Root/arch/blackfin/mm/sram-alloc.c

1/*
2 * SRAM allocator for Blackfin on-chip memory
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later.
7 */
8
9#include <linux/module.h>
10#include <linux/kernel.h>
11#include <linux/types.h>
12#include <linux/miscdevice.h>
13#include <linux/ioport.h>
14#include <linux/fcntl.h>
15#include <linux/init.h>
16#include <linux/poll.h>
17#include <linux/proc_fs.h>
18#include <linux/spinlock.h>
19#include <linux/rtc.h>
20#include <linux/slab.h>
21#include <asm/blackfin.h>
22#include <asm/mem_map.h>
23#include "blackfin_sram.h"
24
25/* the data structure for L1 scratchpad and DATA SRAM */
26struct sram_piece {
27    void *paddr;
28    int size;
29    pid_t pid;
30    struct sram_piece *next;
31};
32
33static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
34static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
35static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
36
37#if L1_DATA_A_LENGTH != 0
38static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
39static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
40#endif
41
42#if L1_DATA_B_LENGTH != 0
43static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
44static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
45#endif
46
47#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
48static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
49#endif
50
51#if L1_CODE_LENGTH != 0
52static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
53static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
54static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
55#endif
56
57#if L2_LENGTH != 0
58static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
59static struct sram_piece free_l2_sram_head, used_l2_sram_head;
60#endif
61
62static struct kmem_cache *sram_piece_cache;
63
64/* L1 Scratchpad SRAM initialization function */
65static void __init l1sram_init(void)
66{
67    unsigned int cpu;
68    unsigned long reserve;
69
70#ifdef CONFIG_SMP
71    reserve = 0;
72#else
73    reserve = sizeof(struct l1_scratch_task_info);
74#endif
75
76    for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
77        per_cpu(free_l1_ssram_head, cpu).next =
78            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
79        if (!per_cpu(free_l1_ssram_head, cpu).next) {
80            printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
81            return;
82        }
83
84        per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
85        per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
86        per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
87        per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
88
89        per_cpu(used_l1_ssram_head, cpu).next = NULL;
90
91        /* mutex initialize */
92        spin_lock_init(&per_cpu(l1sram_lock, cpu));
93        printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
94            L1_SCRATCH_LENGTH >> 10);
95    }
96}
97
98static void __init l1_data_sram_init(void)
99{
100#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
101    unsigned int cpu;
102#endif
103#if L1_DATA_A_LENGTH != 0
104    for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
105        per_cpu(free_l1_data_A_sram_head, cpu).next =
106            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
107        if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
108            printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
109            return;
110        }
111
112        per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
113            (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
114        per_cpu(free_l1_data_A_sram_head, cpu).next->size =
115            L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
116        per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
117        per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
118
119        per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
120
121        printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
122            L1_DATA_A_LENGTH >> 10,
123            per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
124    }
125#endif
126#if L1_DATA_B_LENGTH != 0
127    for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
128        per_cpu(free_l1_data_B_sram_head, cpu).next =
129            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
130        if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
131            printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
132            return;
133        }
134
135        per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
136            (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
137        per_cpu(free_l1_data_B_sram_head, cpu).next->size =
138            L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
139        per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
140        per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
141
142        per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
143
144        printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
145            L1_DATA_B_LENGTH >> 10,
