Root/fs/mpage.c

1/*
2 * fs/mpage.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
8 *
9 * 15May2002 Andrew Morton
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
13 */
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/kdev_t.h>
19#include <linux/gfp.h>
20#include <linux/bio.h>
21#include <linux/fs.h>
22#include <linux/buffer_head.h>
23#include <linux/blkdev.h>
24#include <linux/highmem.h>
25#include <linux/prefetch.h>
26#include <linux/mpage.h>
27#include <linux/writeback.h>
28#include <linux/backing-dev.h>
29#include <linux/pagevec.h>
30
31/*
32 * I/O completion handler for multipage BIOs.
33 *
34 * The mpage code never puts partial pages into a BIO (except for end-of-file).
35 * If a page does not map to a contiguous run of blocks then it simply falls
36 * back to block_read_full_page().
37 *
38 * Why is this? If a page's completion depends on a number of different BIOs
39 * which can complete in any order (or at the same time) then determining the
40 * status of that page is hard. See end_buffer_async_read() for the details.
41 * There is no point in duplicating all that complexity.
42 */
43static void mpage_end_io_read(struct bio *bio, int err)
44{
45    const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
46    struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
47
48    do {
49        struct page *page = bvec->bv_page;
50
51        if (--bvec >= bio->bi_io_vec)
52            prefetchw(&bvec->bv_page->flags);
53
54        if (uptodate) {
55            SetPageUptodate(page);
56        } else {
57            ClearPageUptodate(page);
58            SetPageError(page);
59        }
60        unlock_page(page);
61    } while (bvec >= bio->bi_io_vec);
62    bio_put(bio);
63}
64
65static void mpage_end_io_write(struct bio *bio, int err)
66{
67    const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
68    struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
69
70    do {
71        struct page *page = bvec->bv_page;
72
73        if (--bvec >= bio->bi_io_vec)
74            prefetchw(&bvec->bv_page->flags);
75
76        if (!uptodate){
77            SetPageError(page);
78            if (page->mapping)
79                set_bit(AS_EIO, &page->mapping->flags);
80        }
81        end_page_writeback(page);
82    } while (bvec >= bio->bi_io_vec);
83    bio_put(bio);
84}
85
86static struct bio *mpage_bio_submit(int rw, struct bio *bio)
87{
88    bio->bi_end_io = mpage_end_io_read;
89    if (rw == WRITE)
90        bio->bi_end_io = mpage_end_io_write;
91    submit_bio(rw, bio);
92    return NULL;
93}
94
95static struct bio *
96mpage_alloc(struct block_device *bdev,
97        sector_t first_sector, int nr_vecs,
98        gfp_t gfp_flags)
99{
100    struct bio *bio;
101
102    bio = bio_alloc(gfp_flags, nr_vecs);
103
104    if (bio == NULL && (current->flags & PF_MEMALLOC)) {
105        while (!bio && (nr_vecs /= 2))
106            bio = bio_alloc(gfp_flags, nr_vecs);
107    }
108
109    if (bio) {
110        bio->bi_bdev = bdev;
111        bio->bi_sector = first_sector;
112    }
113    return bio;
114}
115
116/*
117 * support function for mpage_readpages. The fs supplied get_block might
118 * return an up to date buffer. This is used to map that buffer into
119 * the page, which allows readpage to avoid triggering a duplicate call
120 * to get_block.
121 *
122 * The idea is to avoid adding buffers to pages that don't already have
123 * them. So when the buffer is up to date and the page size == block size,
124 * this marks the page up to date instead of adding new buffers.
125 */
126static void
127map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
128{
129    struct inode *inode = page->mapping->host;
130    struct buffer_head *page_bh, *head;
131    int block = 0;
132
133    if (!page_has_buffers(page)) {
134        /*
135         * don't make any buffers if there is only one buffer on
136         * the page and the page just needs to be set up to date
137         */
138        if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
139            buffer_uptodate(bh)) {
140            SetPageUptodate(page);
141            return;
142        }
143        create_empty_buffers(page, 1 << inode->i_blkbits, 0);
144    }
145    head = page_buffers(page);
146    page_bh = head;
147    do {
148        if (block == page_block) {
149            page_bh->b_state = bh->b_state;
150            page_bh->b_bdev = bh->b_bdev;
151            page_bh->b_blocknr = bh->b_blocknr;
152            break;
153        }
154        page_bh = page_bh->b_this_page;
155        block++;
156    } while (page_bh != head);
157}
158
159/*
160 * This is the worker routine which does all the work of mapping the disk
161 * blocks and constructs largest possible bios, submits them for IO if the
162 * blocks are not contiguous on the disk.
