Root/mm/bootmem.c

1/*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/module.h>
16#include <linux/kmemleak.h>
17#include <linux/range.h>
18
19#include <asm/bug.h>
20#include <asm/io.h>
21#include <asm/processor.h>
22
23#include "internal.h"
24
25unsigned long max_low_pfn;
26unsigned long min_low_pfn;
27unsigned long max_pfn;
28
29#ifdef CONFIG_CRASH_DUMP
30/*
31 * If we have booted due to a crash, max_pfn will be a very low value. We need
32 * to know the amount of memory that the previous kernel used.
33 */
34unsigned long saved_max_pfn;
35#endif
36
37#ifndef CONFIG_NO_BOOTMEM
38bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
39
40static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
41
42static int bootmem_debug;
43
44static int __init bootmem_debug_setup(char *buf)
45{
46    bootmem_debug = 1;
47    return 0;
48}
49early_param("bootmem_debug", bootmem_debug_setup);
50
51#define bdebug(fmt, args...) ({ \
52    if (unlikely(bootmem_debug)) \
53        printk(KERN_INFO \
54            "bootmem::%s " fmt, \
55            __func__, ## args); \
56})
57
58static unsigned long __init bootmap_bytes(unsigned long pages)
59{
60    unsigned long bytes = (pages + 7) / 8;
61
62    return ALIGN(bytes, sizeof(long));
63}
64
65/**
66 * bootmem_bootmap_pages - calculate bitmap size in pages
67 * @pages: number of pages the bitmap has to represent
68 */
69unsigned long __init bootmem_bootmap_pages(unsigned long pages)
70{
71    unsigned long bytes = bootmap_bytes(pages);
72
73    return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
74}
75
76/*
77 * link bdata in order
78 */
79static void __init link_bootmem(bootmem_data_t *bdata)
80{
81    struct list_head *iter;
82
83    list_for_each(iter, &bdata_list) {
84        bootmem_data_t *ent;
85
86        ent = list_entry(iter, bootmem_data_t, list);
87        if (bdata->node_min_pfn < ent->node_min_pfn)
88            break;
89    }
90    list_add_tail(&bdata->list, iter);
91}
92
93/*
94 * Called once to set up the allocator itself.
95 */
96static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
97    unsigned long mapstart, unsigned long start, unsigned long end)
98{
99    unsigned long mapsize;
100
101    mminit_validate_memmodel_limits(&start, &end);
102    bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
103    bdata->node_min_pfn = start;
104    bdata->node_low_pfn = end;
105    link_bootmem(bdata);
106
107    /*
108     * Initially all pages are reserved - setup_arch() has to
109     * register free RAM areas explicitly.
110     */
111    mapsize = bootmap_bytes(end - start);
112    memset(bdata->node_bootmem_map, 0xff, mapsize);
113
114    bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
115        bdata - bootmem_node_data, start, mapstart, end, mapsize);
116
117    return mapsize;
118}
119
120/**
121 * init_bootmem_node - register a node as boot memory
122 * @pgdat: node to register
123 * @freepfn: pfn where the bitmap for this node is to be placed
124 * @startpfn: first pfn on the node
125 * @endpfn: first pfn after the node
126 *
127 * Returns the number of bytes needed to hold the bitmap for this node.
128 */
129unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
130                unsigned long startpfn, unsigned long endpfn)
131{
132    return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
133}
134
135/**
136 * init_bootmem - register boot memory
137 * @start: pfn where the bitmap is to be placed
138 * @pages: number of available physical pages
139 *
140 * Returns the number of bytes needed to hold the bitmap.
141 */
142unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
143{
144    max_low_pfn = pages;
145    min_low_pfn = start;
146    return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
147}
148#endif
149/*
150 * free_bootmem_late - free bootmem pages directly to page allocator
151 * @addr: starting address of the range
152 * @size: size of the range in bytes
153 *
154 * This is only useful when the bootmem allocator has already been torn
155 * down, but we are still initializing the system. Pages are given directly
156 * to the page allocator, no bootmem metadata is updated because it is gone.
