Root/kernel/timer.c

1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/pid_namespace.h>
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
37#include <linux/delay.h>
38#include <linux/tick.h>
39#include <linux/kallsyms.h>
40#include <linux/irq_work.h>
41#include <linux/sched.h>
42#include <linux/slab.h>
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
57/*
58 * per-CPU timer vector definitions:
59 */
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
67struct tvec {
68    struct list_head vec[TVN_SIZE];
69};
70
71struct tvec_root {
72    struct list_head vec[TVR_SIZE];
73};
74
75struct tvec_base {
76    spinlock_t lock;
77    struct timer_list *running_timer;
78    unsigned long timer_jiffies;
79    unsigned long next_timer;
80    struct tvec_root tv1;
81    struct tvec tv2;
82    struct tvec tv3;
83    struct tvec tv4;
84    struct tvec tv5;
85} ____cacheline_aligned;
86
87struct tvec_base boot_tvec_bases;
88EXPORT_SYMBOL(boot_tvec_bases);
89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
90
91/* Functions below help us manage 'deferrable' flag */
92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
93{
94    return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
95}
96
97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
98{
99    return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
104    timer->base = TBASE_MAKE_DEFERRED(timer->base);
105}
106
107static inline void
108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
109{
110    timer->base = (struct tvec_base *)((unsigned long)(new_base) |
111                      tbase_get_deferrable(timer->base));
112}
113
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115        bool force_up)
116{
117    int rem;
118    unsigned long original = j;
119
120    /*
121     * We don't want all cpus firing their timers at once hitting the
122     * same lock or cachelines, so we skew each extra cpu with an extra
123     * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124     * already did this.
125     * The skew is done by adding 3*cpunr, then round, then subtract this
126     * extra offset again.
127     */
128    j += cpu * 3;
129
130    rem = j % HZ;
131
132    /*
133     * If the target jiffie is just after a whole second (which can happen
134     * due to delays of the timer irq, long irq off times etc etc) then
135     * we should round down to the whole second, not up. Use 1/4th second
136     * as cutoff for this rounding as an extreme upper bound for this.
137     * But never round down if @force_up is set.
138     */
139    if (rem < HZ/4 && !force_up) /* round down */
140        j = j - rem;
141    else /* round up */
142        j = j - rem + HZ;
143
144    /* now that we have rounded, subtract the extra skew again */
145    j -= cpu * 3;
146
147    if (j <= jiffies) /* rounding ate our timeout entirely; */
148        return original;
149    return j;
150}
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174    return round_jiffies_common(j, cpu, false);
175}
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
196 * The return value is the rounded version of the @j parameter.
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
200    unsigned long j0 = jiffies;
201
202    /* Use j0 because jiffies might change while we run */
203    return round_jiffies_common(j + j0, cpu, false) - j0;
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
220 * The return value is the rounded version of the @j parameter.
221 */
222unsigned long round_jiffies(unsigned long j)
223{
224    return round_jiffies_common(j, raw_smp_processor_id(), false);
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
241 * The return value is the rounded version of the @j parameter.
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245    return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261    return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277    unsigned long j0 = jiffies;
278
279    /* Use j0 because jiffies might change while we run */
280    return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295    return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310    return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
314/**
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329    timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
334{
335    unsigned long expires = timer->expires;
336    unsigned long idx = expires - base->timer_jiffies;
337    struct list_head *vec;
338
339    if (idx < TVR_SIZE) {
340        int i = expires & TVR_MASK;
341        vec = base->tv1.vec + i;
342    } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343        int i = (expires >> TVR_BITS) & TVN_MASK;
344        vec = base->tv2.vec + i;
345    } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346        int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347        vec = base->tv3.vec + i;
348    } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349        int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350        vec = base->tv4.vec + i;
351    } else if ((signed long) idx < 0) {
352        /*
353         * Can happen if you add a timer with expires == jiffies,
354         * or you set a timer to go off in the past
355         */
356        vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357    } else {
358        int i;
359        /* If the timeout is larger than 0xffffffff on 64-bit
360         * architectures then we use the maximum timeout:
361         */
362        if (idx > 0xffffffffUL) {
363            idx = 0xffffffffUL;
364            expires = idx + base->timer_jiffies;
365        }
366        i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367        vec = base->tv5.vec + i;
368    }
369    /*
370     * Timers are FIFO:
371     */
372    list_add_tail(&timer->entry, vec);
373}
374
375#ifdef CONFIG_TIMER_STATS
376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377{
378    if (timer->start_site)
379        return;
380
381    timer->start_site = addr;
382    memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383    timer->start_pid = current->pid;
384}
385
386static void timer_stats_account_timer(struct timer_list *timer)
387{
388    unsigned int flag = 0;
389
390    if (likely(!timer->start_site))
391        return;
392    if (unlikely(tbase_get_deferrable(timer->base)))
393        flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395    timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396                 timer->function, timer->start_comm, flag);
397}
398
399#else
400static void timer_stats_account_timer(struct timer_list *timer) {}
401#endif
402
403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405static struct debug_obj_descr timer_debug_descr;
406
407/*
408 * fixup_init is called when:
409 * - an active object is initialized
410 */
411static int timer_fixup_init(void *addr, enum debug_obj_state state)
412{
413    struct timer_list *timer = addr;
414
415    switch (state) {
416    case ODEBUG_STATE_ACTIVE:
417        del_timer_sync(timer);
418        debug_object_init(timer, &timer_debug_descr);
419        return 1;
420    default:
421        return 0;
422    }
423}
424
425/*
426 * fixup_activate is called when:
427 * - an active object is activated
428 * - an unknown object is activated (might be a statically initialized object)
429 */
430static int timer_fixup_activate(void *addr, enum debug_obj_state state)
431{
432    struct timer_list *timer = addr;
433
434    switch (state) {
435
436    case ODEBUG_STATE_NOTAVAILABLE:
437        /*
438         * This is not really a fixup. The timer was
439         * statically initialized. We just make sure that it
440         * is tracked in the object tracker.
