | |
3536 | static inline void init_sched_softirq_csd(struct call_single_data *csd) |
3537 | { |
3538 | csd->func = trigger_sched_softirq; |
3539 | csd->info = NULL; |
3540 | csd->flags = 0; |
3541 | csd->priv = 0; |
3542 | } |
3543 | |
3544 | /* |
3545 | * idle load balancing details |
3546 | * - One of the idle CPUs nominates itself as idle load_balancer, while |
3547 | * entering idle. |
3548 | * - This idle load balancer CPU will also go into tickless mode when |
3549 | * it is idle, just like all other idle CPUs |
3550 | * - When one of the busy CPUs notice that there may be an idle rebalancing |
3551 | * needed, they will kick the idle load balancer, which then does idle |
3552 | * load balancing for all the idle CPUs. |
3553 | */ |
3554 | static struct { |
3555 | atomic_t load_balancer; |
3556 | atomic_t first_pick_cpu; |
3557 | atomic_t second_pick_cpu; |
3558 | cpumask_var_t idle_cpus_mask; |
3559 | cpumask_var_t grp_idle_mask; |
3560 | unsigned long next_balance; /* in jiffy units */ |
3561 | } nohz ____cacheline_aligned; |
3562 | |
3563 | int get_nohz_load_balancer(void) |
3564 | { |
3565 | return atomic_read(&nohz.load_balancer); |
3566 | } |
3567 | |
3568 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) |
3569 | /** |
3570 | * lowest_flag_domain - Return lowest sched_domain containing flag. |
3571 | * @cpu: The cpu whose lowest level of sched domain is to |
3572 | * be returned. |
3573 | * @flag: The flag to check for the lowest sched_domain |
3574 | * for the given cpu. |
3575 | * |
3576 | * Returns the lowest sched_domain of a cpu which contains the given flag. |
3577 | */ |
3578 | static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) |
3579 | { |
3580 | struct sched_domain *sd; |
3581 | |
3582 | for_each_domain(cpu, sd) |
3583 | if (sd && (sd->flags & flag)) |
3584 | break; |
3585 | |
3586 | return sd; |
3587 | } |
3588 | |
3589 | /** |
3590 | * for_each_flag_domain - Iterates over sched_domains containing the flag. |
3591 | * @cpu: The cpu whose domains we're iterating over. |
3592 | * @sd: variable holding the value of the power_savings_sd |
3593 | * for cpu. |
3594 | * @flag: The flag to filter the sched_domains to be iterated. |
3595 | * |
3596 | * Iterates over all the scheduler domains for a given cpu that has the 'flag' |
3597 | * set, starting from the lowest sched_domain to the highest. |
3598 | */ |
3599 | #define for_each_flag_domain(cpu, sd, flag) \ |
3600 | for (sd = lowest_flag_domain(cpu, flag); \ |
3601 | (sd && (sd->flags & flag)); sd = sd->parent) |
3602 | |
3603 | /** |
3604 | * is_semi_idle_group - Checks if the given sched_group is semi-idle. |
3605 | * @ilb_group: group to be checked for semi-idleness |
3606 | * |
3607 | * Returns: 1 if the group is semi-idle. 0 otherwise. |
3608 | * |
3609 | * We define a sched_group to be semi idle if it has atleast one idle-CPU |
3610 | * and atleast one non-idle CPU. This helper function checks if the given |
3611 | * sched_group is semi-idle or not. |
3612 | */ |
3613 | static inline int is_semi_idle_group(struct sched_group *ilb_group) |
3614 | { |
3615 | cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask, |
3616 | sched_group_cpus(ilb_group)); |
3617 | |
3618 | /* |
3619 | * A sched_group is semi-idle when it has atleast one busy cpu |
3620 | * and atleast one idle cpu. |
3621 | */ |
3622 | if (cpumask_empty(nohz.grp_idle_mask)) |
3623 | return 0; |
3624 | |
3625 | if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group))) |
3626 | return 0; |
3627 | |
3628 | return 1; |
3629 | } |
3630 | /** |
3631 | * find_new_ilb - Finds the optimum idle load balancer for nomination. |
3632 | * @cpu: The cpu which is nominating a new idle_load_balancer. |
3633 | * |
3634 | * Returns: Returns the id of the idle load balancer if it exists, |
3635 | * Else, returns >= nr_cpu_ids. |