163 *
164 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
165 * represent the validity of its disk mapping and to decide when to do the next
166 * get_block() call.
167 */
168static struct bio *
169do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
170        sector_t *last_block_in_bio, struct buffer_head *map_bh,
171        unsigned long *first_logical_block, get_block_t get_block)
172{
173    struct inode *inode = page->mapping->host;
174    const unsigned blkbits = inode->i_blkbits;
175    const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
176    const unsigned blocksize = 1 << blkbits;
177    sector_t block_in_file;
178    sector_t last_block;
179    sector_t last_block_in_file;
180    sector_t blocks[MAX_BUF_PER_PAGE];
181    unsigned page_block;
182    unsigned first_hole = blocks_per_page;
183    struct block_device *bdev = NULL;
184    int length;
185    int fully_mapped = 1;
186    unsigned nblocks;
187    unsigned relative_block;
188
189    if (page_has_buffers(page))
190        goto confused;
191
192    block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
193    last_block = block_in_file + nr_pages * blocks_per_page;
194    last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195    if (last_block > last_block_in_file)
196        last_block = last_block_in_file;
197    page_block = 0;
198
199    /*
200     * Map blocks using the result from the previous get_blocks call first.
201     */
202    nblocks = map_bh->b_size >> blkbits;
203    if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
204            block_in_file < (*first_logical_block + nblocks)) {
205        unsigned map_offset = block_in_file - *first_logical_block;
206        unsigned last = nblocks - map_offset;
207
208        for (relative_block = 0; ; relative_block++) {
209            if (relative_block == last) {
210                clear_buffer_mapped(map_bh);
211                break;
212            }
213            if (page_block == blocks_per_page)
214                break;
215            blocks[page_block] = map_bh->b_blocknr + map_offset +
216                        relative_block;
217            page_block++;
218            block_in_file++;
219        }
220        bdev = map_bh->b_bdev;
221    }
222
223    /*
224     * Then do more get_blocks calls until we are done with this page.
225     */
226    map_bh->b_page = page;
227    while (page_block < blocks_per_page) {
228        map_bh->b_state = 0;
229        map_bh->b_size = 0;
230
231        if (block_in_file < last_block) {
232            map_bh->b_size = (last_block-block_in_file) << blkbits;
233            if (get_block(inode, block_in_file, map_bh, 0))
234                goto confused;
235            *first_logical_block = block_in_file;
236        }
237
238        if (!buffer_mapped(map_bh)) {
239            fully_mapped = 0;
240            if (first_hole == blocks_per_page)
241                first_hole = page_block;
242            page_block++;
243            block_in_file++;
244            continue;
245        }
246
247        /* some filesystems will copy data into the page during
248         * the get_block call, in which case we don't want to
249         * read it again. map_buffer_to_page copies the data
250         * we just collected from get_block into the page's buffers
251         * so readpage doesn't have to repeat the get_block call
252         */
253        if (buffer_uptodate(map_bh)) {
254            map_buffer_to_page(page, map_bh, page_block);
255            goto confused;
256        }
257    
258        if (first_hole != blocks_per_page)
259            goto confused; /* hole -> non-hole */
260
261        /* Contiguous blocks? */
262        if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
263            goto confused;
264        nblocks = map_bh->b_size >> blkbits;
265        for (relative_block = 0; ; relative_block++) {
266            if (relative_block == nblocks) {
267                clear_buffer_mapped(map_bh);
268                break;
269            } else if (page_block == blocks_per_page)
270                break;
271            blocks[page_block] = map_bh->b_blocknr+relative_block;
272            page_block++;
273            block_in_file++;
274        }
275        bdev = map_bh->b_bdev;
276    }
277
278    if (first_hole != blocks_per_page) {
279        zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
280        if (first_hole == 0) {
281            SetPageUptodate(page);
282            unlock_page(page);
283            goto out;
284        }
285    } else if (fully_mapped) {
286        SetPageMappedToDisk(page);
287    }
288
289    /*
290     * This page will go to BIO. Do we need to send this BIO off first?
