Root/security/security.c

1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/ima.h>
20
21/* Boot-time LSM user choice */
22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23    CONFIG_DEFAULT_SECURITY;
24
25/* things that live in capability.c */
26extern void __init security_fixup_ops(struct security_operations *ops);
27
28static struct security_operations *security_ops;
29static struct security_operations default_security_ops = {
30    .name = "default",
31};
32
33static inline int __init verify(struct security_operations *ops)
34{
35    /* verify the security_operations structure exists */
36    if (!ops)
37        return -EINVAL;
38    security_fixup_ops(ops);
39    return 0;
40}
41
42static void __init do_security_initcalls(void)
43{
44    initcall_t *call;
45    call = __security_initcall_start;
46    while (call < __security_initcall_end) {
47        (*call) ();
48        call++;
49    }
50}
51
52/**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57int __init security_init(void)
58{
59    printk(KERN_INFO "Security Framework initialized\n");
60
61    security_fixup_ops(&default_security_ops);
62    security_ops = &default_security_ops;
63    do_security_initcalls();
64
65    return 0;
66}
67
68void reset_security_ops(void)
69{
70    security_ops = &default_security_ops;
71}
72
73/* Save user chosen LSM */
74static int __init choose_lsm(char *str)
75{
76    strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77    return 1;
78}
79__setup("security=", choose_lsm);
80
81/**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time.
93 * Otherwise, return false.
94 */
95int __init security_module_enable(struct security_operations *ops)
96{
97    return !strcmp(ops->name, chosen_lsm);
98}
99
100/**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function allows a security module to register itself with the
105 * kernel security subsystem. Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned. Otherwise %0 is returned on success.
111 */
112int __init register_security(struct security_operations *ops)
113{
114    if (verify(ops)) {
115        printk(KERN_DEBUG "%s could not verify "
116               "security_operations structure.\n", __func__);
117        return -EINVAL;
118    }
119
120    if (security_ops != &default_security_ops)
121        return -EAGAIN;
122
123    security_ops = ops;
124
125    return 0;
126}
127
128/* Security operations */
129
130int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131{
132    return security_ops->ptrace_access_check(child, mode);
133}
134
135int security_ptrace_traceme(struct task_struct *parent)
136{
137    return security_ops->ptrace_traceme(parent);
138}
139
140int security_capget(struct task_struct *target,
141             kernel_cap_t *effective,
142             kernel_cap_t *inheritable,
143             kernel_cap_t *permitted)
144{
145    return security_ops->capget(target, effective, inheritable, permitted);
146}
147
148int security_capset(struct cred *new, const struct cred *old,
149            const kernel_cap_t *effective,
150            const kernel_cap_t *inheritable,
151            const kernel_cap_t *permitted)
152{
153    return security_ops->capset(new, old,
154                    effective, inheritable, permitted);
155}
156
157int security_capable(const struct cred *cred, int cap)
158{
159    return security_ops->capable(current, cred, cap, SECURITY_CAP_AUDIT);
160}
161
162int security_real_capable(struct task_struct *tsk, int cap)
163{
164    const struct cred *cred;
165    int ret;
166
167    cred = get_task_cred(tsk);
168    ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
169    put_cred(cred);
170    return ret;
171}
172
173int security_real_capable_noaudit(struct task_struct *tsk, int cap)
174{
175    const struct cred *cred;
176    int ret;
177
178    cred = get_task_cred(tsk);
179    ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
180    put_cred(cred);
181    return ret;
182}
183
184int security_sysctl(struct ctl_table *table, int op)
185{
186    return security_ops->sysctl(table, op);
187}
188
189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190{
191    return security_ops->quotactl(cmds, type, id, sb);
192}
193
194int security_quota_on(struct dentry *dentry)
195{
196    return security_ops->quota_on(dentry);
197}
198
199int security_syslog(int type)
200{
201    return security_ops->syslog(type);
202}
203
204int security_settime(struct timespec *ts, struct timezone *tz)
205{
