Root/
1 | /* |
2 | * Copyright (c) 2007 Oracle. All rights reserved. |
3 | * |
4 | * This software is available to you under a choice of one of two |
5 | * licenses. You may choose to be licensed under the terms of the GNU |
6 | * General Public License (GPL) Version 2, available from the file |
7 | * COPYING in the main directory of this source tree, or the |
8 | * OpenIB.org BSD license below: |
9 | * |
10 | * Redistribution and use in source and binary forms, with or |
11 | * without modification, are permitted provided that the following |
12 | * conditions are met: |
13 | * |
14 | * - Redistributions of source code must retain the above |
15 | * copyright notice, this list of conditions and the following |
16 | * disclaimer. |
17 | * |
18 | * - Redistributions in binary form must reproduce the above |
19 | * copyright notice, this list of conditions and the following |
20 | * disclaimer in the documentation and/or other materials |
21 | * provided with the distribution. |
22 | * |
23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
30 | * SOFTWARE. |
31 | * |
32 | */ |
33 | #include <linux/pagemap.h> |
34 | #include <linux/slab.h> |
35 | #include <linux/rbtree.h> |
36 | #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ |
37 | |
38 | #include "rdma.h" |
39 | |
40 | /* |
41 | * XXX |
42 | * - build with sparse |
43 | * - should we limit the size of a mr region? let transport return failure? |
44 | * - should we detect duplicate keys on a socket? hmm. |
45 | * - an rdma is an mlock, apply rlimit? |
46 | */ |
47 | |
48 | /* |
49 | * get the number of pages by looking at the page indices that the start and |
50 | * end addresses fall in. |
51 | * |
52 | * Returns 0 if the vec is invalid. It is invalid if the number of bytes |
53 | * causes the address to wrap or overflows an unsigned int. This comes |
54 | * from being stored in the 'length' member of 'struct scatterlist'. |
55 | */ |
56 | static unsigned int rds_pages_in_vec(struct rds_iovec *vec) |
57 | { |
58 | if ((vec->addr + vec->bytes <= vec->addr) || |
59 | (vec->bytes > (u64)UINT_MAX)) |
60 | return 0; |
61 | |
62 | return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - |
63 | (vec->addr >> PAGE_SHIFT); |
64 | } |
65 | |
66 | static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, |
67 | struct rds_mr *insert) |
68 | { |
69 | struct rb_node **p = &root->rb_node; |
70 | struct rb_node *parent = NULL; |
71 | struct rds_mr *mr; |
72 | |
73 | while (*p) { |
74 | parent = *p; |
75 | mr = rb_entry(parent, struct rds_mr, r_rb_node); |
76 | |
77 | if (key < mr->r_key) |
78 | p = &(*p)->rb_left; |
79 | else if (key > mr->r_key) |
80 | p = &(*p)->rb_right; |
81 | else |
82 | return mr; |
83 | } |
84 | |
85 | if (insert) { |
86 | rb_link_node(&insert->r_rb_node, parent, p); |
87 | rb_insert_color(&insert->r_rb_node, root); |
88 | atomic_inc(&insert->r_refcount); |
89 | } |
90 | return NULL; |
91 | } |
92 | |
93 | /* |
94 | * Destroy the transport-specific part of a MR. |
95 | */ |
96 | static void rds_destroy_mr(struct rds_mr *mr) |
97 | { |
98 | struct rds_sock *rs = mr->r_sock; |
99 | void *trans_private = NULL; |
100 | unsigned long flags; |
101 | |
102 | rdsdebug("RDS: destroy mr key is %x refcnt %u\n", |
103 | mr->r_key, atomic_read(&mr->r_refcount)); |
104 | |
105 | if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) |
106 | return; |
107 | |
108 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
109 | if (!RB_EMPTY_NODE(&mr->r_rb_node)) |
110 | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); |
111 | trans_private = mr->r_trans_private; |
112 | mr->r_trans_private = NULL; |
113 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
114 | |
