Root/
Source at commit ec7cab4cbb721bff91ec924ec691efd8daf36579 created 9 years 7 months ago. By Maarten ter Huurne, MIPS: JZ4740: A320: Updated quickstart documentation. | |
---|---|
1 | /* |
2 | * builtin-timechart.c - make an svg timechart of system activity |
3 | * |
4 | * (C) Copyright 2009 Intel Corporation |
5 | * |
6 | * Authors: |
7 | * Arjan van de Ven <arjan@linux.intel.com> |
8 | * |
9 | * This program is free software; you can redistribute it and/or |
10 | * modify it under the terms of the GNU General Public License |
11 | * as published by the Free Software Foundation; version 2 |
12 | * of the License. |
13 | */ |
14 | |
15 | #include "builtin.h" |
16 | |
17 | #include "util/util.h" |
18 | |
19 | #include "util/color.h" |
20 | #include <linux/list.h> |
21 | #include "util/cache.h" |
22 | #include <linux/rbtree.h> |
23 | #include "util/symbol.h" |
24 | #include "util/callchain.h" |
25 | #include "util/strlist.h" |
26 | |
27 | #include "perf.h" |
28 | #include "util/header.h" |
29 | #include "util/parse-options.h" |
30 | #include "util/parse-events.h" |
31 | #include "util/event.h" |
32 | #include "util/session.h" |
33 | #include "util/svghelper.h" |
34 | |
35 | #define SUPPORT_OLD_POWER_EVENTS 1 |
36 | #define PWR_EVENT_EXIT -1 |
37 | |
38 | |
39 | static char const *input_name = "perf.data"; |
40 | static char const *output_name = "output.svg"; |
41 | |
42 | static unsigned int numcpus; |
43 | static u64 min_freq; /* Lowest CPU frequency seen */ |
44 | static u64 max_freq; /* Highest CPU frequency seen */ |
45 | static u64 turbo_frequency; |
46 | |
47 | static u64 first_time, last_time; |
48 | |
49 | static bool power_only; |
50 | |
51 | |
52 | struct per_pid; |
53 | struct per_pidcomm; |
54 | |
55 | struct cpu_sample; |
56 | struct power_event; |
57 | struct wake_event; |
58 | |
59 | struct sample_wrapper; |
60 | |
61 | /* |
62 | * Datastructure layout: |
63 | * We keep an list of "pid"s, matching the kernels notion of a task struct. |
64 | * Each "pid" entry, has a list of "comm"s. |
65 | * this is because we want to track different programs different, while |
66 | * exec will reuse the original pid (by design). |
67 | * Each comm has a list of samples that will be used to draw |
68 | * final graph. |
69 | */ |
70 | |
71 | struct per_pid { |
72 | struct per_pid *next; |
73 | |
74 | int pid; |
75 | int ppid; |
76 | |
77 | u64 start_time; |
78 | u64 end_time; |
79 | u64 total_time; |
80 | int display; |
81 | |
82 | struct per_pidcomm *all; |
83 | struct per_pidcomm *current; |
84 | }; |
85 | |
86 | |
87 | struct per_pidcomm { |
88 | struct per_pidcomm *next; |
89 | |
90 | u64 start_time; |
91 | u64 end_time; |
92 | u64 total_time; |
93 | |
94 | int Y; |
95 | int display; |
96 | |
97 | long state; |
98 | u64 state_since; |
99 | |
100 | char *comm; |
101 | |
102 | struct cpu_sample *samples; |
103 | }; |
104 | |
105 | struct sample_wrapper { |
106 | struct sample_wrapper *next; |
107 | |
108 | u64 timestamp; |
109 | unsigned char data[0]; |
110 | }; |
111 | |
112 | #define TYPE_NONE 0 |
113 | #define TYPE_RUNNING 1 |
114 | #define TYPE_WAITING 2 |
115 | #define TYPE_BLOCKED 3 |
116 | |
117 | struct cpu_sample { |
118 | struct cpu_sample *next; |
119 | |
120 | u64 start_time; |
121 | u64 end_time; |
122 | int type; |
123 | int cpu; |
124 | }; |
125 | |
126 | static struct per_pid *all_data; |
127 | |
128 | #define CSTATE 1 |
129 | #define PSTATE 2 |
130 | |
131 | struct power_event { |
132 | struct power_event *next; |
133 | int type; |
134 | int state; |
135 | u64 start_time; |
136 | u64 end_time; |
137 | int cpu; |
138 | }; |
139 | |
140 | struct wake_event { |
141 | struct wake_event *next; |
142 | int waker; |
143 | int wakee; |
144 | u64 time; |
145 | }; |
146 | |
147 | static struct power_event *power_events; |
148 | static struct wake_event *wake_events; |
149 | |
150 | struct process_filter; |
