Root/kernel/auditsc.c

1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <asm/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/module.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70
71#include "audit.h"
72
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_cap_data {
90    kernel_cap_t permitted;
91    kernel_cap_t inheritable;
92    union {
93        unsigned int fE; /* effective bit of a file capability */
94        kernel_cap_t effective; /* effective set of a process */
95    };
96};
97
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104    const char *name;
105    int name_len; /* number of name's characters to log */
106    unsigned name_put; /* call __putname() for this name */
107    unsigned long ino;
108    dev_t dev;
109    umode_t mode;
110    uid_t uid;
111    gid_t gid;
112    dev_t rdev;
113    u32 osid;
114    struct audit_cap_data fcap;
115    unsigned int fcap_ver;
116};
117
118struct audit_aux_data {
119    struct audit_aux_data *next;
120    int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
128struct audit_aux_data_execve {
129    struct audit_aux_data d;
130    int argc;
131    int envc;
132    struct mm_struct *mm;
133};
134
135struct audit_aux_data_pids {
136    struct audit_aux_data d;
137    pid_t target_pid[AUDIT_AUX_PIDS];
138    uid_t target_auid[AUDIT_AUX_PIDS];
139    uid_t target_uid[AUDIT_AUX_PIDS];
140    unsigned int target_sessionid[AUDIT_AUX_PIDS];
141    u32 target_sid[AUDIT_AUX_PIDS];
142    char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143    int pid_count;
144};
145
146struct audit_aux_data_bprm_fcaps {
147    struct audit_aux_data d;
148    struct audit_cap_data fcap;
149    unsigned int fcap_ver;
150    struct audit_cap_data old_pcap;
151    struct audit_cap_data new_pcap;
152};
153
154struct audit_aux_data_capset {
155    struct audit_aux_data d;
156    pid_t pid;
157    struct audit_cap_data cap;
158};
159
160struct audit_tree_refs {
161    struct audit_tree_refs *next;
162    struct audit_chunk *c[31];
163};
164
165/* The per-task audit context. */
166struct audit_context {
167    int dummy; /* must be the first element */
168    int in_syscall; /* 1 if task is in a syscall */
169    enum audit_state state, current_state;
170    unsigned int serial; /* serial number for record */
171    int major; /* syscall number */
172    struct timespec ctime; /* time of syscall entry */
173    unsigned long argv[4]; /* syscall arguments */
174    long return_code;/* syscall return code */
175    u64 prio;
176    int return_valid; /* return code is valid */
177    int name_count;
178    struct audit_names names[AUDIT_NAMES];
179    char * filterkey; /* key for rule that triggered record */
180    struct path pwd;
181    struct audit_context *previous; /* For nested syscalls */
182    struct audit_aux_data *aux;
183    struct audit_aux_data *aux_pids;
184    struct sockaddr_storage *sockaddr;
185    size_t sockaddr_len;
186                /* Save things to print about task_struct */
187    pid_t pid, ppid;
188    uid_t uid, euid, suid, fsuid;
189    gid_t gid, egid, sgid, fsgid;
190    unsigned long personality;
191    int arch;
192
193    pid_t target_pid;
194    uid_t target_auid;
195    uid_t target_uid;
196    unsigned int target_sessionid;
197    u32 target_sid;
198    char target_comm[TASK_COMM_LEN];
199
200    struct audit_tree_refs *trees, *first_trees;
201    struct list_head killed_trees;
202    int tree_count;
203
204    int type;
205    union {
206        struct {
207            int nargs;
208            long args[6];
209        } socketcall;
210        struct {
211            uid_t uid;
212            gid_t gid;
213            mode_t mode;
214            u32 osid;
215            int has_perm;
216            uid_t perm_uid;
217            gid_t perm_gid;
218            mode_t perm_mode;
219            unsigned long qbytes;
220        } ipc;
221        struct {
222            mqd_t mqdes;
223            struct mq_attr mqstat;
224        } mq_getsetattr;
225        struct {
226            mqd_t mqdes;
227            int sigev_signo;
228        } mq_notify;
229        struct {
230            mqd_t mqdes;
231            size_t msg_len;
232            unsigned int msg_prio;
233            struct timespec abs_timeout;
234        } mq_sendrecv;
235        struct {
236            int oflag;
237            mode_t mode;
238            struct mq_attr attr;
239        } mq_open;
240        struct {
241            pid_t pid;
242            struct audit_cap_data cap;
243        } capset;
244        struct {
245            int fd;
246            int flags;
247        } mmap;
248    };
249    int fds[2];
250
251#if AUDIT_DEBUG
252    int put_count;
253    int ino_count;
254#endif
255};
256
257static inline int open_arg(int flags, int mask)
258{
259    int n = ACC_MODE(flags);
260    if (flags & (O_TRUNC | O_CREAT))
261        n |= AUDIT_PERM_WRITE;
262    return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
267    unsigned n;
268    if (unlikely(!ctx))
269        return 0;
270    n = ctx->major;
271
272    switch (audit_classify_syscall(ctx->arch, n)) {
273    case 0: /* native */
274        if ((mask & AUDIT_PERM_WRITE) &&
275             audit_match_class(AUDIT_CLASS_WRITE, n))
276            return 1;
277        if ((mask & AUDIT_PERM_READ) &&
278             audit_match_class(AUDIT_CLASS_READ, n))
279            return 1;
280        if ((mask & AUDIT_PERM_ATTR) &&
281             audit_match_class(AUDIT_CLASS_CHATTR, n))
282            return 1;
283        return 0;
284    case 1: /* 32bit on biarch */
285        if ((mask & AUDIT_PERM_WRITE) &&
286             audit_match_class(AUDIT_CLASS_WRITE_32, n))
287            return 1;
288        if ((mask & AUDIT_PERM_READ) &&
289             audit_match_class(AUDIT_CLASS_READ_32, n))
290            return 1;
291        if ((mask & AUDIT_PERM_ATTR) &&
292             audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293            return 1;
294        return 0;
295    case 2: /* open */
296        return mask & ACC_MODE(ctx->argv[1]);
297    case 3: /* openat */
298        return mask & ACC_MODE(ctx->argv[2]);
299    case 4: /* socketcall */
300        return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301    case 5: /* execve */
302        return mask & AUDIT_PERM_EXEC;
303    default:
304        return 0;
305    }
306}
307
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310    unsigned index = which & ~S_IFMT;
311    mode_t mode = which & S_IFMT;
312
313    if (unlikely(!ctx))
314        return 0;
315
316    if (index >= ctx->name_count)
317        return 0;
318    if (ctx->names[index].ino == -1)
319        return 0;
320    if ((ctx->names[index].mode ^ mode) & S_IFMT)
321        return 0;
322    return 1;
323}
324
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
336static void audit_set_auditable(struct audit_context *ctx)
337{
338    if (!ctx->prio) {
339        ctx->prio = 1;
340        ctx->current_state = AUDIT_RECORD_CONTEXT;
341    }
342}
343
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346    struct audit_tree_refs *p = ctx->trees;
347    int left = ctx->tree_count;
348    if (likely(left)) {
349        p->c[--left] = chunk;
350        ctx->tree_count = left;
351        return 1;
352    }
353    if (!p)
354        return 0;
355    p = p->next;
356    if (p) {
357        p->c[30] = chunk;
358        ctx->trees = p;
359        ctx->tree_count = 30;
360        return 1;
361    }
362    return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367    struct audit_tree_refs *p = ctx->trees;
368    ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369    if (!ctx->trees) {
370        ctx->trees = p;
371        return 0;
372    }
373    if (p)
374        p->next = ctx->trees;
375    else
376        ctx->first_trees = ctx->trees;
377    ctx->tree_count = 31;
378    return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383              struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386    struct audit_tree_refs *q;
387    int n;
388    if (!p) {
389        /* we started with empty chain */
390        p = ctx->first_trees;
391        count = 31;
392        /* if the very first allocation has failed, nothing to do */
393        if (!p)
394            return;
395    }
396    n = count;
397    for (q = p; q != ctx->trees; q = q->next, n = 31) {
398        while (n--) {
399            audit_put_chunk(q->c[n]);
400            q->c[n] = NULL;
401        }
402    }
403    while (n-- > ctx->tree_count) {
404        audit_put_chunk(q->c[n]);
405        q->c[n] = NULL;
406    }
407    ctx->trees = p;
408    ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414    struct audit_tree_refs *p, *q;
415    for (p = ctx->first_trees; p; p = q) {
416        q = p->next;
417        kfree(p);
418    }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424    struct audit_tree_refs *p;
425    int n;
426    if (!tree)
427        return 0;
428    /* full ones */
429    for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430        for (n = 0; n < 31; n++)
431            if (audit_tree_match(p->c[n], tree))
432                return 1;
433    }
434    /* partial */
435    if (p) {
436        for (n = ctx->tree_count; n < 31; n++)
437            if (audit_tree_match(p->c[n], tree))
438                return 1;
439    }
440#endif
441    return 0;
442}
443
444/* Determine if any context name data matches a rule's watch data */
445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise.