3636 | * |
3637 | * This algorithm picks the idle load balancer such that it belongs to a |
3638 | * semi-idle powersavings sched_domain. The idea is to try and avoid |
3639 | * completely idle packages/cores just for the purpose of idle load balancing |
3640 | * when there are other idle cpu's which are better suited for that job. |
3641 | */ |
3642 | static int find_new_ilb(int cpu) |
3643 | { |
3644 | struct sched_domain *sd; |
3645 | struct sched_group *ilb_group; |
3646 | |
3647 | /* |
3648 | * Have idle load balancer selection from semi-idle packages only |
3649 | * when power-aware load balancing is enabled |
3650 | */ |
3651 | if (!(sched_smt_power_savings || sched_mc_power_savings)) |
3652 | goto out_done; |
3653 | |
3654 | /* |
3655 | * Optimize for the case when we have no idle CPUs or only one |
3656 | * idle CPU. Don't walk the sched_domain hierarchy in such cases |
3657 | */ |
3658 | if (cpumask_weight(nohz.idle_cpus_mask) < 2) |
3659 | goto out_done; |
3660 | |
3661 | for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { |
3662 | ilb_group = sd->groups; |
3663 | |
3664 | do { |
3665 | if (is_semi_idle_group(ilb_group)) |
3666 | return cpumask_first(nohz.grp_idle_mask); |
3667 | |
3668 | ilb_group = ilb_group->next; |
3669 | |
3670 | } while (ilb_group != sd->groups); |
3671 | } |
3672 | |
3673 | out_done: |
3674 | return nr_cpu_ids; |
3675 | } |
3676 | #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ |
3677 | static inline int find_new_ilb(int call_cpu) |
3678 | { |
3679 | return nr_cpu_ids; |
3680 | } |
3681 | #endif |
3682 | |
3683 | /* |
3684 | * Kick a CPU to do the nohz balancing, if it is time for it. We pick the |
3685 | * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle |
3686 | * CPU (if there is one). |
3687 | */ |
3688 | static void nohz_balancer_kick(int cpu) |
3689 | { |
3690 | int ilb_cpu; |
3691 | |
3692 | nohz.next_balance++; |
3693 | |
3694 | ilb_cpu = get_nohz_load_balancer(); |
3695 | |
3696 | if (ilb_cpu >= nr_cpu_ids) { |
3697 | ilb_cpu = cpumask_first(nohz.idle_cpus_mask); |
3698 | if (ilb_cpu >= nr_cpu_ids) |
3699 | return; |
3700 | } |
3701 | |
3702 | if (!cpu_rq(ilb_cpu)->nohz_balance_kick) { |
3703 | struct call_single_data *cp; |
3704 | |
3705 | cpu_rq(ilb_cpu)->nohz_balance_kick = 1; |
3706 | cp = &per_cpu(remote_sched_softirq_cb, cpu); |
3707 | __smp_call_function_single(ilb_cpu, cp, 0); |
3708 | } |
3709 | return; |
3710 | } |
3711 | |
3712 | /* |
3713 | * This routine will try to nominate the ilb (idle load balancing) |
3714 | * owner among the cpus whose ticks are stopped. ilb owner will do the idle |
3715 | * load balancing on behalf of all those cpus. |
3716 | * |
3717 | * When the ilb owner becomes busy, we will not have new ilb owner until some |
3718 | * idle CPU wakes up and goes back to idle or some busy CPU tries to kick |
3719 | * idle load balancing by kicking one of the idle CPUs. |
3720 | * |
3721 | * Ticks are stopped for the ilb owner as well, with busy CPU kicking this |
3722 | * ilb owner CPU in future (when there is a need for idle load balancing on |
3723 | * behalf of all idle CPUs). |
3724 | */ |
3725 | void select_nohz_load_balancer(int stop_tick) |
3726 | { |
3727 | int cpu = smp_processor_id(); |
3728 | |
3729 | if (stop_tick) { |
3730 | if (!cpu_active(cpu)) { |
3731 | if (atomic_read(&nohz.load_balancer) != cpu) |
3732 | return; |
3733 | |
3734 | /* |
3735 | * If we are going offline and still the leader, |
3736 | * give up! |
3737 | */ |
3738 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, |
3739 | nr_cpu_ids) != cpu) |
3740 | BUG(); |
3741 | |
3742 | return; |
3743 | } |
3744 | |
3745 | cpumask_set_cpu(cpu, nohz.idle_cpus_mask); |
3746 | |
3747 | if (atomic_read(&nohz.first_pick_cpu) == cpu) |
3748 | atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids); |