291     */
292    if (bio && (*last_block_in_bio != blocks[0] - 1))
293        bio = mpage_bio_submit(READ, bio);
294
295alloc_new:
296    if (bio == NULL) {
297        bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
298                  min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
299                GFP_KERNEL);
300        if (bio == NULL)
301            goto confused;
302    }
303
304    length = first_hole << blkbits;
305    if (bio_add_page(bio, page, length, 0) < length) {
306        bio = mpage_bio_submit(READ, bio);
307        goto alloc_new;
308    }
309
310    relative_block = block_in_file - *first_logical_block;
311    nblocks = map_bh->b_size >> blkbits;
312    if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
313        (first_hole != blocks_per_page))
314        bio = mpage_bio_submit(READ, bio);
315    else
316        *last_block_in_bio = blocks[blocks_per_page - 1];
317out:
318    return bio;
319
320confused:
321    if (bio)
322        bio = mpage_bio_submit(READ, bio);
323    if (!PageUptodate(page))
324            block_read_full_page(page, get_block);
325    else
326        unlock_page(page);
327    goto out;
328}
329
330/**
331 * mpage_readpages - populate an address space with some pages & start reads against them
332 * @mapping: the address_space
333 * @pages: The address of a list_head which contains the target pages. These
334 * pages have their ->index populated and are otherwise uninitialised.
335 * The page at @pages->prev has the lowest file offset, and reads should be
336 * issued in @pages->prev to @pages->next order.
337 * @nr_pages: The number of pages at *@pages
338 * @get_block: The filesystem's block mapper function.
339 *
340 * This function walks the pages and the blocks within each page, building and
341 * emitting large BIOs.
342 *
343 * If anything unusual happens, such as:
344 *
345 * - encountering a page which has buffers
346 * - encountering a page which has a non-hole after a hole
347 * - encountering a page with non-contiguous blocks
348 *
349 * then this code just gives up and calls the buffer_head-based read function.
350 * It does handle a page which has holes at the end - that is a common case:
351 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
352 *
353 * BH_Boundary explanation:
354 *
355 * There is a problem. The mpage read code assembles several pages, gets all
356 * their disk mappings, and then submits them all. That's fine, but obtaining
357 * the disk mappings may require I/O. Reads of indirect blocks, for example.
358 *
359 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
360 * submitted in the following order:
361 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
362 *
363 * because the indirect block has to be read to get the mappings of blocks
364 * 13,14,15,16. Obviously, this impacts performance.
365 *
366 * So what we do it to allow the filesystem's get_block() function to set
367 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
368 * after this one will require I/O against a block which is probably close to
369 * this one. So you should push what I/O you have currently accumulated.
370 *
371 * This all causes the disk requests to be issued in the correct order.
372 */
373int
374mpage_readpages(struct address_space *mapping, struct list_head *pages,
375                unsigned nr_pages, get_block_t get_block)
376{
377    struct bio *bio = NULL;
378    unsigned page_idx;
379    sector_t last_block_in_bio = 0;
380    struct buffer_head map_bh;
381    unsigned long first_logical_block = 0;
382
383    map_bh.b_state = 0;
384    map_bh.b_size = 0;
385    for (page_idx = 0; page_idx < nr_pages; page_idx++) {
386        struct page *page = list_entry(pages->prev, struct page, lru);
387
388        prefetchw(&page->flags);
389        list_del(&page->lru);
390        if (!add_to_page_cache_lru(page, mapping,
391                    page->index, GFP_KERNEL)) {
392            bio = do_mpage_readpage(bio, page,
393                    nr_pages - page_idx,
394                    &last_block_in_bio, &map_bh,
395                    &first_logical_block,
396                    get_block);
397        }
398        page_cache_release(page);
399    }
400    BUG_ON(!list_empty(pages));
401    if (bio)
402        mpage_bio_submit(READ, bio);
403    return 0;
404}
405EXPORT_SYMBOL(mpage_readpages);
406
407/*
408 * This isn't called much at all
409 */
410int mpage_readpage(struct page *page, get_block_t get_block)
411{
412    struct bio *bio = NULL;
413    sector_t last_block_in_bio = 0;
414    struct buffer_head map_bh;
415    unsigned long first_logical_block = 0;
416
417    map_bh.b_state = 0;
418    map_bh.b_size = 0;
419    bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
420            &map_bh, &first_logical_block, get_block);
421    if (bio)
422        mpage_bio_submit(READ, bio);
423    return 0;
424}
425EXPORT_SYMBOL(mpage_readpage);
426
427/*
428 * Writing is not so simple.
429 *
430 * If the page has buffers then they will be used for obtaining the disk
431 * mapping. We only support pages which are fully mapped-and-dirty, with a
432 * special case for pages which are unmapped at the end: end-of-file.
433 *
434 * If the page has no buffers (preferred) then the page is mapped here.
435 *
436 * If all blocks are found to be contiguous then the page can go into the
437 * BIO. Otherwise fall back to the mapping's writepage().