447 *
448 * If task_creation is true, this is an explicit indication that we are
449 * filtering a task rule at task creation time. This and tsk == current are
450 * the only situations where tsk->cred may be accessed without an rcu read lock.
451 */
452static int audit_filter_rules(struct task_struct *tsk,
453                  struct audit_krule *rule,
454                  struct audit_context *ctx,
455                  struct audit_names *name,
456                  enum audit_state *state,
457                  bool task_creation)
458{
459    const struct cred *cred;
460    int i, j, need_sid = 1;
461    u32 sid;
462
463    cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464
465    for (i = 0; i < rule->field_count; i++) {
466        struct audit_field *f = &rule->fields[i];
467        int result = 0;
468
469        switch (f->type) {
470        case AUDIT_PID:
471            result = audit_comparator(tsk->pid, f->op, f->val);
472            break;
473        case AUDIT_PPID:
474            if (ctx) {
475                if (!ctx->ppid)
476                    ctx->ppid = sys_getppid();
477                result = audit_comparator(ctx->ppid, f->op, f->val);
478            }
479            break;
480        case AUDIT_UID:
481            result = audit_comparator(cred->uid, f->op, f->val);
482            break;
483        case AUDIT_EUID:
484            result = audit_comparator(cred->euid, f->op, f->val);
485            break;
486        case AUDIT_SUID:
487            result = audit_comparator(cred->suid, f->op, f->val);
488            break;
489        case AUDIT_FSUID:
490            result = audit_comparator(cred->fsuid, f->op, f->val);
491            break;
492        case AUDIT_GID:
493            result = audit_comparator(cred->gid, f->op, f->val);
494            break;
495        case AUDIT_EGID:
496            result = audit_comparator(cred->egid, f->op, f->val);
497            break;
498        case AUDIT_SGID:
499            result = audit_comparator(cred->sgid, f->op, f->val);
500            break;
501        case AUDIT_FSGID:
502            result = audit_comparator(cred->fsgid, f->op, f->val);
503            break;
504        case AUDIT_PERS:
505            result = audit_comparator(tsk->personality, f->op, f->val);
506            break;
507        case AUDIT_ARCH:
508            if (ctx)
509                result = audit_comparator(ctx->arch, f->op, f->val);
510            break;
511
512        case AUDIT_EXIT:
513            if (ctx && ctx->return_valid)
514                result = audit_comparator(ctx->return_code, f->op, f->val);
515            break;
516        case AUDIT_SUCCESS:
517            if (ctx && ctx->return_valid) {
518                if (f->val)
519                    result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520                else
521                    result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
522            }
523            break;
524        case AUDIT_DEVMAJOR:
525            if (name)
526                result = audit_comparator(MAJOR(name->dev),
527                              f->op, f->val);
528            else if (ctx) {
529                for (j = 0; j < ctx->name_count; j++) {
530                    if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
531                        ++result;
532                        break;
533                    }
534                }
535            }
536            break;
537        case AUDIT_DEVMINOR:
538            if (name)
539                result = audit_comparator(MINOR(name->dev),
540                              f->op, f->val);
541            else if (ctx) {
542                for (j = 0; j < ctx->name_count; j++) {
543                    if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
544                        ++result;
545                        break;
546                    }
547                }
548            }
549            break;
550        case AUDIT_INODE:
551            if (name)
552                result = (name->ino == f->val);
553            else if (ctx) {
554                for (j = 0; j < ctx->name_count; j++) {
555                    if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
556                        ++result;
557                        break;
558                    }
559                }
560            }
561            break;
562        case AUDIT_WATCH:
563            if (name)
564                result = audit_watch_compare(rule->watch, name->ino, name->dev);
565            break;
566        case AUDIT_DIR:
567            if (ctx)
568                result = match_tree_refs(ctx, rule->tree);
569            break;
570        case AUDIT_LOGINUID:
571            result = 0;
572            if (ctx)
573                result = audit_comparator(tsk->loginuid, f->op, f->val);
574            break;
575        case AUDIT_SUBJ_USER:
576        case AUDIT_SUBJ_ROLE:
577        case AUDIT_SUBJ_TYPE:
578        case AUDIT_SUBJ_SEN:
579        case AUDIT_SUBJ_CLR:
580            /* NOTE: this may return negative values indicating
581               a temporary error. We simply treat this as a
582               match for now to avoid losing information that
583               may be wanted. An error message will also be
584               logged upon error */
585            if (f->lsm_rule) {
586                if (need_sid) {
587                    security_task_getsecid(tsk, &sid);
588                    need_sid = 0;
589                }
590                result = security_audit_rule_match(sid, f->type,
591                                                  f->op,
592                                                  f->lsm_rule,
593                                                  ctx);
594            }
595            break;
596        case AUDIT_OBJ_USER:
597        case AUDIT_OBJ_ROLE:
598        case AUDIT_OBJ_TYPE:
599        case AUDIT_OBJ_LEV_LOW:
600        case AUDIT_OBJ_LEV_HIGH:
601            /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602               also applies here */
603            if (f->lsm_rule) {
604                /* Find files that match */
605                if (name) {
606                    result = security_audit_rule_match(
607                               name->osid, f->type, f->op,
608                               f->lsm_rule, ctx);
609                } else if (ctx) {
610                    for (j = 0; j < ctx->name_count; j++) {
611                        if (security_audit_rule_match(
612                              ctx->names[j].osid,
613                              f->type, f->op,
614                              f->lsm_rule, ctx)) {
615                            ++result;
616                            break;
617                        }
618                    }
619                }
620                /* Find ipc objects that match */
621                if (!ctx || ctx->type != AUDIT_IPC)
622                    break;
623                if (security_audit_rule_match(ctx->ipc.osid,
624                                  f->type, f->op,
625                                  f->lsm_rule, ctx))
626                    ++result;
627            }
628            break;
629        case AUDIT_ARG0:
630        case AUDIT_ARG1:
631        case AUDIT_ARG2:
632        case AUDIT_ARG3:
633            if (ctx)
634                result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
635            break;
636        case AUDIT_FILTERKEY:
637            /* ignore this field for filtering */
638            result = 1;
639            break;
640        case AUDIT_PERM:
641            result = audit_match_perm(ctx, f->val);
642            break;
643        case AUDIT_FILETYPE:
644            result = audit_match_filetype(ctx, f->val);
645            break;
646        }
647
648        if (!result)
649            return 0;
650    }
651
652    if (ctx) {
653        if (rule->prio <= ctx->prio)
654            return 0;
655        if (rule->filterkey) {
656            kfree(ctx->filterkey);
657            ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658        }
659        ctx->prio = rule->prio;
660    }
661    switch (rule->action) {
662    case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
663    case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
664    }
665    return 1;
666}
667
668/* At process creation time, we can determine if system-call auditing is
669 * completely disabled for this task. Since we only have the task
670 * structure at this point, we can only check uid and gid.