3749 | if (atomic_read(&nohz.second_pick_cpu) == cpu) |
3750 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); |
3751 | |
3752 | if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) { |
3753 | int new_ilb; |
3754 | |
3755 | /* make me the ilb owner */ |
3756 | if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids, |
3757 | cpu) != nr_cpu_ids) |
3758 | return; |
3759 | |
3760 | /* |
3761 | * Check to see if there is a more power-efficient |
3762 | * ilb. |
3763 | */ |
3764 | new_ilb = find_new_ilb(cpu); |
3765 | if (new_ilb < nr_cpu_ids && new_ilb != cpu) { |
3766 | atomic_set(&nohz.load_balancer, nr_cpu_ids); |
3767 | resched_cpu(new_ilb); |
3768 | return; |
3769 | } |
3770 | return; |
3771 | } |
3772 | } else { |
3773 | if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) |
3774 | return; |
3775 | |
3776 | cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); |
3777 | |
3778 | if (atomic_read(&nohz.load_balancer) == cpu) |
3779 | if (atomic_cmpxchg(&nohz.load_balancer, cpu, |
3780 | nr_cpu_ids) != cpu) |
3781 | BUG(); |
3782 | } |
3783 | return; |
3784 | } |
3785 | #endif |
3786 | |
3787 | static DEFINE_SPINLOCK(balancing); |
3788 | |
3789 | /* |
3790 | * It checks each scheduling domain to see if it is due to be balanced, |
3791 | * and initiates a balancing operation if so. |
3792 | * |
3793 | * Balancing parameters are set up in arch_init_sched_domains. |
3794 | */ |
3795 | static void rebalance_domains(int cpu, enum cpu_idle_type idle) |
3796 | { |
3797 | int balance = 1; |
3798 | struct rq *rq = cpu_rq(cpu); |
3799 | unsigned long interval; |
3800 | struct sched_domain *sd; |
3801 | /* Earliest time when we have to do rebalance again */ |
3802 | unsigned long next_balance = jiffies + 60*HZ; |
3803 | int update_next_balance = 0; |
3804 | int need_serialize; |
3805 | |
3806 | update_shares(cpu); |
3807 | |
3808 | for_each_domain(cpu, sd) { |
3809 | if (!(sd->flags & SD_LOAD_BALANCE)) |
3810 | continue; |
3811 | |
3812 | interval = sd->balance_interval; |
3813 | if (idle != CPU_IDLE) |
3814 | interval *= sd->busy_factor; |
3815 | |
3816 | /* scale ms to jiffies */ |
3817 | interval = msecs_to_jiffies(interval); |
3818 | if (unlikely(!interval)) |
3819 | interval = 1; |
3820 | if (interval > HZ*NR_CPUS/10) |
3821 | interval = HZ*NR_CPUS/10; |
3822 | |
3823 | need_serialize = sd->flags & SD_SERIALIZE; |
3824 | |
3825 | if (need_serialize) { |
3826 | if (!spin_trylock(&balancing)) |
3827 | goto out; |
3828 | } |
3829 | |
3830 | if (time_after_eq(jiffies, sd->last_balance + interval)) { |
3831 | if (load_balance(cpu, rq, sd, idle, &balance)) { |
3832 | /* |
3833 | * We've pulled tasks over so either we're no |
3834 | * longer idle, or one of our SMT siblings is |
3835 | * not idle. |
3836 | */ |
3837 | idle = CPU_NOT_IDLE; |
3838 | } |
3839 | sd->last_balance = jiffies; |
3840 | } |
3841 | if (need_serialize) |
3842 | spin_unlock(&balancing); |
3843 | out: |
3844 | if (time_after(next_balance, sd->last_balance + interval)) { |
3845 | next_balance = sd->last_balance + interval; |
3846 | update_next_balance = 1; |
3847 | } |
3848 | |
3849 | /* |
3850 | * Stop the load balance at this level. There is another |
3851 | * CPU in our sched group which is doing load balancing more |
3852 | * actively. |
3853 | */ |
3854 | if (!balance) |
3855 | break; |
3856 | } |
3857 | |
3858 | /* |
3859 | * next_balance will be updated only when there is a need. |
3860 | * When the cpu is attached to null domain for ex, it will not be |
3861 | * updated. |
3862 | */ |
3863 | if (likely(update_next_balance)) |
3864 | rq->next_balance = next_balance; |
3865 | } |
3866 | |
3867 | #ifdef CONFIG_NO_HZ |
3868 | /* |
3869 | * In CONFIG_NO_HZ case, the idle balance kickee will do the |
3870 | * rebalancing for all the cpus for whom scheduler ticks are stopped. |
