Root/security/security.c

1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/security.h>
19#include <linux/ima.h>
20
21/* Boot-time LSM user choice */
22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23    CONFIG_DEFAULT_SECURITY;
24
25/* things that live in capability.c */
26extern void __init security_fixup_ops(struct security_operations *ops);
27
28static struct security_operations *security_ops;
29static struct security_operations default_security_ops = {
30    .name = "default",
31};
32
33static inline int __init verify(struct security_operations *ops)
34{
35    /* verify the security_operations structure exists */
36    if (!ops)
37        return -EINVAL;
38    security_fixup_ops(ops);
39    return 0;
40}
41
42static void __init do_security_initcalls(void)
43{
44    initcall_t *call;
45    call = __security_initcall_start;
46    while (call < __security_initcall_end) {
47        (*call) ();
48        call++;
49    }
50}
51
52/**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57int __init security_init(void)
58{
59    printk(KERN_INFO "Security Framework initialized\n");
60
61    security_fixup_ops(&default_security_ops);
62    security_ops = &default_security_ops;
63    do_security_initcalls();
64
65    return 0;
66}
67
68void reset_security_ops(void)
69{
70    security_ops = &default_security_ops;
71}
72
73/* Save user chosen LSM */
74static int __init choose_lsm(char *str)
75{
76    strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77    return 1;
78}
79__setup("security=", choose_lsm);
80
81/**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time,
93 * -or there is no default LSM set and the user didn't specify a
94 * specific LSM and we're the first to ask for registration permission,
95 * -or the passed LSM is currently loaded.
96 * Otherwise, return false.
97 */
98int __init security_module_enable(struct security_operations *ops)
99{
100    if (!*chosen_lsm)
101        strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102    else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103        return 0;
104
105    return 1;
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120int __init register_security(struct security_operations *ops)
121{
122    if (verify(ops)) {
123        printk(KERN_DEBUG "%s could not verify "
124               "security_operations structure.\n", __func__);
125        return -EINVAL;
126    }
127
128    if (security_ops != &default_security_ops)
129        return -EAGAIN;
130
131    security_ops = ops;
132
133    return 0;
134}
135
136/* Security operations */
137
138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139{
140    return security_ops->ptrace_access_check(child, mode);
141}
142
143int security_ptrace_traceme(struct task_struct *parent)
144{
145    return security_ops->ptrace_traceme(parent);
146}
147
148int security_capget(struct task_struct *target,
149             kernel_cap_t *effective,
150             kernel_cap_t *inheritable,
151             kernel_cap_t *permitted)
152{
153    return security_ops->capget(target, effective, inheritable, permitted);
154}
155
156int security_capset(struct cred *new, const struct cred *old,
157            const kernel_cap_t *effective,
158            const kernel_cap_t *inheritable,
159            const kernel_cap_t *permitted)
160{
161    return security_ops->capset(new, old,
162                    effective, inheritable, permitted);
163}
164
165int security_capable(int cap)
166{
167    return security_ops->capable(current, current_cred(), cap,
168                     SECURITY_CAP_AUDIT);
169}
170
171int security_real_capable(struct task_struct *tsk, int cap)
172{
173    const struct cred *cred;
174    int ret;
175
176    cred = get_task_cred(tsk);
177    ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178    put_cred(cred);
179    return ret;
180}
181
182int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183{
184    const struct cred *cred;
185    int ret;
186
187    cred = get_task_cred(tsk);
188    ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189    put_cred(cred);
190    return ret;
191}
192
193int security_sysctl(struct ctl_table *table, int op)
194{
195    return security_ops->sysctl(table, op);
196}
197
198int security_quotactl(int cmds, int type, int id, struct super_block *sb)
199{
200    return security_ops->quotactl(cmds, type, id, sb);
201}
202
203int security_quota_on(struct dentry *dentry)
204{
205    return security_ops->quota_on(dentry);
