Root/
1 | /* |
2 | * linux/kernel/power/snapshot.c |
3 | * |
4 | * This file provides system snapshot/restore functionality for swsusp. |
5 | * |
6 | * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz> |
7 | * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> |
8 | * |
9 | * This file is released under the GPLv2. |
10 | * |
11 | */ |
12 | |
13 | #include <linux/version.h> |
14 | #include <linux/module.h> |
15 | #include <linux/mm.h> |
16 | #include <linux/suspend.h> |
17 | #include <linux/delay.h> |
18 | #include <linux/bitops.h> |
19 | #include <linux/spinlock.h> |
20 | #include <linux/kernel.h> |
21 | #include <linux/pm.h> |
22 | #include <linux/device.h> |
23 | #include <linux/init.h> |
24 | #include <linux/bootmem.h> |
25 | #include <linux/syscalls.h> |
26 | #include <linux/console.h> |
27 | #include <linux/highmem.h> |
28 | #include <linux/list.h> |
29 | #include <linux/slab.h> |
30 | |
31 | #include <asm/uaccess.h> |
32 | #include <asm/mmu_context.h> |
33 | #include <asm/pgtable.h> |
34 | #include <asm/tlbflush.h> |
35 | #include <asm/io.h> |
36 | |
37 | #include "power.h" |
38 | |
39 | static int swsusp_page_is_free(struct page *); |
40 | static void swsusp_set_page_forbidden(struct page *); |
41 | static void swsusp_unset_page_forbidden(struct page *); |
42 | |
43 | /* |
44 | * Number of bytes to reserve for memory allocations made by device drivers |
45 | * from their ->freeze() and ->freeze_noirq() callbacks so that they don't |
46 | * cause image creation to fail (tunable via /sys/power/reserved_size). |
47 | */ |
48 | unsigned long reserved_size; |
49 | |
50 | void __init hibernate_reserved_size_init(void) |
51 | { |
52 | reserved_size = SPARE_PAGES * PAGE_SIZE; |
53 | } |
54 | |
55 | /* |
56 | * Preferred image size in bytes (tunable via /sys/power/image_size). |
57 | * When it is set to N, swsusp will do its best to ensure the image |
58 | * size will not exceed N bytes, but if that is impossible, it will |
59 | * try to create the smallest image possible. |
60 | */ |
61 | unsigned long image_size; |
62 | |
63 | void __init hibernate_image_size_init(void) |
64 | { |
65 | image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE; |
66 | } |
67 | |
68 | /* List of PBEs needed for restoring the pages that were allocated before |
69 | * the suspend and included in the suspend image, but have also been |
70 | * allocated by the "resume" kernel, so their contents cannot be written |
71 | * directly to their "original" page frames. |
72 | */ |
73 | struct pbe *restore_pblist; |
74 | |
75 | /* Pointer to an auxiliary buffer (1 page) */ |
76 | static void *buffer; |
77 | |
78 | /** |
79 | * @safe_needed - on resume, for storing the PBE list and the image, |
80 | * we can only use memory pages that do not conflict with the pages |
81 | * used before suspend. The unsafe pages have PageNosaveFree set |
82 | * and we count them using unsafe_pages. |
83 | * |
84 | * Each allocated image page is marked as PageNosave and PageNosaveFree |
85 | * so that swsusp_free() can release it. |
86 | */ |
87 | |
88 | #define PG_ANY 0 |
89 | #define PG_SAFE 1 |
90 | #define PG_UNSAFE_CLEAR 1 |
91 | #define PG_UNSAFE_KEEP 0 |
92 | |
93 | static unsigned int allocated_unsafe_pages; |
94 | |
95 | static void *get_image_page(gfp_t gfp_mask, int safe_needed) |
96 | { |
97 | void *res; |
98 | |
99 | res = (void *)get_zeroed_page(gfp_mask); |
100 | if (safe_needed) |
101 | while (res && swsusp_page_is_free(virt_to_page(res))) { |
102 | /* The page is unsafe, mark it for swsusp_free() */ |
103 | swsusp_set_page_forbidden(virt_to_page(res)); |
104 | allocated_unsafe_pages++; |
105 | res = (void *)get_zeroed_page(gfp_mask); |
106 | } |
107 | if (res) { |
108 | swsusp_set_page_forbidden(virt_to_page(res)); |
109 | swsusp_set_page_free(virt_to_page(res)); |