3871 | */ |
3872 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) |
3873 | { |
3874 | struct rq *this_rq = cpu_rq(this_cpu); |
3875 | struct rq *rq; |
3876 | int balance_cpu; |
3877 | |
3878 | if (idle != CPU_IDLE || !this_rq->nohz_balance_kick) |
3879 | return; |
3880 | |
3881 | for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { |
3882 | if (balance_cpu == this_cpu) |
3883 | continue; |
3884 | |
3885 | /* |
3886 | * If this cpu gets work to do, stop the load balancing |
3887 | * work being done for other cpus. Next load |
3888 | * balancing owner will pick it up. |
3889 | */ |
3890 | if (need_resched()) { |
3891 | this_rq->nohz_balance_kick = 0; |
3892 | break; |
3893 | } |
3894 | |
3895 | raw_spin_lock_irq(&this_rq->lock); |
3896 | update_rq_clock(this_rq); |
3897 | update_cpu_load(this_rq); |
3898 | raw_spin_unlock_irq(&this_rq->lock); |
3899 | |
3900 | rebalance_domains(balance_cpu, CPU_IDLE); |
3901 | |
3902 | rq = cpu_rq(balance_cpu); |
3903 | if (time_after(this_rq->next_balance, rq->next_balance)) |
3904 | this_rq->next_balance = rq->next_balance; |
3905 | } |
3906 | nohz.next_balance = this_rq->next_balance; |
3907 | this_rq->nohz_balance_kick = 0; |
3908 | } |
3909 | |
3910 | /* |
3911 | * Current heuristic for kicking the idle load balancer |
3912 | * - first_pick_cpu is the one of the busy CPUs. It will kick |
3913 | * idle load balancer when it has more than one process active. This |
3914 | * eliminates the need for idle load balancing altogether when we have |
3915 | * only one running process in the system (common case). |
3916 | * - If there are more than one busy CPU, idle load balancer may have |
3917 | * to run for active_load_balance to happen (i.e., two busy CPUs are |
3918 | * SMT or core siblings and can run better if they move to different |
3919 | * physical CPUs). So, second_pick_cpu is the second of the busy CPUs |
3920 | * which will kick idle load balancer as soon as it has any load. |
3921 | */ |
3922 | static inline int nohz_kick_needed(struct rq *rq, int cpu) |
3923 | { |
3924 | unsigned long now = jiffies; |
3925 | int ret; |
3926 | int first_pick_cpu, second_pick_cpu; |
3927 | |
3928 | if (time_before(now, nohz.next_balance)) |
3929 | return 0; |
3930 | |
3931 | if (rq->idle_at_tick) |
3932 | return 0; |
3933 | |
3934 | first_pick_cpu = atomic_read(&nohz.first_pick_cpu); |
3935 | second_pick_cpu = atomic_read(&nohz.second_pick_cpu); |
3936 | |
3937 | if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu && |
3938 | second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu) |
3939 | return 0; |
3940 | |
3941 | ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu); |
3942 | if (ret == nr_cpu_ids || ret == cpu) { |
3943 | atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids); |
3944 | if (rq->nr_running > 1) |
3945 | return 1; |
3946 | } else { |
3947 | ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu); |
3948 | if (ret == nr_cpu_ids || ret == cpu) { |
3949 | if (rq->nr_running) |
3950 | return 1; |
3951 | } |
3952 | } |
3953 | return 0; |
3954 | } |
3955 | #else |
3956 | static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } |
3957 | #endif |
3958 | |
3959 | /* |
3960 | * run_rebalance_domains is triggered when needed from the scheduler tick. |
3961 | * Also triggered for nohz idle balancing (with nohz_balancing_kick set). |
3962 | */ |
3963 | static void run_rebalance_domains(struct softirq_action *h) |
3964 | { |
3965 | int this_cpu = smp_processor_id(); |
3966 | struct rq *this_rq = cpu_rq(this_cpu); |
3967 | enum cpu_idle_type idle = this_rq->idle_at_tick ? |
3968 | CPU_IDLE : CPU_NOT_IDLE; |
3969 | |
3970 | rebalance_domains(this_cpu, idle); |
3971 | |
3972 | /* |
3973 | * If this cpu has a pending nohz_balance_kick, then do the |