146            per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
147        /* mutex initialize */
148    }
149#endif
150
151#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
152    for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
153        spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
154#endif
155}
156
157static void __init l1_inst_sram_init(void)
158{
159#if L1_CODE_LENGTH != 0
160    unsigned int cpu;
161    for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
162        per_cpu(free_l1_inst_sram_head, cpu).next =
163            kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
164        if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
165            printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
166            return;
167        }
168
169        per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
170            (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
171        per_cpu(free_l1_inst_sram_head, cpu).next->size =
172            L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
173        per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
174        per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
175
176        per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
177
178        printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
179            L1_CODE_LENGTH >> 10,
180            per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
181
182        /* mutex initialize */
183        spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
184    }
185#endif
186}
187
188static void __init l2_sram_init(void)
189{
190#if L2_LENGTH != 0
191    free_l2_sram_head.next =
192        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
193    if (!free_l2_sram_head.next) {
194        printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
195        return;
196    }
197
198    free_l2_sram_head.next->paddr =
199        (void *)L2_START + (_ebss_l2 - _stext_l2);
200    free_l2_sram_head.next->size =
201        L2_LENGTH - (_ebss_l2 - _stext_l2);
202    free_l2_sram_head.next->pid = 0;
203    free_l2_sram_head.next->next = NULL;
204
205    used_l2_sram_head.next = NULL;
206
207    printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
208        L2_LENGTH >> 10,
209        free_l2_sram_head.next->size >> 10);
210
211    /* mutex initialize */
212    spin_lock_init(&l2_sram_lock);
213#endif
214}
215
216static int __init bfin_sram_init(void)
217{
218    sram_piece_cache = kmem_cache_create("sram_piece_cache",
219                sizeof(struct sram_piece),
220                0, SLAB_PANIC, NULL);
221
222    l1sram_init();
223    l1_data_sram_init();
224    l1_inst_sram_init();
225    l2_sram_init();
226
227    return 0;
228}
229pure_initcall(bfin_sram_init);
230
231/* SRAM allocate function */
232static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
233        struct sram_piece *pused_head)
234{
235    struct sram_piece *pslot, *plast, *pavail;
236
237    if (size <= 0 || !pfree_head || !pused_head)
238        return NULL;
239
240    /* Align the size */
241    size = (size + 3) & ~3;
242
243    pslot = pfree_head->next;
244    plast = pfree_head;
245
246    /* search an available piece slot */
247    while (pslot != NULL && size > pslot->size) {
248        plast = pslot;
249        pslot = pslot->next;
250    }
251
252    if (!pslot)
253        return NULL;
254
255    if (pslot->size == size) {
256        plast->next = pslot->next;
257        pavail = pslot;
258    } else {
259        /* use atomic so our L1 allocator can be used atomically */
260        pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
261
262        if (!pavail)
263            return NULL;
264
265        pavail->paddr = pslot->paddr;
266        pavail->size = size;
267        pslot->paddr += size;
268        pslot->size -= size;
269    }
270
271    pavail->pid = current->pid;
272
273    pslot = pused_head->next;
274    plast = pused_head;
275
276    /* insert new piece into used piece list !!! */
277    while (pslot != NULL && pavail->paddr < pslot->paddr) {
278        plast = pslot;
279        pslot = pslot->next;
280    }
281
282    pavail->next = pslot;
283    plast->next = pavail;
284
285    return pavail->paddr;
286}
287
288/* Allocate the largest available block. */
289static void *_sram_alloc_max(struct sram_piece *pfree_head,
290                struct sram_piece *pused_head,
291                unsigned long *psize)
292{
293    struct sram_piece *pslot, *pmax;
294
295    if (!pfree_head || !pused_head)
296        return NULL;
297
298    pmax = pslot = pfree_head->next;
299
300    /* search an available piece slot */
301    while (pslot != NULL) {
302        if (pslot->size > pmax->size)
303            pmax = pslot;
304        pslot = pslot->next;
305    }
306
307    if (!pmax)
308        return NULL;
309
310    *psize = pmax->size;
311
312    return _sram_alloc(*psize, pfree_head, pused_head);
313}
314
315/* SRAM free function */
316static int _sram_free(const void *addr,
317            struct sram_piece *pfree_head,
318            struct sram_piece *pused_head)
319{
320    struct sram_piece *pslot, *plast, *pavail;