671 */
672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
673{
674    struct audit_entry *e;
675    enum audit_state state;
676
677    rcu_read_lock();
678    list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
679        if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680                       &state, true)) {
681            if (state == AUDIT_RECORD_CONTEXT)
682                *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
683            rcu_read_unlock();
684            return state;
685        }
686    }
687    rcu_read_unlock();
688    return AUDIT_BUILD_CONTEXT;
689}
690
691/* At syscall entry and exit time, this filter is called if the
692 * audit_state is not low enough that auditing cannot take place, but is
693 * also not high enough that we already know we have to write an audit
694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
695 */
696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697                         struct audit_context *ctx,
698                         struct list_head *list)
699{
700    struct audit_entry *e;
701    enum audit_state state;
702
703    if (audit_pid && tsk->tgid == audit_pid)
704        return AUDIT_DISABLED;
705
706    rcu_read_lock();
707    if (!list_empty(list)) {
708        int word = AUDIT_WORD(ctx->major);
709        int bit = AUDIT_BIT(ctx->major);
710
711        list_for_each_entry_rcu(e, list, list) {
712            if ((e->rule.mask[word] & bit) == bit &&
713                audit_filter_rules(tsk, &e->rule, ctx, NULL,
714                           &state, false)) {
715                rcu_read_unlock();
716                ctx->current_state = state;
717                return state;
718            }
719        }
720    }
721    rcu_read_unlock();
722    return AUDIT_BUILD_CONTEXT;
723}
724
725/* At syscall exit time, this filter is called if any audit_names[] have been
726 * collected during syscall processing. We only check rules in sublists at hash
727 * buckets applicable to the inode numbers in audit_names[].
728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
729 */
730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
731{
732    int i;
733    struct audit_entry *e;
734    enum audit_state state;
735
736    if (audit_pid && tsk->tgid == audit_pid)
737        return;
738
739    rcu_read_lock();
740    for (i = 0; i < ctx->name_count; i++) {
741        int word = AUDIT_WORD(ctx->major);
742        int bit = AUDIT_BIT(ctx->major);
743        struct audit_names *n = &ctx->names[i];
744        int h = audit_hash_ino((u32)n->ino);
745        struct list_head *list = &audit_inode_hash[h];
746
747        if (list_empty(list))
748            continue;
749
750        list_for_each_entry_rcu(e, list, list) {
751            if ((e->rule.mask[word] & bit) == bit &&
752                audit_filter_rules(tsk, &e->rule, ctx, n,
753                               &state, false)) {
754                rcu_read_unlock();
755                ctx->current_state = state;
756                return;
757            }
758        }
759    }
760    rcu_read_unlock();
761}
762
763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764                              int return_valid,
765                              long return_code)
766{
767    struct audit_context *context = tsk->audit_context;
768
769    if (likely(!context))
770        return NULL;
771    context->return_valid = return_valid;
772
773    /*
774     * we need to fix up the return code in the audit logs if the actual
775     * return codes are later going to be fixed up by the arch specific
776     * signal handlers
777     *
778     * This is actually a test for:
779     * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780     * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781     *
782     * but is faster than a bunch of ||
783     */
784    if (unlikely(return_code <= -ERESTARTSYS) &&
785        (return_code >= -ERESTART_RESTARTBLOCK) &&
786        (return_code != -ENOIOCTLCMD))
787        context->return_code = -EINTR;
788    else
789        context->return_code = return_code;
790
791    if (context->in_syscall && !context->dummy) {
792        audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793        audit_filter_inodes(tsk, context);
794    }
795
796    tsk->audit_context = NULL;
797    return context;
798}
799
800static inline void audit_free_names(struct audit_context *context)
801{
802    int i;
803
804#if AUDIT_DEBUG == 2
805    if (context->put_count + context->ino_count != context->name_count) {
806        printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
807               " name_count=%d put_count=%d"
808               " ino_count=%d [NOT freeing]\n",
809               __FILE__, __LINE__,
810               context->serial, context->major, context->in_syscall,
811               context->name_count, context->put_count,
812               context->ino_count);
813        for (i = 0; i < context->name_count; i++) {
814            printk(KERN_ERR "names[%d] = %p = %s\n", i,
815                   context->names[i].name,
816                   context->names[i].name ?: "(null)");
817        }
818        dump_stack();
819        return;
820    }
821#endif
822#if AUDIT_DEBUG
823    context->put_count = 0;
824    context->ino_count = 0;
825#endif
826
827    for (i = 0; i < context->name_count; i++) {
828        if (context->names[i].name && context->names[i].name_put)
829            __putname(context->names[i].name);
830    }
831    context->name_count = 0;
832    path_put(&context->pwd);
833    context->pwd.dentry = NULL;
834    context->pwd.mnt = NULL;
835}
836
837static inline void audit_free_aux(struct audit_context *context)
838{
839    struct audit_aux_data *aux;
840
841    while ((aux = context->aux)) {
842        context->aux = aux->next;
843        kfree(aux);
844    }
845    while ((aux = context->aux_pids)) {
846        context->aux_pids = aux->next;
847        kfree(aux);
848    }
849}
850
851static inline void audit_zero_context(struct audit_context *context,
852                      enum audit_state state)
853{
854    memset(context, 0, sizeof(*context));
855    context->state = state;
856    context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
857}
858
859static inline struct audit_context *audit_alloc_context(enum audit_state state)
860{
861    struct audit_context *context;
862
863    if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864        return NULL;
865    audit_zero_context(context, state);
866    INIT_LIST_HEAD(&context->killed_trees);
867    return context;
868}
869
870/**
871 * audit_alloc - allocate an audit context block for a task
872 * @tsk: task
873 *
874 * Filter on the task information and allocate a per-task audit context
875 * if necessary. Doing so turns on system call auditing for the
876 * specified task. This is called from copy_process, so no lock is
877 * needed.