3974 | * balancing on behalf of the other idle cpus whose ticks are |
3975 | * stopped. |
3976 | */ |
3977 | nohz_idle_balance(this_cpu, idle); |
3978 | } |
3979 | |
3980 | static inline int on_null_domain(int cpu) |
3981 | { |
3982 | return !rcu_dereference_sched(cpu_rq(cpu)->sd); |
3983 | } |
3984 | |
3985 | /* |
3986 | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. |
3987 | */ |
3988 | static inline void trigger_load_balance(struct rq *rq, int cpu) |
3989 | { |
3990 | /* Don't need to rebalance while attached to NULL domain */ |
3991 | if (time_after_eq(jiffies, rq->next_balance) && |
3992 | likely(!on_null_domain(cpu))) |
3993 | raise_softirq(SCHED_SOFTIRQ); |
3994 | #ifdef CONFIG_NO_HZ |
3995 | else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) |
3996 | nohz_balancer_kick(cpu); |
3997 | #endif |
3998 | } |
3999 | |
4000 | static void rq_online_fair(struct rq *rq) |
4001 | { |
4002 | update_sysctl(); |
4003 | } |
4004 | |
4005 | static void rq_offline_fair(struct rq *rq) |
4006 | { |
4007 | update_sysctl(); |
4008 | } |
4009 | |
4010 | #else /* CONFIG_SMP */ |
4011 | |
4012 | /* |
4013 | * on UP we do not need to balance between CPUs: |
4014 | */ |
4015 | static inline void idle_balance(int cpu, struct rq *rq) |
4016 | { |
4017 | } |
4018 | |
4019 | #endif /* CONFIG_SMP */ |
4020 | |
4021 | /* |
4022 | * scheduler tick hitting a task of our scheduling class: |
4023 | */ |
4024 | static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) |
4025 | { |
4026 | struct cfs_rq *cfs_rq; |
4027 | struct sched_entity *se = &curr->se; |
4028 | |
4029 | for_each_sched_entity(se) { |
4030 | cfs_rq = cfs_rq_of(se); |
4031 | entity_tick(cfs_rq, se, queued); |
4032 | } |
4033 | } |
4034 | |
4035 | /* |
4036 | * called on fork with the child task as argument from the parent's context |
4037 | * - child not yet on the tasklist |
4038 | * - preemption disabled |
4039 | */ |
4040 | static void task_fork_fair(struct task_struct *p) |
4041 | { |
4042 | struct cfs_rq *cfs_rq = task_cfs_rq(current); |
4043 | struct sched_entity *se = &p->se, *curr = cfs_rq->curr; |
4044 | int this_cpu = smp_processor_id(); |
4045 | struct rq *rq = this_rq(); |
4046 | unsigned long flags; |
4047 | |
4048 | raw_spin_lock_irqsave(&rq->lock, flags); |
4049 | |
4050 | update_rq_clock(rq); |
4051 | |
4052 | if (unlikely(task_cpu(p) != this_cpu)) { |
4053 | rcu_read_lock(); |
4054 | __set_task_cpu(p, this_cpu); |
4055 | rcu_read_unlock(); |
4056 | } |
4057 | |
4058 | update_curr(cfs_rq); |
4059 | |
4060 | if (curr) |
4061 | se->vruntime = curr->vruntime; |
4062 | place_entity(cfs_rq, se, 1); |
4063 | |
4064 | if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { |
4065 | /* |
4066 | * Upon rescheduling, sched_class::put_prev_task() will place |
4067 | * 'current' within the tree based on its new key value. |
4068 | */ |
4069 | swap(curr->vruntime, se->vruntime); |
4070 | resched_task(rq->curr); |
4071 | } |
4072 | |
4073 | se->vruntime -= cfs_rq->min_vruntime; |
4074 | |
4075 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
4076 | } |
4077 | |
4078 | /* |
4079 | * Priority of the task has changed. Check to see if we preempt |
4080 | * the current task. |
4081 | */ |
4082 | static void prio_changed_fair(struct rq *rq, struct task_struct *p, |
4083 | int oldprio, int running) |
4084 | { |
4085 | /* |
4086 | * Reschedule if we are currently running on this runqueue and |
4087 | * our priority decreased, or if we are not currently running on |
4088 | * this runqueue and our priority is higher than the current's |
4089 | */ |
4090 | if (running) { |
4091 | if (p->prio > oldprio) |
4092 | resched_task(rq->curr); |
4093 | } else |
4094 | check_preempt_curr(rq, p, 0); |
4095 | } |
4096 | |
4097 | /* |
4098 | * We switched to the sched_fair class. |
4099 | */ |
4100 | static void switched_to_fair(struct rq *rq, struct task_struct *p, |