115 | if (trans_private) |
116 | mr->r_trans->free_mr(trans_private, mr->r_invalidate); |
117 | } |
118 | |
119 | void __rds_put_mr_final(struct rds_mr *mr) |
120 | { |
121 | rds_destroy_mr(mr); |
122 | kfree(mr); |
123 | } |
124 | |
125 | /* |
126 | * By the time this is called we can't have any more ioctls called on |
127 | * the socket so we don't need to worry about racing with others. |
128 | */ |
129 | void rds_rdma_drop_keys(struct rds_sock *rs) |
130 | { |
131 | struct rds_mr *mr; |
132 | struct rb_node *node; |
133 | |
134 | /* Release any MRs associated with this socket */ |
135 | while ((node = rb_first(&rs->rs_rdma_keys))) { |
136 | mr = container_of(node, struct rds_mr, r_rb_node); |
137 | if (mr->r_trans == rs->rs_transport) |
138 | mr->r_invalidate = 0; |
139 | rds_mr_put(mr); |
140 | } |
141 | |
142 | if (rs->rs_transport && rs->rs_transport->flush_mrs) |
143 | rs->rs_transport->flush_mrs(); |
144 | } |
145 | |
146 | /* |
147 | * Helper function to pin user pages. |
148 | */ |
149 | static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, |
150 | struct page **pages, int write) |
151 | { |
152 | int ret; |
153 | |
154 | ret = get_user_pages_fast(user_addr, nr_pages, write, pages); |
155 | |
156 | if (ret >= 0 && ret < nr_pages) { |
157 | while (ret--) |
158 | put_page(pages[ret]); |
159 | ret = -EFAULT; |
160 | } |
161 | |
162 | return ret; |
163 | } |
164 | |
165 | static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, |
166 | u64 *cookie_ret, struct rds_mr **mr_ret) |
167 | { |
168 | struct rds_mr *mr = NULL, *found; |
169 | unsigned int nr_pages; |
170 | struct page **pages = NULL; |
171 | struct scatterlist *sg; |
172 | void *trans_private; |
173 | unsigned long flags; |
174 | rds_rdma_cookie_t cookie; |
175 | unsigned int nents; |
176 | long i; |
177 | int ret; |
178 | |
179 | if (rs->rs_bound_addr == 0) { |
180 | ret = -ENOTCONN; /* XXX not a great errno */ |
181 | goto out; |
182 | } |
183 | |
184 | if (rs->rs_transport->get_mr == NULL) { |
185 | ret = -EOPNOTSUPP; |
186 | goto out; |
187 | } |
188 | |
189 | nr_pages = rds_pages_in_vec(&args->vec); |
190 | if (nr_pages == 0) { |
191 | ret = -EINVAL; |
192 | goto out; |
193 | } |
194 | |
195 | rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", |
196 | args->vec.addr, args->vec.bytes, nr_pages); |
197 | |
198 | /* XXX clamp nr_pages to limit the size of this alloc? */ |
199 | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); |
200 | if (pages == NULL) { |
201 | ret = -ENOMEM; |
202 | goto out; |
203 | } |
204 | |
205 | mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); |
206 | if (mr == NULL) { |
207 | ret = -ENOMEM; |
208 | goto out; |
209 | } |
210 | |
211 | atomic_set(&mr->r_refcount, 1); |
212 | RB_CLEAR_NODE(&mr->r_rb_node); |
213 | mr->r_trans = rs->rs_transport; |
214 | mr->r_sock = rs; |
215 | |
216 | if (args->flags & RDS_RDMA_USE_ONCE) |
217 | mr->r_use_once = 1; |
218 | if (args->flags & RDS_RDMA_INVALIDATE) |
219 | mr->r_invalidate = 1; |
220 | if (args->flags & RDS_RDMA_READWRITE) |
221 | mr->r_write = 1; |
222 | |
223 | /* |
224 | * Pin the pages that make up the user buffer and transfer the page |
225 | * pointers to the mr's sg array. We check to see if we've mapped |
226 | * the whole region after transferring the partial page references |
227 | * to the sg array so that we can have one page ref cleanup path. |
228 | * |
229 | * For now we have no flag that tells us whether the mapping is |
230 | * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to |
231 | * the zero page. |
232 | */ |
233 | ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1); |
234 | if (ret < 0) |
235 | goto out; |
236 | |