206}
207
208int security_syslog(int type, bool from_file)
209{
210    return security_ops->syslog(type, from_file);
211}
212
213int security_settime(struct timespec *ts, struct timezone *tz)
214{
215    return security_ops->settime(ts, tz);
216}
217
218int security_vm_enough_memory(long pages)
219{
220    WARN_ON(current->mm == NULL);
221    return security_ops->vm_enough_memory(current->mm, pages);
222}
223
224int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
225{
226    WARN_ON(mm == NULL);
227    return security_ops->vm_enough_memory(mm, pages);
228}
229
230int security_vm_enough_memory_kern(long pages)
231{
232    /* If current->mm is a kernel thread then we will pass NULL,
233       for this specific case that is fine */
234    return security_ops->vm_enough_memory(current->mm, pages);
235}
236
237int security_bprm_set_creds(struct linux_binprm *bprm)
238{
239    return security_ops->bprm_set_creds(bprm);
240}
241
242int security_bprm_check(struct linux_binprm *bprm)
243{
244    int ret;
245
246    ret = security_ops->bprm_check_security(bprm);
247    if (ret)
248        return ret;
249    return ima_bprm_check(bprm);
250}
251
252void security_bprm_committing_creds(struct linux_binprm *bprm)
253{
254    security_ops->bprm_committing_creds(bprm);
255}
256
257void security_bprm_committed_creds(struct linux_binprm *bprm)
258{
259    security_ops->bprm_committed_creds(bprm);
260}
261
262int security_bprm_secureexec(struct linux_binprm *bprm)
263{
264    return security_ops->bprm_secureexec(bprm);
265}
266
267int security_sb_alloc(struct super_block *sb)
268{
269    return security_ops->sb_alloc_security(sb);
270}
271
272void security_sb_free(struct super_block *sb)
273{
274    security_ops->sb_free_security(sb);
275}
276
277int security_sb_copy_data(char *orig, char *copy)
278{
279    return security_ops->sb_copy_data(orig, copy);
280}
281EXPORT_SYMBOL(security_sb_copy_data);
282
283int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
284{
285    return security_ops->sb_kern_mount(sb, flags, data);
286}
287
288int security_sb_show_options(struct seq_file *m, struct super_block *sb)
289{
290    return security_ops->sb_show_options(m, sb);
291}
292
293int security_sb_statfs(struct dentry *dentry)
294{
295    return security_ops->sb_statfs(dentry);
296}
297
298int security_sb_mount(char *dev_name, struct path *path,
299                       char *type, unsigned long flags, void *data)
300{
301    return security_ops->sb_mount(dev_name, path, type, flags, data);
302}
303
304int security_sb_umount(struct vfsmount *mnt, int flags)
305{
306    return security_ops->sb_umount(mnt, flags);
307}
308
309int security_sb_pivotroot(struct path *old_path, struct path *new_path)
310{
311    return security_ops->sb_pivotroot(old_path, new_path);
312}
313
314int security_sb_set_mnt_opts(struct super_block *sb,
315                struct security_mnt_opts *opts)
316{
317    return security_ops->sb_set_mnt_opts(sb, opts);
318}
319EXPORT_SYMBOL(security_sb_set_mnt_opts);
320
321void security_sb_clone_mnt_opts(const struct super_block *oldsb,
322                struct super_block *newsb)
323{
324    security_ops->sb_clone_mnt_opts(oldsb, newsb);
325}
326EXPORT_SYMBOL(security_sb_clone_mnt_opts);
327
328int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
329{
330    return security_ops->sb_parse_opts_str(options, opts);
331}
332EXPORT_SYMBOL(security_sb_parse_opts_str);
333
334int security_inode_alloc(struct inode *inode)
335{
336    int ret;
337
338    inode->i_security = NULL;
339    ret = security_ops->inode_alloc_security(inode);
340    if (ret)
341        return ret;
342    ret = ima_inode_alloc(inode);
343    if (ret)
344        security_inode_free(inode);
345    return ret;
346}
347
348void security_inode_free(struct inode *inode)
349{
350    ima_inode_free(inode);
351    security_ops->inode_free_security(inode);
352}
353
354int security_inode_init_security(struct inode *inode, struct inode *dir,
355                  char **name, void **value, size_t *len)
356{
357    if (unlikely(IS_PRIVATE(inode)))
358        return -EOPNOTSUPP;
359    return security_ops->inode_init_security(inode, dir, name, value, len);
360}
361EXPORT_SYMBOL(security_inode_init_security);
362
363#ifdef CONFIG_SECURITY_PATH
364int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
365            unsigned int dev)
366{
367    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368        return 0;