151 | struct process_filter { |
152 | char *name; |
153 | int pid; |
154 | struct process_filter *next; |
155 | }; |
156 | |
157 | static struct process_filter *process_filter; |
158 | |
159 | |
160 | static struct per_pid *find_create_pid(int pid) |
161 | { |
162 | struct per_pid *cursor = all_data; |
163 | |
164 | while (cursor) { |
165 | if (cursor->pid == pid) |
166 | return cursor; |
167 | cursor = cursor->next; |
168 | } |
169 | cursor = malloc(sizeof(struct per_pid)); |
170 | assert(cursor != NULL); |
171 | memset(cursor, 0, sizeof(struct per_pid)); |
172 | cursor->pid = pid; |
173 | cursor->next = all_data; |
174 | all_data = cursor; |
175 | return cursor; |
176 | } |
177 | |
178 | static void pid_set_comm(int pid, char *comm) |
179 | { |
180 | struct per_pid *p; |
181 | struct per_pidcomm *c; |
182 | p = find_create_pid(pid); |
183 | c = p->all; |
184 | while (c) { |
185 | if (c->comm && strcmp(c->comm, comm) == 0) { |
186 | p->current = c; |
187 | return; |
188 | } |
189 | if (!c->comm) { |
190 | c->comm = strdup(comm); |
191 | p->current = c; |
192 | return; |
193 | } |
194 | c = c->next; |
195 | } |
196 | c = malloc(sizeof(struct per_pidcomm)); |
197 | assert(c != NULL); |
198 | memset(c, 0, sizeof(struct per_pidcomm)); |
199 | c->comm = strdup(comm); |
200 | p->current = c; |
201 | c->next = p->all; |
202 | p->all = c; |
203 | } |
204 | |
205 | static void pid_fork(int pid, int ppid, u64 timestamp) |
206 | { |
207 | struct per_pid *p, *pp; |
208 | p = find_create_pid(pid); |
209 | pp = find_create_pid(ppid); |
210 | p->ppid = ppid; |
211 | if (pp->current && pp->current->comm && !p->current) |
212 | pid_set_comm(pid, pp->current->comm); |
213 | |
214 | p->start_time = timestamp; |
215 | if (p->current) { |
216 | p->current->start_time = timestamp; |
217 | p->current->state_since = timestamp; |
218 | } |
219 | } |
220 | |
221 | static void pid_exit(int pid, u64 timestamp) |
222 | { |
223 | struct per_pid *p; |
224 | p = find_create_pid(pid); |
225 | p->end_time = timestamp; |
226 | if (p->current) |
227 | p->current->end_time = timestamp; |
228 | } |
229 | |
230 | static void |
231 | pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end) |
232 | { |
233 | struct per_pid *p; |
234 | struct per_pidcomm *c; |
235 | struct cpu_sample *sample; |
236 | |
237 | p = find_create_pid(pid); |
238 | c = p->current; |
239 | if (!c) { |
240 | c = malloc(sizeof(struct per_pidcomm)); |
241 | assert(c != NULL); |
242 | memset(c, 0, sizeof(struct per_pidcomm)); |
243 | p->current = c; |
244 | c->next = p->all; |
245 | p->all = c; |
246 | } |
247 | |
248 | sample = malloc(sizeof(struct cpu_sample)); |
249 | assert(sample != NULL); |
250 | memset(sample, 0, sizeof(struct cpu_sample)); |
251 | sample->start_time = start; |
252 | sample->end_time = end; |
253 | sample->type = type; |
254 | sample->next = c->samples; |
255 | sample->cpu = cpu; |
256 | c->samples = sample; |
257 | |
258 | if (sample->type == TYPE_RUNNING && end > start && start > 0) { |
259 | c->total_time += (end-start); |
260 | p->total_time += (end-start); |
261 | } |
262 | |
263 | if (c->start_time == 0 || c->start_time > start) |
264 | c->start_time = start; |
265 | if (p->start_time == 0 || p->start_time > start) |
266 | p->start_time = start; |
267 | } |
268 | |
269 | #define MAX_CPUS 4096 |
270 | |
271 | static u64 cpus_cstate_start_times[MAX_CPUS]; |
272 | static int cpus_cstate_state[MAX_CPUS]; |
273 | static u64 cpus_pstate_start_times[MAX_CPUS]; |
274 | static u64 cpus_pstate_state[MAX_CPUS]; |
275 | |
276 | static int process_comm_event(union perf_event *event, |
277 | struct perf_sample *sample __used, |
278 | struct perf_session *session __used) |
279 | { |
280 | pid_set_comm(event->comm.tid, event->comm.comm); |
281 | return 0; |
282 | } |
283 | |
284 | static int process_fork_event(union perf_event *event, |