206    return security_ops->settime(ts, tz);
207}
208
209int security_vm_enough_memory(long pages)
210{
211    WARN_ON(current->mm == NULL);
212    return security_ops->vm_enough_memory(current->mm, pages);
213}
214
215int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
216{
217    WARN_ON(mm == NULL);
218    return security_ops->vm_enough_memory(mm, pages);
219}
220
221int security_vm_enough_memory_kern(long pages)
222{
223    /* If current->mm is a kernel thread then we will pass NULL,
224       for this specific case that is fine */
225    return security_ops->vm_enough_memory(current->mm, pages);
226}
227
228int security_bprm_set_creds(struct linux_binprm *bprm)
229{
230    return security_ops->bprm_set_creds(bprm);
231}
232
233int security_bprm_check(struct linux_binprm *bprm)
234{
235    int ret;
236
237    ret = security_ops->bprm_check_security(bprm);
238    if (ret)
239        return ret;
240    return ima_bprm_check(bprm);
241}
242
243void security_bprm_committing_creds(struct linux_binprm *bprm)
244{
245    security_ops->bprm_committing_creds(bprm);
246}
247
248void security_bprm_committed_creds(struct linux_binprm *bprm)
249{
250    security_ops->bprm_committed_creds(bprm);
251}
252
253int security_bprm_secureexec(struct linux_binprm *bprm)
254{
255    return security_ops->bprm_secureexec(bprm);
256}
257
258int security_sb_alloc(struct super_block *sb)
259{
260    return security_ops->sb_alloc_security(sb);
261}
262
263void security_sb_free(struct super_block *sb)
264{
265    security_ops->sb_free_security(sb);
266}
267
268int security_sb_copy_data(char *orig, char *copy)
269{
270    return security_ops->sb_copy_data(orig, copy);
271}
272EXPORT_SYMBOL(security_sb_copy_data);
273
274int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
275{
276    return security_ops->sb_kern_mount(sb, flags, data);
277}
278
279int security_sb_show_options(struct seq_file *m, struct super_block *sb)
280{
281    return security_ops->sb_show_options(m, sb);
282}
283
284int security_sb_statfs(struct dentry *dentry)
285{
286    return security_ops->sb_statfs(dentry);
287}
288
289int security_sb_mount(char *dev_name, struct path *path,
290                       char *type, unsigned long flags, void *data)
291{
292    return security_ops->sb_mount(dev_name, path, type, flags, data);
293}
294
295int security_sb_umount(struct vfsmount *mnt, int flags)
296{
297    return security_ops->sb_umount(mnt, flags);
298}
299
300int security_sb_pivotroot(struct path *old_path, struct path *new_path)
301{
302    return security_ops->sb_pivotroot(old_path, new_path);
303}
304
305int security_sb_set_mnt_opts(struct super_block *sb,
306                struct security_mnt_opts *opts)
307{
308    return security_ops->sb_set_mnt_opts(sb, opts);
309}
310EXPORT_SYMBOL(security_sb_set_mnt_opts);
311
312void security_sb_clone_mnt_opts(const struct super_block *oldsb,
313                struct super_block *newsb)
314{
315    security_ops->sb_clone_mnt_opts(oldsb, newsb);
316}
317EXPORT_SYMBOL(security_sb_clone_mnt_opts);
318
319int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
320{
321    return security_ops->sb_parse_opts_str(options, opts);
322}
323EXPORT_SYMBOL(security_sb_parse_opts_str);
324
325int security_inode_alloc(struct inode *inode)
326{
327    inode->i_security = NULL;
328    return security_ops->inode_alloc_security(inode);
329}
330
331void security_inode_free(struct inode *inode)
332{
333    ima_inode_free(inode);
334    security_ops->inode_free_security(inode);
335}
336
337int security_inode_init_security(struct inode *inode, struct inode *dir,
338                  char **name, void **value, size_t *len)
339{
340    if (unlikely(IS_PRIVATE(inode)))
341        return -EOPNOTSUPP;
342    return security_ops->inode_init_security(inode, dir, name, value, len);
343}
344EXPORT_SYMBOL(security_inode_init_security);
345
346#ifdef CONFIG_SECURITY_PATH
347int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
348            unsigned int dev)
349{
350    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
351        return 0;
352    return security_ops->path_mknod(dir, dentry, mode, dev);
353}
354EXPORT_SYMBOL(security_path_mknod);
355
356int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
357{
358    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
359        return 0;
360    return security_ops->path_mkdir(dir, dentry, mode);
361}
362
363int security_path_rmdir(struct path *dir, struct dentry *dentry)
364{