441         */
442        if (timer->entry.next == NULL &&
443            timer->entry.prev == TIMER_ENTRY_STATIC) {
444            debug_object_init(timer, &timer_debug_descr);
445            debug_object_activate(timer, &timer_debug_descr);
446            return 0;
447        } else {
448            WARN_ON_ONCE(1);
449        }
450        return 0;
451
452    case ODEBUG_STATE_ACTIVE:
453        WARN_ON(1);
454
455    default:
456        return 0;
457    }
458}
459
460/*
461 * fixup_free is called when:
462 * - an active object is freed
463 */
464static int timer_fixup_free(void *addr, enum debug_obj_state state)
465{
466    struct timer_list *timer = addr;
467
468    switch (state) {
469    case ODEBUG_STATE_ACTIVE:
470        del_timer_sync(timer);
471        debug_object_free(timer, &timer_debug_descr);
472        return 1;
473    default:
474        return 0;
475    }
476}
477
478static struct debug_obj_descr timer_debug_descr = {
479    .name = "timer_list",
480    .fixup_init = timer_fixup_init,
481    .fixup_activate = timer_fixup_activate,
482    .fixup_free = timer_fixup_free,
483};
484
485static inline void debug_timer_init(struct timer_list *timer)
486{
487    debug_object_init(timer, &timer_debug_descr);
488}
489
490static inline void debug_timer_activate(struct timer_list *timer)
491{
492    debug_object_activate(timer, &timer_debug_descr);
493}
494
495static inline void debug_timer_deactivate(struct timer_list *timer)
496{
497    debug_object_deactivate(timer, &timer_debug_descr);
498}
499
500static inline void debug_timer_free(struct timer_list *timer)
501{
502    debug_object_free(timer, &timer_debug_descr);
503}
504
505static void __init_timer(struct timer_list *timer,
506             const char *name,
507             struct lock_class_key *key);
508
509void init_timer_on_stack_key(struct timer_list *timer,
510                 const char *name,
511                 struct lock_class_key *key)
512{
513    debug_object_init_on_stack(timer, &timer_debug_descr);
514    __init_timer(timer, name, key);
515}
516EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
517
518void destroy_timer_on_stack(struct timer_list *timer)
519{
520    debug_object_free(timer, &timer_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
523
524#else
525static inline void debug_timer_init(struct timer_list *timer) { }
526static inline void debug_timer_activate(struct timer_list *timer) { }
527static inline void debug_timer_deactivate(struct timer_list *timer) { }
528#endif
529
530static inline void debug_init(struct timer_list *timer)
531{
532    debug_timer_init(timer);
533    trace_timer_init(timer);
534}
535
536static inline void
537debug_activate(struct timer_list *timer, unsigned long expires)
538{
539    debug_timer_activate(timer);
540    trace_timer_start(timer, expires);
541}
542
543static inline void debug_deactivate(struct timer_list *timer)
544{
545    debug_timer_deactivate(timer);
546    trace_timer_cancel(timer);
547}
548
549static void __init_timer(struct timer_list *timer,
550             const char *name,
551             struct lock_class_key *key)
552{
553    timer->entry.next = NULL;
554    timer->base = __raw_get_cpu_var(tvec_bases);
555    timer->slack = -1;
556#ifdef CONFIG_TIMER_STATS
557    timer->start_site = NULL;
558    timer->start_pid = -1;
559    memset(timer->start_comm, 0, TASK_COMM_LEN);
560#endif
561    lockdep_init_map(&timer->lockdep_map, name, key, 0);
562}
563
564void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
565                     const char *name,
566                     struct lock_class_key *key,
567                     void (*function)(unsigned long),
568                     unsigned long data)
569{
570    timer->function = function;
571    timer->data = data;
572    init_timer_on_stack_key(timer, name, key);
573    timer_set_deferrable(timer);
574}
575EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
576
577/**
578 * init_timer_key - initialize a timer
579 * @timer: the timer to be initialized
580 * @name: name of the timer
581 * @key: lockdep class key of the fake lock used for tracking timer
582 * sync lock dependencies
583 *
584 * init_timer_key() must be done to a timer prior calling *any* of the
585 * other timer functions.
586 */
587void init_timer_key(struct timer_list *timer,
588            const char *name,
589            struct lock_class_key *key)
590{
591    debug_init(timer);
592    __init_timer(timer, name, key);
593}
594EXPORT_SYMBOL(init_timer_key);
595
596void init_timer_deferrable_key(struct timer_list *timer,
597                   const char *name,
598                   struct lock_class_key *key)
599{
600    init_timer_key(timer, name, key);
601    timer_set_deferrable(timer);
602}
603EXPORT_SYMBOL(init_timer_deferrable_key);
604
605static inline void detach_timer(struct timer_list *timer,
606                int clear_pending)
607{
608    struct list_head *entry = &timer->entry;
609
610    debug_deactivate(timer);
611
612    __list_del(entry->prev, entry->next);
613    if (clear_pending)
614        entry->next = NULL;
615    entry->prev = LIST_POISON2;
616}
617
618/*
619 * We are using hashed locking: holding per_cpu(tvec_bases).lock
620 * means that all timers which are tied to this base via timer->base are
621 * locked, and the base itself is locked too.
622 *
623 * So __run_timers/migrate_timers can safely modify all timers which could
624 * be found on ->tvX lists.
625 *
626 * When the timer's base is locked, and the timer removed from list, it is
627 * possible to set timer->base = NULL and drop the lock: the timer remains
628 * locked.