285 | struct perf_sample *sample __used, |
286 | struct perf_session *session __used) |
287 | { |
288 | pid_fork(event->fork.pid, event->fork.ppid, event->fork.time); |
289 | return 0; |
290 | } |
291 | |
292 | static int process_exit_event(union perf_event *event, |
293 | struct perf_sample *sample __used, |
294 | struct perf_session *session __used) |
295 | { |
296 | pid_exit(event->fork.pid, event->fork.time); |
297 | return 0; |
298 | } |
299 | |
300 | struct trace_entry { |
301 | unsigned short type; |
302 | unsigned char flags; |
303 | unsigned char preempt_count; |
304 | int pid; |
305 | int lock_depth; |
306 | }; |
307 | |
308 | #ifdef SUPPORT_OLD_POWER_EVENTS |
309 | static int use_old_power_events; |
310 | struct power_entry_old { |
311 | struct trace_entry te; |
312 | u64 type; |
313 | u64 value; |
314 | u64 cpu_id; |
315 | }; |
316 | #endif |
317 | |
318 | struct power_processor_entry { |
319 | struct trace_entry te; |
320 | u32 state; |
321 | u32 cpu_id; |
322 | }; |
323 | |
324 | #define TASK_COMM_LEN 16 |
325 | struct wakeup_entry { |
326 | struct trace_entry te; |
327 | char comm[TASK_COMM_LEN]; |
328 | int pid; |
329 | int prio; |
330 | int success; |
331 | }; |
332 | |
333 | /* |
334 | * trace_flag_type is an enumeration that holds different |
335 | * states when a trace occurs. These are: |
336 | * IRQS_OFF - interrupts were disabled |
337 | * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags |
338 | * NEED_RESCED - reschedule is requested |
339 | * HARDIRQ - inside an interrupt handler |
340 | * SOFTIRQ - inside a softirq handler |
341 | */ |
342 | enum trace_flag_type { |
343 | TRACE_FLAG_IRQS_OFF = 0x01, |
344 | TRACE_FLAG_IRQS_NOSUPPORT = 0x02, |
345 | TRACE_FLAG_NEED_RESCHED = 0x04, |
346 | TRACE_FLAG_HARDIRQ = 0x08, |
347 | TRACE_FLAG_SOFTIRQ = 0x10, |
348 | }; |
349 | |
350 | |
351 | |
352 | struct sched_switch { |
353 | struct trace_entry te; |
354 | char prev_comm[TASK_COMM_LEN]; |
355 | int prev_pid; |
356 | int prev_prio; |
357 | long prev_state; /* Arjan weeps. */ |
358 | char next_comm[TASK_COMM_LEN]; |
359 | int next_pid; |
360 | int next_prio; |
361 | }; |
362 | |
363 | static void c_state_start(int cpu, u64 timestamp, int state) |
364 | { |
365 | cpus_cstate_start_times[cpu] = timestamp; |
366 | cpus_cstate_state[cpu] = state; |
367 | } |
368 | |
369 | static void c_state_end(int cpu, u64 timestamp) |
370 | { |
371 | struct power_event *pwr; |
372 | pwr = malloc(sizeof(struct power_event)); |
373 | if (!pwr) |
374 | return; |
375 | memset(pwr, 0, sizeof(struct power_event)); |
376 | |
377 | pwr->state = cpus_cstate_state[cpu]; |
378 | pwr->start_time = cpus_cstate_start_times[cpu]; |
379 | pwr->end_time = timestamp; |
380 | pwr->cpu = cpu; |
381 | pwr->type = CSTATE; |
382 | pwr->next = power_events; |
383 | |
384 | power_events = pwr; |
385 | } |
386 | |
387 | static void p_state_change(int cpu, u64 timestamp, u64 new_freq) |
388 | { |
389 | struct power_event *pwr; |
390 | pwr = malloc(sizeof(struct power_event)); |
391 | |
392 | if (new_freq > 8000000) /* detect invalid data */ |
393 | return; |
394 | |
395 | if (!pwr) |
396 | return; |
397 | memset(pwr, 0, sizeof(struct power_event)); |
398 | |
399 | pwr->state = cpus_pstate_state[cpu]; |
400 | pwr->start_time = cpus_pstate_start_times[cpu]; |
401 | pwr->end_time = timestamp; |
402 | pwr->cpu = cpu; |
403 | pwr->type = PSTATE; |
404 | pwr->next = power_events; |
405 | |
406 | if (!pwr->start_time) |
407 | pwr->start_time = first_time; |
408 | |
409 | power_events = pwr; |
410 | |
411 | cpus_pstate_state[cpu] = new_freq; |
412 | cpus_pstate_start_times[cpu] = timestamp; |
413 | |
414 | if ((u64)new_freq > max_freq) |
415 | max_freq = new_freq; |
416 | |
417 | if (new_freq < min_freq || min_freq == 0) |
418 | min_freq = new_freq; |
419 | |
420 | if (new_freq == max_freq - 1000) |
421 | turbo_frequency = max_freq; |