237 | nents = ret; |
238 | sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); |
239 | if (sg == NULL) { |
240 | ret = -ENOMEM; |
241 | goto out; |
242 | } |
243 | WARN_ON(!nents); |
244 | sg_init_table(sg, nents); |
245 | |
246 | /* Stick all pages into the scatterlist */ |
247 | for (i = 0 ; i < nents; i++) |
248 | sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); |
249 | |
250 | rdsdebug("RDS: trans_private nents is %u\n", nents); |
251 | |
252 | /* Obtain a transport specific MR. If this succeeds, the |
253 | * s/g list is now owned by the MR. |
254 | * Note that dma_map() implies that pending writes are |
255 | * flushed to RAM, so no dma_sync is needed here. */ |
256 | trans_private = rs->rs_transport->get_mr(sg, nents, rs, |
257 | &mr->r_key); |
258 | |
259 | if (IS_ERR(trans_private)) { |
260 | for (i = 0 ; i < nents; i++) |
261 | put_page(sg_page(&sg[i])); |
262 | kfree(sg); |
263 | ret = PTR_ERR(trans_private); |
264 | goto out; |
265 | } |
266 | |
267 | mr->r_trans_private = trans_private; |
268 | |
269 | rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", |
270 | mr->r_key, (void *)(unsigned long) args->cookie_addr); |
271 | |
272 | /* The user may pass us an unaligned address, but we can only |
273 | * map page aligned regions. So we keep the offset, and build |
274 | * a 64bit cookie containing <R_Key, offset> and pass that |
275 | * around. */ |
276 | cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); |
277 | if (cookie_ret) |
278 | *cookie_ret = cookie; |
279 | |
280 | if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { |
281 | ret = -EFAULT; |
282 | goto out; |
283 | } |
284 | |
285 | /* Inserting the new MR into the rbtree bumps its |
286 | * reference count. */ |
287 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
288 | found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); |
289 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
290 | |
291 | BUG_ON(found && found != mr); |
292 | |
293 | rdsdebug("RDS: get_mr key is %x\n", mr->r_key); |
294 | if (mr_ret) { |
295 | atomic_inc(&mr->r_refcount); |
296 | *mr_ret = mr; |
297 | } |
298 | |
299 | ret = 0; |
300 | out: |
301 | kfree(pages); |
302 | if (mr) |
303 | rds_mr_put(mr); |
304 | return ret; |
305 | } |
306 | |
307 | int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) |
308 | { |
309 | struct rds_get_mr_args args; |
310 | |
311 | if (optlen != sizeof(struct rds_get_mr_args)) |
312 | return -EINVAL; |
313 | |
314 | if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, |
315 | sizeof(struct rds_get_mr_args))) |
316 | return -EFAULT; |
317 | |
318 | return __rds_rdma_map(rs, &args, NULL, NULL); |
319 | } |
320 | |
321 | int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen) |
322 | { |
323 | struct rds_get_mr_for_dest_args args; |
324 | struct rds_get_mr_args new_args; |
325 | |
326 | if (optlen != sizeof(struct rds_get_mr_for_dest_args)) |
327 | return -EINVAL; |
328 | |
329 | if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval, |
330 | sizeof(struct rds_get_mr_for_dest_args))) |
331 | return -EFAULT; |
332 | |
333 | /* |
334 | * Initially, just behave like get_mr(). |
335 | * TODO: Implement get_mr as wrapper around this |
336 | * and deprecate it. |
337 | */ |
338 | new_args.vec = args.vec; |
339 | new_args.cookie_addr = args.cookie_addr; |
340 | new_args.flags = args.flags; |
341 | |
342 | return __rds_rdma_map(rs, &new_args, NULL, NULL); |
343 | } |
344 | |
345 | /* |
346 | * Free the MR indicated by the given R_Key |
347 | */ |
348 | int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) |
349 | { |
350 | struct rds_free_mr_args args; |
351 | struct rds_mr *mr; |
352 | unsigned long flags; |