438 *
439 * FIXME: This code wants an estimate of how many pages are still to be
440 * written, so it can intelligently allocate a suitably-sized BIO. For now,
441 * just allocate full-size (16-page) BIOs.
442 */
443
444struct mpage_data {
445    struct bio *bio;
446    sector_t last_block_in_bio;
447    get_block_t *get_block;
448    unsigned use_writepage;
449};
450
451static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
452              void *data)
453{
454    struct mpage_data *mpd = data;
455    struct bio *bio = mpd->bio;
456    struct address_space *mapping = page->mapping;
457    struct inode *inode = page->mapping->host;
458    const unsigned blkbits = inode->i_blkbits;
459    unsigned long end_index;
460    const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
461    sector_t last_block;
462    sector_t block_in_file;
463    sector_t blocks[MAX_BUF_PER_PAGE];
464    unsigned page_block;
465    unsigned first_unmapped = blocks_per_page;
466    struct block_device *bdev = NULL;
467    int boundary = 0;
468    sector_t boundary_block = 0;
469    struct block_device *boundary_bdev = NULL;
470    int length;
471    struct buffer_head map_bh;
472    loff_t i_size = i_size_read(inode);
473    int ret = 0;
474
475    if (page_has_buffers(page)) {
476        struct buffer_head *head = page_buffers(page);
477        struct buffer_head *bh = head;
478
479        /* If they're all mapped and dirty, do it */
480        page_block = 0;
481        do {
482            BUG_ON(buffer_locked(bh));
483            if (!buffer_mapped(bh)) {
484                /*
485                 * unmapped dirty buffers are created by
486                 * __set_page_dirty_buffers -> mmapped data
487                 */
488                if (buffer_dirty(bh))
489                    goto confused;
490                if (first_unmapped == blocks_per_page)
491                    first_unmapped = page_block;
492                continue;
493            }
494
495            if (first_unmapped != blocks_per_page)
496                goto confused; /* hole -> non-hole */
497
498            if (!buffer_dirty(bh) || !buffer_uptodate(bh))
499                goto confused;
500            if (page_block) {
501                if (bh->b_blocknr != blocks[page_block-1] + 1)
502                    goto confused;
503            }
504            blocks[page_block++] = bh->b_blocknr;
505            boundary = buffer_boundary(bh);
506            if (boundary) {
507                boundary_block = bh->b_blocknr;
508                boundary_bdev = bh->b_bdev;
509            }
510            bdev = bh->b_bdev;
511        } while ((bh = bh->b_this_page) != head);
512
513        if (first_unmapped)
514            goto page_is_mapped;
515
516        /*
517         * Page has buffers, but they are all unmapped. The page was
518         * created by pagein or read over a hole which was handled by
519         * block_read_full_page(). If this address_space is also
520         * using mpage_readpages then this can rarely happen.
521         */
522        goto confused;
523    }
524
525    /*
526     * The page has no buffers: map it to disk
527     */
528    BUG_ON(!PageUptodate(page));
529    block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
530    last_block = (i_size - 1) >> blkbits;
531    map_bh.b_page = page;
532    for (page_block = 0; page_block < blocks_per_page; ) {
533
534        map_bh.b_state = 0;
535        map_bh.b_size = 1 << blkbits;
536        if (mpd->get_block(inode, block_in_file, &map_bh, 1))
537            goto confused;
538        if (buffer_new(&map_bh))
539            unmap_underlying_metadata(map_bh.b_bdev,
540                        map_bh.b_blocknr);
541        if (buffer_boundary(&map_bh)) {
542            boundary_block = map_bh.b_blocknr;
543            boundary_bdev = map_bh.b_bdev;
544        }
545        if (page_block) {
546            if (map_bh.b_blocknr != blocks[page_block-1] + 1)
547                goto confused;
548        }
549        blocks[page_block++] = map_bh.b_blocknr;
550        boundary = buffer_boundary(&map_bh);
551        bdev = map_bh.b_bdev;
552        if (block_in_file == last_block)
553            break;
554        block_in_file++;
555    }
556    BUG_ON(page_block == 0);
557
558    first_unmapped = page_block;
559
560page_is_mapped:
561    end_index = i_size >> PAGE_CACHE_SHIFT;
562    if (page->index >= end_index) {
563        /*
564         * The page straddles i_size. It must be zeroed out on each
565         * and every writepage invocation because it may be mmapped.
566         * "A file is mapped in multiples of the page size. For a file
567         * that is not a multiple of the page size, the remaining memory
568         * is zeroed when mapped, and writes to that region are not
569         * written out to the file."