422 | } |
423 | |
424 | static void |
425 | sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te) |
426 | { |
427 | struct wake_event *we; |
428 | struct per_pid *p; |
429 | struct wakeup_entry *wake = (void *)te; |
430 | |
431 | we = malloc(sizeof(struct wake_event)); |
432 | if (!we) |
433 | return; |
434 | |
435 | memset(we, 0, sizeof(struct wake_event)); |
436 | we->time = timestamp; |
437 | we->waker = pid; |
438 | |
439 | if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ)) |
440 | we->waker = -1; |
441 | |
442 | we->wakee = wake->pid; |
443 | we->next = wake_events; |
444 | wake_events = we; |
445 | p = find_create_pid(we->wakee); |
446 | |
447 | if (p && p->current && p->current->state == TYPE_NONE) { |
448 | p->current->state_since = timestamp; |
449 | p->current->state = TYPE_WAITING; |
450 | } |
451 | if (p && p->current && p->current->state == TYPE_BLOCKED) { |
452 | pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp); |
453 | p->current->state_since = timestamp; |
454 | p->current->state = TYPE_WAITING; |
455 | } |
456 | } |
457 | |
458 | static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te) |
459 | { |
460 | struct per_pid *p = NULL, *prev_p; |
461 | struct sched_switch *sw = (void *)te; |
462 | |
463 | |
464 | prev_p = find_create_pid(sw->prev_pid); |
465 | |
466 | p = find_create_pid(sw->next_pid); |
467 | |
468 | if (prev_p->current && prev_p->current->state != TYPE_NONE) |
469 | pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp); |
470 | if (p && p->current) { |
471 | if (p->current->state != TYPE_NONE) |
472 | pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp); |
473 | |
474 | p->current->state_since = timestamp; |
475 | p->current->state = TYPE_RUNNING; |
476 | } |
477 | |
478 | if (prev_p->current) { |
479 | prev_p->current->state = TYPE_NONE; |
480 | prev_p->current->state_since = timestamp; |
481 | if (sw->prev_state & 2) |
482 | prev_p->current->state = TYPE_BLOCKED; |
483 | if (sw->prev_state == 0) |
484 | prev_p->current->state = TYPE_WAITING; |
485 | } |
486 | } |
487 | |
488 | |
489 | static int process_sample_event(union perf_event *event __used, |
490 | struct perf_sample *sample, |
491 | struct perf_evsel *evsel __used, |
492 | struct perf_session *session) |
493 | { |
494 | struct trace_entry *te; |
495 | |
496 | if (session->sample_type & PERF_SAMPLE_TIME) { |
497 | if (!first_time || first_time > sample->time) |
498 | first_time = sample->time; |
499 | if (last_time < sample->time) |
500 | last_time = sample->time; |
501 | } |
502 | |
503 | te = (void *)sample->raw_data; |
504 | if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) { |
505 | char *event_str; |
506 | #ifdef SUPPORT_OLD_POWER_EVENTS |
507 | struct power_entry_old *peo; |
508 | peo = (void *)te; |
509 | #endif |
510 | /* |
511 | * FIXME: use evsel, its already mapped from id to perf_evsel, |
512 | * remove perf_header__find_event infrastructure bits. |
513 | * Mapping all these "power:cpu_idle" strings to the tracepoint |
514 | * ID and then just comparing against evsel->attr.config. |
515 | * |
516 | * e.g.: |
517 | * |
518 | * if (evsel->attr.config == power_cpu_idle_id) |
519 | */ |
520 | event_str = perf_header__find_event(te->type); |
521 | |
522 | if (!event_str) |
523 | return 0; |
524 | |
525 | if (sample->cpu > numcpus) |
526 | numcpus = sample->cpu; |
527 | |
528 | if (strcmp(event_str, "power:cpu_idle") == 0) { |
529 | struct power_processor_entry *ppe = (void *)te; |
530 | if (ppe->state == (u32)PWR_EVENT_EXIT) |
531 | c_state_end(ppe->cpu_id, sample->time); |
532 | else |
533 | c_state_start(ppe->cpu_id, sample->time, |
534 | ppe->state); |
535 | } |
536 | else if (strcmp(event_str, "power:cpu_frequency") == 0) { |
537 | struct power_processor_entry *ppe = (void *)te; |
538 | p_state_change(ppe->cpu_id, sample->time, ppe->state); |
539 | } |
540 | |