369    return security_ops->path_mknod(dir, dentry, mode, dev);
370}
371EXPORT_SYMBOL(security_path_mknod);
372
373int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
374{
375    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376        return 0;
377    return security_ops->path_mkdir(dir, dentry, mode);
378}
379
380int security_path_rmdir(struct path *dir, struct dentry *dentry)
381{
382    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383        return 0;
384    return security_ops->path_rmdir(dir, dentry);
385}
386
387int security_path_unlink(struct path *dir, struct dentry *dentry)
388{
389    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390        return 0;
391    return security_ops->path_unlink(dir, dentry);
392}
393
394int security_path_symlink(struct path *dir, struct dentry *dentry,
395              const char *old_name)
396{
397    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398        return 0;
399    return security_ops->path_symlink(dir, dentry, old_name);
400}
401
402int security_path_link(struct dentry *old_dentry, struct path *new_dir,
403               struct dentry *new_dentry)
404{
405    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
406        return 0;
407    return security_ops->path_link(old_dentry, new_dir, new_dentry);
408}
409
410int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
411             struct path *new_dir, struct dentry *new_dentry)
412{
413    if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
414             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
415        return 0;
416    return security_ops->path_rename(old_dir, old_dentry, new_dir,
417                     new_dentry);
418}
419
420int security_path_truncate(struct path *path)
421{
422    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
423        return 0;
424    return security_ops->path_truncate(path);
425}
426
427int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
428            mode_t mode)
429{
430    if (unlikely(IS_PRIVATE(dentry->d_inode)))
431        return 0;
432    return security_ops->path_chmod(dentry, mnt, mode);
433}
434
435int security_path_chown(struct path *path, uid_t uid, gid_t gid)
436{
437    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438        return 0;
439    return security_ops->path_chown(path, uid, gid);
440}
441
442int security_path_chroot(struct path *path)
443{
444    return security_ops->path_chroot(path);
445}
446#endif
447
448int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
449{
450    if (unlikely(IS_PRIVATE(dir)))
451        return 0;
452    return security_ops->inode_create(dir, dentry, mode);
453}
454EXPORT_SYMBOL_GPL(security_inode_create);
455
456int security_inode_link(struct dentry *old_dentry, struct inode *dir,
457             struct dentry *new_dentry)
458{
459    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
460        return 0;
461    return security_ops->inode_link(old_dentry, dir, new_dentry);
462}
463
464int security_inode_unlink(struct inode *dir, struct dentry *dentry)
465{
466    if (unlikely(IS_PRIVATE(dentry->d_inode)))
467        return 0;
468    return security_ops->inode_unlink(dir, dentry);
469}
470
471int security_inode_symlink(struct inode *dir, struct dentry *dentry,
472                const char *old_name)
473{
474    if (unlikely(IS_PRIVATE(dir)))
475        return 0;
476    return security_ops->inode_symlink(dir, dentry, old_name);
477}
478
479int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
480{
481    if (unlikely(IS_PRIVATE(dir)))
482        return 0;
483    return security_ops->inode_mkdir(dir, dentry, mode);
484}
485EXPORT_SYMBOL_GPL(security_inode_mkdir);
486
487int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
488{
489    if (unlikely(IS_PRIVATE(dentry->d_inode)))
490        return 0;
491    return security_ops->inode_rmdir(dir, dentry);
492}
493
494int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
495{
496    if (unlikely(IS_PRIVATE(dir)))
497        return 0;
498    return security_ops->inode_mknod(dir, dentry, mode, dev);
499}
500
501int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
502               struct inode *new_dir, struct dentry *new_dentry)
503{
504        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
505            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
506        return 0;
507    return security_ops->inode_rename(old_dir, old_dentry,