353 | |
354 | if (optlen != sizeof(struct rds_free_mr_args)) |
355 | return -EINVAL; |
356 | |
357 | if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, |
358 | sizeof(struct rds_free_mr_args))) |
359 | return -EFAULT; |
360 | |
361 | /* Special case - a null cookie means flush all unused MRs */ |
362 | if (args.cookie == 0) { |
363 | if (!rs->rs_transport || !rs->rs_transport->flush_mrs) |
364 | return -EINVAL; |
365 | rs->rs_transport->flush_mrs(); |
366 | return 0; |
367 | } |
368 | |
369 | /* Look up the MR given its R_key and remove it from the rbtree |
370 | * so nobody else finds it. |
371 | * This should also prevent races with rds_rdma_unuse. |
372 | */ |
373 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
374 | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); |
375 | if (mr) { |
376 | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); |
377 | RB_CLEAR_NODE(&mr->r_rb_node); |
378 | if (args.flags & RDS_RDMA_INVALIDATE) |
379 | mr->r_invalidate = 1; |
380 | } |
381 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
382 | |
383 | if (!mr) |
384 | return -EINVAL; |
385 | |
386 | /* |
387 | * call rds_destroy_mr() ourselves so that we're sure it's done by the time |
388 | * we return. If we let rds_mr_put() do it it might not happen until |
389 | * someone else drops their ref. |
390 | */ |
391 | rds_destroy_mr(mr); |
392 | rds_mr_put(mr); |
393 | return 0; |
394 | } |
395 | |
396 | /* |
397 | * This is called when we receive an extension header that |
398 | * tells us this MR was used. It allows us to implement |
399 | * use_once semantics |
400 | */ |
401 | void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) |
402 | { |
403 | struct rds_mr *mr; |
404 | unsigned long flags; |
405 | int zot_me = 0; |
406 | |
407 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
408 | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); |
409 | if (mr && (mr->r_use_once || force)) { |
410 | rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); |
411 | RB_CLEAR_NODE(&mr->r_rb_node); |
412 | zot_me = 1; |
413 | } else if (mr) |
414 | atomic_inc(&mr->r_refcount); |
415 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
416 | |
417 | /* May have to issue a dma_sync on this memory region. |
418 | * Note we could avoid this if the operation was a RDMA READ, |
419 | * but at this point we can't tell. */ |
420 | if (mr != NULL) { |
421 | if (mr->r_trans->sync_mr) |
422 | mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); |
423 | |
424 | /* If the MR was marked as invalidate, this will |
425 | * trigger an async flush. */ |
426 | if (zot_me) |
427 | rds_destroy_mr(mr); |
428 | rds_mr_put(mr); |
429 | } |
430 | } |
431 | |
432 | void rds_rdma_free_op(struct rds_rdma_op *ro) |
433 | { |
434 | unsigned int i; |
435 | |
436 | for (i = 0; i < ro->r_nents; i++) { |
437 | struct page *page = sg_page(&ro->r_sg[i]); |
438 | |
439 | /* Mark page dirty if it was possibly modified, which |
440 | * is the case for a RDMA_READ which copies from remote |
441 | * to local memory */ |
442 | if (!ro->r_write) |
443 | set_page_dirty(page); |
444 | put_page(page); |
445 | } |
446 | |
447 | kfree(ro->r_notifier); |
448 | kfree(ro); |
449 | } |
450 | |
451 | /* |
452 | * args is a pointer to an in-kernel copy in the sendmsg cmsg. |
453 | */ |
454 | static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs, |
455 | struct rds_rdma_args *args) |
456 | { |
457 | struct rds_iovec vec; |
458 | struct rds_rdma_op *op = NULL; |
459 | unsigned int nr_pages; |
460 | unsigned int max_pages; |
461 | unsigned int nr_bytes; |
462 | struct page **pages = NULL; |
463 | struct rds_iovec __user *local_vec; |
464 | struct scatterlist *sg; |
