Root/ipc/sem.c

1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64 *
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67 *
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
71 */
72
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/init.h>
76#include <linux/proc_fs.h>
77#include <linux/time.h>
78#include <linux/security.h>
79#include <linux/syscalls.h>
80#include <linux/audit.h>
81#include <linux/capability.h>
82#include <linux/seq_file.h>
83#include <linux/rwsem.h>
84#include <linux/nsproxy.h>
85#include <linux/ipc_namespace.h>
86
87#include <asm/uaccess.h>
88#include "util.h"
89
90#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
91
92#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
94
95static int newary(struct ipc_namespace *, struct ipc_params *);
96static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
97#ifdef CONFIG_PROC_FS
98static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
99#endif
100
101#define SEMMSL_FAST 256 /* 512 bytes on stack */
102#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
103
104/*
105 * linked list protection:
106 * sem_undo.id_next,
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
110 *
111 */
112
113#define sc_semmsl sem_ctls[0]
114#define sc_semmns sem_ctls[1]
115#define sc_semopm sem_ctls[2]
116#define sc_semmni sem_ctls[3]
117
118void sem_init_ns(struct ipc_namespace *ns)
119{
120    ns->sc_semmsl = SEMMSL;
121    ns->sc_semmns = SEMMNS;
122    ns->sc_semopm = SEMOPM;
123    ns->sc_semmni = SEMMNI;
124    ns->used_sems = 0;
125    ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
126}
127
128#ifdef CONFIG_IPC_NS
129void sem_exit_ns(struct ipc_namespace *ns)
130{
131    free_ipcs(ns, &sem_ids(ns), freeary);
132    idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
133}
134#endif
135
136void __init sem_init (void)
137{
138    sem_init_ns(&init_ipc_ns);
139    ipc_init_proc_interface("sysvipc/sem",
140                " key semid perms nsems uid gid cuid cgid otime ctime\n",
141                IPC_SEM_IDS, sysvipc_sem_proc_show);
142}
143
144/*
145 * sem_lock_(check_) routines are called in the paths where the rw_mutex
146 * is not held.
147 */
148static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
149{
150    struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
151
152    if (IS_ERR(ipcp))
153        return (struct sem_array *)ipcp;
154
155    return container_of(ipcp, struct sem_array, sem_perm);
156}
157
158static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
159                        int id)
160{
161    struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
162
163    if (IS_ERR(ipcp))
164        return (struct sem_array *)ipcp;
165
166    return container_of(ipcp, struct sem_array, sem_perm);
167}
168
169static inline void sem_lock_and_putref(struct sem_array *sma)
170{
171    ipc_lock_by_ptr(&sma->sem_perm);
172    ipc_rcu_putref(sma);
173}
174
175static inline void sem_getref_and_unlock(struct sem_array *sma)
176{
177    ipc_rcu_getref(sma);
178    ipc_unlock(&(sma)->sem_perm);
179}
180
181static inline void sem_putref(struct sem_array *sma)
182{
183    ipc_lock_by_ptr(&sma->sem_perm);
184    ipc_rcu_putref(sma);
185    ipc_unlock(&(sma)->sem_perm);
186}
187
188static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
189{
190    ipc_rmid(&sem_ids(ns), &s->sem_perm);
191}
192
193/*
194 * Lockless wakeup algorithm:
195 * Without the check/retry algorithm a lockless wakeup is possible:
196 * - queue.status is initialized to -EINTR before blocking.
197 * - wakeup is performed by
198 * * unlinking the queue entry from sma->sem_pending
199 * * setting queue.status to IN_WAKEUP
200 * This is the notification for the blocked thread that a
201 * result value is imminent.
202 * * call wake_up_process
203 * * set queue.status to the final value.
204 * - the previously blocked thread checks queue.status:
205 * * if it's IN_WAKEUP, then it must wait until the value changes
206 * * if it's not -EINTR, then the operation was completed by
207 * update_queue. semtimedop can return queue.status without
208 * performing any operation on the sem array.
209 * * otherwise it must acquire the spinlock and check what's up.
210 *
211 * The two-stage algorithm is necessary to protect against the following
212 * races:
213 * - if queue.status is set after wake_up_process, then the woken up idle
214 * thread could race forward and try (and fail) to acquire sma->lock
215 * before update_queue had a chance to set queue.status
216 * - if queue.status is written before wake_up_process and if the
217 * blocked process is woken up by a signal between writing
218 * queue.status and the wake_up_process, then the woken up
219 * process could return from semtimedop and die by calling
220 * sys_exit before wake_up_process is called. Then wake_up_process
221 * will oops, because the task structure is already invalid.
222 * (yes, this happened on s390 with sysv msg).