508                       new_dir, new_dentry);
509}
510
511int security_inode_readlink(struct dentry *dentry)
512{
513    if (unlikely(IS_PRIVATE(dentry->d_inode)))
514        return 0;
515    return security_ops->inode_readlink(dentry);
516}
517
518int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
519{
520    if (unlikely(IS_PRIVATE(dentry->d_inode)))
521        return 0;
522    return security_ops->inode_follow_link(dentry, nd);
523}
524
525int security_inode_permission(struct inode *inode, int mask)
526{
527    if (unlikely(IS_PRIVATE(inode)))
528        return 0;
529    return security_ops->inode_permission(inode, mask);
530}
531
532int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
533{
534    if (unlikely(IS_PRIVATE(dentry->d_inode)))
535        return 0;
536    return security_ops->inode_setattr(dentry, attr);
537}
538EXPORT_SYMBOL_GPL(security_inode_setattr);
539
540int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
541{
542    if (unlikely(IS_PRIVATE(dentry->d_inode)))
543        return 0;
544    return security_ops->inode_getattr(mnt, dentry);
545}
546
547int security_inode_setxattr(struct dentry *dentry, const char *name,
548                const void *value, size_t size, int flags)
549{
550    if (unlikely(IS_PRIVATE(dentry->d_inode)))
551        return 0;
552    return security_ops->inode_setxattr(dentry, name, value, size, flags);
553}
554
555void security_inode_post_setxattr(struct dentry *dentry, const char *name,
556                  const void *value, size_t size, int flags)
557{
558    if (unlikely(IS_PRIVATE(dentry->d_inode)))
559        return;
560    security_ops->inode_post_setxattr(dentry, name, value, size, flags);
561}
562
563int security_inode_getxattr(struct dentry *dentry, const char *name)
564{
565    if (unlikely(IS_PRIVATE(dentry->d_inode)))
566        return 0;
567    return security_ops->inode_getxattr(dentry, name);
568}
569
570int security_inode_listxattr(struct dentry *dentry)
571{
572    if (unlikely(IS_PRIVATE(dentry->d_inode)))
573        return 0;
574    return security_ops->inode_listxattr(dentry);
575}
576
577int security_inode_removexattr(struct dentry *dentry, const char *name)
578{
579    if (unlikely(IS_PRIVATE(dentry->d_inode)))
580        return 0;
581    return security_ops->inode_removexattr(dentry, name);
582}
583
584int security_inode_need_killpriv(struct dentry *dentry)
585{
586    return security_ops->inode_need_killpriv(dentry);
587}
588
589int security_inode_killpriv(struct dentry *dentry)
590{
591    return security_ops->inode_killpriv(dentry);
592}
593
594int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
595{
596    if (unlikely(IS_PRIVATE(inode)))
597        return -EOPNOTSUPP;
598    return security_ops->inode_getsecurity(inode, name, buffer, alloc);
599}
600
601int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
602{
603    if (unlikely(IS_PRIVATE(inode)))
604        return -EOPNOTSUPP;
605    return security_ops->inode_setsecurity(inode, name, value, size, flags);
606}
607
608int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
609{
610    if (unlikely(IS_PRIVATE(inode)))
611        return 0;
612    return security_ops->inode_listsecurity(inode, buffer, buffer_size);
613}
614
615void security_inode_getsecid(const struct inode *inode, u32 *secid)
616{
617    security_ops->inode_getsecid(inode, secid);
618}
619
620int security_file_permission(struct file *file, int mask)
621{
622    int ret;
623
624    ret = security_ops->file_permission(file, mask);
625    if (ret)
626        return ret;
627
628    return fsnotify_perm(file, mask);
629}
630
631int security_file_alloc(struct file *file)
632{
633    return security_ops->file_alloc_security(file);
634}
635
636void security_file_free(struct file *file)
637{
638    security_ops->file_free_security(file);
639}
640
641int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
642{
643    return security_ops->file_ioctl(file, cmd, arg);
644}
645
646int security_file_mmap(struct file *file, unsigned long reqprot,
647            unsigned long prot, unsigned long flags,
648            unsigned long addr, unsigned long addr_only)
649{
650    int ret;
651
652    ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
653    if (ret)
654        return ret;
655    return ima_file_mmap(file, prot);
656}
657
658int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
659                unsigned long prot)
660{
661    return security_ops->file_mprotect(vma, reqprot, prot);