465 | unsigned int nr; |
466 | unsigned int i, j; |
467 | int ret; |
468 | |
469 | |
470 | if (rs->rs_bound_addr == 0) { |
471 | ret = -ENOTCONN; /* XXX not a great errno */ |
472 | goto out; |
473 | } |
474 | |
475 | if (args->nr_local > (u64)UINT_MAX) { |
476 | ret = -EMSGSIZE; |
477 | goto out; |
478 | } |
479 | |
480 | nr_pages = 0; |
481 | max_pages = 0; |
482 | |
483 | local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; |
484 | |
485 | /* figure out the number of pages in the vector */ |
486 | for (i = 0; i < args->nr_local; i++) { |
487 | if (copy_from_user(&vec, &local_vec[i], |
488 | sizeof(struct rds_iovec))) { |
489 | ret = -EFAULT; |
490 | goto out; |
491 | } |
492 | |
493 | nr = rds_pages_in_vec(&vec); |
494 | if (nr == 0) { |
495 | ret = -EINVAL; |
496 | goto out; |
497 | } |
498 | |
499 | max_pages = max(nr, max_pages); |
500 | nr_pages += nr; |
501 | } |
502 | |
503 | pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL); |
504 | if (pages == NULL) { |
505 | ret = -ENOMEM; |
506 | goto out; |
507 | } |
508 | |
509 | op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL); |
510 | if (op == NULL) { |
511 | ret = -ENOMEM; |
512 | goto out; |
513 | } |
514 | |
515 | op->r_write = !!(args->flags & RDS_RDMA_READWRITE); |
516 | op->r_fence = !!(args->flags & RDS_RDMA_FENCE); |
517 | op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); |
518 | op->r_recverr = rs->rs_recverr; |
519 | WARN_ON(!nr_pages); |
520 | sg_init_table(op->r_sg, nr_pages); |
521 | |
522 | if (op->r_notify || op->r_recverr) { |
523 | /* We allocate an uninitialized notifier here, because |
524 | * we don't want to do that in the completion handler. We |
525 | * would have to use GFP_ATOMIC there, and don't want to deal |
526 | * with failed allocations. |
527 | */ |
528 | op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); |
529 | if (!op->r_notifier) { |
530 | ret = -ENOMEM; |
531 | goto out; |
532 | } |
533 | op->r_notifier->n_user_token = args->user_token; |
534 | op->r_notifier->n_status = RDS_RDMA_SUCCESS; |
535 | } |
536 | |
537 | /* The cookie contains the R_Key of the remote memory region, and |
538 | * optionally an offset into it. This is how we implement RDMA into |
539 | * unaligned memory. |
540 | * When setting up the RDMA, we need to add that offset to the |
541 | * destination address (which is really an offset into the MR) |
542 | * FIXME: We may want to move this into ib_rdma.c |
543 | */ |
544 | op->r_key = rds_rdma_cookie_key(args->cookie); |
545 | op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); |
546 | |
547 | nr_bytes = 0; |
548 | |
549 | rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", |
550 | (unsigned long long)args->nr_local, |
551 | (unsigned long long)args->remote_vec.addr, |
552 | op->r_key); |
553 | |
554 | for (i = 0; i < args->nr_local; i++) { |
555 | if (copy_from_user(&vec, &local_vec[i], |
556 | sizeof(struct rds_iovec))) { |
557 | ret = -EFAULT; |
558 | goto out; |
559 | } |
560 | |
561 | nr = rds_pages_in_vec(&vec); |
562 | if (nr == 0) { |
563 | ret = -EINVAL; |
564 | goto out; |
565 | } |
566 | |
567 | rs->rs_user_addr = vec.addr; |
568 | rs->rs_user_bytes = vec.bytes; |
569 | |
570 | /* did the user change the vec under us? */ |
571 | if (nr > max_pages || op->r_nents + nr > nr_pages) { |
572 | ret = -EINVAL; |
573 | goto out; |
574 | } |
575 | /* If it's a WRITE operation, we want to pin the pages for reading. |
576 | * If it's a READ operation, we need to pin the pages for writing. |
577 | */ |
578 | ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write); |
579 | if (ret < 0) |
580 | goto out; |
581 | |
582 | rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n", |