541 | else if (strcmp(event_str, "sched:sched_wakeup") == 0) |
542 | sched_wakeup(sample->cpu, sample->time, sample->pid, te); |
543 | |
544 | else if (strcmp(event_str, "sched:sched_switch") == 0) |
545 | sched_switch(sample->cpu, sample->time, te); |
546 | |
547 | #ifdef SUPPORT_OLD_POWER_EVENTS |
548 | if (use_old_power_events) { |
549 | if (strcmp(event_str, "power:power_start") == 0) |
550 | c_state_start(peo->cpu_id, sample->time, |
551 | peo->value); |
552 | |
553 | else if (strcmp(event_str, "power:power_end") == 0) |
554 | c_state_end(sample->cpu, sample->time); |
555 | |
556 | else if (strcmp(event_str, |
557 | "power:power_frequency") == 0) |
558 | p_state_change(peo->cpu_id, sample->time, |
559 | peo->value); |
560 | } |
561 | #endif |
562 | } |
563 | return 0; |
564 | } |
565 | |
566 | /* |
567 | * After the last sample we need to wrap up the current C/P state |
568 | * and close out each CPU for these. |
569 | */ |
570 | static void end_sample_processing(void) |
571 | { |
572 | u64 cpu; |
573 | struct power_event *pwr; |
574 | |
575 | for (cpu = 0; cpu <= numcpus; cpu++) { |
576 | pwr = malloc(sizeof(struct power_event)); |
577 | if (!pwr) |
578 | return; |
579 | memset(pwr, 0, sizeof(struct power_event)); |
580 | |
581 | /* C state */ |
582 | #if 0 |
583 | pwr->state = cpus_cstate_state[cpu]; |
584 | pwr->start_time = cpus_cstate_start_times[cpu]; |
585 | pwr->end_time = last_time; |
586 | pwr->cpu = cpu; |
587 | pwr->type = CSTATE; |
588 | pwr->next = power_events; |
589 | |
590 | power_events = pwr; |
591 | #endif |
592 | /* P state */ |
593 | |
594 | pwr = malloc(sizeof(struct power_event)); |
595 | if (!pwr) |
596 | return; |
597 | memset(pwr, 0, sizeof(struct power_event)); |
598 | |
599 | pwr->state = cpus_pstate_state[cpu]; |
600 | pwr->start_time = cpus_pstate_start_times[cpu]; |
601 | pwr->end_time = last_time; |
602 | pwr->cpu = cpu; |
603 | pwr->type = PSTATE; |
604 | pwr->next = power_events; |
605 | |
606 | if (!pwr->start_time) |
607 | pwr->start_time = first_time; |
608 | if (!pwr->state) |
609 | pwr->state = min_freq; |
610 | power_events = pwr; |
611 | } |
612 | } |
613 | |
614 | /* |
615 | * Sort the pid datastructure |
616 | */ |
617 | static void sort_pids(void) |
618 | { |
619 | struct per_pid *new_list, *p, *cursor, *prev; |
620 | /* sort by ppid first, then by pid, lowest to highest */ |
621 | |
622 | new_list = NULL; |
623 | |
624 | while (all_data) { |
625 | p = all_data; |
626 | all_data = p->next; |
627 | p->next = NULL; |
628 | |
629 | if (new_list == NULL) { |
630 | new_list = p; |
631 | p->next = NULL; |
632 | continue; |
633 | } |
634 | prev = NULL; |
635 | cursor = new_list; |
636 | while (cursor) { |
637 | if (cursor->ppid > p->ppid || |
638 | (cursor->ppid == p->ppid && cursor->pid > p->pid)) { |
639 | /* must insert before */ |
640 | if (prev) { |
641 | p->next = prev->next; |
642 | prev->next = p; |
643 | cursor = NULL; |
644 | continue; |
645 | } else { |
646 | p->next = new_list; |
647 | new_list = p; |
648 | cursor = NULL; |
649 | continue; |
650 | } |
651 | } |
652 | |
653 | prev = cursor; |
654 | cursor = cursor->next; |
655 | if (!cursor) |
656 | prev->next = p; |
657 | } |
658 | } |
659 | all_data = new_list; |
660 | } |
661 | |
662 | |
663 | static void draw_c_p_states(void) |
664 | { |
665 | struct power_event *pwr; |
666 | pwr = power_events; |
667 | |
668 | /* |
669 | * two pass drawing so that the P state bars are on top of the C state blocks |
670 | */ |
671 | while (pwr) { |
672 | if (pwr->type == CSTATE) |
673 | svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
674 | pwr = pwr->next; |
675 | } |
676 | |
677 | pwr = power_events; |
678 | while (pwr) { |
679 | if (pwr->type == PSTATE) { |
680 | if (!pwr->state) |
681 | pwr->state = min_freq; |
682 | svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state); |
683 | } |
684 | pwr = pwr->next; |