662}
663
664int security_file_lock(struct file *file, unsigned int cmd)
665{
666    return security_ops->file_lock(file, cmd);
667}
668
669int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
670{
671    return security_ops->file_fcntl(file, cmd, arg);
672}
673
674int security_file_set_fowner(struct file *file)
675{
676    return security_ops->file_set_fowner(file);
677}
678
679int security_file_send_sigiotask(struct task_struct *tsk,
680                  struct fown_struct *fown, int sig)
681{
682    return security_ops->file_send_sigiotask(tsk, fown, sig);
683}
684
685int security_file_receive(struct file *file)
686{
687    return security_ops->file_receive(file);
688}
689
690int security_dentry_open(struct file *file, const struct cred *cred)
691{
692    int ret;
693
694    ret = security_ops->dentry_open(file, cred);
695    if (ret)
696        return ret;
697
698    return fsnotify_perm(file, MAY_OPEN);
699}
700
701int security_task_create(unsigned long clone_flags)
702{
703    return security_ops->task_create(clone_flags);
704}
705
706int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
707{
708    return security_ops->cred_alloc_blank(cred, gfp);
709}
710
711void security_cred_free(struct cred *cred)
712{
713    security_ops->cred_free(cred);
714}
715
716int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
717{
718    return security_ops->cred_prepare(new, old, gfp);
719}
720
721void security_transfer_creds(struct cred *new, const struct cred *old)
722{
723    security_ops->cred_transfer(new, old);
724}
725
726int security_kernel_act_as(struct cred *new, u32 secid)
727{
728    return security_ops->kernel_act_as(new, secid);
729}
730
731int security_kernel_create_files_as(struct cred *new, struct inode *inode)
732{
733    return security_ops->kernel_create_files_as(new, inode);
734}
735
736int security_kernel_module_request(char *kmod_name)
737{
738    return security_ops->kernel_module_request(kmod_name);
739}
740
741int security_task_fix_setuid(struct cred *new, const struct cred *old,
742                 int flags)
743{
744    return security_ops->task_fix_setuid(new, old, flags);
745}
746
747int security_task_setpgid(struct task_struct *p, pid_t pgid)
748{
749    return security_ops->task_setpgid(p, pgid);
750}
751
752int security_task_getpgid(struct task_struct *p)
753{
754    return security_ops->task_getpgid(p);
755}
756
757int security_task_getsid(struct task_struct *p)
758{
759    return security_ops->task_getsid(p);
760}
761
762void security_task_getsecid(struct task_struct *p, u32 *secid)
763{
764    security_ops->task_getsecid(p, secid);
765}
766EXPORT_SYMBOL(security_task_getsecid);
767
768int security_task_setnice(struct task_struct *p, int nice)
769{
770    return security_ops->task_setnice(p, nice);
771}
772
773int security_task_setioprio(struct task_struct *p, int ioprio)
774{
775    return security_ops->task_setioprio(p, ioprio);
776}
777
778int security_task_getioprio(struct task_struct *p)
779{
780    return security_ops->task_getioprio(p);
781}
782
783int security_task_setrlimit(struct task_struct *p, unsigned int resource,
784        struct rlimit *new_rlim)
785{
786    return security_ops->task_setrlimit(p, resource, new_rlim);
787}
788
789int security_task_setscheduler(struct task_struct *p,
790                int policy, struct sched_param *lp)
791{
792    return security_ops->task_setscheduler(p, policy, lp);
793}
794
795int security_task_getscheduler(struct task_struct *p)
796{
797    return security_ops->task_getscheduler(p);
798}
799
800int security_task_movememory(struct task_struct *p)
801{
802    return security_ops->task_movememory(p);
803}
804
805int security_task_kill(struct task_struct *p, struct siginfo *info,
806            int sig, u32 secid)
807{
808    return security_ops->task_kill(p, info, sig, secid);
809}
810
811int security_task_wait(struct task_struct *p)
812{
813    return security_ops->task_wait(p);
814}
815
816int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
817             unsigned long arg4, unsigned long arg5)
818{
819    return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
820}
821
822void security_task_to_inode(struct task_struct *p, struct inode *inode)
823{
824    security_ops->task_to_inode(p, inode);
825}
826
827int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
828{
829    return security_ops->ipc_permission(ipcp, flag);
830}
831