629 */
630static struct tvec_base *lock_timer_base(struct timer_list *timer,
631                    unsigned long *flags)
632    __acquires(timer->base->lock)
633{
634    struct tvec_base *base;
635
636    for (;;) {
637        struct tvec_base *prelock_base = timer->base;
638        base = tbase_get_base(prelock_base);
639        if (likely(base != NULL)) {
640            spin_lock_irqsave(&base->lock, *flags);
641            if (likely(prelock_base == timer->base))
642                return base;
643            /* The timer has migrated to another CPU */
644            spin_unlock_irqrestore(&base->lock, *flags);
645        }
646        cpu_relax();
647    }
648}
649
650static inline int
651__mod_timer(struct timer_list *timer, unsigned long expires,
652                        bool pending_only, int pinned)
653{
654    struct tvec_base *base, *new_base;
655    unsigned long flags;
656    int ret = 0 , cpu;
657
658    timer_stats_timer_set_start_info(timer);
659    BUG_ON(!timer->function);
660
661    base = lock_timer_base(timer, &flags);
662
663    if (timer_pending(timer)) {
664        detach_timer(timer, 0);
665        if (timer->expires == base->next_timer &&
666            !tbase_get_deferrable(timer->base))
667            base->next_timer = base->timer_jiffies;
668        ret = 1;
669    } else {
670        if (pending_only)
671            goto out_unlock;
672    }
673
674    debug_activate(timer, expires);
675
676    cpu = smp_processor_id();
677
678#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
679    if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
680        cpu = get_nohz_timer_target();
681#endif
682    new_base = per_cpu(tvec_bases, cpu);
683
684    if (base != new_base) {
685        /*
686         * We are trying to schedule the timer on the local CPU.
687         * However we can't change timer's base while it is running,
688         * otherwise del_timer_sync() can't detect that the timer's
689         * handler yet has not finished. This also guarantees that
690         * the timer is serialized wrt itself.
691         */
692        if (likely(base->running_timer != timer)) {
693            /* See the comment in lock_timer_base() */
694            timer_set_base(timer, NULL);
695            spin_unlock(&base->lock);
696            base = new_base;
697            spin_lock(&base->lock);
698            timer_set_base(timer, base);
699        }
700    }
701
702    timer->expires = expires;
703    if (time_before(timer->expires, base->next_timer) &&
704        !tbase_get_deferrable(timer->base))
705        base->next_timer = timer->expires;
706    internal_add_timer(base, timer);
707
708out_unlock:
709    spin_unlock_irqrestore(&base->lock, flags);
710
711    return ret;
712}
713
714/**
715 * mod_timer_pending - modify a pending timer's timeout
716 * @timer: the pending timer to be modified
717 * @expires: new timeout in jiffies
718 *
719 * mod_timer_pending() is the same for pending timers as mod_timer(),
720 * but will not re-activate and modify already deleted timers.
721 *
722 * It is useful for unserialized use of timers.
723 */
724int mod_timer_pending(struct timer_list *timer, unsigned long expires)
725{
726    return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
727}
728EXPORT_SYMBOL(mod_timer_pending);
729
730/*
731 * Decide where to put the timer while taking the slack into account
732 *
733 * Algorithm:
734 * 1) calculate the maximum (absolute) time
735 * 2) calculate the highest bit where the expires and new max are different
736 * 3) use this bit to make a mask
737 * 4) use the bitmask to round down the maximum time, so that all last
738 * bits are zeros
739 */
740static inline
741unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
742{
743    unsigned long expires_limit, mask;
744    int bit;
745
746    expires_limit = expires;
747
748    if (timer->slack >= 0) {
749        expires_limit = expires + timer->slack;
750    } else {
751        unsigned long now = jiffies;
752
753        /* No slack, if already expired else auto slack 0.4% */
754        if (time_after(expires, now))
755            expires_limit = expires + (expires - now)/256;
756    }
757    mask = expires ^ expires_limit;
758    if (mask == 0)
759        return expires;
760
761    bit = find_last_bit(&mask, BITS_PER_LONG);
762
763    mask = (1 << bit) - 1;
764
765    expires_limit = expires_limit & ~(mask);
766
767    return expires_limit;
768}
769
770/**
771 * mod_timer - modify a timer's timeout
772 * @timer: the timer to be modified
773 * @expires: new timeout in jiffies
774 *
775 * mod_timer() is a more efficient way to update the expire field of an
776 * active timer (if the timer is inactive it will be activated)
777 *
778 * mod_timer(timer, expires) is equivalent to:
779 *
780 * del_timer(timer); timer->expires = expires; add_timer(timer);
781 *
782 * Note that if there are multiple unserialized concurrent users of the
783 * same timer, then mod_timer() is the only safe way to modify the timeout,
784 * since add_timer() cannot modify an already running timer.
785 *
786 * The function returns whether it has modified a pending timer or not.
787 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
788 * active timer returns 1.)
789 */
790int mod_timer(struct timer_list *timer, unsigned long expires)
791{
792    /*
793     * This is a common optimization triggered by the
794     * networking code - if the timer is re-modified
795     * to be the same thing then just return:
796     */
797    if (timer_pending(timer) && timer->expires == expires)
798        return 1;
799
800    expires = apply_slack(timer, expires);
801
802    return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
803}
804EXPORT_SYMBOL(mod_timer);
805
806/**
807 * mod_timer_pinned - modify a timer's timeout
808 * @timer: the timer to be modified
809 * @expires: new timeout in jiffies
810 *
811 * mod_timer_pinned() is a way to update the expire field of an
812 * active timer (if the timer is inactive it will be activated)
813 * and not allow the timer to be migrated to a different CPU.
814 *
815 * mod_timer_pinned(timer, expires) is equivalent to:
816 *
817 * del_timer(timer); timer->expires = expires; add_timer(timer);
818 */
819int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
820{
821    if (timer->expires == expires && timer_pending(timer))
822        return 1;
823
824    return __mod_timer(timer, expires, false, TIMER_PINNED);
825}
826EXPORT_SYMBOL(mod_timer_pinned);
827
828/**
829 * add_timer - start a timer
830 * @timer: the timer to be added
831 *
832 * The kernel will do a ->function(->data) callback from the
833 * timer interrupt at the ->expires point in the future. The
834 * current time is 'jiffies'.
835 *
836 * The timer's ->expires, ->function (and if the handler uses it, ->data)
837 * fields must be set prior calling this function.
838 *
839 * Timers with an ->expires field in the past will be executed in the next
840 * timer tick.