157 */
158void __init free_bootmem_late(unsigned long addr, unsigned long size)
159{
160    unsigned long cursor, end;
161
162    kmemleak_free_part(__va(addr), size);
163
164    cursor = PFN_UP(addr);
165    end = PFN_DOWN(addr + size);
166
167    for (; cursor < end; cursor++) {
168        __free_pages_bootmem(pfn_to_page(cursor), 0);
169        totalram_pages++;
170    }
171}
172
173#ifdef CONFIG_NO_BOOTMEM
174static void __init __free_pages_memory(unsigned long start, unsigned long end)
175{
176    int i;
177    unsigned long start_aligned, end_aligned;
178    int order = ilog2(BITS_PER_LONG);
179
180    start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
181    end_aligned = end & ~(BITS_PER_LONG - 1);
182
183    if (end_aligned <= start_aligned) {
184        for (i = start; i < end; i++)
185            __free_pages_bootmem(pfn_to_page(i), 0);
186
187        return;
188    }
189
190    for (i = start; i < start_aligned; i++)
191        __free_pages_bootmem(pfn_to_page(i), 0);
192
193    for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
194        __free_pages_bootmem(pfn_to_page(i), order);
195
196    for (i = end_aligned; i < end; i++)
197        __free_pages_bootmem(pfn_to_page(i), 0);
198}
199
200unsigned long __init free_all_memory_core_early(int nodeid)
201{
202    int i;
203    u64 start, end;
204    unsigned long count = 0;
205    struct range *range = NULL;
206    int nr_range;
207
208    nr_range = get_free_all_memory_range(&range, nodeid);
209
210    for (i = 0; i < nr_range; i++) {
211        start = range[i].start;
212        end = range[i].end;
213        count += end - start;
214        __free_pages_memory(start, end);
215    }
216
217    return count;
218}
219#else
220static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
221{
222    int aligned;
223    struct page *page;
224    unsigned long start, end, pages, count = 0;
225
226    if (!bdata->node_bootmem_map)
227        return 0;
228
229    start = bdata->node_min_pfn;
230    end = bdata->node_low_pfn;
231
232    /*
233     * If the start is aligned to the machines wordsize, we might
234     * be able to free pages in bulks of that order.
235     */
236    aligned = !(start & (BITS_PER_LONG - 1));
237
238    bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
239        bdata - bootmem_node_data, start, end, aligned);
240
241    while (start < end) {
242        unsigned long *map, idx, vec;
243
244        map = bdata->node_bootmem_map;
245        idx = start - bdata->node_min_pfn;
246        vec = ~map[idx / BITS_PER_LONG];
247
248        if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
249            int order = ilog2(BITS_PER_LONG);
250
251            __free_pages_bootmem(pfn_to_page(start), order);
252            count += BITS_PER_LONG;
253        } else {
254            unsigned long off = 0;
255
256            while (vec && off < BITS_PER_LONG) {
257                if (vec & 1) {
258                    page = pfn_to_page(start + off);
259                    __free_pages_bootmem(page, 0);
260                    count++;
261                }
262                vec >>= 1;
263                off++;
264            }
265        }
266        start += BITS_PER_LONG;
267    }
268
269    page = virt_to_page(bdata->node_bootmem_map);
270    pages = bdata->node_low_pfn - bdata->node_min_pfn;
271    pages = bootmem_bootmap_pages(pages);
272    count += pages;
273    while (pages--)
274        __free_pages_bootmem(page++, 0);
275
276    bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
277
278    return count;
279}
280#endif
281
282/**
283 * free_all_bootmem_node - release a node's free pages to the buddy allocator
284 * @pgdat: node to be released
285 *
286 * Returns the number of pages actually released.