223 *
224 */
225#define IN_WAKEUP 1
226
227/**
228 * newary - Create a new semaphore set
229 * @ns: namespace
230 * @params: ptr to the structure that contains key, semflg and nsems
231 *
232 * Called with sem_ids.rw_mutex held (as a writer)
233 */
234
235static int newary(struct ipc_namespace *ns, struct ipc_params *params)
236{
237    int id;
238    int retval;
239    struct sem_array *sma;
240    int size;
241    key_t key = params->key;
242    int nsems = params->u.nsems;
243    int semflg = params->flg;
244    int i;
245
246    if (!nsems)
247        return -EINVAL;
248    if (ns->used_sems + nsems > ns->sc_semmns)
249        return -ENOSPC;
250
251    size = sizeof (*sma) + nsems * sizeof (struct sem);
252    sma = ipc_rcu_alloc(size);
253    if (!sma) {
254        return -ENOMEM;
255    }
256    memset (sma, 0, size);
257
258    sma->sem_perm.mode = (semflg & S_IRWXUGO);
259    sma->sem_perm.key = key;
260
261    sma->sem_perm.security = NULL;
262    retval = security_sem_alloc(sma);
263    if (retval) {
264        ipc_rcu_putref(sma);
265        return retval;
266    }
267
268    id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
269    if (id < 0) {
270        security_sem_free(sma);
271        ipc_rcu_putref(sma);
272        return id;
273    }
274    ns->used_sems += nsems;
275
276    sma->sem_base = (struct sem *) &sma[1];
277
278    for (i = 0; i < nsems; i++)
279        INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
280
281    sma->complex_count = 0;
282    INIT_LIST_HEAD(&sma->sem_pending);
283    INIT_LIST_HEAD(&sma->list_id);
284    sma->sem_nsems = nsems;
285    sma->sem_ctime = get_seconds();
286    sem_unlock(sma);
287
288    return sma->sem_perm.id;
289}
290
291
292/*
293 * Called with sem_ids.rw_mutex and ipcp locked.
294 */
295static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
296{
297    struct sem_array *sma;
298
299    sma = container_of(ipcp, struct sem_array, sem_perm);
300    return security_sem_associate(sma, semflg);
301}
302
303/*
304 * Called with sem_ids.rw_mutex and ipcp locked.
305 */
306static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
307                struct ipc_params *params)
308{
309    struct sem_array *sma;
310
311    sma = container_of(ipcp, struct sem_array, sem_perm);
312    if (params->u.nsems > sma->sem_nsems)
313        return -EINVAL;
314
315    return 0;
316}
317
318SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
319{
320    struct ipc_namespace *ns;
321    struct ipc_ops sem_ops;
322    struct ipc_params sem_params;
323
324    ns = current->nsproxy->ipc_ns;
325
326    if (nsems < 0 || nsems > ns->sc_semmsl)
327        return -EINVAL;
328
329    sem_ops.getnew = newary;
330    sem_ops.associate = sem_security;
331    sem_ops.more_checks = sem_more_checks;
332
333    sem_params.key = key;
334    sem_params.flg = semflg;
335    sem_params.u.nsems = nsems;
336
337    return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
338}
339
340/*
341 * Determine whether a sequence of semaphore operations would succeed
342 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
343 */
344
345static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
346                 int nsops, struct sem_undo *un, int pid)
347{
348    int result, sem_op;
349    struct sembuf *sop;
350    struct sem * curr;
351
352    for (sop = sops; sop < sops + nsops; sop++) {
353        curr = sma->sem_base + sop->sem_num;
354        sem_op = sop->sem_op;
355        result = curr->semval;
356  
357        if (!sem_op && result)
358            goto would_block;
359
360        result += sem_op;
361        if (result < 0)
362            goto would_block;
363        if (result > SEMVMX)
364            goto out_of_range;
365        if (sop->sem_flg & SEM_UNDO) {
366            int undo = un->semadj[sop->sem_num] - sem_op;
367            /*
368              * Exceeding the undo range is an error.
369             */
370            if (undo < (-SEMAEM - 1) || undo > SEMAEM)
371                goto out_of_range;
372        }
373        curr->semval = result;
374    }
375
376    sop--;
377    while (sop >= sops) {
378        sma->sem_base[sop->sem_num].sempid = pid;
379        if (sop->sem_flg & SEM_UNDO)
380            un->semadj[sop->sem_num] -= sop->sem_op;
381        sop--;
382    }
383    
384    sma->sem_otime = get_seconds();
385    return 0;
386
387out_of_range:
388    result = -ERANGE;
389    goto undo;
390
391would_block:
392    if (sop->sem_flg & IPC_NOWAIT)
393        result = -EAGAIN;
394    else
395        result = 1;
396
397undo:
398    sop--;
399    while (sop >= sops) {
400        sma->sem_base[sop->sem_num].semval -= sop->sem_op;
401        sop--;
402    }
403
404    return result;
405}
406
407/*
408 * Wake up a process waiting on the sem queue with a given error.
409 * The queue is invalid (may not be accessed) after the function returns.
410 */
411static void wake_up_sem_queue(struct sem_queue *q, int error)
412{
413    /*
414     * Hold preempt off so that we don't get preempted and have the
415     * wakee busy-wait until we're scheduled back on. We're holding
416     * locks here so it may not strictly be needed, however if the
417     * locks become preemptible then this prevents such a problem.
418     */
419    preempt_disable();
420    q->status = IN_WAKEUP;
421    wake_up_process(q->sleeper);
422    /* hands-off: q can disappear immediately after writing q->status. */
423    smp_wmb();
424    q->status = error;
425    preempt_enable();
426}
427
428static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
429{
430    list_del(&q->list);
431    if (q->nsops == 1)
432        list_del(&q->simple_list);
433    else
434        sma->complex_count--;
435}
436
437
438/**
439 * update_queue(sma, semnum): Look for tasks that can be completed.