365    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
366        return 0;
367    return security_ops->path_rmdir(dir, dentry);
368}
369
370int security_path_unlink(struct path *dir, struct dentry *dentry)
371{
372    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
373        return 0;
374    return security_ops->path_unlink(dir, dentry);
375}
376
377int security_path_symlink(struct path *dir, struct dentry *dentry,
378              const char *old_name)
379{
380    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
381        return 0;
382    return security_ops->path_symlink(dir, dentry, old_name);
383}
384
385int security_path_link(struct dentry *old_dentry, struct path *new_dir,
386               struct dentry *new_dentry)
387{
388    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
389        return 0;
390    return security_ops->path_link(old_dentry, new_dir, new_dentry);
391}
392
393int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
394             struct path *new_dir, struct dentry *new_dentry)
395{
396    if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
397             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
398        return 0;
399    return security_ops->path_rename(old_dir, old_dentry, new_dir,
400                     new_dentry);
401}
402
403int security_path_truncate(struct path *path)
404{
405    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
406        return 0;
407    return security_ops->path_truncate(path);
408}
409
410int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
411            mode_t mode)
412{
413    if (unlikely(IS_PRIVATE(dentry->d_inode)))
414        return 0;
415    return security_ops->path_chmod(dentry, mnt, mode);
416}
417
418int security_path_chown(struct path *path, uid_t uid, gid_t gid)
419{
420    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
421        return 0;
422    return security_ops->path_chown(path, uid, gid);
423}
424
425int security_path_chroot(struct path *path)
426{
427    return security_ops->path_chroot(path);
428}
429#endif
430
431int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
432{
433    if (unlikely(IS_PRIVATE(dir)))
434        return 0;
435    return security_ops->inode_create(dir, dentry, mode);
436}
437EXPORT_SYMBOL_GPL(security_inode_create);
438
439int security_inode_link(struct dentry *old_dentry, struct inode *dir,
440             struct dentry *new_dentry)
441{
442    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
443        return 0;
444    return security_ops->inode_link(old_dentry, dir, new_dentry);
445}
446
447int security_inode_unlink(struct inode *dir, struct dentry *dentry)
448{
449    if (unlikely(IS_PRIVATE(dentry->d_inode)))
450        return 0;
451    return security_ops->inode_unlink(dir, dentry);
452}
453
454int security_inode_symlink(struct inode *dir, struct dentry *dentry,
455                const char *old_name)
456{
457    if (unlikely(IS_PRIVATE(dir)))
458        return 0;
459    return security_ops->inode_symlink(dir, dentry, old_name);
460}
461
462int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
463{
464    if (unlikely(IS_PRIVATE(dir)))
465        return 0;
466    return security_ops->inode_mkdir(dir, dentry, mode);
467}
468EXPORT_SYMBOL_GPL(security_inode_mkdir);
469
470int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
471{
472    if (unlikely(IS_PRIVATE(dentry->d_inode)))
473        return 0;
474    return security_ops->inode_rmdir(dir, dentry);
475}
476
477int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
478{
479    if (unlikely(IS_PRIVATE(dir)))
480        return 0;
481    return security_ops->inode_mknod(dir, dentry, mode, dev);
482}
483
484int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
485               struct inode *new_dir, struct dentry *new_dentry)
486{
487        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
488            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
489        return 0;
490    return security_ops->inode_rename(old_dir, old_dentry,
491                       new_dir, new_dentry);
492}
493
494int security_inode_readlink(struct dentry *dentry)
495{
496    if (unlikely(IS_PRIVATE(dentry->d_inode)))
497        return 0;
498    return security_ops->inode_readlink(dentry);
499}
500
501int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
502{
503    if (unlikely(IS_PRIVATE(dentry->d_inode)))
504        return 0;
505    return security_ops->inode_follow_link(dentry, nd);
506}
507