878 */
879int audit_alloc(struct task_struct *tsk)
880{
881    struct audit_context *context;
882    enum audit_state state;
883    char *key = NULL;
884
885    if (likely(!audit_ever_enabled))
886        return 0; /* Return if not auditing. */
887
888    state = audit_filter_task(tsk, &key);
889    if (likely(state == AUDIT_DISABLED))
890        return 0;
891
892    if (!(context = audit_alloc_context(state))) {
893        kfree(key);
894        audit_log_lost("out of memory in audit_alloc");
895        return -ENOMEM;
896    }
897    context->filterkey = key;
898
899    tsk->audit_context = context;
900    set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901    return 0;
902}
903
904static inline void audit_free_context(struct audit_context *context)
905{
906    struct audit_context *previous;
907    int count = 0;
908
909    do {
910        previous = context->previous;
911        if (previous || (count && count < 10)) {
912            ++count;
913            printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914                   " freeing multiple contexts (%d)\n",
915                   context->serial, context->major,
916                   context->name_count, count);
917        }
918        audit_free_names(context);
919        unroll_tree_refs(context, NULL, 0);
920        free_tree_refs(context);
921        audit_free_aux(context);
922        kfree(context->filterkey);
923        kfree(context->sockaddr);
924        kfree(context);
925        context = previous;
926    } while (context);
927    if (count >= 10)
928        printk(KERN_ERR "audit: freed %d contexts\n", count);
929}
930
931void audit_log_task_context(struct audit_buffer *ab)
932{
933    char *ctx = NULL;
934    unsigned len;
935    int error;
936    u32 sid;
937
938    security_task_getsecid(current, &sid);
939    if (!sid)
940        return;
941
942    error = security_secid_to_secctx(sid, &ctx, &len);
943    if (error) {
944        if (error != -EINVAL)
945            goto error_path;
946        return;
947    }
948
949    audit_log_format(ab, " subj=%s", ctx);
950    security_release_secctx(ctx, len);
951    return;
952
953error_path:
954    audit_panic("error in audit_log_task_context");
955    return;
956}
957
958EXPORT_SYMBOL(audit_log_task_context);
959
960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961{
962    char name[sizeof(tsk->comm)];
963    struct mm_struct *mm = tsk->mm;
964    struct vm_area_struct *vma;
965
966    /* tsk == current */
967
968    get_task_comm(name, tsk);
969    audit_log_format(ab, " comm=");
970    audit_log_untrustedstring(ab, name);
971
972    if (mm) {
973        down_read(&mm->mmap_sem);
974        vma = mm->mmap;
975        while (vma) {
976            if ((vma->vm_flags & VM_EXECUTABLE) &&
977                vma->vm_file) {
978                audit_log_d_path(ab, "exe=",
979                         &vma->vm_file->f_path);
980                break;
981            }
982            vma = vma->vm_next;
983        }
984        up_read(&mm->mmap_sem);
985    }
986    audit_log_task_context(ab);
987}
988
989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990                 uid_t auid, uid_t uid, unsigned int sessionid,
991                 u32 sid, char *comm)
992{
993    struct audit_buffer *ab;
994    char *ctx = NULL;
995    u32 len;
996    int rc = 0;
997
998    ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999    if (!ab)
1000        return rc;
1001
1002    audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003             uid, sessionid);
1004    if (security_secid_to_secctx(sid, &ctx, &len)) {
1005        audit_log_format(ab, " obj=(none)");
1006        rc = 1;
1007    } else {
1008        audit_log_format(ab, " obj=%s", ctx);
1009        security_release_secctx(ctx, len);
1010    }
1011    audit_log_format(ab, " ocomm=");
1012    audit_log_untrustedstring(ab, comm);
1013    audit_log_end(ab);
1014
1015    return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030                    struct audit_buffer **ab,
1031                    int arg_num,
1032                    size_t *len_sent,
1033                    const char __user *p,
1034                    char *buf)
1035{
1036    char arg_num_len_buf[12];
1037    const char __user *tmp_p = p;
1038    /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039    size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040    size_t len, len_left, to_send;
1041    size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042    unsigned int i, has_cntl = 0, too_long = 0;
1043    int ret;
1044
1045    /* strnlen_user includes the null we don't want to send */
1046    len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048    /*
1049     * We just created this mm, if we can't find the strings
1050     * we just copied into it something is _very_ wrong. Similar
1051     * for strings that are too long, we should not have created
1052     * any.
1053     */
1054    if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055        WARN_ON(1);
1056        send_sig(SIGKILL, current, 0);
1057        return -1;
1058    }
1059
1060    /* walk the whole argument looking for non-ascii chars */
1061    do {
1062        if (len_left > MAX_EXECVE_AUDIT_LEN)
1063            to_send = MAX_EXECVE_AUDIT_LEN;
1064        else
1065            to_send = len_left;
1066        ret = copy_from_user(buf, tmp_p, to_send);
1067        /*
1068         * There is no reason for this copy to be short. We just
1069         * copied them here, and the mm hasn't been exposed to user-
1070         * space yet.
1071         */
1072        if (ret) {
1073            WARN_ON(1);
1074            send_sig(SIGKILL, current, 0);
1075            return -1;
1076        }
1077        buf[to_send] = '\0';
1078        has_cntl = audit_string_contains_control(buf, to_send);
1079        if (has_cntl) {
1080            /*
1081             * hex messages get logged as 2 bytes, so we can only
1082             * send half as much in each message
1083             */
1084            max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085            break;
1086        }
1087        len_left -= to_send;
1088        tmp_p += to_send;
1089    } while (len_left > 0);
1090
1091    len_left = len;
1092
1093    if (len > max_execve_audit_len)
1094        too_long = 1;
1095
1096    /* rewalk the argument actually logging the message */
1097    for (i = 0; len_left > 0; i++) {
1098        int room_left;
1099
1100        if (len_left > max_execve_audit_len)
1101            to_send = max_execve_audit_len;
1102        else
1103            to_send = len_left;
1104
1105        /* do we have space left to send this argument in this ab? */
1106        room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107        if (has_cntl)
1108            room_left -= (to_send * 2);
1109        else
1110            room_left -= to_send;
1111        if (room_left < 0) {
1112            *len_sent = 0;
1113            audit_log_end(*ab);
1114            *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115            if (!*ab)
1116                return 0;
1117        }
1118
1119        /*
1120         * first record needs to say how long the original string was
1121         * so we can be sure nothing was lost.
1122         */
1123        if ((i == 0) && (too_long))
1124            audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125                     has_cntl ? 2*len : len);
1126
1127        /*
1128         * normally arguments are small enough to fit and we already
1129         * filled buf above when we checked for control characters
1130         * so don't bother with another copy_from_user
1131         */
1132        if (len >= max_execve_audit_len)
1133            ret = copy_from_user(buf, p, to_send);
1134        else
1135            ret = 0;
1136        if (ret) {
1137            WARN_ON(1);
1138            send_sig(SIGKILL, current, 0);
1139            return -1;
1140        }
1141        buf[to_send] = '\0';
1142
1143        /* actually log it */
1144        audit_log_format(*ab, " a%d", arg_num);
1145        if (too_long)
1146            audit_log_format(*ab, "[%d]", i);
1147        audit_log_format(*ab, "=");
1148        if (has_cntl)
1149            audit_log_n_hex(*ab, buf, to_send);
1150        else
1151            audit_log_string(*ab, buf);
1152
1153        p += to_send;
1154        len_left -= to_send;
1155        *len_sent += arg_num_len;
1156        if (has_cntl)
1157            *len_sent += to_send * 2;
1158        else
1159            *len_sent += to_send;
1160    }
1161    /* include the null we didn't log */
1162    return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166                  struct audit_buffer **ab,
1167                  struct audit_aux_data_execve *axi)
1168{
1169    int i;
1170    size_t len, len_sent = 0;
1171    const char __user *p;
1172    char *buf;
1173
1174    if (axi->mm != current->mm)
1175        return; /* execve failed, no additional info */
1176
1177    p = (const char __user *)axi->mm->arg_start;
1178
1179    audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181    /*
1182     * we need some kernel buffer to hold the userspace args. Just
1183     * allocate one big one rather than allocating one of the right size
1184     * for every single argument inside audit_log_single_execve_arg()
1185     * should be <8k allocation so should be pretty safe.