440 * @sma: semaphore array.
441 * @semnum: semaphore that was modified.
442 *
443 * update_queue must be called after a semaphore in a semaphore array
444 * was modified. If multiple semaphore were modified, then @semnum
445 * must be set to -1.
446 */
447static void update_queue(struct sem_array *sma, int semnum)
448{
449    struct sem_queue *q;
450    struct list_head *walk;
451    struct list_head *pending_list;
452    int offset;
453
454    /* if there are complex operations around, then knowing the semaphore
455     * that was modified doesn't help us. Assume that multiple semaphores
456     * were modified.
457     */
458    if (sma->complex_count)
459        semnum = -1;
460
461    if (semnum == -1) {
462        pending_list = &sma->sem_pending;
463        offset = offsetof(struct sem_queue, list);
464    } else {
465        pending_list = &sma->sem_base[semnum].sem_pending;
466        offset = offsetof(struct sem_queue, simple_list);
467    }
468
469again:
470    walk = pending_list->next;
471    while (walk != pending_list) {
472        int error, alter;
473
474        q = (struct sem_queue *)((char *)walk - offset);
475        walk = walk->next;
476
477        /* If we are scanning the single sop, per-semaphore list of
478         * one semaphore and that semaphore is 0, then it is not
479         * necessary to scan the "alter" entries: simple increments
480         * that affect only one entry succeed immediately and cannot
481         * be in the per semaphore pending queue, and decrements
482         * cannot be successful if the value is already 0.
483         */
484        if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
485                q->alter)
486            break;
487
488        error = try_atomic_semop(sma, q->sops, q->nsops,
489                     q->undo, q->pid);
490
491        /* Does q->sleeper still need to sleep? */
492        if (error > 0)
493            continue;
494
495        unlink_queue(sma, q);
496
497        /*
498         * The next operation that must be checked depends on the type
499         * of the completed operation:
500         * - if the operation modified the array, then restart from the
501         * head of the queue and check for threads that might be
502         * waiting for the new semaphore values.
503         * - if the operation didn't modify the array, then just
504         * continue.
505         */
506        alter = q->alter;
507        wake_up_sem_queue(q, error);
508        if (alter && !error)
509            goto again;
510    }
511}
512
513/* The following counts are associated to each semaphore:
514 * semncnt number of tasks waiting on semval being nonzero
515 * semzcnt number of tasks waiting on semval being zero
516 * This model assumes that a task waits on exactly one semaphore.
517 * Since semaphore operations are to be performed atomically, tasks actually
518 * wait on a whole sequence of semaphores simultaneously.
519 * The counts we return here are a rough approximation, but still
520 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
521 */
522static int count_semncnt (struct sem_array * sma, ushort semnum)
523{
524    int semncnt;
525    struct sem_queue * q;
526
527    semncnt = 0;
528    list_for_each_entry(q, &sma->sem_pending, list) {
529        struct sembuf * sops = q->sops;
530        int nsops = q->nsops;
531        int i;
532        for (i = 0; i < nsops; i++)
533            if (sops[i].sem_num == semnum
534                && (sops[i].sem_op < 0)
535                && !(sops[i].sem_flg & IPC_NOWAIT))
536                semncnt++;
537    }
538    return semncnt;
539}
540
541static int count_semzcnt (struct sem_array * sma, ushort semnum)
542{
543    int semzcnt;
544    struct sem_queue * q;
545
546    semzcnt = 0;
547    list_for_each_entry(q, &sma->sem_pending, list) {
548        struct sembuf * sops = q->sops;
549        int nsops = q->nsops;
550        int i;
551        for (i = 0; i < nsops; i++)
552            if (sops[i].sem_num == semnum
553                && (sops[i].sem_op == 0)
554                && !(sops[i].sem_flg & IPC_NOWAIT))
555                semzcnt++;
556    }
557    return semzcnt;
558}
559
560static void free_un(struct rcu_head *head)
561{
562    struct sem_undo *un = container_of(head, struct sem_undo, rcu);
563    kfree(un);
564}
565
566/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
567 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
568 * remains locked on exit.