508int security_inode_permission(struct inode *inode, int mask)
509{
510    if (unlikely(IS_PRIVATE(inode)))
511        return 0;
512    return security_ops->inode_permission(inode, mask);
513}
514
515int security_inode_exec_permission(struct inode *inode, unsigned int flags)
516{
517    if (unlikely(IS_PRIVATE(inode)))
518        return 0;
519    if (flags)
520        return -ECHILD;
521    return security_ops->inode_permission(inode, MAY_EXEC);
522}
523
524int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
525{
526    if (unlikely(IS_PRIVATE(dentry->d_inode)))
527        return 0;
528    return security_ops->inode_setattr(dentry, attr);
529}
530EXPORT_SYMBOL_GPL(security_inode_setattr);
531
532int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
533{
534    if (unlikely(IS_PRIVATE(dentry->d_inode)))
535        return 0;
536    return security_ops->inode_getattr(mnt, dentry);
537}
538
539int security_inode_setxattr(struct dentry *dentry, const char *name,
540                const void *value, size_t size, int flags)
541{
542    if (unlikely(IS_PRIVATE(dentry->d_inode)))
543        return 0;
544    return security_ops->inode_setxattr(dentry, name, value, size, flags);
545}
546
547void security_inode_post_setxattr(struct dentry *dentry, const char *name,
548                  const void *value, size_t size, int flags)
549{
550    if (unlikely(IS_PRIVATE(dentry->d_inode)))
551        return;
552    security_ops->inode_post_setxattr(dentry, name, value, size, flags);
553}
554
555int security_inode_getxattr(struct dentry *dentry, const char *name)
556{
557    if (unlikely(IS_PRIVATE(dentry->d_inode)))
558        return 0;
559    return security_ops->inode_getxattr(dentry, name);
560}
561
562int security_inode_listxattr(struct dentry *dentry)
563{
564    if (unlikely(IS_PRIVATE(dentry->d_inode)))
565        return 0;
566    return security_ops->inode_listxattr(dentry);
567}
568
569int security_inode_removexattr(struct dentry *dentry, const char *name)
570{
571    if (unlikely(IS_PRIVATE(dentry->d_inode)))
572        return 0;
573    return security_ops->inode_removexattr(dentry, name);
574}
575
576int security_inode_need_killpriv(struct dentry *dentry)
577{
578    return security_ops->inode_need_killpriv(dentry);
579}
580
581int security_inode_killpriv(struct dentry *dentry)
582{
583    return security_ops->inode_killpriv(dentry);
584}
585
586int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
587{
588    if (unlikely(IS_PRIVATE(inode)))
589        return -EOPNOTSUPP;
590    return security_ops->inode_getsecurity(inode, name, buffer, alloc);
591}
592
593int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
594{
595    if (unlikely(IS_PRIVATE(inode)))
596        return -EOPNOTSUPP;
597    return security_ops->inode_setsecurity(inode, name, value, size, flags);
598}
599
600int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
601{
602    if (unlikely(IS_PRIVATE(inode)))
603        return 0;
604    return security_ops->inode_listsecurity(inode, buffer, buffer_size);
605}
606
607void security_inode_getsecid(const struct inode *inode, u32 *secid)
608{
609    security_ops->inode_getsecid(inode, secid);
610}
611
612int security_file_permission(struct file *file, int mask)
613{
614    int ret;
615
616    ret = security_ops->file_permission(file, mask);
617    if (ret)
618        return ret;
619
620    return fsnotify_perm(file, mask);
621}
622
623int security_file_alloc(struct file *file)
624{
625    return security_ops->file_alloc_security(file);
626}
627
628void security_file_free(struct file *file)
629{
630    security_ops->file_free_security(file);
631}
632
633int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
634{
635    return security_ops->file_ioctl(file, cmd, arg);
636}
637
638int security_file_mmap(struct file *file, unsigned long reqprot,
639            unsigned long prot, unsigned long flags,
640            unsigned long addr, unsigned long addr_only)
641{
642    int ret;
643
644    ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
645    if (ret)
646        return ret;
647    return ima_file_mmap(file, prot);
648}
649
650int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
651                unsigned long prot)
652{
653    return security_ops->file_mprotect(vma, reqprot, prot);
654}
655
656int security_file_lock(struct file *file, unsigned int cmd)
657{
658    return security_ops->file_lock(file, cmd);
659}
660
661int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
662{