287 */
288unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
289{
290    register_page_bootmem_info_node(pgdat);
291#ifdef CONFIG_NO_BOOTMEM
292    /* free_all_memory_core_early(MAX_NUMNODES) will be called later */
293    return 0;
294#else
295    return free_all_bootmem_core(pgdat->bdata);
296#endif
297}
298
299/**
300 * free_all_bootmem - release free pages to the buddy allocator
301 *
302 * Returns the number of pages actually released.
303 */
304unsigned long __init free_all_bootmem(void)
305{
306#ifdef CONFIG_NO_BOOTMEM
307    /*
308     * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
309     * because in some case like Node0 doesnt have RAM installed
310     * low ram will be on Node1
311     * Use MAX_NUMNODES will make sure all ranges in early_node_map[]
312     * will be used instead of only Node0 related
313     */
314    return free_all_memory_core_early(MAX_NUMNODES);
315#else
316    unsigned long total_pages = 0;
317    bootmem_data_t *bdata;
318
319    list_for_each_entry(bdata, &bdata_list, list)
320        total_pages += free_all_bootmem_core(bdata);
321
322    return total_pages;
323#endif
324}
325
326#ifndef CONFIG_NO_BOOTMEM
327static void __init __free(bootmem_data_t *bdata,
328            unsigned long sidx, unsigned long eidx)
329{
330    unsigned long idx;
331
332    bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
333        sidx + bdata->node_min_pfn,
334        eidx + bdata->node_min_pfn);
335
336    if (bdata->hint_idx > sidx)
337        bdata->hint_idx = sidx;
338
339    for (idx = sidx; idx < eidx; idx++)
340        if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
341            BUG();
342}
343
344static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
345            unsigned long eidx, int flags)
346{
347    unsigned long idx;
348    int exclusive = flags & BOOTMEM_EXCLUSIVE;
349
350    bdebug("nid=%td start=%lx end=%lx flags=%x\n",
351        bdata - bootmem_node_data,
352        sidx + bdata->node_min_pfn,
353        eidx + bdata->node_min_pfn,
354        flags);
355
356    for (idx = sidx; idx < eidx; idx++)
357        if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
358            if (exclusive) {
359                __free(bdata, sidx, idx);
360                return -EBUSY;
361            }
362            bdebug("silent double reserve of PFN %lx\n",
363                idx + bdata->node_min_pfn);
364        }
365    return 0;
366}
367
368static int __init mark_bootmem_node(bootmem_data_t *bdata,
369                unsigned long start, unsigned long end,
370                int reserve, int flags)
371{
372    unsigned long sidx, eidx;
373
374    bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
375        bdata - bootmem_node_data, start, end, reserve, flags);
376
377    BUG_ON(start < bdata->node_min_pfn);
378    BUG_ON(end > bdata->node_low_pfn);
379
380    sidx = start - bdata->node_min_pfn;
381    eidx = end - bdata->node_min_pfn;
382
383    if (reserve)
384        return __reserve(bdata, sidx, eidx, flags);
385    else
386        __free(bdata, sidx, eidx);
387    return 0;
388}
389
390static int __init mark_bootmem(unsigned long start, unsigned long end,
391                int reserve, int flags)
392{
393    unsigned long pos;
394    bootmem_data_t *bdata;
395
396    pos = start;
397    list_for_each_entry(bdata, &bdata_list, list) {
398        int err;
399        unsigned long max;
400
401        if (pos < bdata->node_min_pfn ||
402            pos >= bdata->node_low_pfn) {
403            BUG_ON(pos != start);
404            continue;
405        }
406
407        max = min(bdata->node_low_pfn, end);
408
409        err = mark_bootmem_node(bdata, pos, max, reserve, flags);
410        if (reserve && err) {
411            mark_bootmem(start, pos, 0, 0);
412            return err;
413        }
414
415        if (max == end)
416            return 0;
417        pos = bdata->node_low_pfn;
418    }
419    BUG();
420}
421#endif
422
423/**
424 * free_bootmem_node - mark a page range as usable
425 * @pgdat: node the range resides on
426 * @physaddr: starting address of the range
427 * @size: size of the range in bytes
428 *
429 * Partial pages will be considered reserved and left as they are.