1186     */
1187    buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188    if (!buf) {
1189        audit_panic("out of memory for argv string\n");
1190        return;
1191    }
1192
1193    for (i = 0; i < axi->argc; i++) {
1194        len = audit_log_single_execve_arg(context, ab, i,
1195                          &len_sent, p, buf);
1196        if (len <= 0)
1197            break;
1198        p += len;
1199    }
1200    kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205    int i;
1206
1207    audit_log_format(ab, " %s=", prefix);
1208    CAP_FOR_EACH_U32(i) {
1209        audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210    }
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215    kernel_cap_t *perm = &name->fcap.permitted;
1216    kernel_cap_t *inh = &name->fcap.inheritable;
1217    int log = 0;
1218
1219    if (!cap_isclear(*perm)) {
1220        audit_log_cap(ab, "cap_fp", perm);
1221        log = 1;
1222    }
1223    if (!cap_isclear(*inh)) {
1224        audit_log_cap(ab, "cap_fi", inh);
1225        log = 1;
1226    }
1227
1228    if (log)
1229        audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234    struct audit_buffer *ab;
1235    int i;
1236
1237    ab = audit_log_start(context, GFP_KERNEL, context->type);
1238    if (!ab)
1239        return;
1240
1241    switch (context->type) {
1242    case AUDIT_SOCKETCALL: {
1243        int nargs = context->socketcall.nargs;
1244        audit_log_format(ab, "nargs=%d", nargs);
1245        for (i = 0; i < nargs; i++)
1246            audit_log_format(ab, " a%d=%lx", i,
1247                context->socketcall.args[i]);
1248        break; }
1249    case AUDIT_IPC: {
1250        u32 osid = context->ipc.osid;
1251
1252        audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253             context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254        if (osid) {
1255            char *ctx = NULL;
1256            u32 len;
1257            if (security_secid_to_secctx(osid, &ctx, &len)) {
1258                audit_log_format(ab, " osid=%u", osid);
1259                *call_panic = 1;
1260            } else {
1261                audit_log_format(ab, " obj=%s", ctx);
1262                security_release_secctx(ctx, len);
1263            }
1264        }
1265        if (context->ipc.has_perm) {
1266            audit_log_end(ab);
1267            ab = audit_log_start(context, GFP_KERNEL,
1268                         AUDIT_IPC_SET_PERM);
1269            audit_log_format(ab,
1270                "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271                context->ipc.qbytes,
1272                context->ipc.perm_uid,
1273                context->ipc.perm_gid,
1274                context->ipc.perm_mode);
1275            if (!ab)
1276                return;
1277        }
1278        break; }
1279    case AUDIT_MQ_OPEN: {
1280        audit_log_format(ab,
1281            "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282            "mq_msgsize=%ld mq_curmsgs=%ld",
1283            context->mq_open.oflag, context->mq_open.mode,
1284            context->mq_open.attr.mq_flags,
1285            context->mq_open.attr.mq_maxmsg,
1286            context->mq_open.attr.mq_msgsize,
1287            context->mq_open.attr.mq_curmsgs);
1288        break; }
1289    case AUDIT_MQ_SENDRECV: {
1290        audit_log_format(ab,
1291            "mqdes=%d msg_len=%zd msg_prio=%u "
1292            "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293            context->mq_sendrecv.mqdes,
1294            context->mq_sendrecv.msg_len,
1295            context->mq_sendrecv.msg_prio,
1296            context->mq_sendrecv.abs_timeout.tv_sec,
1297            context->mq_sendrecv.abs_timeout.tv_nsec);
1298        break; }
1299    case AUDIT_MQ_NOTIFY: {
1300        audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301                context->mq_notify.mqdes,
1302                context->mq_notify.sigev_signo);
1303        break; }
1304    case AUDIT_MQ_GETSETATTR: {
1305        struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306        audit_log_format(ab,
1307            "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308            "mq_curmsgs=%ld ",
1309            context->mq_getsetattr.mqdes,
1310            attr->mq_flags, attr->mq_maxmsg,
1311            attr->mq_msgsize, attr->mq_curmsgs);
1312        break; }
1313    case AUDIT_CAPSET: {
1314        audit_log_format(ab, "pid=%d", context->capset.pid);
1315        audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316        audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317        audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318        break; }
1319    case AUDIT_MMAP: {
1320        audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321                 context->mmap.flags);
1322        break; }
1323    }
1324    audit_log_end(ab);
1325}
1326
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329    const struct cred *cred;
1330    int i, call_panic = 0;
1331    struct audit_buffer *ab;
1332    struct audit_aux_data *aux;
1333    const char *tty;
1334
1335    /* tsk == current */
1336    context->pid = tsk->pid;
1337    if (!context->ppid)
1338        context->ppid = sys_getppid();
1339    cred = current_cred();
1340    context->uid = cred->uid;
1341    context->gid = cred->gid;
1342    context->euid = cred->euid;
1343    context->suid = cred->suid;
1344    context->fsuid = cred->fsuid;
1345    context->egid = cred->egid;
1346    context->sgid = cred->sgid;
1347    context->fsgid = cred->fsgid;
1348    context->personality = tsk->personality;
1349
1350    ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351    if (!ab)
1352        return; /* audit_panic has been called */
1353    audit_log_format(ab, "arch=%x syscall=%d",
1354             context->arch, context->major);
1355    if (context->personality != PER_LINUX)
1356        audit_log_format(ab, " per=%lx", context->personality);
1357    if (context->return_valid)
1358        audit_log_format(ab, " success=%s exit=%ld",
1359                 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360                 context->return_code);
1361
1362    spin_lock_irq(&tsk->sighand->siglock);
1363    if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364        tty = tsk->signal->tty->name;
1365    else
1366        tty = "(none)";
1367    spin_unlock_irq(&tsk->sighand->siglock);
1368
1369    audit_log_format(ab,
1370          " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371          " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372          " euid=%u suid=%u fsuid=%u"
1373          " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374          context->argv[0],
1375          context->argv[1],
1376          context->argv[2],
1377          context->argv[3],
1378          context->name_count,
1379          context->ppid,
1380          context->pid,
1381          tsk->loginuid,
1382          context->uid,
1383          context->gid,
1384          context->euid, context->suid, context->fsuid,
1385          context->egid, context->sgid, context->fsgid, tty,
1386          tsk->sessionid);
1387
1388
1389    audit_log_task_info(ab, tsk);
1390    audit_log_key(ab, context->filterkey);
1391    audit_log_end(ab);
1392
1393    for (aux = context->aux; aux; aux = aux->next) {
1394
1395        ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396        if (!ab)
1397            continue; /* audit_panic has been called */
1398
1399        switch (aux->type) {
1400
1401        case AUDIT_EXECVE: {
1402            struct audit_aux_data_execve *axi = (void *)aux;
1403            audit_log_execve_info(context, &ab, axi);
1404            break; }
1405
1406        case AUDIT_BPRM_FCAPS: {
1407            struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408            audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409            audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410            audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411            audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412            audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413            audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414            audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415            audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416            audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417            audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418            break; }
1419
1420        }
1421        audit_log_end(ab);
1422    }
1423
1424    if (context->type)
1425        show_special(context, &call_panic);
1426
1427    if (context->fds[0] >= 0) {
1428        ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429        if (ab) {
1430            audit_log_format(ab, "fd0=%d fd1=%d",
1431                    context->fds[0], context->fds[1]);
1432            audit_log_end(ab);
1433        }
1434    }
1435
1436    if (context->sockaddr_len) {
1437        ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438        if (ab) {
1439            audit_log_format(ab, "saddr=");
1440            audit_log_n_hex(ab, (void *)context->sockaddr,
1441                    context->sockaddr_len);
1442            audit_log_end(ab);
1443        }
1444    }
1445
1446    for (aux = context->aux_pids; aux; aux = aux->next) {
1447        struct audit_aux_data_pids *axs = (void *)aux;
1448
1449        for (i = 0; i < axs->pid_count; i++)
1450            if (audit_log_pid_context(context, axs->target_pid[i],
1451                          axs->target_auid[i],
1452                          axs->target_uid[i],
1453                          axs->target_sessionid[i],
1454                          axs->target_sid[i],
1455                          axs->target_comm[i]))
1456                call_panic = 1;
1457    }
1458
1459    if (context->target_pid &&
1460        audit_log_pid_context(context, context->target_pid,
1461                  context->target_auid, context->target_uid,
1462                  context->target_sessionid,
1463                  context->target_sid, context->target_comm))
1464            call_panic = 1;
1465
1466    if (context->pwd.dentry && context->pwd.mnt) {
1467        ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468        if (ab) {
1469            audit_log_d_path(ab, "cwd=", &context->pwd);
1470            audit_log_end(ab);
1471        }
1472    }
1473    for (i = 0; i < context->name_count; i++) {
1474        struct audit_names *n = &context->names[i];
1475
1476        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477        if (!ab)
1478            continue; /* audit_panic has been called */
1479
1480        audit_log_format(ab, "item=%d", i);
1481
1482        if (n->name) {
1483            switch(n->name_len) {
1484            case AUDIT_NAME_FULL:
1485                /* log the full path */
1486                audit_log_format(ab, " name=");
1487                audit_log_untrustedstring(ab, n->name);
1488                break;
1489            case 0:
1490                /* name was specified as a relative path and the
1491                 * directory component is the cwd */
1492                audit_log_d_path(ab, "name=", &context->pwd);
1493                break;
1494            default:
1495                /* log the name's directory component */
1496                audit_log_format(ab, " name=");
1497                audit_log_n_untrustedstring(ab, n->name,
1498                                n->name_len);
1499            }
1500        } else
1501            audit_log_format(ab, " name=(null)");
1502
1503        if (n->ino != (unsigned long)-1) {
1504            audit_log_format(ab, " inode=%lu"
1505                     " dev=%02x:%02x mode=%#o"
1506                     " ouid=%u ogid=%u rdev=%02x:%02x",
1507                     n->ino,
1508                     MAJOR(n->dev),
1509                     MINOR(n->dev),
1510                     n->mode,
1511                     n->uid,
1512                     n->gid,
1513                     MAJOR(n->rdev),
1514                     MINOR(n->rdev));
1515        }
1516        if (n->osid != 0) {
1517            char *ctx = NULL;
1518            u32 len;
1519            if (security_secid_to_secctx(
1520                n->osid, &ctx, &len)) {
1521                audit_log_format(ab, " osid=%u", n->osid);
1522                call_panic = 2;
1523            } else {
1524                audit_log_format(ab, " obj=%s", ctx);
1525                security_release_secctx(ctx, len);
1526            }
1527        }
1528
1529        audit_log_fcaps(ab, n);
1530
1531        audit_log_end(ab);
1532    }
1533
1534    /* Send end of event record to help user space know we are finished */
1535    ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536    if (ab)
1537        audit_log_end(ab);
1538    if (call_panic)
1539        audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550    struct audit_context *context;
1551
1552    context = audit_get_context(tsk, 0, 0);
1553    if (likely(!context))
1554        return;
1555
1556    /* Check for system calls that do not go through the exit
1557     * function (e.g., exit_group), then free context block.