663    return security_ops->file_fcntl(file, cmd, arg);
664}
665
666int security_file_set_fowner(struct file *file)
667{
668    return security_ops->file_set_fowner(file);
669}
670
671int security_file_send_sigiotask(struct task_struct *tsk,
672                  struct fown_struct *fown, int sig)
673{
674    return security_ops->file_send_sigiotask(tsk, fown, sig);
675}
676
677int security_file_receive(struct file *file)
678{
679    return security_ops->file_receive(file);
680}
681
682int security_dentry_open(struct file *file, const struct cred *cred)
683{
684    int ret;
685
686    ret = security_ops->dentry_open(file, cred);
687    if (ret)
688        return ret;
689
690    return fsnotify_perm(file, MAY_OPEN);
691}
692
693int security_task_create(unsigned long clone_flags)
694{
695    return security_ops->task_create(clone_flags);
696}
697
698int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
699{
700    return security_ops->cred_alloc_blank(cred, gfp);
701}
702
703void security_cred_free(struct cred *cred)
704{
705    security_ops->cred_free(cred);
706}
707
708int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
709{
710    return security_ops->cred_prepare(new, old, gfp);
711}
712
713void security_transfer_creds(struct cred *new, const struct cred *old)
714{
715    security_ops->cred_transfer(new, old);
716}
717
718int security_kernel_act_as(struct cred *new, u32 secid)
719{
720    return security_ops->kernel_act_as(new, secid);
721}
722
723int security_kernel_create_files_as(struct cred *new, struct inode *inode)
724{
725    return security_ops->kernel_create_files_as(new, inode);
726}
727
728int security_kernel_module_request(char *kmod_name)
729{
730    return security_ops->kernel_module_request(kmod_name);
731}
732
733int security_task_fix_setuid(struct cred *new, const struct cred *old,
734                 int flags)
735{
736    return security_ops->task_fix_setuid(new, old, flags);
737}
738
739int security_task_setpgid(struct task_struct *p, pid_t pgid)
740{
741    return security_ops->task_setpgid(p, pgid);
742}
743
744int security_task_getpgid(struct task_struct *p)
745{
746    return security_ops->task_getpgid(p);
747}
748
749int security_task_getsid(struct task_struct *p)
750{
751    return security_ops->task_getsid(p);
752}
753
754void security_task_getsecid(struct task_struct *p, u32 *secid)
755{
756    security_ops->task_getsecid(p, secid);
757}
758EXPORT_SYMBOL(security_task_getsecid);
759
760int security_task_setnice(struct task_struct *p, int nice)
761{
762    return security_ops->task_setnice(p, nice);
763}
764
765int security_task_setioprio(struct task_struct *p, int ioprio)
766{
767    return security_ops->task_setioprio(p, ioprio);
768}
769
770int security_task_getioprio(struct task_struct *p)
771{
772    return security_ops->task_getioprio(p);
773}
774
775int security_task_setrlimit(struct task_struct *p, unsigned int resource,
776        struct rlimit *new_rlim)
777{
778    return security_ops->task_setrlimit(p, resource, new_rlim);
779}
780
781int security_task_setscheduler(struct task_struct *p)
782{
783    return security_ops->task_setscheduler(p);
784}
785
786int security_task_getscheduler(struct task_struct *p)
787{
788    return security_ops->task_getscheduler(p);
789}
790
791int security_task_movememory(struct task_struct *p)
792{
793    return security_ops->task_movememory(p);
794}
795
796int security_task_kill(struct task_struct *p, struct siginfo *info,
797            int sig, u32 secid)
798{
799    return security_ops->task_kill(p, info, sig, secid);
800}
801
802int security_task_wait(struct task_struct *p)
803{
804    return security_ops->task_wait(p);
805}
806
807int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
808             unsigned long arg4, unsigned long arg5)
809{
810    return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
811}
812
813void security_task_to_inode(struct task_struct *p, struct inode *inode)
814{
815    security_ops->task_to_inode(p, inode);
816}
817
818int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
819{
820    return security_ops->ipc_permission(ipcp, flag);
821}
822
823void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
824{
825    security_ops->ipc_getsecid(ipcp, secid);
826}
827
828int security_msg_msg_alloc(struct msg_msg *msg)
829{
830    return security_ops->msg_msg_alloc_security(msg);
831}
832
833void security_msg_msg_free(struct msg_msg *msg)
834{
835    security_ops->msg_msg_free_security(msg);
836}
837