430 *
431 * The range must reside completely on the specified node.
432 */
433void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
434                  unsigned long size)
435{
436#ifdef CONFIG_NO_BOOTMEM
437    free_early(physaddr, physaddr + size);
438#else
439    unsigned long start, end;
440
441    kmemleak_free_part(__va(physaddr), size);
442
443    start = PFN_UP(physaddr);
444    end = PFN_DOWN(physaddr + size);
445
446    mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
447#endif
448}
449
450/**
451 * free_bootmem - mark a page range as usable
452 * @addr: starting address of the range
453 * @size: size of the range in bytes
454 *
455 * Partial pages will be considered reserved and left as they are.
456 *
457 * The range must be contiguous but may span node boundaries.
458 */
459void __init free_bootmem(unsigned long addr, unsigned long size)
460{
461#ifdef CONFIG_NO_BOOTMEM
462    free_early(addr, addr + size);
463#else
464    unsigned long start, end;
465
466    kmemleak_free_part(__va(addr), size);
467
468    start = PFN_UP(addr);
469    end = PFN_DOWN(addr + size);
470
471    mark_bootmem(start, end, 0, 0);
472#endif
473}
474
475/**
476 * reserve_bootmem_node - mark a page range as reserved
477 * @pgdat: node the range resides on
478 * @physaddr: starting address of the range
479 * @size: size of the range in bytes
480 * @flags: reservation flags (see linux/bootmem.h)
481 *
482 * Partial pages will be reserved.
483 *
484 * The range must reside completely on the specified node.
485 */
486int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
487                 unsigned long size, int flags)
488{
489#ifdef CONFIG_NO_BOOTMEM
490    panic("no bootmem");
491    return 0;
492#else
493    unsigned long start, end;
494
495    start = PFN_DOWN(physaddr);
496    end = PFN_UP(physaddr + size);
497
498    return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
499#endif
500}
501
502/**
503 * reserve_bootmem - mark a page range as usable
504 * @addr: starting address of the range
505 * @size: size of the range in bytes
506 * @flags: reservation flags (see linux/bootmem.h)
507 *
508 * Partial pages will be reserved.
509 *
510 * The range must be contiguous but may span node boundaries.
511 */
512int __init reserve_bootmem(unsigned long addr, unsigned long size,
513                int flags)
514{
515#ifdef CONFIG_NO_BOOTMEM
516    panic("no bootmem");
517    return 0;
518#else
519    unsigned long start, end;
520
521    start = PFN_DOWN(addr);
522    end = PFN_UP(addr + size);
523
524    return mark_bootmem(start, end, 1, flags);
525#endif
526}
527
528#ifndef CONFIG_NO_BOOTMEM
529static unsigned long __init align_idx(struct bootmem_data *bdata,
530                      unsigned long idx, unsigned long step)
531{
532    unsigned long base = bdata->node_min_pfn;
533
534    /*
535     * Align the index with respect to the node start so that the
536     * combination of both satisfies the requested alignment.