841 */
842void add_timer(struct timer_list *timer)
843{
844    BUG_ON(timer_pending(timer));
845    mod_timer(timer, timer->expires);
846}
847EXPORT_SYMBOL(add_timer);
848
849/**
850 * add_timer_on - start a timer on a particular CPU
851 * @timer: the timer to be added
852 * @cpu: the CPU to start it on
853 *
854 * This is not very scalable on SMP. Double adds are not possible.
855 */
856void add_timer_on(struct timer_list *timer, int cpu)
857{
858    struct tvec_base *base = per_cpu(tvec_bases, cpu);
859    unsigned long flags;
860
861    timer_stats_timer_set_start_info(timer);
862    BUG_ON(timer_pending(timer) || !timer->function);
863    spin_lock_irqsave(&base->lock, flags);
864    timer_set_base(timer, base);
865    debug_activate(timer, timer->expires);
866    if (time_before(timer->expires, base->next_timer) &&
867        !tbase_get_deferrable(timer->base))
868        base->next_timer = timer->expires;
869    internal_add_timer(base, timer);
870    /*
871     * Check whether the other CPU is idle and needs to be
872     * triggered to reevaluate the timer wheel when nohz is
873     * active. We are protected against the other CPU fiddling
874     * with the timer by holding the timer base lock. This also
875     * makes sure that a CPU on the way to idle can not evaluate
876     * the timer wheel.
877     */
878    wake_up_idle_cpu(cpu);
879    spin_unlock_irqrestore(&base->lock, flags);
880}
881EXPORT_SYMBOL_GPL(add_timer_on);
882
883/**
884 * del_timer - deactive a timer.
885 * @timer: the timer to be deactivated
886 *
887 * del_timer() deactivates a timer - this works on both active and inactive
888 * timers.
889 *
890 * The function returns whether it has deactivated a pending timer or not.
891 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
892 * active timer returns 1.)
893 */
894int del_timer(struct timer_list *timer)
895{
896    struct tvec_base *base;
897    unsigned long flags;
898    int ret = 0;
899
900    timer_stats_timer_clear_start_info(timer);
901    if (timer_pending(timer)) {
902        base = lock_timer_base(timer, &flags);
903        if (timer_pending(timer)) {
904            detach_timer(timer, 1);
905            if (timer->expires == base->next_timer &&
906                !tbase_get_deferrable(timer->base))
907                base->next_timer = base->timer_jiffies;
908            ret = 1;
909        }
910        spin_unlock_irqrestore(&base->lock, flags);
911    }
912
913    return ret;
914}
915EXPORT_SYMBOL(del_timer);
916
917/**
918 * try_to_del_timer_sync - Try to deactivate a timer
919 * @timer: timer do del
920 *
921 * This function tries to deactivate a timer. Upon successful (ret >= 0)
922 * exit the timer is not queued and the handler is not running on any CPU.
923 */
924int try_to_del_timer_sync(struct timer_list *timer)
925{
926    struct tvec_base *base;
927    unsigned long flags;
928    int ret = -1;
929
930    base = lock_timer_base(timer, &flags);
931
932    if (base->running_timer == timer)
933        goto out;
934
935    timer_stats_timer_clear_start_info(timer);
936    ret = 0;
937    if (timer_pending(timer)) {
938        detach_timer(timer, 1);
939        if (timer->expires == base->next_timer &&
940            !tbase_get_deferrable(timer->base))
941            base->next_timer = base->timer_jiffies;
942        ret = 1;
943    }
944out:
945    spin_unlock_irqrestore(&base->lock, flags);
946
947    return ret;
948}
949EXPORT_SYMBOL(try_to_del_timer_sync);
950
951#ifdef CONFIG_SMP
952/**
953 * del_timer_sync - deactivate a timer and wait for the handler to finish.
954 * @timer: the timer to be deactivated
955 *
956 * This function only differs from del_timer() on SMP: besides deactivating
957 * the timer it also makes sure the handler has finished executing on other
958 * CPUs.
959 *
960 * Synchronization rules: Callers must prevent restarting of the timer,
961 * otherwise this function is meaningless. It must not be called from
962 * interrupt contexts. The caller must not hold locks which would prevent
963 * completion of the timer's handler. The timer's handler must not call
964 * add_timer_on(). Upon exit the timer is not queued and the handler is
965 * not running on any CPU.
966 *
967 * The function returns whether it has deactivated a pending timer or not.
968 */
969int del_timer_sync(struct timer_list *timer)
970{
971#ifdef CONFIG_LOCKDEP
972    unsigned long flags;
973
974    local_irq_save(flags);
975    lock_map_acquire(&timer->lockdep_map);
976    lock_map_release(&timer->lockdep_map);
977    local_irq_restore(flags);
978#endif
979    /*
980     * don't use it in hardirq context, because it
981     * could lead to deadlock.
982     */
983    WARN_ON(in_irq());
984    for (;;) {
985        int ret = try_to_del_timer_sync(timer);
986        if (ret >= 0)
987            return ret;
988        cpu_relax();
989    }
990}
991EXPORT_SYMBOL(del_timer_sync);
992#endif
993
994static int cascade(struct tvec_base *base, struct tvec *tv, int index)
995{
996    /* cascade all the timers from tv up one level */
997    struct timer_list *timer, *tmp;
998    struct list_head tv_list;
999
1000    list_replace_init(tv->vec + index, &tv_list);
1001
1002    /*
1003     * We are removing _all_ timers from the list, so we
1004     * don't have to detach them individually.
1005     */
1006    list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1007        BUG_ON(tbase_get_base(timer->base) != base);
1008        internal_add_timer(base, timer);
1009    }
1010
1011    return index;
1012}
1013
1014static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1015              unsigned long data)
1016{
1017    int preempt_count = preempt_count();
1018
1019#ifdef CONFIG_LOCKDEP
1020    /*
1021     * It is permissible to free the timer from inside the
1022     * function that is called from it, this we need to take into
1023     * account for lockdep too. To avoid bogus "held lock freed"
1024     * warnings as well as problems when looking into
1025     * timer->lockdep_map, make a copy and use that here.