321
322    if (!pfree_head || !pused_head)
323        return -1;
324
325    /* search the relevant memory slot */
326    pslot = pused_head->next;
327    plast = pused_head;
328
329    /* search an available piece slot */
330    while (pslot != NULL && pslot->paddr != addr) {
331        plast = pslot;
332        pslot = pslot->next;
333    }
334
335    if (!pslot)
336        return -1;
337
338    plast->next = pslot->next;
339    pavail = pslot;
340    pavail->pid = 0;
341
342    /* insert free pieces back to the free list */
343    pslot = pfree_head->next;
344    plast = pfree_head;
345
346    while (pslot != NULL && addr > pslot->paddr) {
347        plast = pslot;
348        pslot = pslot->next;
349    }
350
351    if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
352        plast->size += pavail->size;
353        kmem_cache_free(sram_piece_cache, pavail);
354    } else {
355        pavail->next = plast->next;
356        plast->next = pavail;
357        plast = pavail;
358    }
359
360    if (pslot && plast->paddr + plast->size == pslot->paddr) {
361        plast->size += pslot->size;
362        plast->next = pslot->next;
363        kmem_cache_free(sram_piece_cache, pslot);
364    }
365
366    return 0;
367}
368
369int sram_free(const void *addr)
370{
371
372#if L1_CODE_LENGTH != 0
373    if (addr >= (void *)get_l1_code_start()
374         && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
375        return l1_inst_sram_free(addr);
376    else
377#endif
378#if L1_DATA_A_LENGTH != 0
379    if (addr >= (void *)get_l1_data_a_start()
380         && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
381        return l1_data_A_sram_free(addr);
382    else
383#endif
384#if L1_DATA_B_LENGTH != 0
385    if (addr >= (void *)get_l1_data_b_start()
386         && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
387        return l1_data_B_sram_free(addr);
388    else
389#endif
390#if L2_LENGTH != 0
391    if (addr >= (void *)L2_START
392         && addr < (void *)(L2_START + L2_LENGTH))
393        return l2_sram_free(addr);
394    else
395#endif
396        return -1;
397}
398EXPORT_SYMBOL(sram_free);
399
400void *l1_data_A_sram_alloc(size_t size)
401{
402#if L1_DATA_A_LENGTH != 0
403    unsigned long flags;
404    void *addr;
405    unsigned int cpu;
406
407    cpu = smp_processor_id();
408    /* add mutex operation */
409    spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
410
411    addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
412            &per_cpu(used_l1_data_A_sram_head, cpu));
413
414    /* add mutex operation */
415    spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
416
417    pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
418         (long unsigned int)addr, size);
419
420    return addr;
421#else
422    return NULL;
423#endif
424}
425EXPORT_SYMBOL(l1_data_A_sram_alloc);
426
427int l1_data_A_sram_free(const void *addr)
428{
429#if L1_DATA_A_LENGTH != 0
430    unsigned long flags;
431    int ret;
432    unsigned int cpu;
433
434    cpu = smp_processor_id();
435    /* add mutex operation */
436    spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
437
438    ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
439            &per_cpu(used_l1_data_A_sram_head, cpu));
440
441    /* add mutex operation */
442    spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
443
444    return ret;
445#else
446    return -1;
447#endif
448}
449EXPORT_SYMBOL(l1_data_A_sram_free);
450
451void *l1_data_B_sram_alloc(size_t size)
452{
453#if L1_DATA_B_LENGTH != 0
454    unsigned long flags;
455    void *addr;
456    unsigned int cpu;
457
458    cpu = smp_processor_id();
459    /* add mutex operation */
460    spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
461
462    addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
463            &per_cpu(used_l1_data_B_sram_head, cpu));
464
465    /* add mutex operation */
466    spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
467
468    pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
469         (long unsigned int)addr, size);
470
471    return addr;
472#else
473    return NULL;
474#endif
475}
476EXPORT_SYMBOL(l1_data_B_sram_alloc);
477
478int l1_data_B_sram_free(const void *addr)
479{
480#if L1_DATA_B_LENGTH != 0
481    unsigned long flags;
482    int ret;
483    unsigned int cpu;
484
485    cpu = smp_processor_id();
486    /* add mutex operation */
487    spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
488
489    ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
490            &per_cpu(used_l1_data_B_sram_head, cpu));
491
492    /* add mutex operation */
493    spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
494
495    return ret;
496#else
497    return -1;
498#endif
499}
500EXPORT_SYMBOL(l1_data_B_sram_free);
501
502void *l1_data_sram_alloc(size_t size)
503{
504    void *addr = l1_data_A_sram_alloc(size);
505
506    if (!addr)
507        addr = l1_data_B_sram_alloc(size);
508
509    return addr;
510}
511EXPORT_SYMBOL(l1_data_sram_alloc);
512
513void *l1_data_sram_zalloc(size_t size)
514{
515    void *addr = l1_data_sram_alloc(size);
516
517    if (addr)