1558     * We use GFP_ATOMIC here because we might be doing this
1559     * in the context of the idle thread */
1560    /* that can happen only if we are called from do_exit() */
1561    if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562        audit_log_exit(context, tsk);
1563    if (!list_empty(&context->killed_trees))
1564        audit_kill_trees(&context->killed_trees);
1565
1566    audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry. This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built. If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587             unsigned long a1, unsigned long a2,
1588             unsigned long a3, unsigned long a4)
1589{
1590    struct task_struct *tsk = current;
1591    struct audit_context *context = tsk->audit_context;
1592    enum audit_state state;
1593
1594    if (unlikely(!context))
1595        return;
1596
1597    /*
1598     * This happens only on certain architectures that make system
1599     * calls in kernel_thread via the entry.S interface, instead of
1600     * with direct calls. (If you are porting to a new
1601     * architecture, hitting this condition can indicate that you
1602     * got the _exit/_leave calls backward in entry.S.)
1603     *
1604     * i386 no
1605     * x86_64 no
1606     * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1607     *
1608     * This also happens with vm86 emulation in a non-nested manner
1609     * (entries without exits), so this case must be caught.
1610     */
1611    if (context->in_syscall) {
1612        struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615        printk(KERN_ERR
1616               "audit(:%d) pid=%d in syscall=%d;"
1617               " entering syscall=%d\n",
1618               context->serial, tsk->pid, context->major, major);
1619#endif
1620        newctx = audit_alloc_context(context->state);
1621        if (newctx) {
1622            newctx->previous = context;
1623            context = newctx;
1624            tsk->audit_context = newctx;
1625        } else {
1626            /* If we can't alloc a new context, the best we
1627             * can do is to leak memory (any pending putname
1628             * will be lost). The only other alternative is
1629             * to abandon auditing. */
1630            audit_zero_context(context, context->state);
1631        }
1632    }
1633    BUG_ON(context->in_syscall || context->name_count);
1634
1635    if (!audit_enabled)
1636        return;
1637
1638    context->arch = arch;
1639    context->major = major;
1640    context->argv[0] = a1;
1641    context->argv[1] = a2;
1642    context->argv[2] = a3;
1643    context->argv[3] = a4;
1644
1645    state = context->state;
1646    context->dummy = !audit_n_rules;
1647    if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648        context->prio = 0;
1649        state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650    }
1651    if (likely(state == AUDIT_DISABLED))
1652        return;
1653
1654    context->serial = 0;
1655    context->ctime = CURRENT_TIME;
1656    context->in_syscall = 1;
1657    context->current_state = state;
1658    context->ppid = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663    struct audit_context *ctx = current->audit_context;
1664    struct audit_context *p = child->audit_context;
1665    if (!p || !ctx)
1666        return;
1667    if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668        return;
1669    p->arch = ctx->arch;
1670    p->major = ctx->major;
1671    memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672    p->ctime = ctx->ctime;
1673    p->dummy = ctx->dummy;
1674    p->in_syscall = ctx->in_syscall;
1675    p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676    p->ppid = current->pid;
1677    p->prio = ctx->prio;
1678    p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call. If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information. In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694    struct task_struct *tsk = current;
1695    struct audit_context *context;
1696
1697    context = audit_get_context(tsk, valid, return_code);
1698
1699    if (likely(!context))
1700        return;
1701
1702    if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703        audit_log_exit(context, tsk);
1704
1705    context->in_syscall = 0;
1706    context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708    if (!list_empty(&context->killed_trees))
1709        audit_kill_trees(&context->killed_trees);
1710
1711    if (context->previous) {
1712        struct audit_context *new_context = context->previous;
1713        context->previous = NULL;
1714        audit_free_context(context);
1715        tsk->audit_context = new_context;
1716    } else {
1717        audit_free_names(context);
1718        unroll_tree_refs(context, NULL, 0);
1719        audit_free_aux(context);
1720        context->aux = NULL;
1721        context->aux_pids = NULL;
1722        context->target_pid = 0;
1723        context->target_sid = 0;
1724        context->sockaddr_len = 0;
1725        context->type = 0;
1726        context->fds[0] = -1;
1727        if (context->state != AUDIT_RECORD_CONTEXT) {
1728            kfree(context->filterkey);
1729            context->filterkey = NULL;
1730        }
1731        tsk->audit_context = context;
1732    }
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738    struct audit_context *context;
1739    struct audit_tree_refs *p;
1740    struct audit_chunk *chunk;
1741    int count;
1742    if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743        return;
1744    context = current->audit_context;
1745    p = context->trees;
1746    count = context->tree_count;
1747    rcu_read_lock();
1748    chunk = audit_tree_lookup(inode);
1749    rcu_read_unlock();
1750    if (!chunk)
1751        return;
1752    if (likely(put_tree_ref(context, chunk)))
1753        return;
1754    if (unlikely(!grow_tree_refs(context))) {
1755        printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756        audit_set_auditable(context);
1757        audit_put_chunk(chunk);
1758        unroll_tree_refs(context, p, count);
1759        return;
1760    }
1761    put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768    struct audit_context *context;
1769    struct audit_tree_refs *p;
1770    const struct dentry *d, *parent;
1771    struct audit_chunk *drop;
1772    unsigned long seq;
1773    int count;
1774
1775    context = current->audit_context;
1776    p = context->trees;
1777    count = context->tree_count;
1778retry:
1779    drop = NULL;
1780    d = dentry;
1781    rcu_read_lock();
1782    seq = read_seqbegin(&rename_lock);
1783    for(;;) {
1784        struct inode *inode = d->d_inode;
1785        if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786            struct audit_chunk *chunk;
1787            chunk = audit_tree_lookup(inode);
1788            if (chunk) {
1789                if (unlikely(!put_tree_ref(context, chunk))) {
1790                    drop = chunk;
1791                    break;
1792                }
1793            }
1794        }
1795        parent = d->d_parent;
1796        if (parent == d)
1797            break;
1798        d = parent;
1799    }
1800    if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1801        rcu_read_unlock();
1802        if (!drop) {
1803            /* just a race with rename */
1804            unroll_tree_refs(context, p, count);
1805            goto retry;
1806        }
1807        audit_put_chunk(drop);
1808        if (grow_tree_refs(context)) {
1809            /* OK, got more space */
1810            unroll_tree_refs(context, p, count);
1811            goto retry;
1812        }
1813        /* too bad */
1814        printk(KERN_WARNING
1815            "out of memory, audit has lost a tree reference\n");
1816        unroll_tree_refs(context, p, count);
1817        audit_set_auditable(context);
1818        return;
1819    }
1820    rcu_read_unlock();
1821#endif
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833    struct audit_context *context = current->audit_context;
1834
1835    if (IS_ERR(name) || !name)
1836        return;
1837
1838    if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840        printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841               __FILE__, __LINE__, context->serial, name);
1842        dump_stack();
1843#endif
1844        return;
1845    }
1846    BUG_ON(context->name_count >= AUDIT_NAMES);
1847    context->names[context->name_count].name = name;
1848    context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849    context->names[context->name_count].name_put = 1;
1850    context->names[context->name_count].ino = (unsigned long)-1;
1851    context->names[context->name_count].osid = 0;
1852    ++context->name_count;