537     */
538
539    return ALIGN(base + idx, step) - base;
540}
541
542static unsigned long __init align_off(struct bootmem_data *bdata,
543                      unsigned long off, unsigned long align)
544{
545    unsigned long base = PFN_PHYS(bdata->node_min_pfn);
546
547    /* Same as align_idx for byte offsets */
548
549    return ALIGN(base + off, align) - base;
550}
551
552static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
553                    unsigned long size, unsigned long align,
554                    unsigned long goal, unsigned long limit)
555{
556    unsigned long fallback = 0;
557    unsigned long min, max, start, sidx, midx, step;
558
559    bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
560        bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
561        align, goal, limit);
562
563    BUG_ON(!size);
564    BUG_ON(align & (align - 1));
565    BUG_ON(limit && goal + size > limit);
566
567    if (!bdata->node_bootmem_map)
568        return NULL;
569
570    min = bdata->node_min_pfn;
571    max = bdata->node_low_pfn;
572
573    goal >>= PAGE_SHIFT;
574    limit >>= PAGE_SHIFT;
575
576    if (limit && max > limit)
577        max = limit;
578    if (max <= min)
579        return NULL;
580
581    step = max(align >> PAGE_SHIFT, 1UL);
582
583    if (goal && min < goal && goal < max)
584        start = ALIGN(goal, step);
585    else
586        start = ALIGN(min, step);
587
588    sidx = start - bdata->node_min_pfn;
589    midx = max - bdata->node_min_pfn;
590
591    if (bdata->hint_idx > sidx) {
592        /*
593         * Handle the valid case of sidx being zero and still
594         * catch the fallback below.
595         */
596        fallback = sidx + 1;
597        sidx = align_idx(bdata, bdata->hint_idx, step);
598    }
599
600    while (1) {
601        int merge;
602        void *region;
603        unsigned long eidx, i, start_off, end_off;
604find_block:
605        sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
606        sidx = align_idx(bdata, sidx, step);
607        eidx = sidx + PFN_UP(size);
608
609        if (sidx >= midx || eidx > midx)
610            break;
611
612        for (i = sidx; i < eidx; i++)
613            if (test_bit(i, bdata->node_bootmem_map)) {
614                sidx = align_idx(bdata, i, step);
615                if (sidx == i)
616                    sidx += step;
617                goto find_block;
618            }
619
620        if (bdata->last_end_off & (PAGE_SIZE - 1) &&
621                PFN_DOWN(bdata->last_end_off) + 1 == sidx)
622            start_off = align_off(bdata, bdata->last_end_off, align);
623        else
624            start_off = PFN_PHYS(sidx);
625
626        merge = PFN_DOWN(start_off) < sidx;
627        end_off = start_off + size;
628
629        bdata->last_end_off = end_off;
630        bdata->hint_idx = PFN_UP(end_off);
631
632        /*
633         * Reserve the area now:
634         */
635        if (__reserve(bdata, PFN_DOWN(start_off) + merge,
636                PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
637            BUG();
638
639        region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
640                start_off);
641        memset(region, 0, size);
642        /*
643         * The min_count is set to 0 so that bootmem allocated blocks
644         * are never reported as leaks.
645         */
646        kmemleak_alloc(region, size, 0, 0);
647        return region;
648    }
649
650    if (fallback) {
651        sidx = align_idx(bdata, fallback - 1, step);
652        fallback = 0;
653        goto find_block;
654    }
655
656    return NULL;
657}
658
659static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
660                    unsigned long size, unsigned long align,
661                    unsigned long goal, unsigned long limit)
662{
663    if (WARN_ON_ONCE(slab_is_available()))
664        return kzalloc(size, GFP_NOWAIT);
665
666#ifdef CONFIG_HAVE_ARCH_BOOTMEM
667    {
668        bootmem_data_t *p_bdata;
669
670        p_bdata = bootmem_arch_preferred_node(bdata, size, align,
671                            goal, limit);
672        if (p_bdata)
673            return alloc_bootmem_core(p_bdata, size, align,
674                            goal, limit);
675    }
676#endif
677    return NULL;
678}
679#endif
680
681static void * __init ___alloc_bootmem_nopanic(unsigned long size,
682                    unsigned long align,
683                    unsigned long goal,
684                    unsigned long limit)
685{
686#ifdef CONFIG_NO_BOOTMEM
687    void *ptr;
688
689    if (WARN_ON_ONCE(slab_is_available()))
690        return kzalloc(size, GFP_NOWAIT);
691
692restart:
693
694    ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
695
696    if (ptr)
697        return ptr;
698
699    if (goal != 0) {
700        goal = 0;
701        goto restart;
702    }
703
704    return NULL;
705#else
706    bootmem_data_t *bdata;
707    void *region;
708
709restart:
710    region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
711    if (region)
712        return region;
713
714    list_for_each_entry(bdata, &bdata_list, list) {
715        if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
716            continue;
717        if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
718            break;
719
720        region = alloc_bootmem_core(bdata, size, align, goal, limit);
721        if (region)
722            return region;
723    }
724
725    if (goal) {
726        goal = 0;
727        goto restart;
728    }
729
730    return NULL;
731#endif
732}
733
734/**
735 * __alloc_bootmem_nopanic - allocate boot memory without panicking
736 * @size: size of the request in bytes
737 * @align: alignment of the region
738 * @goal: preferred starting address of the region
739 *
740 * The goal is dropped if it can not be satisfied and the allocation will
741 * fall back to memory below @goal.