1026     */
1027    struct lockdep_map lockdep_map = timer->lockdep_map;
1028#endif
1029    /*
1030     * Couple the lock chain with the lock chain at
1031     * del_timer_sync() by acquiring the lock_map around the fn()
1032     * call here and in del_timer_sync().
1033     */
1034    lock_map_acquire(&lockdep_map);
1035
1036    trace_timer_expire_entry(timer);
1037    fn(data);
1038    trace_timer_expire_exit(timer);
1039
1040    lock_map_release(&lockdep_map);
1041
1042    if (preempt_count != preempt_count()) {
1043        WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1044              fn, preempt_count, preempt_count());
1045        /*
1046         * Restore the preempt count. That gives us a decent
1047         * chance to survive and extract information. If the
1048         * callback kept a lock held, bad luck, but not worse
1049         * than the BUG() we had.
1050         */
1051        preempt_count() = preempt_count;
1052    }
1053}
1054
1055#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1056
1057/**
1058 * __run_timers - run all expired timers (if any) on this CPU.
1059 * @base: the timer vector to be processed.
1060 *
1061 * This function cascades all vectors and executes all expired timer
1062 * vectors.
1063 */
1064static inline void __run_timers(struct tvec_base *base)
1065{
1066    struct timer_list *timer;
1067
1068    spin_lock_irq(&base->lock);
1069    while (time_after_eq(jiffies, base->timer_jiffies)) {
1070        struct list_head work_list;
1071        struct list_head *head = &work_list;
1072        int index = base->timer_jiffies & TVR_MASK;
1073
1074        /*
1075         * Cascade timers:
1076         */
1077        if (!index &&
1078            (!cascade(base, &base->tv2, INDEX(0))) &&
1079                (!cascade(base, &base->tv3, INDEX(1))) &&
1080                    !cascade(base, &base->tv4, INDEX(2)))
1081            cascade(base, &base->tv5, INDEX(3));
1082        ++base->timer_jiffies;
1083        list_replace_init(base->tv1.vec + index, &work_list);
1084        while (!list_empty(head)) {
1085            void (*fn)(unsigned long);
1086            unsigned long data;
1087
1088            timer = list_first_entry(head, struct timer_list,entry);
1089            fn = timer->function;
1090            data = timer->data;
1091
1092            timer_stats_account_timer(timer);
1093
1094            base->running_timer = timer;
1095            detach_timer(timer, 1);
1096
1097            spin_unlock_irq(&base->lock);
1098            call_timer_fn(timer, fn, data);
1099            spin_lock_irq(&base->lock);
1100        }
1101    }
1102    base->running_timer = NULL;
1103    spin_unlock_irq(&base->lock);
1104}
1105
1106#ifdef CONFIG_NO_HZ
1107/*
1108 * Find out when the next timer event is due to happen. This
1109 * is used on S/390 to stop all activity when a CPU is idle.
1110 * This function needs to be called with interrupts disabled.
1111 */
1112static unsigned long __next_timer_interrupt(struct tvec_base *base)
1113{
1114    unsigned long timer_jiffies = base->timer_jiffies;
1115    unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1116    int index, slot, array, found = 0;
1117    struct timer_list *nte;
1118    struct tvec *varray[4];
1119
1120    /* Look for timer events in tv1. */
1121    index = slot = timer_jiffies & TVR_MASK;
1122    do {
1123        list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1124            if (tbase_get_deferrable(nte->base))
1125                continue;
1126
1127            found = 1;
1128            expires = nte->expires;
1129            /* Look at the cascade bucket(s)? */
1130            if (!index || slot < index)
1131                goto cascade;
1132            return expires;
1133        }
1134        slot = (slot + 1) & TVR_MASK;
1135    } while (slot != index);
1136
1137cascade:
1138    /* Calculate the next cascade event */
1139    if (index)
1140        timer_jiffies += TVR_SIZE - index;
1141    timer_jiffies >>= TVR_BITS;
1142
1143    /* Check tv2-tv5. */
1144    varray[0] = &base->tv2;
1145    varray[1] = &base->tv3;
1146    varray[2] = &base->tv4;
1147    varray[3] = &base->tv5;
1148
1149    for (array = 0; array < 4; array++) {
1150        struct tvec *varp = varray[array];
1151
1152        index = slot = timer_jiffies & TVN_MASK;
1153        do {
1154            list_for_each_entry(nte, varp->vec + slot, entry) {
1155                if (tbase_get_deferrable(nte->base))
1156                    continue;
1157
1158                found = 1;
1159                if (time_before(nte->expires, expires))
1160                    expires = nte->expires;
1161            }
1162            /*
1163             * Do we still search for the first timer or are
1164             * we looking up the cascade buckets ?
1165             */
1166            if (found) {
1167                /* Look at the cascade bucket(s)? */
1168                if (!index || slot < index)
1169                    break;
1170                return expires;
1171            }
1172            slot = (slot + 1) & TVN_MASK;
1173        } while (slot != index);
1174
1175        if (index)
1176            timer_jiffies += TVN_SIZE - index;
1177        timer_jiffies >>= TVN_BITS;
1178    }
1179    return expires;
1180}
1181
1182/*
1183 * Check, if the next hrtimer event is before the next timer wheel
1184 * event:
1185 */
1186static unsigned long cmp_next_hrtimer_event(unsigned long now,
1187                        unsigned long expires)
1188{
1189    ktime_t hr_delta = hrtimer_get_next_event();
1190    struct timespec tsdelta;
1191    unsigned long delta;
1192
1193    if (hr_delta.tv64 == KTIME_MAX)
1194        return expires;
1195
1196    /*
1197     * Expired timer available, let it expire in the next tick
1198     */
1199    if (hr_delta.tv64 <= 0)
1200        return now + 1;
1201
1202    tsdelta = ktime_to_timespec(hr_delta);
1203    delta = timespec_to_jiffies(&tsdelta);
1204
1205    /*
1206     * Limit the delta to the max value, which is checked in
1207     * tick_nohz_stop_sched_tick():
1208     */
1209    if (delta > NEXT_TIMER_MAX_DELTA)
1210        delta = NEXT_TIMER_MAX_DELTA;
1211
1212    /*
1213     * Take rounding errors in to account and make sure, that it
1214     * expires in the next tick. Otherwise we go into an endless
1215     * ping pong due to tick_nohz_stop_sched_tick() retriggering
1216     * the timer softirq
1217     */
1218    if (delta < 1)
1219        delta = 1;
1220    now += delta;
1221    if (time_before(now, expires))
1222        return now;
1223    return expires;
1224}
1225
1226/**
1227 * get_next_timer_interrupt - return the jiffy of the next pending timer
1228 * @now: current time (in jiffies)
1229 */
1230unsigned long get_next_timer_interrupt(unsigned long now)
1231{
1232    struct tvec_base *base = __this_cpu_read(tvec_bases);
1233    unsigned long expires;
1234
1235    /*
1236     * Pretend that there is no timer pending if the cpu is offline.