569 */
570static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
571{
572    struct sem_undo *un, *tu;
573    struct sem_queue *q, *tq;
574    struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
575
576    /* Free the existing undo structures for this semaphore set. */
577    assert_spin_locked(&sma->sem_perm.lock);
578    list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
579        list_del(&un->list_id);
580        spin_lock(&un->ulp->lock);
581        un->semid = -1;
582        list_del_rcu(&un->list_proc);
583        spin_unlock(&un->ulp->lock);
584        call_rcu(&un->rcu, free_un);
585    }
586
587    /* Wake up all pending processes and let them fail with EIDRM. */
588    list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
589        unlink_queue(sma, q);
590        wake_up_sem_queue(q, -EIDRM);
591    }
592
593    /* Remove the semaphore set from the IDR */
594    sem_rmid(ns, sma);
595    sem_unlock(sma);
596
597    ns->used_sems -= sma->sem_nsems;
598    security_sem_free(sma);
599    ipc_rcu_putref(sma);
600}
601
602static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
603{
604    switch(version) {
605    case IPC_64:
606        return copy_to_user(buf, in, sizeof(*in));
607    case IPC_OLD:
608        {
609        struct semid_ds out;
610
611        ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
612
613        out.sem_otime = in->sem_otime;
614        out.sem_ctime = in->sem_ctime;
615        out.sem_nsems = in->sem_nsems;
616
617        return copy_to_user(buf, &out, sizeof(out));
618        }
619    default:
620        return -EINVAL;
621    }
622}
623
624static int semctl_nolock(struct ipc_namespace *ns, int semid,
625             int cmd, int version, union semun arg)
626{
627    int err;
628    struct sem_array *sma;
629
630    switch(cmd) {
631    case IPC_INFO:
632    case SEM_INFO:
633    {
634        struct seminfo seminfo;
635        int max_id;
636
637        err = security_sem_semctl(NULL, cmd);
638        if (err)
639            return err;
640        
641        memset(&seminfo,0,sizeof(seminfo));
642        seminfo.semmni = ns->sc_semmni;
643        seminfo.semmns = ns->sc_semmns;
644        seminfo.semmsl = ns->sc_semmsl;
645        seminfo.semopm = ns->sc_semopm;
646        seminfo.semvmx = SEMVMX;
647        seminfo.semmnu = SEMMNU;
648        seminfo.semmap = SEMMAP;
649        seminfo.semume = SEMUME;
650        down_read(&sem_ids(ns).rw_mutex);
651        if (cmd == SEM_INFO) {
652            seminfo.semusz = sem_ids(ns).in_use;
653            seminfo.semaem = ns->used_sems;
654        } else {
655            seminfo.semusz = SEMUSZ;
656            seminfo.semaem = SEMAEM;
657        }
658        max_id = ipc_get_maxid(&sem_ids(ns));
659        up_read(&sem_ids(ns).rw_mutex);
660        if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
661            return -EFAULT;
662        return (max_id < 0) ? 0: max_id;
663    }
664    case IPC_STAT:
665    case SEM_STAT:
666    {
667        struct semid64_ds tbuf;
668        int id;
669
670        if (cmd == SEM_STAT) {
671            sma = sem_lock(ns, semid);
672            if (IS_ERR(sma))
673                return PTR_ERR(sma);
674            id = sma->sem_perm.id;
675        } else {
676            sma = sem_lock_check(ns, semid);
677            if (IS_ERR(sma))
678                return PTR_ERR(sma);
679            id = 0;
680        }
681
682        err = -EACCES;
683        if (ipcperms (&sma->sem_perm, S_IRUGO))
684            goto out_unlock;
685
686        err = security_sem_semctl(sma, cmd);
687        if (err)
688            goto out_unlock;
689
690        memset(&tbuf, 0, sizeof(tbuf));
691
692        kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
693        tbuf.sem_otime = sma->sem_otime;
694        tbuf.sem_ctime = sma->sem_ctime;
695        tbuf.sem_nsems = sma->sem_nsems;
696        sem_unlock(sma);
697        if (copy_semid_to_user (arg.buf, &tbuf, version))
698            return -EFAULT;
699        return id;
700    }
701    default:
702        return -EINVAL;
703    }
704out_unlock:
705    sem_unlock(sma);
706    return err;
707}
708
709static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
710        int cmd, int version, union semun arg)
711{
712    struct sem_array *sma;
713    struct sem* curr;
714    int err;
715    ushort fast_sem_io[SEMMSL_FAST];
716    ushort* sem_io = fast_sem_io;
717    int nsems;
718
719    sma = sem_lock_check(ns, semid);
720    if (IS_ERR(sma))
721        return PTR_ERR(sma);
722
723    nsems = sma->sem_nsems;
724
725    err = -EACCES;
726    if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
727        goto out_unlock;
728
729    err = security_sem_semctl(sma, cmd);
730    if (err)
731        goto out_unlock;
732
733    err = -EACCES;
734    switch (cmd) {
735    case GETALL:
736    {
737        ushort __user *array = arg.array;
738        int i;
739
740        if(nsems > SEMMSL_FAST) {
741            sem_getref_and_unlock(sma);
742
743            sem_io = ipc_alloc(sizeof(ushort)*nsems);
744            if(sem_io == NULL) {
745                sem_putref(sma);
746                return -ENOMEM;
747            }
748
749            sem_lock_and_putref(sma);
750            if (sma->sem_perm.deleted) {
751                sem_unlock(sma);
752                err = -EIDRM;
753                goto out_free;
754            }
755        }
756
757        for (i = 0; i < sma->sem_nsems; i++)
758            sem_io[i] = sma->sem_base[i].semval;
759        sem_unlock(sma);
760        err = 0;
761        if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
762            err = -EFAULT;
763        goto out_free;
764    }
765    case SETALL:
766    {
767        int i;
768        struct sem_undo *un;
769
770        sem_getref_and_unlock(sma);
771
772        if(nsems > SEMMSL_FAST) {
773            sem_io = ipc_alloc(sizeof(ushort)*nsems);
774            if(sem_io == NULL) {