570         */
571        unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
572
573        if (page->index > end_index || !offset)
574            goto confused;
575        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
576    }
577
578    /*
579     * This page will go to BIO. Do we need to send this BIO off first?
580     */
581    if (bio && mpd->last_block_in_bio != blocks[0] - 1)
582        bio = mpage_bio_submit(WRITE, bio);
583
584alloc_new:
585    if (bio == NULL) {
586        bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
587                bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
588        if (bio == NULL)
589            goto confused;
590    }
591
592    /*
593     * Must try to add the page before marking the buffer clean or
594     * the confused fail path above (OOM) will be very confused when
595     * it finds all bh marked clean (i.e. it will not write anything)
596     */
597    length = first_unmapped << blkbits;
598    if (bio_add_page(bio, page, length, 0) < length) {
599        bio = mpage_bio_submit(WRITE, bio);
600        goto alloc_new;
601    }
602
603    /*
604     * OK, we have our BIO, so we can now mark the buffers clean. Make
605     * sure to only clean buffers which we know we'll be writing.
606     */
607    if (page_has_buffers(page)) {
608        struct buffer_head *head = page_buffers(page);
609        struct buffer_head *bh = head;
610        unsigned buffer_counter = 0;
611
612        do {
613            if (buffer_counter++ == first_unmapped)
614                break;
615            clear_buffer_dirty(bh);
616            bh = bh->b_this_page;
617        } while (bh != head);
618
619        /*
620         * we cannot drop the bh if the page is not uptodate
621         * or a concurrent readpage would fail to serialize with the bh
622         * and it would read from disk before we reach the platter.
623         */
624        if (buffer_heads_over_limit && PageUptodate(page))
625            try_to_free_buffers(page);
626    }
627
628    BUG_ON(PageWriteback(page));
629    set_page_writeback(page);
630    unlock_page(page);
631    if (boundary || (first_unmapped != blocks_per_page)) {
632        bio = mpage_bio_submit(WRITE, bio);
633        if (boundary_block) {
634            write_boundary_block(boundary_bdev,
635                    boundary_block, 1 << blkbits);
636        }
637    } else {
638        mpd->last_block_in_bio = blocks[blocks_per_page - 1];
639    }
640    goto out;
641
642confused:
643    if (bio)
644        bio = mpage_bio_submit(WRITE, bio);
645
646    if (mpd->use_writepage) {
647        ret = mapping->a_ops->writepage(page, wbc);
648    } else {
649        ret = -EAGAIN;
650        goto out;
651    }
652    /*
653     * The caller has a ref on the inode, so *mapping is stable
654     */
655    mapping_set_error(mapping, ret);
656out:
657    mpd->bio = bio;
658    return ret;
659}
660
661/**
662 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
663 * @mapping: address space structure to write
664 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
665 * @get_block: the filesystem's block mapper function.
666 * If this is NULL then use a_ops->writepage. Otherwise, go
667 * direct-to-BIO.
668 *
669 * This is a library function, which implements the writepages()
670 * address_space_operation.
671 *
672 * If a page is already under I/O, generic_writepages() skips it, even
673 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
674 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
675 * and msync() need to guarantee that all the data which was dirty at the time
676 * the call was made get new I/O started against them. If wbc->sync_mode is
677 * WB_SYNC_ALL then we were called for data integrity and we must wait for
678 * existing IO to complete.
679 */
680int
681mpage_writepages(struct address_space *mapping,
682        struct writeback_control *wbc, get_block_t get_block)
683{
684    int ret;
685
686    if (!get_block)
687        ret = generic_writepages(mapping, wbc);
688    else {
689        struct mpage_data mpd = {
690            .bio = NULL,
691            .last_block_in_bio = 0,
692            .get_block = get_block,
693            .use_writepage = 1,
694        };
695
696        ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
697        if (mpd.bio)
698            mpage_bio_submit(WRITE, mpd.bio);
699    }
700    return ret;
701}
702EXPORT_SYMBOL(mpage_writepages);
703
704int mpage_writepage(struct page *page, get_block_t get_block,
705    struct writeback_control *wbc)
706{
707    struct mpage_data mpd = {
708        .bio = NULL,
709        .last_block_in_bio = 0,
710        .get_block = get_block,
711        .use_writepage = 0,
712    };
713    int ret = __mpage_writepage(page, wbc, &mpd);
714    if (mpd.bio)
715        mpage_bio_submit(WRITE, mpd.bio);
716    return ret;
717}
718EXPORT_SYMBOL(mpage_writepage);
719

Archive Download this file



interactive