838int security_msg_queue_alloc(struct msg_queue *msq)
839{
840    return security_ops->msg_queue_alloc_security(msq);
841}
842
843void security_msg_queue_free(struct msg_queue *msq)
844{
845    security_ops->msg_queue_free_security(msq);
846}
847
848int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
849{
850    return security_ops->msg_queue_associate(msq, msqflg);
851}
852
853int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
854{
855    return security_ops->msg_queue_msgctl(msq, cmd);
856}
857
858int security_msg_queue_msgsnd(struct msg_queue *msq,
859                   struct msg_msg *msg, int msqflg)
860{
861    return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
862}
863
864int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
865                   struct task_struct *target, long type, int mode)
866{
867    return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
868}
869
870int security_shm_alloc(struct shmid_kernel *shp)
871{
872    return security_ops->shm_alloc_security(shp);
873}
874
875void security_shm_free(struct shmid_kernel *shp)
876{
877    security_ops->shm_free_security(shp);
878}
879
880int security_shm_associate(struct shmid_kernel *shp, int shmflg)
881{
882    return security_ops->shm_associate(shp, shmflg);
883}
884
885int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
886{
887    return security_ops->shm_shmctl(shp, cmd);
888}
889
890int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
891{
892    return security_ops->shm_shmat(shp, shmaddr, shmflg);
893}
894
895int security_sem_alloc(struct sem_array *sma)
896{
897    return security_ops->sem_alloc_security(sma);
898}
899
900void security_sem_free(struct sem_array *sma)
901{
902    security_ops->sem_free_security(sma);
903}
904
905int security_sem_associate(struct sem_array *sma, int semflg)
906{
907    return security_ops->sem_associate(sma, semflg);
908}
909
910int security_sem_semctl(struct sem_array *sma, int cmd)
911{
912    return security_ops->sem_semctl(sma, cmd);
913}
914
915int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
916            unsigned nsops, int alter)
917{
918    return security_ops->sem_semop(sma, sops, nsops, alter);
919}
920
921void security_d_instantiate(struct dentry *dentry, struct inode *inode)
922{
923    if (unlikely(inode && IS_PRIVATE(inode)))
924        return;
925    security_ops->d_instantiate(dentry, inode);
926}
927EXPORT_SYMBOL(security_d_instantiate);
928
929int security_getprocattr(struct task_struct *p, char *name, char **value)
930{
931    return security_ops->getprocattr(p, name, value);
932}
933
934int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
935{
936    return security_ops->setprocattr(p, name, value, size);
937}
938
939int security_netlink_send(struct sock *sk, struct sk_buff *skb)
940{
941    return security_ops->netlink_send(sk, skb);
942}
943
944int security_netlink_recv(struct sk_buff *skb, int cap)
945{
946    return security_ops->netlink_recv(skb, cap);
947}
948EXPORT_SYMBOL(security_netlink_recv);
949
950int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
951{
952    return security_ops->secid_to_secctx(secid, secdata, seclen);
953}
954EXPORT_SYMBOL(security_secid_to_secctx);
955
956int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
957{
958    return security_ops->secctx_to_secid(secdata, seclen, secid);
959}
960EXPORT_SYMBOL(security_secctx_to_secid);
961
962void security_release_secctx(char *secdata, u32 seclen)
963{
964    security_ops->release_secctx(secdata, seclen);
965}
966EXPORT_SYMBOL(security_release_secctx);
967
968int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
969{
970    return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
971}
972EXPORT_SYMBOL(security_inode_notifysecctx);
973
974int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
975{
976    return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
977}
978EXPORT_SYMBOL(security_inode_setsecctx);
979
980int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
981{
982    return security_ops->inode_getsecctx(inode, ctx, ctxlen);
983}
984EXPORT_SYMBOL(security_inode_getsecctx);
985
986#ifdef CONFIG_SECURITY_NETWORK
987
988int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
989{
990    return security_ops->unix_stream_connect(sock, other, newsk);
991}
992EXPORT_SYMBOL(security_unix_stream_connect);
993
994int security_unix_may_send(struct socket *sock, struct socket *other)
995{
996    return security_ops->unix_may_send(sock, other);