742 *
743 * Allocation may happen on any node in the system.
744 *
745 * Returns NULL on failure.
746 */
747void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
748                    unsigned long goal)
749{
750    unsigned long limit = 0;
751
752#ifdef CONFIG_NO_BOOTMEM
753    limit = -1UL;
754#endif
755
756    return ___alloc_bootmem_nopanic(size, align, goal, limit);
757}
758
759static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
760                    unsigned long goal, unsigned long limit)
761{
762    void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
763
764    if (mem)
765        return mem;
766    /*
767     * Whoops, we cannot satisfy the allocation request.
768     */
769    printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
770    panic("Out of memory");
771    return NULL;
772}
773
774/**
775 * __alloc_bootmem - allocate boot memory
776 * @size: size of the request in bytes
777 * @align: alignment of the region
778 * @goal: preferred starting address of the region
779 *
780 * The goal is dropped if it can not be satisfied and the allocation will
781 * fall back to memory below @goal.
782 *
783 * Allocation may happen on any node in the system.
784 *
785 * The function panics if the request can not be satisfied.
786 */
787void * __init __alloc_bootmem(unsigned long size, unsigned long align,
788                  unsigned long goal)
789{
790    unsigned long limit = 0;
791
792#ifdef CONFIG_NO_BOOTMEM
793    limit = -1UL;
794#endif
795
796    return ___alloc_bootmem(size, align, goal, limit);
797}
798
799#ifndef CONFIG_NO_BOOTMEM
800static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
801                unsigned long size, unsigned long align,
802                unsigned long goal, unsigned long limit)
803{
804    void *ptr;
805
806    ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
807    if (ptr)
808        return ptr;
809
810    ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
811    if (ptr)
812        return ptr;
813
814    return ___alloc_bootmem(size, align, goal, limit);
815}
816#endif
817
818/**
819 * __alloc_bootmem_node - allocate boot memory from a specific node
820 * @pgdat: node to allocate from
821 * @size: size of the request in bytes
822 * @align: alignment of the region
823 * @goal: preferred starting address of the region
824 *
825 * The goal is dropped if it can not be satisfied and the allocation will
826 * fall back to memory below @goal.
827 *
828 * Allocation may fall back to any node in the system if the specified node
829 * can not hold the requested memory.
830 *
831 * The function panics if the request can not be satisfied.