4101 | int running) |
4102 | { |
4103 | /* |
4104 | * We were most likely switched from sched_rt, so |
4105 | * kick off the schedule if running, otherwise just see |
4106 | * if we can still preempt the current task. |
4107 | */ |
4108 | if (running) |
4109 | resched_task(rq->curr); |
4110 | else |
4111 | check_preempt_curr(rq, p, 0); |
4112 | } |
4113 | |
4114 | /* Account for a task changing its policy or group. |
4115 | * |
4116 | * This routine is mostly called to set cfs_rq->curr field when a task |
4117 | * migrates between groups/classes. |
4118 | */ |
4119 | static void set_curr_task_fair(struct rq *rq) |
4120 | { |
4121 | struct sched_entity *se = &rq->curr->se; |
4122 | |
4123 | for_each_sched_entity(se) |
4124 | set_next_entity(cfs_rq_of(se), se); |
4125 | } |
4126 | |
4127 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4128 | static void task_move_group_fair(struct task_struct *p, int on_rq) |
4129 | { |
4130 | /* |
4131 | * If the task was not on the rq at the time of this cgroup movement |
4132 | * it must have been asleep, sleeping tasks keep their ->vruntime |
4133 | * absolute on their old rq until wakeup (needed for the fair sleeper |
4134 | * bonus in place_entity()). |
4135 | * |
4136 | * If it was on the rq, we've just 'preempted' it, which does convert |
4137 | * ->vruntime to a relative base. |
4138 | * |
4139 | * Make sure both cases convert their relative position when migrating |
4140 | * to another cgroup's rq. This does somewhat interfere with the |
4141 | * fair sleeper stuff for the first placement, but who cares. |
4142 | */ |
4143 | if (!on_rq) |
4144 | p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; |
4145 | set_task_rq(p, task_cpu(p)); |
4146 | if (!on_rq) |
4147 | p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; |
4148 | } |
4149 | #endif |
4150 | |
4151 | static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) |
4152 | { |
4153 | struct sched_entity *se = &task->se; |
4154 | unsigned int rr_interval = 0; |
4155 | |
4156 | /* |
4157 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise |
4158 | * idle runqueue: |
4159 | */ |
4160 | if (rq->cfs.load.weight) |
4161 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); |
4162 | |
4163 | return rr_interval; |
4164 | } |
4165 | |
4166 | /* |
4167 | * All the scheduling class methods: |
4168 | */ |
4169 | static const struct sched_class fair_sched_class = { |
4170 | .next = &idle_sched_class, |
4171 | .enqueue_task = enqueue_task_fair, |
4172 | .dequeue_task = dequeue_task_fair, |
4173 | .yield_task = yield_task_fair, |
4174 | |
4175 | .check_preempt_curr = check_preempt_wakeup, |
4176 | |
4177 | .pick_next_task = pick_next_task_fair, |
4178 | .put_prev_task = put_prev_task_fair, |
4179 | |
4180 | #ifdef CONFIG_SMP |
4181 | .select_task_rq = select_task_rq_fair, |
4182 | |
4183 | .rq_online = rq_online_fair, |
4184 | .rq_offline = rq_offline_fair, |
4185 | |
4186 | .task_waking = task_waking_fair, |
4187 | #endif |
4188 | |
4189 | .set_curr_task = set_curr_task_fair, |
4190 | .task_tick = task_tick_fair, |
4191 | .task_fork = task_fork_fair, |
4192 | |
4193 | .prio_changed = prio_changed_fair, |
4194 | .switched_to = switched_to_fair, |
4195 | |
4196 | .get_rr_interval = get_rr_interval_fair, |
4197 | |
4198 | #ifdef CONFIG_FAIR_GROUP_SCHED |
4199 | .task_move_group = task_move_group_fair, |
4200 | #endif |
4201 | }; |
4202 | |
4203 | #ifdef CONFIG_SCHED_DEBUG |
4204 | static void print_cfs_stats(struct seq_file *m, int cpu) |
4205 | { |
4206 | struct cfs_rq *cfs_rq; |
4207 | |
4208 | rcu_read_lock(); |
4209 | for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) |
4210 | print_cfs_rq(m, cpu, cfs_rq); |
4211 | rcu_read_unlock(); |
4212 | } |
4213 | #endif |
4214 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9