997}
998EXPORT_SYMBOL(security_unix_may_send);
999
1000int security_socket_create(int family, int type, int protocol, int kern)
1001{
1002    return security_ops->socket_create(family, type, protocol, kern);
1003}
1004
1005int security_socket_post_create(struct socket *sock, int family,
1006                int type, int protocol, int kern)
1007{
1008    return security_ops->socket_post_create(sock, family, type,
1009                        protocol, kern);
1010}
1011
1012int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1013{
1014    return security_ops->socket_bind(sock, address, addrlen);
1015}
1016
1017int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1018{
1019    return security_ops->socket_connect(sock, address, addrlen);
1020}
1021
1022int security_socket_listen(struct socket *sock, int backlog)
1023{
1024    return security_ops->socket_listen(sock, backlog);
1025}
1026
1027int security_socket_accept(struct socket *sock, struct socket *newsock)
1028{
1029    return security_ops->socket_accept(sock, newsock);
1030}
1031
1032int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1033{
1034    return security_ops->socket_sendmsg(sock, msg, size);
1035}
1036
1037int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1038                int size, int flags)
1039{
1040    return security_ops->socket_recvmsg(sock, msg, size, flags);
1041}
1042
1043int security_socket_getsockname(struct socket *sock)
1044{
1045    return security_ops->socket_getsockname(sock);
1046}
1047
1048int security_socket_getpeername(struct socket *sock)
1049{
1050    return security_ops->socket_getpeername(sock);
1051}
1052
1053int security_socket_getsockopt(struct socket *sock, int level, int optname)
1054{
1055    return security_ops->socket_getsockopt(sock, level, optname);
1056}
1057
1058int security_socket_setsockopt(struct socket *sock, int level, int optname)
1059{
1060    return security_ops->socket_setsockopt(sock, level, optname);
1061}
1062
1063int security_socket_shutdown(struct socket *sock, int how)
1064{
1065    return security_ops->socket_shutdown(sock, how);
1066}
1067
1068int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1069{
1070    return security_ops->socket_sock_rcv_skb(sk, skb);
1071}
1072EXPORT_SYMBOL(security_sock_rcv_skb);
1073
1074int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1075                      int __user *optlen, unsigned len)
1076{
1077    return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1078}
1079
1080int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1081{
1082    return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1083}
1084EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1085
1086int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1087{
1088    return security_ops->sk_alloc_security(sk, family, priority);
1089}
1090
1091void security_sk_free(struct sock *sk)
1092{
1093    security_ops->sk_free_security(sk);
1094}
1095
1096void security_sk_clone(const struct sock *sk, struct sock *newsk)
1097{
1098    security_ops->sk_clone_security(sk, newsk);
1099}
1100
1101void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1102{
1103    security_ops->sk_getsecid(sk, &fl->secid);
1104}
1105EXPORT_SYMBOL(security_sk_classify_flow);
1106
1107void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1108{
1109    security_ops->req_classify_flow(req, fl);
1110}
1111EXPORT_SYMBOL(security_req_classify_flow);
1112
1113void security_sock_graft(struct sock *sk, struct socket *parent)
1114{
1115    security_ops->sock_graft(sk, parent);
1116}
1117EXPORT_SYMBOL(security_sock_graft);
1118
1119int security_inet_conn_request(struct sock *sk,
1120            struct sk_buff *skb, struct request_sock *req)
1121{
1122    return security_ops->inet_conn_request(sk, skb, req);
1123}
1124EXPORT_SYMBOL(security_inet_conn_request);
1125
1126void security_inet_csk_clone(struct sock *newsk,
1127            const struct request_sock *req)
1128{
1129    security_ops->inet_csk_clone(newsk, req);
1130}
1131
1132void security_inet_conn_established(struct sock *sk,
1133            struct sk_buff *skb)
1134{
1135    security_ops->inet_conn_established(sk, skb);
1136}
1137
1138int security_secmark_relabel_packet(u32 secid)
1139{
1140    return security_ops->secmark_relabel_packet(secid);
1141}
1142EXPORT_SYMBOL(security_secmark_relabel_packet);
1143
1144void security_secmark_refcount_inc(void)
1145{
1146    security_ops->secmark_refcount_inc();
1147}