1237     * Possible pending timers will be migrated later to an active cpu.
1238     */
1239    if (cpu_is_offline(smp_processor_id()))
1240        return now + NEXT_TIMER_MAX_DELTA;
1241    spin_lock(&base->lock);
1242    if (time_before_eq(base->next_timer, base->timer_jiffies))
1243        base->next_timer = __next_timer_interrupt(base);
1244    expires = base->next_timer;
1245    spin_unlock(&base->lock);
1246
1247    if (time_before_eq(expires, now))
1248        return now;
1249
1250    return cmp_next_hrtimer_event(now, expires);
1251}
1252#endif
1253
1254/*
1255 * Called from the timer interrupt handler to charge one tick to the current
1256 * process. user_tick is 1 if the tick is user time, 0 for system.
1257 */
1258void update_process_times(int user_tick)
1259{
1260    struct task_struct *p = current;
1261    int cpu = smp_processor_id();
1262
1263    /* Note: this timer irq context must be accounted for as well. */
1264    account_process_tick(p, user_tick);
1265    run_local_timers();
1266    rcu_check_callbacks(cpu, user_tick);
1267    printk_tick();
1268#ifdef CONFIG_IRQ_WORK
1269    if (in_irq())
1270        irq_work_run();
1271#endif
1272    scheduler_tick();
1273    run_posix_cpu_timers(p);
1274}
1275
1276/*
1277 * This function runs timers and the timer-tq in bottom half context.
1278 */
1279static void run_timer_softirq(struct softirq_action *h)
1280{
1281    struct tvec_base *base = __this_cpu_read(tvec_bases);
1282
1283    hrtimer_run_pending();
1284
1285    if (time_after_eq(jiffies, base->timer_jiffies))
1286        __run_timers(base);
1287}
1288
1289/*
1290 * Called by the local, per-CPU timer interrupt on SMP.
1291 */
1292void run_local_timers(void)
1293{
1294    hrtimer_run_queues();
1295    raise_softirq(TIMER_SOFTIRQ);
1296}
1297
1298/*
1299 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1300 * without sampling the sequence number in xtime_lock.
1301 * jiffies is defined in the linker script...
1302 */
1303
1304void do_timer(unsigned long ticks)
1305{
1306    jiffies_64 += ticks;
1307    update_wall_time();
1308    calc_global_load(ticks);
1309}
1310
1311#ifdef __ARCH_WANT_SYS_ALARM
1312
1313/*
1314 * For backwards compatibility? This can be done in libc so Alpha
1315 * and all newer ports shouldn't need it.
1316 */
1317SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1318{
1319    return alarm_setitimer(seconds);
1320}
1321
1322#endif
1323
1324#ifndef __alpha__
1325
1326/*
1327 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1328 * should be moved into arch/i386 instead?
1329 */
1330
1331/**
1332 * sys_getpid - return the thread group id of the current process
1333 *
1334 * Note, despite the name, this returns the tgid not the pid. The tgid and
1335 * the pid are identical unless CLONE_THREAD was specified on clone() in
1336 * which case the tgid is the same in all threads of the same group.
1337 *
1338 * This is SMP safe as current->tgid does not change.
1339 */
1340SYSCALL_DEFINE0(getpid)
1341{
1342    return task_tgid_vnr(current);
1343}
1344
1345/*
1346 * Accessing ->real_parent is not SMP-safe, it could
1347 * change from under us. However, we can use a stale
1348 * value of ->real_parent under rcu_read_lock(), see
1349 * release_task()->call_rcu(delayed_put_task_struct).
1350 */
1351SYSCALL_DEFINE0(getppid)
1352{
1353    int pid;
1354
1355    rcu_read_lock();
1356    pid = task_tgid_vnr(current->real_parent);
1357    rcu_read_unlock();
1358
1359    return pid;
1360}
1361
1362SYSCALL_DEFINE0(getuid)
1363{
1364    /* Only we change this so SMP safe */
1365    return current_uid();
1366}
1367
1368SYSCALL_DEFINE0(geteuid)
1369{
1370    /* Only we change this so SMP safe */
1371    return current_euid();
1372}
1373
1374SYSCALL_DEFINE0(getgid)
1375{
1376    /* Only we change this so SMP safe */
1377    return current_gid();
1378}
1379
1380SYSCALL_DEFINE0(getegid)
1381{
1382    /* Only we change this so SMP safe */
1383    return current_egid();
1384}
1385
1386#endif
1387
1388static void process_timeout(unsigned long __data)
1389{
1390    wake_up_process((struct task_struct *)__data);
1391}
1392
1393/**
1394 * schedule_timeout - sleep until timeout
1395 * @timeout: timeout value in jiffies
1396 *
1397 * Make the current task sleep until @timeout jiffies have
1398 * elapsed. The routine will return immediately unless
1399 * the current task state has been set (see set_current_state()).
1400 *
1401 * You can set the task state as follows -
1402 *
1403 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1404 * pass before the routine returns. The routine will return 0
1405 *
1406 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1407 * delivered to the current task. In this case the remaining time
1408 * in jiffies will be returned, or 0 if the timer expired in time
1409 *
1410 * The current task state is guaranteed to be TASK_RUNNING when this
1411 * routine returns.