685 | } |
686 | } |
687 | |
688 | static void draw_wakeups(void) |
689 | { |
690 | struct wake_event *we; |
691 | struct per_pid *p; |
692 | struct per_pidcomm *c; |
693 | |
694 | we = wake_events; |
695 | while (we) { |
696 | int from = 0, to = 0; |
697 | char *task_from = NULL, *task_to = NULL; |
698 | |
699 | /* locate the column of the waker and wakee */ |
700 | p = all_data; |
701 | while (p) { |
702 | if (p->pid == we->waker || p->pid == we->wakee) { |
703 | c = p->all; |
704 | while (c) { |
705 | if (c->Y && c->start_time <= we->time && c->end_time >= we->time) { |
706 | if (p->pid == we->waker && !from) { |
707 | from = c->Y; |
708 | task_from = strdup(c->comm); |
709 | } |
710 | if (p->pid == we->wakee && !to) { |
711 | to = c->Y; |
712 | task_to = strdup(c->comm); |
713 | } |
714 | } |
715 | c = c->next; |
716 | } |
717 | c = p->all; |
718 | while (c) { |
719 | if (p->pid == we->waker && !from) { |
720 | from = c->Y; |
721 | task_from = strdup(c->comm); |
722 | } |
723 | if (p->pid == we->wakee && !to) { |
724 | to = c->Y; |
725 | task_to = strdup(c->comm); |
726 | } |
727 | c = c->next; |
728 | } |
729 | } |
730 | p = p->next; |
731 | } |
732 | |
733 | if (!task_from) { |
734 | task_from = malloc(40); |
735 | sprintf(task_from, "[%i]", we->waker); |
736 | } |
737 | if (!task_to) { |
738 | task_to = malloc(40); |
739 | sprintf(task_to, "[%i]", we->wakee); |
740 | } |
741 | |
742 | if (we->waker == -1) |
743 | svg_interrupt(we->time, to); |
744 | else if (from && to && abs(from - to) == 1) |
745 | svg_wakeline(we->time, from, to); |
746 | else |
747 | svg_partial_wakeline(we->time, from, task_from, to, task_to); |
748 | we = we->next; |
749 | |
750 | free(task_from); |
751 | free(task_to); |
752 | } |
753 | } |
754 | |
755 | static void draw_cpu_usage(void) |
756 | { |
757 | struct per_pid *p; |
758 | struct per_pidcomm *c; |
759 | struct cpu_sample *sample; |
760 | p = all_data; |
761 | while (p) { |
762 | c = p->all; |
763 | while (c) { |
764 | sample = c->samples; |
765 | while (sample) { |
766 | if (sample->type == TYPE_RUNNING) |
767 | svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm); |
768 | |
769 | sample = sample->next; |
770 | } |
771 | c = c->next; |
772 | } |
773 | p = p->next; |
774 | } |
775 | } |
776 | |
777 | static void draw_process_bars(void) |
778 | { |
779 | struct per_pid *p; |
780 | struct per_pidcomm *c; |
781 | struct cpu_sample *sample; |
782 | int Y = 0; |
783 | |
784 | Y = 2 * numcpus + 2; |
785 | |
786 | p = all_data; |
787 | while (p) { |
788 | c = p->all; |
789 | while (c) { |
790 | if (!c->display) { |
791 | c->Y = 0; |
792 | c = c->next; |
793 | continue; |
794 | } |
795 | |
796 | svg_box(Y, c->start_time, c->end_time, "process"); |
797 | sample = c->samples; |
798 | while (sample) { |
799 | if (sample->type == TYPE_RUNNING) |
800 | svg_sample(Y, sample->cpu, sample->start_time, sample->end_time); |
801 | if (sample->type == TYPE_BLOCKED) |
802 | svg_box(Y, sample->start_time, sample->end_time, "blocked"); |
803 | if (sample->type == TYPE_WAITING) |
804 | svg_waiting(Y, sample->start_time, sample->end_time); |
805 | sample = sample->next; |
806 | } |
807 | |
808 | if (c->comm) { |
809 | char comm[256]; |
810 | if (c->total_time > 5000000000) /* 5 seconds */ |
811 | sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0); |
812 | else |
813 | sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0); |
814 | |
815 | svg_text(Y, c->start_time, comm); |
816 | } |
817 | c->Y = Y; |
818 | Y++; |
819 | c = c->next; |
820 | } |
821 | p = p->next; |
822 | } |
823 | } |
824 | |
825 | static void add_process_filter(const char *string) |
826 | { |
827 | struct process_filter *filt; |
828 | int pid; |
829 | |
830 | pid = strtoull(string, NULL, 10); |
831 | filt = malloc(sizeof(struct process_filter)); |
832 | if (!filt) |
833 | return; |
834 | |