1148EXPORT_SYMBOL(security_secmark_refcount_inc);
1149
1150void security_secmark_refcount_dec(void)
1151{
1152    security_ops->secmark_refcount_dec();
1153}
1154EXPORT_SYMBOL(security_secmark_refcount_dec);
1155
1156int security_tun_dev_create(void)
1157{
1158    return security_ops->tun_dev_create();
1159}
1160EXPORT_SYMBOL(security_tun_dev_create);
1161
1162void security_tun_dev_post_create(struct sock *sk)
1163{
1164    return security_ops->tun_dev_post_create(sk);
1165}
1166EXPORT_SYMBOL(security_tun_dev_post_create);
1167
1168int security_tun_dev_attach(struct sock *sk)
1169{
1170    return security_ops->tun_dev_attach(sk);
1171}
1172EXPORT_SYMBOL(security_tun_dev_attach);
1173
1174#endif /* CONFIG_SECURITY_NETWORK */
1175
1176#ifdef CONFIG_SECURITY_NETWORK_XFRM
1177
1178int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1179{
1180    return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1181}
1182EXPORT_SYMBOL(security_xfrm_policy_alloc);
1183
1184int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1185                  struct xfrm_sec_ctx **new_ctxp)
1186{
1187    return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1188}
1189
1190void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1191{
1192    security_ops->xfrm_policy_free_security(ctx);
1193}
1194EXPORT_SYMBOL(security_xfrm_policy_free);
1195
1196int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1197{
1198    return security_ops->xfrm_policy_delete_security(ctx);
1199}
1200
1201int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1202{
1203    return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1204}
1205EXPORT_SYMBOL(security_xfrm_state_alloc);
1206
1207int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1208                      struct xfrm_sec_ctx *polsec, u32 secid)
1209{
1210    if (!polsec)
1211        return 0;
1212    /*
1213     * We want the context to be taken from secid which is usually
1214     * from the sock.
1215     */
1216    return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1217}
1218
1219int security_xfrm_state_delete(struct xfrm_state *x)
1220{
1221    return security_ops->xfrm_state_delete_security(x);
1222}
1223EXPORT_SYMBOL(security_xfrm_state_delete);
1224
1225void security_xfrm_state_free(struct xfrm_state *x)
1226{
1227    security_ops->xfrm_state_free_security(x);
1228}
1229
1230int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1231{
1232    return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1233}
1234
1235int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1236                       struct xfrm_policy *xp, struct flowi *fl)
1237{
1238    return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1239}
1240
1241int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1242{
1243    return security_ops->xfrm_decode_session(skb, secid, 1);
1244}
1245
1246void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1247{
1248    int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1249
1250    BUG_ON(rc);
1251}
1252EXPORT_SYMBOL(security_skb_classify_flow);
1253
1254#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1255
1256#ifdef CONFIG_KEYS
1257
1258int security_key_alloc(struct key *key, const struct cred *cred,
1259               unsigned long flags)
1260{
1261    return security_ops->key_alloc(key, cred, flags);
1262}
1263
1264void security_key_free(struct key *key)
1265{
1266    security_ops->key_free(key);
1267}
1268
1269int security_key_permission(key_ref_t key_ref,
1270                const struct cred *cred, key_perm_t perm)
1271{
1272    return security_ops->key_permission(key_ref, cred, perm);
1273}
1274
1275int security_key_getsecurity(struct key *key, char **_buffer)
1276{
1277    return security_ops->key_getsecurity(key, _buffer);
1278}
1279
1280#endif /* CONFIG_KEYS */
1281
1282#ifdef CONFIG_AUDIT
1283
1284int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1285{
1286    return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1287}
1288
1289int security_audit_rule_known(struct audit_krule *krule)
1290{
1291    return security_ops->audit_rule_known(krule);
1292}
1293
1294void security_audit_rule_free(void *lsmrule)
1295{
1296    security_ops->audit_rule_free(lsmrule);
1297}
1298
1299int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1300                  struct audit_context *actx)
1301{
1302    return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1303}
1304
1305#endif /* CONFIG_AUDIT */
1306

Archive Download this file



interactive