775                sem_putref(sma);
776                return -ENOMEM;
777            }
778        }
779
780        if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
781            sem_putref(sma);
782            err = -EFAULT;
783            goto out_free;
784        }
785
786        for (i = 0; i < nsems; i++) {
787            if (sem_io[i] > SEMVMX) {
788                sem_putref(sma);
789                err = -ERANGE;
790                goto out_free;
791            }
792        }
793        sem_lock_and_putref(sma);
794        if (sma->sem_perm.deleted) {
795            sem_unlock(sma);
796            err = -EIDRM;
797            goto out_free;
798        }
799
800        for (i = 0; i < nsems; i++)
801            sma->sem_base[i].semval = sem_io[i];
802
803        assert_spin_locked(&sma->sem_perm.lock);
804        list_for_each_entry(un, &sma->list_id, list_id) {
805            for (i = 0; i < nsems; i++)
806                un->semadj[i] = 0;
807        }
808        sma->sem_ctime = get_seconds();
809        /* maybe some queued-up processes were waiting for this */
810        update_queue(sma, -1);
811        err = 0;
812        goto out_unlock;
813    }
814    /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
815    }
816    err = -EINVAL;
817    if(semnum < 0 || semnum >= nsems)
818        goto out_unlock;
819
820    curr = &sma->sem_base[semnum];
821
822    switch (cmd) {
823    case GETVAL:
824        err = curr->semval;
825        goto out_unlock;
826    case GETPID:
827        err = curr->sempid;
828        goto out_unlock;
829    case GETNCNT:
830        err = count_semncnt(sma,semnum);
831        goto out_unlock;
832    case GETZCNT:
833        err = count_semzcnt(sma,semnum);
834        goto out_unlock;
835    case SETVAL:
836    {
837        int val = arg.val;
838        struct sem_undo *un;
839
840        err = -ERANGE;
841        if (val > SEMVMX || val < 0)
842            goto out_unlock;
843
844        assert_spin_locked(&sma->sem_perm.lock);
845        list_for_each_entry(un, &sma->list_id, list_id)
846            un->semadj[semnum] = 0;
847
848        curr->semval = val;
849        curr->sempid = task_tgid_vnr(current);
850        sma->sem_ctime = get_seconds();
851        /* maybe some queued-up processes were waiting for this */
852        update_queue(sma, semnum);
853        err = 0;
854        goto out_unlock;
855    }
856    }
857out_unlock:
858    sem_unlock(sma);
859out_free:
860    if(sem_io != fast_sem_io)
861        ipc_free(sem_io, sizeof(ushort)*nsems);
862    return err;
863}
864
865static inline unsigned long
866copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
867{
868    switch(version) {
869    case IPC_64:
870        if (copy_from_user(out, buf, sizeof(*out)))
871            return -EFAULT;
872        return 0;
873    case IPC_OLD:
874        {
875        struct semid_ds tbuf_old;
876
877        if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
878            return -EFAULT;
879
880        out->sem_perm.uid = tbuf_old.sem_perm.uid;
881        out->sem_perm.gid = tbuf_old.sem_perm.gid;
882        out->sem_perm.mode = tbuf_old.sem_perm.mode;
883
884        return 0;
885        }
886    default:
887        return -EINVAL;
888    }
889}
890
891/*
892 * This function handles some semctl commands which require the rw_mutex
893 * to be held in write mode.
894 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
895 */
896static int semctl_down(struct ipc_namespace *ns, int semid,
897               int cmd, int version, union semun arg)
898{
899    struct sem_array *sma;
900    int err;
901    struct semid64_ds semid64;
902    struct kern_ipc_perm *ipcp;
903
904    if(cmd == IPC_SET) {
905        if (copy_semid_from_user(&semid64, arg.buf, version))
906            return -EFAULT;
907    }
908
909    ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
910    if (IS_ERR(ipcp))
911        return PTR_ERR(ipcp);
912
913    sma = container_of(ipcp, struct sem_array, sem_perm);
914
915    err = security_sem_semctl(sma, cmd);
916    if (err)
917        goto out_unlock;
918
919    switch(cmd){
920    case IPC_RMID:
921        freeary(ns, ipcp);
922        goto out_up;
923    case IPC_SET:
924        ipc_update_perm(&semid64.sem_perm, ipcp);
925        sma->sem_ctime = get_seconds();
926        break;
927    default:
928        err = -EINVAL;
929    }
930
931out_unlock:
932    sem_unlock(sma);
933out_up:
934    up_write(&sem_ids(ns).rw_mutex);
935    return err;
936}
937
938SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
939{
940    int err = -EINVAL;
941    int version;
942    struct ipc_namespace *ns;
943
944    if (semid < 0)
945        return -EINVAL;
946
947    version = ipc_parse_version(&cmd);
948    ns = current->nsproxy->ipc_ns;
949
950    switch(cmd) {
951    case IPC_INFO:
952    case SEM_INFO:
953    case IPC_STAT:
954    case SEM_STAT:
955        err = semctl_nolock(ns, semid, cmd, version, arg);
956        return err;
957    case GETALL:
958    case GETVAL:
959    case GETPID:
960    case GETNCNT:
961    case GETZCNT:
962    case SETVAL:
963    case SETALL:
964        err = semctl_main(ns,semid,semnum,cmd,version,arg);
965        return err;
966    case IPC_RMID:
967    case IPC_SET:
968        err = semctl_down(ns, semid, cmd, version, arg);
969        return err;
970    default:
971        return -EINVAL;
972    }
973}
974#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
975asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
976{
977    return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
978}
979SYSCALL_ALIAS(sys_semctl, SyS_semctl);
980#endif
981
982/* If the task doesn't already have a undo_list, then allocate one
983 * here. We guarantee there is only one thread using this undo list,
984 * and current is THE ONE
985 *
986 * If this allocation and assignment succeeds, but later
987 * portions of this code fail, there is no need to free the sem_undo_list.