1853    if (!context->pwd.dentry)
1854        get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866    struct audit_context *context = current->audit_context;
1867
1868    BUG_ON(!context);
1869    if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871        printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872               __FILE__, __LINE__, context->serial, name);
1873        if (context->name_count) {
1874            int i;
1875            for (i = 0; i < context->name_count; i++)
1876                printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877                       context->names[i].name,
1878                       context->names[i].name ?: "(null)");
1879        }
1880#endif
1881        __putname(name);
1882    }
1883#if AUDIT_DEBUG
1884    else {
1885        ++context->put_count;
1886        if (context->put_count > context->name_count) {
1887            printk(KERN_ERR "%s:%d(:%d): major=%d"
1888                   " in_syscall=%d putname(%p) name_count=%d"
1889                   " put_count=%d\n",
1890                   __FILE__, __LINE__,
1891                   context->serial, context->major,
1892                   context->in_syscall, name, context->name_count,
1893                   context->put_count);
1894            dump_stack();
1895        }
1896    }
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901                const struct inode *inode)
1902{
1903    if (context->name_count >= AUDIT_NAMES) {
1904        if (inode)
1905            printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906                   "dev=%02x:%02x, inode=%lu\n",
1907                   MAJOR(inode->i_sb->s_dev),
1908                   MINOR(inode->i_sb->s_dev),
1909                   inode->i_ino);
1910
1911        else
1912            printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913        return 1;
1914    }
1915    context->name_count++;
1916#if AUDIT_DEBUG
1917    context->ino_count++;
1918#endif
1919    return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925    struct cpu_vfs_cap_data caps;
1926    int rc;
1927
1928    memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929    memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930    name->fcap.fE = 0;
1931    name->fcap_ver = 0;
1932
1933    if (!dentry)
1934        return 0;
1935
1936    rc = get_vfs_caps_from_disk(dentry, &caps);
1937    if (rc)
1938        return rc;
1939
1940    name->fcap.permitted = caps.permitted;
1941    name->fcap.inheritable = caps.inheritable;
1942    name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943    name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945    return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951                 const struct inode *inode)
1952{
1953    name->ino = inode->i_ino;
1954    name->dev = inode->i_sb->s_dev;
1955    name->mode = inode->i_mode;
1956    name->uid = inode->i_uid;
1957    name->gid = inode->i_gid;
1958    name->rdev = inode->i_rdev;
1959    security_inode_getsecid(inode, &name->osid);
1960    audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
1971{
1972    int idx;
1973    struct audit_context *context = current->audit_context;
1974    const struct inode *inode = dentry->d_inode;
1975
1976    if (!context->in_syscall)
1977        return;
1978    if (context->name_count
1979        && context->names[context->name_count-1].name
1980        && context->names[context->name_count-1].name == name)
1981        idx = context->name_count - 1;
1982    else if (context->name_count > 1
1983         && context->names[context->name_count-2].name
1984         && context->names[context->name_count-2].name == name)
1985        idx = context->name_count - 2;
1986    else {
1987        /* FIXME: how much do we care about inodes that have no
1988         * associated name? */
1989        if (audit_inc_name_count(context, inode))
1990            return;
1991        idx = context->name_count - 1;
1992        context->names[idx].name = NULL;
1993    }
1994    handle_path(dentry);
1995    audit_copy_inode(&context->names[idx], dentry, inode);
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created. Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012             const struct inode *parent)
2013{
2014    int idx;
2015    struct audit_context *context = current->audit_context;
2016    const char *found_parent = NULL, *found_child = NULL;
2017    const struct inode *inode = dentry->d_inode;
2018    const char *dname = dentry->d_name.name;
2019    int dirlen = 0;
2020
2021    if (!context->in_syscall)
2022        return;
2023
2024    if (inode)
2025        handle_one(inode);
2026
2027    /* parent is more likely, look for it first */
2028    for (idx = 0; idx < context->name_count; idx++) {
2029        struct audit_names *n = &context->names[idx];
2030
2031        if (!n->name)
2032            continue;
2033
2034        if (n->ino == parent->i_ino &&
2035            !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036            n->name_len = dirlen; /* update parent data in place */
2037            found_parent = n->name;
2038            goto add_names;
2039        }
2040    }
2041
2042    /* no matching parent, look for matching child */
2043    for (idx = 0; idx < context->name_count; idx++) {
2044        struct audit_names *n = &context->names[idx];
2045
2046        if (!n->name)
2047            continue;
2048
2049        /* strcmp() is the more likely scenario */
2050        if (!strcmp(dname, n->name) ||
2051             !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052            if (inode)
2053                audit_copy_inode(n, NULL, inode);
2054            else
2055                n->ino = (unsigned long)-1;
2056            found_child = n->name;
2057            goto add_names;
2058        }
2059    }
2060
2061add_names:
2062    if (!found_parent) {
2063        if (audit_inc_name_count(context, parent))
2064            return;
2065        idx = context->name_count - 1;
2066        context->names[idx].name = NULL;
2067        audit_copy_inode(&context->names[idx], NULL, parent);
2068    }
2069
2070    if (!found_child) {
2071        if (audit_inc_name_count(context, inode))
2072            return;
2073        idx = context->name_count - 1;
2074
2075        /* Re-use the name belonging to the slot for a matching parent
2076         * directory. All names for this context are relinquished in
2077         * audit_free_names() */
2078        if (found_parent) {
2079            context->names[idx].name = found_parent;
2080            context->names[idx].name_len = AUDIT_NAME_FULL;
2081            /* don't call __putname() */
2082            context->names[idx].name_put = 0;
2083        } else {
2084            context->names[idx].name = NULL;
2085        }
2086
2087        if (inode)
2088            audit_copy_inode(&context->names[idx], NULL, inode);
2089        else
2090            context->names[idx].ino = (unsigned long)-1;
2091    }
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104               struct timespec *t, unsigned int *serial)
2105{
2106    if (!ctx->in_syscall)
2107        return 0;
2108    if (!ctx->serial)
2109        ctx->serial = audit_serial();
2110    t->tv_sec = ctx->ctime.tv_sec;
2111    t->tv_nsec = ctx->ctime.tv_nsec;
2112    *serial = ctx->serial;
2113    if (!ctx->prio) {
2114        ctx->prio = 1;
2115        ctx->current_state = AUDIT_RECORD_CONTEXT;
2116    }
2117    return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134    unsigned int sessionid = atomic_inc_return(&session_id);
2135    struct audit_context *context = task->audit_context;
2136
2137    if (context && context->in_syscall) {
2138        struct audit_buffer *ab;
2139
2140        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141        if (ab) {
2142            audit_log_format(ab, "login pid=%d uid=%u "
2143                "old auid=%u new auid=%u"
2144                " old ses=%u new ses=%u",
2145                task->pid, task_uid(task),
2146                task->loginuid, loginuid,
2147                task->sessionid, sessionid);
2148            audit_log_end(ab);
2149        }
2150    }
2151    task->sessionid = sessionid;
2152    task->loginuid = loginuid;
2153    return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165    struct audit_context *context = current->audit_context;
2166
2167    if (attr)
2168        memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169    else
2170        memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172    context->mq_open.oflag = oflag;
2173    context->mq_open.mode = mode;
2174
2175    context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187            const struct timespec *abs_timeout)
2188{
2189    struct audit_context *context = current->audit_context;