832 */
833void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
834                   unsigned long align, unsigned long goal)
835{
836    void *ptr;
837
838    if (WARN_ON_ONCE(slab_is_available()))
839        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
840
841#ifdef CONFIG_NO_BOOTMEM
842    ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
843                     goal, -1ULL);
844    if (ptr)
845        return ptr;
846
847    ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
848                     goal, -1ULL);
849#else
850    ptr = ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
851#endif
852
853    return ptr;
854}
855
856void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
857                   unsigned long align, unsigned long goal)
858{
859#ifdef MAX_DMA32_PFN
860    unsigned long end_pfn;
861
862    if (WARN_ON_ONCE(slab_is_available()))
863        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
864
865    /* update goal according ...MAX_DMA32_PFN */
866    end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
867
868    if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
869        (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
870        void *ptr;
871        unsigned long new_goal;
872
873        new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
874#ifdef CONFIG_NO_BOOTMEM
875        ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
876                         new_goal, -1ULL);
877#else
878        ptr = alloc_bootmem_core(pgdat->bdata, size, align,
879                         new_goal, 0);
880#endif
881        if (ptr)
882            return ptr;
883    }
884#endif
885
886    return __alloc_bootmem_node(pgdat, size, align, goal);
887
888}
889
890#ifdef CONFIG_SPARSEMEM
891/**
892 * alloc_bootmem_section - allocate boot memory from a specific section
893 * @size: size of the request in bytes
894 * @section_nr: sparse map section to allocate from
895 *
896 * Return NULL on failure.
897 */
898void * __init alloc_bootmem_section(unsigned long size,
899                    unsigned long section_nr)
900{
901#ifdef CONFIG_NO_BOOTMEM
902    unsigned long pfn, goal, limit;
903
904    pfn = section_nr_to_pfn(section_nr);
905    goal = pfn << PAGE_SHIFT;
906    limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
907
908    return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
909                     SMP_CACHE_BYTES, goal, limit);
910#else
911    bootmem_data_t *bdata;
912    unsigned long pfn, goal, limit;
913
914    pfn = section_nr_to_pfn(section_nr);
915    goal = pfn << PAGE_SHIFT;
916    limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
917    bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
918
919    return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
920#endif
921}
922#endif
923
924void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
925                   unsigned long align, unsigned long goal)
926{
927    void *ptr;
928
929    if (WARN_ON_ONCE(slab_is_available()))
930        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
931
932#ifdef CONFIG_NO_BOOTMEM
933    ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
934                         goal, -1ULL);
935#else
936    ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
937    if (ptr)
938        return ptr;
939
940    ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
941#endif
942    if (ptr)
943        return ptr;
944
945    return __alloc_bootmem_nopanic(size, align, goal);
946}
947
948#ifndef ARCH_LOW_ADDRESS_LIMIT
949#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
950#endif
951
952/**
953 * __alloc_bootmem_low - allocate low boot memory
954 * @size: size of the request in bytes
955 * @align: alignment of the region
956 * @goal: preferred starting address of the region
957 *
958 * The goal is dropped if it can not be satisfied and the allocation will
959 * fall back to memory below @goal.
960 *
961 * Allocation may happen on any node in the system.
962 *
963 * The function panics if the request can not be satisfied.
964 */
965void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
966                  unsigned long goal)
967{
968    return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
969}
970
971/**
972 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
973 * @pgdat: node to allocate from
974 * @size: size of the request in bytes
975 * @align: alignment of the region
976 * @goal: preferred starting address of the region
977 *
978 * The goal is dropped if it can not be satisfied and the allocation will
979 * fall back to memory below @goal.
980 *
981 * Allocation may fall back to any node in the system if the specified node
982 * can not hold the requested memory.
983 *
984 * The function panics if the request can not be satisfied.
985 */
986void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
987                       unsigned long align, unsigned long goal)
988{
989    void *ptr;
990
991    if (WARN_ON_ONCE(slab_is_available()))
992        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
993
994#ifdef CONFIG_NO_BOOTMEM
995    ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
996                goal, ARCH_LOW_ADDRESS_LIMIT);
997    if (ptr)
998        return ptr;
999    ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
1000                goal, ARCH_LOW_ADDRESS_LIMIT);
1001#else
1002    ptr = ___alloc_bootmem_node(pgdat->bdata, size, align,
1003                goal, ARCH_LOW_ADDRESS_LIMIT);
1004#endif
1005    return ptr;
1006}
1007

Archive Download this file



interactive