583 | nr_bytes, nr, vec.bytes, vec.addr); |
584 | |
585 | nr_bytes += vec.bytes; |
586 | |
587 | for (j = 0; j < nr; j++) { |
588 | unsigned int offset = vec.addr & ~PAGE_MASK; |
589 | |
590 | sg = &op->r_sg[op->r_nents + j]; |
591 | sg_set_page(sg, pages[j], |
592 | min_t(unsigned int, vec.bytes, PAGE_SIZE - offset), |
593 | offset); |
594 | |
595 | rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n", |
596 | sg->offset, sg->length, vec.addr, vec.bytes); |
597 | |
598 | vec.addr += sg->length; |
599 | vec.bytes -= sg->length; |
600 | } |
601 | |
602 | op->r_nents += nr; |
603 | } |
604 | |
605 | |
606 | if (nr_bytes > args->remote_vec.bytes) { |
607 | rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", |
608 | nr_bytes, |
609 | (unsigned int) args->remote_vec.bytes); |
610 | ret = -EINVAL; |
611 | goto out; |
612 | } |
613 | op->r_bytes = nr_bytes; |
614 | |
615 | ret = 0; |
616 | out: |
617 | kfree(pages); |
618 | if (ret) { |
619 | if (op) |
620 | rds_rdma_free_op(op); |
621 | op = ERR_PTR(ret); |
622 | } |
623 | return op; |
624 | } |
625 | |
626 | /* |
627 | * The application asks for a RDMA transfer. |
628 | * Extract all arguments and set up the rdma_op |
629 | */ |
630 | int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, |
631 | struct cmsghdr *cmsg) |
632 | { |
633 | struct rds_rdma_op *op; |
634 | |
635 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) || |
636 | rm->m_rdma_op != NULL) |
637 | return -EINVAL; |
638 | |
639 | op = rds_rdma_prepare(rs, CMSG_DATA(cmsg)); |
640 | if (IS_ERR(op)) |
641 | return PTR_ERR(op); |
642 | rds_stats_inc(s_send_rdma); |
643 | rm->m_rdma_op = op; |
644 | return 0; |
645 | } |
646 | |
647 | /* |
648 | * The application wants us to pass an RDMA destination (aka MR) |
649 | * to the remote |
650 | */ |
651 | int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, |
652 | struct cmsghdr *cmsg) |
653 | { |
654 | unsigned long flags; |
655 | struct rds_mr *mr; |
656 | u32 r_key; |
657 | int err = 0; |
658 | |
659 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) || |
660 | rm->m_rdma_cookie != 0) |
661 | return -EINVAL; |
662 | |
663 | memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); |
664 | |
665 | /* We are reusing a previously mapped MR here. Most likely, the |
666 | * application has written to the buffer, so we need to explicitly |
667 | * flush those writes to RAM. Otherwise the HCA may not see them |
668 | * when doing a DMA from that buffer. |
669 | */ |
670 | r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); |
671 | |
672 | spin_lock_irqsave(&rs->rs_rdma_lock, flags); |
673 | mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); |
674 | if (mr == NULL) |
675 | err = -EINVAL; /* invalid r_key */ |
676 | else |
677 | atomic_inc(&mr->r_refcount); |
678 | spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); |
679 | |
680 | if (mr) { |
681 | mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); |
682 | rm->m_rdma_mr = mr; |
683 | } |
684 | return err; |
685 | } |
686 | |
687 | /* |
688 | * The application passes us an address range it wants to enable RDMA |
689 | * to/from. We map the area, and save the <R_Key,offset> pair |
690 | * in rm->m_rdma_cookie. This causes it to be sent along to the peer |
691 | * in an extension header. |
692 | */ |
693 | int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, |
694 | struct cmsghdr *cmsg) |
695 | { |
696 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) || |
697 | rm->m_rdma_cookie != 0) |
698 | return -EINVAL; |
699 | |
700 | return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr); |
701 | } |
702 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9