832void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
833{
834    security_ops->ipc_getsecid(ipcp, secid);
835}
836
837int security_msg_msg_alloc(struct msg_msg *msg)
838{
839    return security_ops->msg_msg_alloc_security(msg);
840}
841
842void security_msg_msg_free(struct msg_msg *msg)
843{
844    security_ops->msg_msg_free_security(msg);
845}
846
847int security_msg_queue_alloc(struct msg_queue *msq)
848{
849    return security_ops->msg_queue_alloc_security(msq);
850}
851
852void security_msg_queue_free(struct msg_queue *msq)
853{
854    security_ops->msg_queue_free_security(msq);
855}
856
857int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
858{
859    return security_ops->msg_queue_associate(msq, msqflg);
860}
861
862int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
863{
864    return security_ops->msg_queue_msgctl(msq, cmd);
865}
866
867int security_msg_queue_msgsnd(struct msg_queue *msq,
868                   struct msg_msg *msg, int msqflg)
869{
870    return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
871}
872
873int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
874                   struct task_struct *target, long type, int mode)
875{
876    return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
877}
878
879int security_shm_alloc(struct shmid_kernel *shp)
880{
881    return security_ops->shm_alloc_security(shp);
882}
883
884void security_shm_free(struct shmid_kernel *shp)
885{
886    security_ops->shm_free_security(shp);
887}
888
889int security_shm_associate(struct shmid_kernel *shp, int shmflg)
890{
891    return security_ops->shm_associate(shp, shmflg);
892}
893
894int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
895{
896    return security_ops->shm_shmctl(shp, cmd);
897}
898
899int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
900{
901    return security_ops->shm_shmat(shp, shmaddr, shmflg);
902}
903
904int security_sem_alloc(struct sem_array *sma)
905{
906    return security_ops->sem_alloc_security(sma);
907}
908
909void security_sem_free(struct sem_array *sma)
910{
911    security_ops->sem_free_security(sma);
912}
913
914int security_sem_associate(struct sem_array *sma, int semflg)
915{
916    return security_ops->sem_associate(sma, semflg);
917}
918
919int security_sem_semctl(struct sem_array *sma, int cmd)
920{
921    return security_ops->sem_semctl(sma, cmd);
922}
923
924int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
925            unsigned nsops, int alter)
926{
927    return security_ops->sem_semop(sma, sops, nsops, alter);
928}
929
930void security_d_instantiate(struct dentry *dentry, struct inode *inode)
931{
932    if (unlikely(inode && IS_PRIVATE(inode)))
933        return;
934    security_ops->d_instantiate(dentry, inode);
935}
936EXPORT_SYMBOL(security_d_instantiate);
937
938int security_getprocattr(struct task_struct *p, char *name, char **value)
939{
940    return security_ops->getprocattr(p, name, value);
941}
942
943int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
944{
945    return security_ops->setprocattr(p, name, value, size);
946}
947
948int security_netlink_send(struct sock *sk, struct sk_buff *skb)
949{
950    return security_ops->netlink_send(sk, skb);
951}
952
953int security_netlink_recv(struct sk_buff *skb, int cap)
954{
955    return security_ops->netlink_recv(skb, cap);
956}
957EXPORT_SYMBOL(security_netlink_recv);
958
959int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
960{
961    return security_ops->secid_to_secctx(secid, secdata, seclen);
962}
963EXPORT_SYMBOL(security_secid_to_secctx);
964
965int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
966{
967    return security_ops->secctx_to_secid(secdata, seclen, secid);
968}
969EXPORT_SYMBOL(security_secctx_to_secid);
970
971void security_release_secctx(char *secdata, u32 seclen)
972{
973    security_ops->release_secctx(secdata, seclen);
974}
975EXPORT_SYMBOL(security_release_secctx);
976
977int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
978{
979    return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
980}
981EXPORT_SYMBOL(security_inode_notifysecctx);
982
983int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
984{
985    return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
986}
987EXPORT_SYMBOL(security_inode_setsecctx);
988
989int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
990{
991    return security_ops->inode_getsecctx(inode, ctx, ctxlen);
992}
993EXPORT_SYMBOL(security_inode_getsecctx);