988 * Just let it stay associated with the task, and it'll be freed later
989 * at exit time.
990 *
991 * This can block, so callers must hold no locks.
992 */
993static inline int get_undo_list(struct sem_undo_list **undo_listp)
994{
995    struct sem_undo_list *undo_list;
996
997    undo_list = current->sysvsem.undo_list;
998    if (!undo_list) {
999        undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1000        if (undo_list == NULL)
1001            return -ENOMEM;
1002        spin_lock_init(&undo_list->lock);
1003        atomic_set(&undo_list->refcnt, 1);
1004        INIT_LIST_HEAD(&undo_list->list_proc);
1005
1006        current->sysvsem.undo_list = undo_list;
1007    }
1008    *undo_listp = undo_list;
1009    return 0;
1010}
1011
1012static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1013{
1014    struct sem_undo *un;
1015
1016    list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1017        if (un->semid == semid)
1018            return un;
1019    }
1020    return NULL;
1021}
1022
1023static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1024{
1025    struct sem_undo *un;
1026
1027      assert_spin_locked(&ulp->lock);
1028
1029    un = __lookup_undo(ulp, semid);
1030    if (un) {
1031        list_del_rcu(&un->list_proc);
1032        list_add_rcu(&un->list_proc, &ulp->list_proc);
1033    }
1034    return un;
1035}
1036
1037/**
1038 * find_alloc_undo - Lookup (and if not present create) undo array
1039 * @ns: namespace
1040 * @semid: semaphore array id
1041 *
1042 * The function looks up (and if not present creates) the undo structure.
1043 * The size of the undo structure depends on the size of the semaphore
1044 * array, thus the alloc path is not that straightforward.
1045 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1046 * performs a rcu_read_lock().
1047 */
1048static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1049{
1050    struct sem_array *sma;
1051    struct sem_undo_list *ulp;
1052    struct sem_undo *un, *new;
1053    int nsems;
1054    int error;
1055
1056    error = get_undo_list(&ulp);
1057    if (error)
1058        return ERR_PTR(error);
1059
1060    rcu_read_lock();
1061    spin_lock(&ulp->lock);
1062    un = lookup_undo(ulp, semid);
1063    spin_unlock(&ulp->lock);
1064    if (likely(un!=NULL))
1065        goto out;
1066    rcu_read_unlock();
1067
1068    /* no undo structure around - allocate one. */
1069    /* step 1: figure out the size of the semaphore array */
1070    sma = sem_lock_check(ns, semid);
1071    if (IS_ERR(sma))
1072        return ERR_PTR(PTR_ERR(sma));
1073
1074    nsems = sma->sem_nsems;
1075    sem_getref_and_unlock(sma);
1076
1077    /* step 2: allocate new undo structure */
1078    new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1079    if (!new) {
1080        sem_putref(sma);
1081        return ERR_PTR(-ENOMEM);
1082    }
1083
1084    /* step 3: Acquire the lock on semaphore array */
1085    sem_lock_and_putref(sma);
1086    if (sma->sem_perm.deleted) {
1087        sem_unlock(sma);
1088        kfree(new);
1089        un = ERR_PTR(-EIDRM);
1090        goto out;
1091    }
1092    spin_lock(&ulp->lock);
1093
1094    /*
1095     * step 4: check for races: did someone else allocate the undo struct?