1412 *
1413 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1414 * the CPU away without a bound on the timeout. In this case the return
1415 * value will be %MAX_SCHEDULE_TIMEOUT.
1416 *
1417 * In all cases the return value is guaranteed to be non-negative.
1418 */
1419signed long __sched schedule_timeout(signed long timeout)
1420{
1421    struct timer_list timer;
1422    unsigned long expire;
1423
1424    switch (timeout)
1425    {
1426    case MAX_SCHEDULE_TIMEOUT:
1427        /*
1428         * These two special cases are useful to be comfortable
1429         * in the caller. Nothing more. We could take
1430         * MAX_SCHEDULE_TIMEOUT from one of the negative value
1431         * but I' d like to return a valid offset (>=0) to allow
1432         * the caller to do everything it want with the retval.
1433         */
1434        schedule();
1435        goto out;
1436    default:
1437        /*
1438         * Another bit of PARANOID. Note that the retval will be
1439         * 0 since no piece of kernel is supposed to do a check
1440         * for a negative retval of schedule_timeout() (since it
1441         * should never happens anyway). You just have the printk()
1442         * that will tell you if something is gone wrong and where.
1443         */
1444        if (timeout < 0) {
1445            printk(KERN_ERR "schedule_timeout: wrong timeout "
1446                "value %lx\n", timeout);
1447            dump_stack();
1448            current->state = TASK_RUNNING;
1449            goto out;
1450        }
1451    }
1452
1453    expire = timeout + jiffies;
1454
1455    setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1456    __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1457    schedule();
1458    del_singleshot_timer_sync(&timer);
1459
1460    /* Remove the timer from the object tracker */
1461    destroy_timer_on_stack(&timer);
1462
1463    timeout = expire - jiffies;
1464
1465 out:
1466    return timeout < 0 ? 0 : timeout;
1467}
1468EXPORT_SYMBOL(schedule_timeout);
1469
1470/*
1471 * We can use __set_current_state() here because schedule_timeout() calls
1472 * schedule() unconditionally.
1473 */
1474signed long __sched schedule_timeout_interruptible(signed long timeout)
1475{
1476    __set_current_state(TASK_INTERRUPTIBLE);
1477    return schedule_timeout(timeout);
1478}
1479EXPORT_SYMBOL(schedule_timeout_interruptible);
1480
1481signed long __sched schedule_timeout_killable(signed long timeout)
1482{
1483    __set_current_state(TASK_KILLABLE);
1484    return schedule_timeout(timeout);
1485}
1486EXPORT_SYMBOL(schedule_timeout_killable);
1487
1488signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1489{
1490    __set_current_state(TASK_UNINTERRUPTIBLE);
1491    return schedule_timeout(timeout);
1492}
1493EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1494
1495/* Thread ID - the internal kernel "pid" */
1496SYSCALL_DEFINE0(gettid)
1497{
1498    return task_pid_vnr(current);
1499}
1500
1501/**
1502 * do_sysinfo - fill in sysinfo struct
1503 * @info: pointer to buffer to fill
1504 */
1505int do_sysinfo(struct sysinfo *info)
1506{
1507    unsigned long mem_total, sav_total;
1508    unsigned int mem_unit, bitcount;
1509    struct timespec tp;
1510
1511    memset(info, 0, sizeof(struct sysinfo));
1512
1513    ktime_get_ts(&tp);
1514    monotonic_to_bootbased(&tp);
1515    info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1516
1517    get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1518
1519    info->procs = nr_threads;
1520
1521    si_meminfo(info);
1522    si_swapinfo(info);
1523
1524    /*
1525     * If the sum of all the available memory (i.e. ram + swap)
1526     * is less than can be stored in a 32 bit unsigned long then
1527     * we can be binary compatible with 2.2.x kernels. If not,
1528     * well, in that case 2.2.x was broken anyways...
1529     *
1530     * -Erik Andersen <andersee@debian.org>
1531     */
1532
1533    mem_total = info->totalram + info->totalswap;
1534    if (mem_total < info->totalram || mem_total < info->totalswap)
1535        goto out;
1536    bitcount = 0;
1537    mem_unit = info->mem_unit;
1538    while (mem_unit > 1) {
1539        bitcount++;
1540        mem_unit >>= 1;
1541        sav_total = mem_total;
1542        mem_total <<= 1;
1543        if (mem_total < sav_total)
1544            goto out;
1545    }
1546
1547    /*
1548     * If mem_total did not overflow, multiply all memory values by
1549     * info->mem_unit and set it to 1. This leaves things compatible
1550     * with 2.2.x, and also retains compatibility with earlier 2.4.x
1551     * kernels...
1552     */
1553
1554    info->mem_unit = 1;
1555    info->totalram <<= bitcount;
1556    info->freeram <<= bitcount;
1557    info->sharedram <<= bitcount;
1558    info->bufferram <<= bitcount;
1559    info->totalswap <<= bitcount;
1560    info->freeswap <<= bitcount;
1561    info->totalhigh <<= bitcount;
1562    info->freehigh <<= bitcount;
1563
1564out:
1565    return 0;
1566}
1567
1568SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1569{
1570    struct sysinfo val;
1571
1572    do_sysinfo(&val);
1573
1574    if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1575        return -EFAULT;
1576
1577    return 0;
1578}
1579
1580static int __cpuinit init_timers_cpu(int cpu)
1581{
1582    int j;
1583    struct tvec_base *base;
1584    static char __cpuinitdata tvec_base_done[NR_CPUS];
1585
1586    if (!tvec_base_done[cpu]) {
1587        static char boot_done;
1588
1589        if (boot_done) {
1590            /*
1591             * The APs use this path later in boot
1592             */
1593            base = kmalloc_node(sizeof(*base),
1594                        GFP_KERNEL | __GFP_ZERO,
1595                        cpu_to_node(cpu));
1596            if (!base)
1597                return -ENOMEM;
1598
1599            /* Make sure that tvec_base is 2 byte aligned */
1600            if (tbase_get_deferrable(base)) {
1601                WARN_ON(1);
1602                kfree(base);
1603                return -ENOMEM;
1604            }
1605            per_cpu(tvec_bases, cpu) = base;
1606        } else {
1607            /*
1608             * This is for the boot CPU - we use compile-time
1609             * static initialisation because per-cpu memory isn't
1610             * ready yet and because the memory allocators are not
1611             * initialised either.