994
995#ifdef CONFIG_SECURITY_NETWORK
996
997int security_unix_stream_connect(struct socket *sock, struct socket *other,
998                 struct sock *newsk)
999{
1000    return security_ops->unix_stream_connect(sock, other, newsk);
1001}
1002EXPORT_SYMBOL(security_unix_stream_connect);
1003
1004int security_unix_may_send(struct socket *sock, struct socket *other)
1005{
1006    return security_ops->unix_may_send(sock, other);
1007}
1008EXPORT_SYMBOL(security_unix_may_send);
1009
1010int security_socket_create(int family, int type, int protocol, int kern)
1011{
1012    return security_ops->socket_create(family, type, protocol, kern);
1013}
1014
1015int security_socket_post_create(struct socket *sock, int family,
1016                int type, int protocol, int kern)
1017{
1018    return security_ops->socket_post_create(sock, family, type,
1019                        protocol, kern);
1020}
1021
1022int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1023{
1024    return security_ops->socket_bind(sock, address, addrlen);
1025}
1026
1027int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1028{
1029    return security_ops->socket_connect(sock, address, addrlen);
1030}
1031
1032int security_socket_listen(struct socket *sock, int backlog)
1033{
1034    return security_ops->socket_listen(sock, backlog);
1035}
1036
1037int security_socket_accept(struct socket *sock, struct socket *newsock)
1038{
1039    return security_ops->socket_accept(sock, newsock);
1040}
1041
1042int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1043{
1044    return security_ops->socket_sendmsg(sock, msg, size);
1045}
1046
1047int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1048                int size, int flags)
1049{
1050    return security_ops->socket_recvmsg(sock, msg, size, flags);
1051}
1052
1053int security_socket_getsockname(struct socket *sock)
1054{
1055    return security_ops->socket_getsockname(sock);
1056}
1057
1058int security_socket_getpeername(struct socket *sock)
1059{
1060    return security_ops->socket_getpeername(sock);
1061}
1062
1063int security_socket_getsockopt(struct socket *sock, int level, int optname)
1064{
1065    return security_ops->socket_getsockopt(sock, level, optname);
1066}
1067
1068int security_socket_setsockopt(struct socket *sock, int level, int optname)
1069{
1070    return security_ops->socket_setsockopt(sock, level, optname);
1071}
1072
1073int security_socket_shutdown(struct socket *sock, int how)
1074{
1075    return security_ops->socket_shutdown(sock, how);
1076}
1077
1078int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1079{
1080    return security_ops->socket_sock_rcv_skb(sk, skb);
1081}
1082EXPORT_SYMBOL(security_sock_rcv_skb);
1083
1084int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1085                      int __user *optlen, unsigned len)
1086{
1087    return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1088}
1089
1090int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1091{
1092    return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1093}
1094EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1095
1096int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1097{
1098    return security_ops->sk_alloc_security(sk, family, priority);
1099}
1100
1101void security_sk_free(struct sock *sk)
1102{
1103    security_ops->sk_free_security(sk);
1104}
1105
1106void security_sk_clone(const struct sock *sk, struct sock *newsk)
1107{
1108    security_ops->sk_clone_security(sk, newsk);
1109}
1110
1111void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1112{
1113    security_ops->sk_getsecid(sk, &fl->secid);
1114}
1115EXPORT_SYMBOL(security_sk_classify_flow);
1116
1117void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1118{
1119    security_ops->req_classify_flow(req, fl);
1120}
1121EXPORT_SYMBOL(security_req_classify_flow);
1122
1123void security_sock_graft(struct sock *sk, struct socket *parent)
1124{
1125    security_ops->sock_graft(sk, parent);
1126}
1127EXPORT_SYMBOL(security_sock_graft);
1128
1129int security_inet_conn_request(struct sock *sk,
1130            struct sk_buff *skb, struct request_sock *req)
1131{
1132    return security_ops->inet_conn_request(sk, skb, req);
1133}
1134EXPORT_SYMBOL(security_inet_conn_request);
1135
1136void security_inet_csk_clone(struct sock *newsk,
1137            const struct request_sock *req)
1138{
1139    security_ops->inet_csk_clone(newsk, req);
1140}
1141