2190    struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192    if (abs_timeout)
2193        memcpy(p, abs_timeout, sizeof(struct timespec));
2194    else
2195        memset(p, 0, sizeof(struct timespec));
2196
2197    context->mq_sendrecv.mqdes = mqdes;
2198    context->mq_sendrecv.msg_len = msg_len;
2199    context->mq_sendrecv.msg_prio = msg_prio;
2200
2201    context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213    struct audit_context *context = current->audit_context;
2214
2215    if (notification)
2216        context->mq_notify.sigev_signo = notification->sigev_signo;
2217    else
2218        context->mq_notify.sigev_signo = 0;
2219
2220    context->mq_notify.mqdes = mqdes;
2221    context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232    struct audit_context *context = current->audit_context;
2233    context->mq_getsetattr.mqdes = mqdes;
2234    context->mq_getsetattr.mqstat = *mqstat;
2235    context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245    struct audit_context *context = current->audit_context;
2246    context->ipc.uid = ipcp->uid;
2247    context->ipc.gid = ipcp->gid;
2248    context->ipc.mode = ipcp->mode;
2249    context->ipc.has_perm = 0;
2250    security_ipc_getsecid(ipcp, &context->ipc.osid);
2251    context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265    struct audit_context *context = current->audit_context;
2266
2267    context->ipc.qbytes = qbytes;
2268    context->ipc.perm_uid = uid;
2269    context->ipc.perm_gid = gid;
2270    context->ipc.perm_mode = mode;
2271    context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276    struct audit_aux_data_execve *ax;
2277    struct audit_context *context = current->audit_context;
2278
2279    if (likely(!audit_enabled || !context || context->dummy))
2280        return 0;
2281
2282    ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283    if (!ax)
2284        return -ENOMEM;
2285
2286    ax->argc = bprm->argc;
2287    ax->envc = bprm->envc;
2288    ax->mm = bprm->mm;
2289    ax->d.type = AUDIT_EXECVE;
2290    ax->d.next = context->aux;
2291    context->aux = (void *)ax;
2292    return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304    struct audit_context *context = current->audit_context;
2305
2306    if (likely(!context || context->dummy))
2307        return;
2308
2309    context->type = AUDIT_SOCKETCALL;
2310    context->socketcall.nargs = nargs;
2311    memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322    struct audit_context *context = current->audit_context;
2323    context->fds[0] = fd1;
2324    context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336    struct audit_context *context = current->audit_context;
2337
2338    if (likely(!context || context->dummy))
2339        return 0;
2340
2341    if (!context->sockaddr) {
2342        void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343        if (!p)
2344            return -ENOMEM;
2345        context->sockaddr = p;
2346    }
2347
2348    context->sockaddr_len = len;
2349    memcpy(context->sockaddr, a, len);
2350    return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355    struct audit_context *context = current->audit_context;
2356
2357    context->target_pid = t->pid;
2358    context->target_auid = audit_get_loginuid(t);
2359    context->target_uid = task_uid(t);
2360    context->target_sessionid = audit_get_sessionid(t);
2361    security_task_getsecid(t, &context->target_sid);
2362    memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375    struct audit_aux_data_pids *axp;
2376    struct task_struct *tsk = current;
2377    struct audit_context *ctx = tsk->audit_context;
2378    uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380    if (audit_pid && t->tgid == audit_pid) {
2381        if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382            audit_sig_pid = tsk->pid;
2383            if (tsk->loginuid != -1)
2384                audit_sig_uid = tsk->loginuid;
2385            else
2386                audit_sig_uid = uid;
2387            security_task_getsecid(tsk, &audit_sig_sid);
2388        }
2389        if (!audit_signals || audit_dummy_context())
2390            return 0;
2391    }
2392
2393    /* optimize the common case by putting first signal recipient directly
2394     * in audit_context */
2395    if (!ctx->target_pid) {
2396        ctx->target_pid = t->tgid;
2397        ctx->target_auid = audit_get_loginuid(t);
2398        ctx->target_uid = t_uid;
2399        ctx->target_sessionid = audit_get_sessionid(t);
2400        security_task_getsecid(t, &ctx->target_sid);
2401        memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402        return 0;
2403    }
2404
2405    axp = (void *)ctx->aux_pids;
2406    if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407        axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408        if (!axp)
2409            return -ENOMEM;
2410
2411        axp->d.type = AUDIT_OBJ_PID;
2412        axp->d.next = ctx->aux_pids;
2413        ctx->aux_pids = (void *)axp;
2414    }
2415    BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417    axp->target_pid[axp->pid_count] = t->tgid;
2418    axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419    axp->target_uid[axp->pid_count] = t_uid;
2420    axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421    security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422    memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423    axp->pid_count++;
2424
2425    return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440               const struct cred *new, const struct cred *old)
2441{
2442    struct audit_aux_data_bprm_fcaps *ax;
2443    struct audit_context *context = current->audit_context;
2444    struct cpu_vfs_cap_data vcaps;
2445    struct dentry *dentry;
2446
2447    ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448    if (!ax)
2449        return -ENOMEM;
2450
2451    ax->d.type = AUDIT_BPRM_FCAPS;
2452    ax->d.next = context->aux;
2453    context->aux = (void *)ax;
2454
2455    dentry = dget(bprm->file->f_dentry);
2456    get_vfs_caps_from_disk(dentry, &vcaps);
2457    dput(dentry);
2458
2459    ax->fcap.permitted = vcaps.permitted;
2460    ax->fcap.inheritable = vcaps.inheritable;
2461    ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462    ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464    ax->old_pcap.permitted = old->cap_permitted;
2465    ax->old_pcap.inheritable = old->cap_inheritable;
2466    ax->old_pcap.effective = old->cap_effective;
2467
2468    ax->new_pcap.permitted = new->cap_permitted;
2469    ax->new_pcap.inheritable = new->cap_inheritable;
2470    ax->new_pcap.effective = new->cap_effective;
2471    return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484               const struct cred *new, const struct cred *old)
2485{
2486    struct audit_context *context = current->audit_context;
2487    context->capset.pid = pid;
2488    context->capset.cap.effective = new->cap_effective;
2489    context->capset.cap.inheritable = new->cap_effective;
2490    context->capset.cap.permitted = new->cap_permitted;
2491    context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496    struct audit_context *context = current->audit_context;
2497    context->mmap.fd = fd;
2498    context->mmap.flags = flags;
2499    context->type = AUDIT_MMAP;
2500}
2501
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511    struct audit_buffer *ab;
2512    u32 sid;
2513    uid_t auid = audit_get_loginuid(current), uid;
2514    gid_t gid;
2515    unsigned int sessionid = audit_get_sessionid(current);
2516
2517    if (!audit_enabled)
2518        return;
2519
2520    if (signr == SIGQUIT) /* don't care for those */
2521        return;
2522
2523    ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524    current_uid_gid(&uid, &gid);
2525    audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526             auid, uid, gid, sessionid);
2527    security_task_getsecid(current, &sid);
2528    if (sid) {
2529        char *ctx = NULL;
2530        u32 len;
2531
2532        if (security_secid_to_secctx(sid, &ctx, &len))
2533            audit_log_format(ab, " ssid=%u", sid);
2534        else {
2535            audit_log_format(ab, " subj=%s", ctx);
2536            security_release_secctx(ctx, len);
2537        }
2538    }
2539    audit_log_format(ab, " pid=%d comm=", current->pid);
2540    audit_log_untrustedstring(ab, current->comm);
2541    audit_log_format(ab, " sig=%ld", signr);
2542    audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547    struct audit_context *ctx = current->audit_context;
2548    if (likely(!ctx || !ctx->in_syscall))
2549        return NULL;
2550    return &ctx->killed_trees;
2551}
2552

Archive Download this file



interactive