1612             */
1613            boot_done = 1;
1614            base = &boot_tvec_bases;
1615        }
1616        tvec_base_done[cpu] = 1;
1617    } else {
1618        base = per_cpu(tvec_bases, cpu);
1619    }
1620
1621    spin_lock_init(&base->lock);
1622
1623    for (j = 0; j < TVN_SIZE; j++) {
1624        INIT_LIST_HEAD(base->tv5.vec + j);
1625        INIT_LIST_HEAD(base->tv4.vec + j);
1626        INIT_LIST_HEAD(base->tv3.vec + j);
1627        INIT_LIST_HEAD(base->tv2.vec + j);
1628    }
1629    for (j = 0; j < TVR_SIZE; j++)
1630        INIT_LIST_HEAD(base->tv1.vec + j);
1631
1632    base->timer_jiffies = jiffies;
1633    base->next_timer = base->timer_jiffies;
1634    return 0;
1635}
1636
1637#ifdef CONFIG_HOTPLUG_CPU
1638static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1639{
1640    struct timer_list *timer;
1641
1642    while (!list_empty(head)) {
1643        timer = list_first_entry(head, struct timer_list, entry);
1644        detach_timer(timer, 0);
1645        timer_set_base(timer, new_base);
1646        if (time_before(timer->expires, new_base->next_timer) &&
1647            !tbase_get_deferrable(timer->base))
1648            new_base->next_timer = timer->expires;
1649        internal_add_timer(new_base, timer);
1650    }
1651}
1652
1653static void __cpuinit migrate_timers(int cpu)
1654{
1655    struct tvec_base *old_base;
1656    struct tvec_base *new_base;
1657    int i;
1658
1659    BUG_ON(cpu_online(cpu));
1660    old_base = per_cpu(tvec_bases, cpu);
1661    new_base = get_cpu_var(tvec_bases);
1662    /*
1663     * The caller is globally serialized and nobody else
1664     * takes two locks at once, deadlock is not possible.
1665     */
1666    spin_lock_irq(&new_base->lock);
1667    spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1668
1669    BUG_ON(old_base->running_timer);
1670
1671    for (i = 0; i < TVR_SIZE; i++)
1672        migrate_timer_list(new_base, old_base->tv1.vec + i);
1673    for (i = 0; i < TVN_SIZE; i++) {
1674        migrate_timer_list(new_base, old_base->tv2.vec + i);
1675        migrate_timer_list(new_base, old_base->tv3.vec + i);
1676        migrate_timer_list(new_base, old_base->tv4.vec + i);
1677        migrate_timer_list(new_base, old_base->tv5.vec + i);
1678    }
1679
1680    spin_unlock(&old_base->lock);
1681    spin_unlock_irq(&new_base->lock);
1682    put_cpu_var(tvec_bases);
1683}
1684#endif /* CONFIG_HOTPLUG_CPU */
1685
1686static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1687                unsigned long action, void *hcpu)
1688{
1689    long cpu = (long)hcpu;
1690    int err;
1691
1692    switch(action) {
1693    case CPU_UP_PREPARE:
1694    case CPU_UP_PREPARE_FROZEN:
1695        err = init_timers_cpu(cpu);
1696        if (err < 0)
1697            return notifier_from_errno(err);
1698        break;
1699#ifdef CONFIG_HOTPLUG_CPU
1700    case CPU_DEAD:
1701    case CPU_DEAD_FROZEN:
1702        migrate_timers(cpu);
1703        break;
1704#endif
1705    default:
1706        break;
1707    }
1708    return NOTIFY_OK;
1709}
1710
1711static struct notifier_block __cpuinitdata timers_nb = {
1712    .notifier_call = timer_cpu_notify,
1713};
1714
1715
1716void __init init_timers(void)
1717{
1718    int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1719                (void *)(long)smp_processor_id());
1720
1721    init_timer_stats();
1722
1723    BUG_ON(err != NOTIFY_OK);
1724    register_cpu_notifier(&timers_nb);
1725    open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1726}
1727
1728/**
1729 * msleep - sleep safely even with waitqueue interruptions
1730 * @msecs: Time in milliseconds to sleep for
1731 */
1732void msleep(unsigned int msecs)
1733{
1734    unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1735
1736    while (timeout)
1737        timeout = schedule_timeout_uninterruptible(timeout);
1738}
1739
1740EXPORT_SYMBOL(msleep);
1741
1742/**
1743 * msleep_interruptible - sleep waiting for signals
1744 * @msecs: Time in milliseconds to sleep for
1745 */
1746unsigned long msleep_interruptible(unsigned int msecs)
1747{
1748    unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1749
1750    while (timeout && !signal_pending(current))
1751        timeout = schedule_timeout_interruptible(timeout);
1752    return jiffies_to_msecs(timeout);
1753}
1754
1755EXPORT_SYMBOL(msleep_interruptible);
1756
1757static int __sched do_usleep_range(unsigned long min, unsigned long max)
1758{
1759    ktime_t kmin;
1760    unsigned long delta;
1761
1762    kmin = ktime_set(0, min * NSEC_PER_USEC);
1763    delta = (max - min) * NSEC_PER_USEC;
1764    return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1765}
1766
1767/**
1768 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1769 * @min: Minimum time in usecs to sleep
1770 * @max: Maximum time in usecs to sleep
1771 */
1772void usleep_range(unsigned long min, unsigned long max)
1773{
1774    __set_current_state(TASK_UNINTERRUPTIBLE);
1775    do_usleep_range(min, max);
1776}
1777EXPORT_SYMBOL(usleep_range);
1778

Archive Download this file



interactive