1142void security_inet_conn_established(struct sock *sk,
1143            struct sk_buff *skb)
1144{
1145    security_ops->inet_conn_established(sk, skb);
1146}
1147
1148int security_tun_dev_create(void)
1149{
1150    return security_ops->tun_dev_create();
1151}
1152EXPORT_SYMBOL(security_tun_dev_create);
1153
1154void security_tun_dev_post_create(struct sock *sk)
1155{
1156    return security_ops->tun_dev_post_create(sk);
1157}
1158EXPORT_SYMBOL(security_tun_dev_post_create);
1159
1160int security_tun_dev_attach(struct sock *sk)
1161{
1162    return security_ops->tun_dev_attach(sk);
1163}
1164EXPORT_SYMBOL(security_tun_dev_attach);
1165
1166#endif /* CONFIG_SECURITY_NETWORK */
1167
1168#ifdef CONFIG_SECURITY_NETWORK_XFRM
1169
1170int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1171{
1172    return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1173}
1174EXPORT_SYMBOL(security_xfrm_policy_alloc);
1175
1176int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1177                  struct xfrm_sec_ctx **new_ctxp)
1178{
1179    return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1180}
1181
1182void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1183{
1184    security_ops->xfrm_policy_free_security(ctx);
1185}
1186EXPORT_SYMBOL(security_xfrm_policy_free);
1187
1188int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1189{
1190    return security_ops->xfrm_policy_delete_security(ctx);
1191}
1192
1193int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1194{
1195    return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1196}
1197EXPORT_SYMBOL(security_xfrm_state_alloc);
1198
1199int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1200                      struct xfrm_sec_ctx *polsec, u32 secid)
1201{
1202    if (!polsec)
1203        return 0;
1204    /*
1205     * We want the context to be taken from secid which is usually
1206     * from the sock.
1207     */
1208    return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1209}
1210
1211int security_xfrm_state_delete(struct xfrm_state *x)
1212{
1213    return security_ops->xfrm_state_delete_security(x);
1214}
1215EXPORT_SYMBOL(security_xfrm_state_delete);
1216
1217void security_xfrm_state_free(struct xfrm_state *x)
1218{
1219    security_ops->xfrm_state_free_security(x);
1220}
1221
1222int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1223{
1224    return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1225}
1226
1227int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1228                       struct xfrm_policy *xp, struct flowi *fl)
1229{
1230    return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1231}
1232
1233int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1234{
1235    return security_ops->xfrm_decode_session(skb, secid, 1);
1236}
1237
1238void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1239{
1240    int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1241
1242    BUG_ON(rc);
1243}
1244EXPORT_SYMBOL(security_skb_classify_flow);
1245
1246#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1247
1248#ifdef CONFIG_KEYS
1249
1250int security_key_alloc(struct key *key, const struct cred *cred,
1251               unsigned long flags)
1252{
1253    return security_ops->key_alloc(key, cred, flags);
1254}
1255
1256void security_key_free(struct key *key)
1257{
1258    security_ops->key_free(key);
1259}
1260
1261int security_key_permission(key_ref_t key_ref,
1262                const struct cred *cred, key_perm_t perm)
1263{
1264    return security_ops->key_permission(key_ref, cred, perm);
1265}
1266
1267int security_key_getsecurity(struct key *key, char **_buffer)
1268{
1269    return security_ops->key_getsecurity(key, _buffer);
1270}
1271
1272#endif /* CONFIG_KEYS */
1273
1274#ifdef CONFIG_AUDIT
1275
1276int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1277{
1278    return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1279}
1280
1281int security_audit_rule_known(struct audit_krule *krule)
1282{
1283    return security_ops->audit_rule_known(krule);
1284}
1285
1286void security_audit_rule_free(void *lsmrule)
1287{
1288    security_ops->audit_rule_free(lsmrule);
1289}
1290
1291int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1292                  struct audit_context *actx)
1293{
1294    return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1295}
1296
1297#endif /* CONFIG_AUDIT */
1298

Archive Download this file



interactive