835 | filt->name = strdup(string); |
836 | filt->pid = pid; |
837 | filt->next = process_filter; |
838 | |
839 | process_filter = filt; |
840 | } |
841 | |
842 | static int passes_filter(struct per_pid *p, struct per_pidcomm *c) |
843 | { |
844 | struct process_filter *filt; |
845 | if (!process_filter) |
846 | return 1; |
847 | |
848 | filt = process_filter; |
849 | while (filt) { |
850 | if (filt->pid && p->pid == filt->pid) |
851 | return 1; |
852 | if (strcmp(filt->name, c->comm) == 0) |
853 | return 1; |
854 | filt = filt->next; |
855 | } |
856 | return 0; |
857 | } |
858 | |
859 | static int determine_display_tasks_filtered(void) |
860 | { |
861 | struct per_pid *p; |
862 | struct per_pidcomm *c; |
863 | int count = 0; |
864 | |
865 | p = all_data; |
866 | while (p) { |
867 | p->display = 0; |
868 | if (p->start_time == 1) |
869 | p->start_time = first_time; |
870 | |
871 | /* no exit marker, task kept running to the end */ |
872 | if (p->end_time == 0) |
873 | p->end_time = last_time; |
874 | |
875 | c = p->all; |
876 | |
877 | while (c) { |
878 | c->display = 0; |
879 | |
880 | if (c->start_time == 1) |
881 | c->start_time = first_time; |
882 | |
883 | if (passes_filter(p, c)) { |
884 | c->display = 1; |
885 | p->display = 1; |
886 | count++; |
887 | } |
888 | |
889 | if (c->end_time == 0) |
890 | c->end_time = last_time; |
891 | |
892 | c = c->next; |
893 | } |
894 | p = p->next; |
895 | } |
896 | return count; |
897 | } |
898 | |
899 | static int determine_display_tasks(u64 threshold) |
900 | { |
901 | struct per_pid *p; |
902 | struct per_pidcomm *c; |
903 | int count = 0; |
904 | |
905 | if (process_filter) |
906 | return determine_display_tasks_filtered(); |
907 | |
908 | p = all_data; |
909 | while (p) { |
910 | p->display = 0; |
911 | if (p->start_time == 1) |
912 | p->start_time = first_time; |
913 | |
914 | /* no exit marker, task kept running to the end */ |
915 | if (p->end_time == 0) |
916 | p->end_time = last_time; |
917 | if (p->total_time >= threshold && !power_only) |
918 | p->display = 1; |
919 | |
920 | c = p->all; |
921 | |
922 | while (c) { |
923 | c->display = 0; |
924 | |
925 | if (c->start_time == 1) |
926 | c->start_time = first_time; |
927 | |
928 | if (c->total_time >= threshold && !power_only) { |
929 | c->display = 1; |
930 | count++; |
931 | } |
932 | |
933 | if (c->end_time == 0) |
934 | c->end_time = last_time; |
935 | |
936 | c = c->next; |
937 | } |
938 | p = p->next; |
939 | } |
940 | return count; |
941 | } |
942 | |
943 | |
944 | |
945 | #define TIME_THRESH 10000000 |
946 | |
947 | static void write_svg_file(const char *filename) |
948 | { |
949 | u64 i; |
950 | int count; |
951 | |
952 | numcpus++; |
953 | |
954 | |
955 | count = determine_display_tasks(TIME_THRESH); |
956 | |
957 | /* We'd like to show at least 15 tasks; be less picky if we have fewer */ |
958 | if (count < 15) |
959 | count = determine_display_tasks(TIME_THRESH / 10); |
960 | |
961 | open_svg(filename, numcpus, count, first_time, last_time); |
962 | |
963 | svg_time_grid(); |
964 | svg_legenda(); |
965 | |
966 | for (i = 0; i < numcpus; i++) |
967 | svg_cpu_box(i, max_freq, turbo_frequency); |
968 | |
969 | draw_cpu_usage(); |
970 | draw_process_bars(); |
971 | draw_c_p_states(); |
972 | draw_wakeups(); |
973 | |
974 | svg_close(); |
975 | } |
976 | |
977 | static struct perf_event_ops event_ops = { |
978 | .comm = process_comm_event, |
979 | .fork = process_fork_event, |
980 | .exit = process_exit_event, |
981 | .sample = process_sample_event, |
982 | .ordered_samples = true, |
983 | }; |
984 | |
985 | static int __cmd_timechart(void) |
986 | { |
987 | struct perf_session *session = perf_session__new(input_name, O_RDONLY, |
988 | 0, false, &event_ops); |
989 | int ret = -EINVAL; |
990 | |
991 | if (session == NULL) |
992 | return -ENOMEM; |
993 | |
994 | if (!perf_session__has_traces(session, "timechart record")) |