110 | } |
111 | return res; |
112 | } |
113 | |
114 | unsigned long get_safe_page(gfp_t gfp_mask) |
115 | { |
116 | return (unsigned long)get_image_page(gfp_mask, PG_SAFE); |
117 | } |
118 | |
119 | static struct page *alloc_image_page(gfp_t gfp_mask) |
120 | { |
121 | struct page *page; |
122 | |
123 | page = alloc_page(gfp_mask); |
124 | if (page) { |
125 | swsusp_set_page_forbidden(page); |
126 | swsusp_set_page_free(page); |
127 | } |
128 | return page; |
129 | } |
130 | |
131 | /** |
132 | * free_image_page - free page represented by @addr, allocated with |
133 | * get_image_page (page flags set by it must be cleared) |
134 | */ |
135 | |
136 | static inline void free_image_page(void *addr, int clear_nosave_free) |
137 | { |
138 | struct page *page; |
139 | |
140 | BUG_ON(!virt_addr_valid(addr)); |
141 | |
142 | page = virt_to_page(addr); |
143 | |
144 | swsusp_unset_page_forbidden(page); |
145 | if (clear_nosave_free) |
146 | swsusp_unset_page_free(page); |
147 | |
148 | __free_page(page); |
149 | } |
150 | |
151 | /* struct linked_page is used to build chains of pages */ |
152 | |
153 | #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) |
154 | |
155 | struct linked_page { |
156 | struct linked_page *next; |
157 | char data[LINKED_PAGE_DATA_SIZE]; |
158 | } __attribute__((packed)); |
159 | |
160 | static inline void |
161 | free_list_of_pages(struct linked_page *list, int clear_page_nosave) |
162 | { |
163 | while (list) { |
164 | struct linked_page *lp = list->next; |
165 | |
166 | free_image_page(list, clear_page_nosave); |
167 | list = lp; |
168 | } |
169 | } |
170 | |
171 | /** |
172 | * struct chain_allocator is used for allocating small objects out of |
173 | * a linked list of pages called 'the chain'. |
174 | * |
175 | * The chain grows each time when there is no room for a new object in |
176 | * the current page. The allocated objects cannot be freed individually. |
177 | * It is only possible to free them all at once, by freeing the entire |
178 | * chain. |
179 | * |
180 | * NOTE: The chain allocator may be inefficient if the allocated objects |
181 | * are not much smaller than PAGE_SIZE. |
182 | */ |
183 | |
184 | struct chain_allocator { |
185 | struct linked_page *chain; /* the chain */ |
186 | unsigned int used_space; /* total size of objects allocated out |
187 | * of the current page |
188 | */ |
189 | gfp_t gfp_mask; /* mask for allocating pages */ |
190 | int safe_needed; /* if set, only "safe" pages are allocated */ |
191 | }; |
192 | |
193 | static void |
194 | chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) |
195 | { |
196 | ca->chain = NULL; |
197 | ca->used_space = LINKED_PAGE_DATA_SIZE; |
198 | ca->gfp_mask = gfp_mask; |
199 | ca->safe_needed = safe_needed; |
200 | } |
201 | |
202 | static void *chain_alloc(struct chain_allocator *ca, unsigned int size) |
203 | { |
204 | void *ret; |
205 | |
206 | if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { |
207 | struct linked_page *lp; |
208 | |
209 | lp = get_image_page(ca->gfp_mask, ca->safe_needed); |
210 | if (!lp) |
211 | return NULL; |
212 | |
213 | lp->next = ca->chain; |
214 | ca->chain = lp; |
215 | ca->used_space = 0; |
216 | } |
217 | ret = ca->chain->data + ca->used_space; |
218 | ca->used_space += size; |
219 | return ret; |
220 | } |
221 | |
222 | /** |
223 | * Data types related to memory bitmaps. |
224 | * |
225 | * Memory bitmap is a structure consiting of many linked lists of |
226 | * objects. The main list's elements are of type struct zone_bitmap |
227 | * and each of them corresonds to one zone. For each zone bitmap |
228 | * object there is a list of objects of type struct bm_block that |
229 | * represent each blocks of bitmap in which information is stored. |
230 | * |