518        memset(addr, 0x00, size);
519
520    return addr;
521}
522EXPORT_SYMBOL(l1_data_sram_zalloc);
523
524int l1_data_sram_free(const void *addr)
525{
526    int ret;
527    ret = l1_data_A_sram_free(addr);
528    if (ret == -1)
529        ret = l1_data_B_sram_free(addr);
530    return ret;
531}
532EXPORT_SYMBOL(l1_data_sram_free);
533
534void *l1_inst_sram_alloc(size_t size)
535{
536#if L1_CODE_LENGTH != 0
537    unsigned long flags;
538    void *addr;
539    unsigned int cpu;
540
541    cpu = smp_processor_id();
542    /* add mutex operation */
543    spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
544
545    addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
546            &per_cpu(used_l1_inst_sram_head, cpu));
547
548    /* add mutex operation */
549    spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
550
551    pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
552         (long unsigned int)addr, size);
553
554    return addr;
555#else
556    return NULL;
557#endif
558}
559EXPORT_SYMBOL(l1_inst_sram_alloc);
560
561int l1_inst_sram_free(const void *addr)
562{
563#if L1_CODE_LENGTH != 0
564    unsigned long flags;
565    int ret;
566    unsigned int cpu;
567
568    cpu = smp_processor_id();
569    /* add mutex operation */
570    spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
571
572    ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
573            &per_cpu(used_l1_inst_sram_head, cpu));
574
575    /* add mutex operation */
576    spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
577
578    return ret;
579#else
580    return -1;
581#endif
582}
583EXPORT_SYMBOL(l1_inst_sram_free);
584
585/* L1 Scratchpad memory allocate function */
586void *l1sram_alloc(size_t size)
587{
588    unsigned long flags;
589    void *addr;
590    unsigned int cpu;
591
592    cpu = smp_processor_id();
593    /* add mutex operation */
594    spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
595
596    addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
597            &per_cpu(used_l1_ssram_head, cpu));
598
599    /* add mutex operation */
600    spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
601
602    return addr;
603}
604
605/* L1 Scratchpad memory allocate function */
606void *l1sram_alloc_max(size_t *psize)
607{
608    unsigned long flags;
609    void *addr;
610    unsigned int cpu;
611
612    cpu = smp_processor_id();
613    /* add mutex operation */
614    spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
615
616    addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
617            &per_cpu(used_l1_ssram_head, cpu), psize);
618
619    /* add mutex operation */
620    spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
621
622    return addr;
623}
624
625/* L1 Scratchpad memory free function */
626int l1sram_free(const void *addr)
627{
628    unsigned long flags;
629    int ret;
630    unsigned int cpu;
631
632    cpu = smp_processor_id();
633    /* add mutex operation */
634    spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
635
636    ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
637            &per_cpu(used_l1_ssram_head, cpu));
638
639    /* add mutex operation */
640    spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
641
642    return ret;
643}
644
645void *l2_sram_alloc(size_t size)
646{
647#if L2_LENGTH != 0
648    unsigned long flags;
649    void *addr;
650
651    /* add mutex operation */
652    spin_lock_irqsave(&l2_sram_lock, flags);
653
654    addr = _sram_alloc(size, &free_l2_sram_head,
655            &used_l2_sram_head);
656
657    /* add mutex operation */
658    spin_unlock_irqrestore(&l2_sram_lock, flags);
659
660    pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
661         (long unsigned int)addr, size);
662
663    return addr;
664#else
665    return NULL;
666#endif
667}
668EXPORT_SYMBOL(l2_sram_alloc);
669
670void *l2_sram_zalloc(size_t size)
671{
672    void *addr = l2_sram_alloc(size);
673
674    if (addr)
675        memset(addr, 0x00, size);
676
677    return addr;
678}
679EXPORT_SYMBOL(l2_sram_zalloc);
680
681int l2_sram_free(const void *addr)
682{
683#if L2_LENGTH != 0
684    unsigned long flags;
685    int ret;
686
687    /* add mutex operation */
688    spin_lock_irqsave(&l2_sram_lock, flags);
689
690    ret = _sram_free(addr, &free_l2_sram_head,
691            &used_l2_sram_head);
692
693    /* add mutex operation */
694    spin_unlock_irqrestore(&l2_sram_lock, flags);
695
696    return ret;
697#else
698    return -1;
699#endif
700}
701EXPORT_SYMBOL(l2_sram_free);
702
703int sram_free_with_lsl(const void *addr)
704{
705    struct sram_list_struct *lsl, **tmp;
706    struct mm_struct *mm = current->mm;
707
708    for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
709        if ((*tmp)->addr == addr)
710            goto found;
711    return -1;
712found:
713    lsl = *tmp;
714    sram_free(addr);
715    *tmp = lsl->next;
716    kfree(lsl);
717
718    return 0;
719}
720EXPORT_SYMBOL(sram_free_with_lsl);
721
722/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
723 * tracked. These are designed for userspace so that when a process exits,
724 * we can safely reap their resources.