1096     */
1097    un = lookup_undo(ulp, semid);
1098    if (un) {
1099        kfree(new);
1100        goto success;
1101    }
1102    /* step 5: initialize & link new undo structure */
1103    new->semadj = (short *) &new[1];
1104    new->ulp = ulp;
1105    new->semid = semid;
1106    assert_spin_locked(&ulp->lock);
1107    list_add_rcu(&new->list_proc, &ulp->list_proc);
1108    assert_spin_locked(&sma->sem_perm.lock);
1109    list_add(&new->list_id, &sma->list_id);
1110    un = new;
1111
1112success:
1113    spin_unlock(&ulp->lock);
1114    rcu_read_lock();
1115    sem_unlock(sma);
1116out:
1117    return un;
1118}
1119
1120SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1121        unsigned, nsops, const struct timespec __user *, timeout)
1122{
1123    int error = -EINVAL;
1124    struct sem_array *sma;
1125    struct sembuf fast_sops[SEMOPM_FAST];
1126    struct sembuf* sops = fast_sops, *sop;
1127    struct sem_undo *un;
1128    int undos = 0, alter = 0, max;
1129    struct sem_queue queue;
1130    unsigned long jiffies_left = 0;
1131    struct ipc_namespace *ns;
1132
1133    ns = current->nsproxy->ipc_ns;
1134
1135    if (nsops < 1 || semid < 0)
1136        return -EINVAL;
1137    if (nsops > ns->sc_semopm)
1138        return -E2BIG;
1139    if(nsops > SEMOPM_FAST) {
1140        sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1141        if(sops==NULL)
1142            return -ENOMEM;
1143    }
1144    if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1145        error=-EFAULT;
1146        goto out_free;
1147    }
1148    if (timeout) {
1149        struct timespec _timeout;
1150        if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1151            error = -EFAULT;
1152            goto out_free;
1153        }
1154        if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1155            _timeout.tv_nsec >= 1000000000L) {
1156            error = -EINVAL;
1157            goto out_free;
1158        }
1159        jiffies_left = timespec_to_jiffies(&_timeout);
1160    }
1161    max = 0;
1162    for (sop = sops; sop < sops + nsops; sop++) {
1163        if (sop->sem_num >= max)
1164            max = sop->sem_num;
1165        if (sop->sem_flg & SEM_UNDO)
1166            undos = 1;
1167        if (sop->sem_op != 0)
1168            alter = 1;
1169    }
1170
1171    if (undos) {
1172        un = find_alloc_undo(ns, semid);
1173        if (IS_ERR(un)) {
1174            error = PTR_ERR(un);
1175            goto out_free;
1176        }
1177    } else
1178        un = NULL;
1179
1180    sma = sem_lock_check(ns, semid);
1181    if (IS_ERR(sma)) {
1182        if (un)
1183            rcu_read_unlock();
1184        error = PTR_ERR(sma);
1185        goto out_free;
1186    }
1187
1188    /*
1189     * semid identifiers are not unique - find_alloc_undo may have
1190     * allocated an undo structure, it was invalidated by an RMID
1191     * and now a new array with received the same id. Check and fail.
1192     * This case can be detected checking un->semid. The existance of
1193     * "un" itself is guaranteed by rcu.
1194     */
1195    error = -EIDRM;
1196    if (un) {
1197        if (un->semid == -1) {
1198            rcu_read_unlock();
1199            goto out_unlock_free;
1200        } else {
1201            /*
1202             * rcu lock can be released, "un" cannot disappear:
1203             * - sem_lock is acquired, thus IPC_RMID is
1204             * impossible.
1205             * - exit_sem is impossible, it always operates on
1206             * current (or a dead task).
1207             */
1208
1209            rcu_read_unlock();
1210        }
1211    }
1212
1213    error = -EFBIG;
1214    if (max >= sma->sem_nsems)
1215        goto out_unlock_free;
1216
1217    error = -EACCES;
1218    if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1219        goto out_unlock_free;
1220
1221    error = security_sem_semop(sma, sops, nsops, alter);
1222    if (error)
1223        goto out_unlock_free;
1224
1225    error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1226    if (error <= 0) {
1227        if (alter && error == 0)
1228            update_queue(sma, (nsops == 1) ? sops[0].sem_num : -1);
1229
1230        goto out_unlock_free;
1231    }
1232
1233    /* We need to sleep on this operation, so we put the current
1234     * task into the pending queue and go to sleep.
1235     */
1236        
1237    queue.sops = sops;
1238    queue.nsops = nsops;
1239    queue.undo = un;
1240    queue.pid = task_tgid_vnr(current);
1241    queue.alter = alter;
1242    if (alter)
1243        list_add_tail(&queue.list, &sma->sem_pending);
1244    else
1245        list_add(&queue.list, &sma->sem_pending);
1246
1247    if (nsops == 1) {
1248        struct sem *curr;
1249        curr = &sma->sem_base[sops->sem_num];
1250
1251        if (alter)
1252            list_add_tail(&queue.simple_list, &curr->sem_pending);
1253        else
1254            list_add(&queue.simple_list, &curr->sem_pending);
1255    } else {
1256        INIT_LIST_HEAD(&queue.simple_list);
1257        sma->complex_count++;
1258    }
1259
1260    queue.status = -EINTR;
1261    queue.sleeper = current;
1262    current->state = TASK_INTERRUPTIBLE;
1263    sem_unlock(sma);
1264
1265    if (timeout)
1266        jiffies_left = schedule_timeout(jiffies_left);
1267    else
1268        schedule();
1269
1270    error = queue.status;
1271    while(unlikely(error == IN_WAKEUP)) {
1272        cpu_relax();
1273        error = queue.status;
1274    }
1275
1276    if (error != -EINTR) {
1277        /* fast path: update_queue already obtained all requested
1278         * resources */
1279        goto out_free;
1280    }
1281
1282    sma = sem_lock(ns, semid);
1283    if (IS_ERR(sma)) {
1284        error = -EIDRM;
1285        goto out_free;
1286    }
1287
1288    /*
1289     * If queue.status != -EINTR we are woken up by another process
1290     */
1291    error = queue.status;
1292    if (error != -EINTR) {
1293        goto out_unlock_free;
1294    }
1295
1296    /*
1297     * If an interrupt occurred we have to clean up the queue
1298     */
1299    if (timeout && jiffies_left == 0)
1300        error = -EAGAIN;
1301    unlink_queue(sma, &queue);
1302
1303out_unlock_free:
1304    sem_unlock(sma);
1305out_free:
1306    if(sops != fast_sops)
1307        kfree(sops);
1308    return error;
1309}
1310
1311SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1312        unsigned, nsops)
1313{
1314    return sys_semtimedop(semid, tsops, nsops, NULL);
1315}
1316
1317/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1318 * parent and child tasks.