995 | goto out_delete; |
996 | |
997 | ret = perf_session__process_events(session, &event_ops); |
998 | if (ret) |
999 | goto out_delete; |
1000 | |
1001 | end_sample_processing(); |
1002 | |
1003 | sort_pids(); |
1004 | |
1005 | write_svg_file(output_name); |
1006 | |
1007 | pr_info("Written %2.1f seconds of trace to %s.\n", |
1008 | (last_time - first_time) / 1000000000.0, output_name); |
1009 | out_delete: |
1010 | perf_session__delete(session); |
1011 | return ret; |
1012 | } |
1013 | |
1014 | static const char * const timechart_usage[] = { |
1015 | "perf timechart [<options>] {record}", |
1016 | NULL |
1017 | }; |
1018 | |
1019 | #ifdef SUPPORT_OLD_POWER_EVENTS |
1020 | static const char * const record_old_args[] = { |
1021 | "record", |
1022 | "-a", |
1023 | "-R", |
1024 | "-f", |
1025 | "-c", "1", |
1026 | "-e", "power:power_start", |
1027 | "-e", "power:power_end", |
1028 | "-e", "power:power_frequency", |
1029 | "-e", "sched:sched_wakeup", |
1030 | "-e", "sched:sched_switch", |
1031 | }; |
1032 | #endif |
1033 | |
1034 | static const char * const record_new_args[] = { |
1035 | "record", |
1036 | "-a", |
1037 | "-R", |
1038 | "-f", |
1039 | "-c", "1", |
1040 | "-e", "power:cpu_frequency", |
1041 | "-e", "power:cpu_idle", |
1042 | "-e", "sched:sched_wakeup", |
1043 | "-e", "sched:sched_switch", |
1044 | }; |
1045 | |
1046 | static int __cmd_record(int argc, const char **argv) |
1047 | { |
1048 | unsigned int rec_argc, i, j; |
1049 | const char **rec_argv; |
1050 | const char * const *record_args = record_new_args; |
1051 | unsigned int record_elems = ARRAY_SIZE(record_new_args); |
1052 | |
1053 | #ifdef SUPPORT_OLD_POWER_EVENTS |
1054 | if (!is_valid_tracepoint("power:cpu_idle") && |
1055 | is_valid_tracepoint("power:power_start")) { |
1056 | use_old_power_events = 1; |
1057 | record_args = record_old_args; |
1058 | record_elems = ARRAY_SIZE(record_old_args); |
1059 | } |
1060 | #endif |
1061 | |
1062 | rec_argc = record_elems + argc - 1; |
1063 | rec_argv = calloc(rec_argc + 1, sizeof(char *)); |
1064 | |
1065 | if (rec_argv == NULL) |
1066 | return -ENOMEM; |
1067 | |
1068 | for (i = 0; i < record_elems; i++) |
1069 | rec_argv[i] = strdup(record_args[i]); |
1070 | |
1071 | for (j = 1; j < (unsigned int)argc; j++, i++) |
1072 | rec_argv[i] = argv[j]; |
1073 | |
1074 | return cmd_record(i, rec_argv, NULL); |
1075 | } |
1076 | |
1077 | static int |
1078 | parse_process(const struct option *opt __used, const char *arg, int __used unset) |
1079 | { |
1080 | if (arg) |
1081 | add_process_filter(arg); |
1082 | return 0; |
1083 | } |
1084 | |
1085 | static const struct option options[] = { |
1086 | OPT_STRING('i', "input", &input_name, "file", |
1087 | "input file name"), |
1088 | OPT_STRING('o', "output", &output_name, "file", |
1089 | "output file name"), |
1090 | OPT_INTEGER('w', "width", &svg_page_width, |
1091 | "page width"), |
1092 | OPT_BOOLEAN('P', "power-only", &power_only, |
1093 | "output power data only"), |
1094 | OPT_CALLBACK('p', "process", NULL, "process", |
1095 | "process selector. Pass a pid or process name.", |
1096 | parse_process), |
1097 | OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", |
1098 | "Look for files with symbols relative to this directory"), |
1099 | OPT_END() |
1100 | }; |
1101 | |
1102 | |
1103 | int cmd_timechart(int argc, const char **argv, const char *prefix __used) |
1104 | { |
1105 | argc = parse_options(argc, argv, options, timechart_usage, |
1106 | PARSE_OPT_STOP_AT_NON_OPTION); |
1107 | |
1108 | symbol__init(); |
1109 | |
1110 | if (argc && !strncmp(argv[0], "rec", 3)) |
1111 | return __cmd_record(argc, argv); |
1112 | else if (argc) |
1113 | usage_with_options(timechart_usage, options); |
1114 | |
1115 | setup_pager(); |
1116 | |
1117 | return __cmd_timechart(); |
1118 | } |
1119 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9