725 */
726void *sram_alloc_with_lsl(size_t size, unsigned long flags)
727{
728    void *addr = NULL;
729    struct sram_list_struct *lsl = NULL;
730    struct mm_struct *mm = current->mm;
731
732    lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
733    if (!lsl)
734        return NULL;
735
736    if (flags & L1_INST_SRAM)
737        addr = l1_inst_sram_alloc(size);
738
739    if (addr == NULL && (flags & L1_DATA_A_SRAM))
740        addr = l1_data_A_sram_alloc(size);
741
742    if (addr == NULL && (flags & L1_DATA_B_SRAM))
743        addr = l1_data_B_sram_alloc(size);
744
745    if (addr == NULL && (flags & L2_SRAM))
746        addr = l2_sram_alloc(size);
747
748    if (addr == NULL) {
749        kfree(lsl);
750        return NULL;
751    }
752    lsl->addr = addr;
753    lsl->length = size;
754    lsl->next = mm->context.sram_list;
755    mm->context.sram_list = lsl;
756    return addr;
757}
758EXPORT_SYMBOL(sram_alloc_with_lsl);
759
760#ifdef CONFIG_PROC_FS
761/* Once we get a real allocator, we'll throw all of this away.
762 * Until then, we need some sort of visibility into the L1 alloc.
763 */
764/* Need to keep line of output the same. Currently, that is 44 bytes
765 * (including newline).
766 */
767static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
768        struct sram_piece *pfree_head,
769        struct sram_piece *pused_head)
770{
771    struct sram_piece *pslot;
772
773    if (!pfree_head || !pused_head)
774        return -1;
775
776    *len += sprintf(&buf[*len], "--- SRAM %-14s Size PID State \n", desc);
777
778    /* search the relevant memory slot */
779    pslot = pused_head->next;
780
781    while (pslot != NULL) {
782        *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
783            pslot->paddr, pslot->paddr + pslot->size,
784            pslot->size, pslot->pid, "ALLOCATED");
785
786        pslot = pslot->next;
787    }
788
789    pslot = pfree_head->next;
790
791    while (pslot != NULL) {
792        *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
793            pslot->paddr, pslot->paddr + pslot->size,
794            pslot->size, pslot->pid, "FREE");
795
796        pslot = pslot->next;
797    }
798
799    return 0;
800}
801static int sram_proc_read(char *buf, char **start, off_t offset, int count,
802        int *eof, void *data)
803{
804    int len = 0;
805    unsigned int cpu;
806
807    for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
808        if (_sram_proc_read(buf, &len, count, "Scratchpad",
809            &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
810            goto not_done;
811#if L1_DATA_A_LENGTH != 0
812        if (_sram_proc_read(buf, &len, count, "L1 Data A",
813            &per_cpu(free_l1_data_A_sram_head, cpu),
814            &per_cpu(used_l1_data_A_sram_head, cpu)))
815            goto not_done;
816#endif
817#if L1_DATA_B_LENGTH != 0
818        if (_sram_proc_read(buf, &len, count, "L1 Data B",
819            &per_cpu(free_l1_data_B_sram_head, cpu),
820            &per_cpu(used_l1_data_B_sram_head, cpu)))
821            goto not_done;
822#endif
823#if L1_CODE_LENGTH != 0
824        if (_sram_proc_read(buf, &len, count, "L1 Instruction",
825            &per_cpu(free_l1_inst_sram_head, cpu),
826            &per_cpu(used_l1_inst_sram_head, cpu)))
827            goto not_done;
828#endif
829    }
830#if L2_LENGTH != 0
831    if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
832        &used_l2_sram_head))
833        goto not_done;
834#endif
835    *eof = 1;
836 not_done:
837    return len;
838}
839
840static int __init sram_proc_init(void)
841{
842    struct proc_dir_entry *ptr;
843    ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
844    if (!ptr) {
845        printk(KERN_WARNING "unable to create /proc/sram\n");
846        return -1;
847    }
848    ptr->read_proc = sram_proc_read;
849    return 0;
850}
851late_initcall(sram_proc_init);
852#endif
853

Archive Download this file



interactive