1319 */
1320
1321int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1322{
1323    struct sem_undo_list *undo_list;
1324    int error;
1325
1326    if (clone_flags & CLONE_SYSVSEM) {
1327        error = get_undo_list(&undo_list);
1328        if (error)
1329            return error;
1330        atomic_inc(&undo_list->refcnt);
1331        tsk->sysvsem.undo_list = undo_list;
1332    } else
1333        tsk->sysvsem.undo_list = NULL;
1334
1335    return 0;
1336}
1337
1338/*
1339 * add semadj values to semaphores, free undo structures.
1340 * undo structures are not freed when semaphore arrays are destroyed
1341 * so some of them may be out of date.
1342 * IMPLEMENTATION NOTE: There is some confusion over whether the
1343 * set of adjustments that needs to be done should be done in an atomic
1344 * manner or not. That is, if we are attempting to decrement the semval
1345 * should we queue up and wait until we can do so legally?
1346 * The original implementation attempted to do this (queue and wait).
1347 * The current implementation does not do so. The POSIX standard
1348 * and SVID should be consulted to determine what behavior is mandated.
1349 */
1350void exit_sem(struct task_struct *tsk)
1351{
1352    struct sem_undo_list *ulp;
1353
1354    ulp = tsk->sysvsem.undo_list;
1355    if (!ulp)
1356        return;
1357    tsk->sysvsem.undo_list = NULL;
1358
1359    if (!atomic_dec_and_test(&ulp->refcnt))
1360        return;
1361
1362    for (;;) {
1363        struct sem_array *sma;
1364        struct sem_undo *un;
1365        int semid;
1366        int i;
1367
1368        rcu_read_lock();
1369        un = list_entry_rcu(ulp->list_proc.next,
1370                    struct sem_undo, list_proc);
1371        if (&un->list_proc == &ulp->list_proc)
1372            semid = -1;
1373         else
1374            semid = un->semid;
1375        rcu_read_unlock();
1376
1377        if (semid == -1)
1378            break;
1379
1380        sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1381
1382        /* exit_sem raced with IPC_RMID, nothing to do */
1383        if (IS_ERR(sma))
1384            continue;
1385
1386        un = __lookup_undo(ulp, semid);
1387        if (un == NULL) {
1388            /* exit_sem raced with IPC_RMID+semget() that created
1389             * exactly the same semid. Nothing to do.
1390             */
1391            sem_unlock(sma);
1392            continue;
1393        }
1394
1395        /* remove un from the linked lists */
1396        assert_spin_locked(&sma->sem_perm.lock);
1397        list_del(&un->list_id);
1398
1399        spin_lock(&ulp->lock);
1400        list_del_rcu(&un->list_proc);
1401        spin_unlock(&ulp->lock);
1402
1403        /* perform adjustments registered in un */
1404        for (i = 0; i < sma->sem_nsems; i++) {
1405            struct sem * semaphore = &sma->sem_base[i];
1406            if (un->semadj[i]) {
1407                semaphore->semval += un->semadj[i];
1408                /*
1409                 * Range checks of the new semaphore value,
1410                 * not defined by sus:
1411                 * - Some unices ignore the undo entirely
1412                 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1413                 * - some cap the value (e.g. FreeBSD caps
1414                 * at 0, but doesn't enforce SEMVMX)
1415                 *
1416                 * Linux caps the semaphore value, both at 0
1417                 * and at SEMVMX.
1418                 *
1419                 * Manfred <manfred@colorfullife.com>
1420                 */
1421                if (semaphore->semval < 0)
1422                    semaphore->semval = 0;
1423                if (semaphore->semval > SEMVMX)
1424                    semaphore->semval = SEMVMX;
1425                semaphore->sempid = task_tgid_vnr(current);
1426            }
1427        }
1428        sma->sem_otime = get_seconds();
1429        /* maybe some queued-up processes were waiting for this */
1430        update_queue(sma, -1);
1431        sem_unlock(sma);
1432
1433        call_rcu(&un->rcu, free_un);
1434    }
1435    kfree(ulp);
1436}
1437
1438#ifdef CONFIG_PROC_FS
1439static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1440{
1441    struct sem_array *sma = it;
1442
1443    return seq_printf(s,
1444              "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1445              sma->sem_perm.key,
1446              sma->sem_perm.id,
1447              sma->sem_perm.mode,
1448              sma->sem_nsems,
1449              sma->sem_perm.uid,
1450              sma->sem_perm.gid,
1451              sma->sem_perm.cuid,
1452              sma->sem_perm.cgid,
1453              sma->sem_otime,
1454              sma->sem_ctime);
1455}
1456#endif
1457

Archive Download this file



interactive