231 | * struct memory_bitmap contains a pointer to the main list of zone |
232 | * bitmap objects, a struct bm_position used for browsing the bitmap, |
233 | * and a pointer to the list of pages used for allocating all of the |
234 | * zone bitmap objects and bitmap block objects. |
235 | * |
236 | * NOTE: It has to be possible to lay out the bitmap in memory |
237 | * using only allocations of order 0. Additionally, the bitmap is |
238 | * designed to work with arbitrary number of zones (this is over the |
239 | * top for now, but let's avoid making unnecessary assumptions ;-). |
240 | * |
241 | * struct zone_bitmap contains a pointer to a list of bitmap block |
242 | * objects and a pointer to the bitmap block object that has been |
243 | * most recently used for setting bits. Additionally, it contains the |
244 | * pfns that correspond to the start and end of the represented zone. |
245 | * |
246 | * struct bm_block contains a pointer to the memory page in which |
247 | * information is stored (in the form of a block of bitmap) |
248 | * It also contains the pfns that correspond to the start and end of |
249 | * the represented memory area. |
250 | */ |
251 | |
252 | #define BM_END_OF_MAP (~0UL) |
253 | |
254 | #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) |
255 | |
256 | struct bm_block { |
257 | struct list_head hook; /* hook into a list of bitmap blocks */ |
258 | unsigned long start_pfn; /* pfn represented by the first bit */ |
259 | unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ |
260 | unsigned long *data; /* bitmap representing pages */ |
261 | }; |
262 | |
263 | static inline unsigned long bm_block_bits(struct bm_block *bb) |
264 | { |
265 | return bb->end_pfn - bb->start_pfn; |
266 | } |
267 | |
268 | /* strcut bm_position is used for browsing memory bitmaps */ |
269 | |
270 | struct bm_position { |
271 | struct bm_block *block; |
272 | int bit; |
273 | }; |
274 | |
275 | struct memory_bitmap { |
276 | struct list_head blocks; /* list of bitmap blocks */ |
277 | struct linked_page *p_list; /* list of pages used to store zone |
278 | * bitmap objects and bitmap block |
279 | * objects |
280 | */ |
281 | struct bm_position cur; /* most recently used bit position */ |
282 | }; |
283 | |
284 | /* Functions that operate on memory bitmaps */ |
285 | |
286 | static void memory_bm_position_reset(struct memory_bitmap *bm) |
287 | { |
288 | bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); |
289 | bm->cur.bit = 0; |
290 | } |
291 | |
292 | static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); |
293 | |
294 | /** |
295 | * create_bm_block_list - create a list of block bitmap objects |
296 | * @pages - number of pages to track |
297 | * @list - list to put the allocated blocks into |
298 | * @ca - chain allocator to be used for allocating memory |
299 | */ |
300 | static int create_bm_block_list(unsigned long pages, |
301 | struct list_head *list, |
302 | struct chain_allocator *ca) |
303 | { |
304 | unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); |
305 | |
306 | while (nr_blocks-- > 0) { |
307 | struct bm_block *bb; |
308 | |
309 | bb = chain_alloc(ca, sizeof(struct bm_block)); |
310 | if (!bb) |
311 | return -ENOMEM; |
312 | list_add(&bb->hook, list); |
313 | } |
314 | |
315 | return 0; |
316 | } |
317 | |
318 | struct mem_extent { |
319 | struct list_head hook; |
320 | unsigned long start; |
321 | unsigned long end; |
322 | }; |
323 | |
324 | /** |
325 | * free_mem_extents - free a list of memory extents |
326 | * @list - list of extents to empty |
327 | */ |
328 | static void free_mem_extents(struct list_head *list) |
329 | { |
330 | struct mem_extent *ext, *aux; |
331 | |
332 | list_for_each_entry_safe(ext, aux, list, hook) { |
333 | list_del(&ext->hook); |
334 | kfree(ext); |
335 | } |
336 | } |
337 | |
338 | /** |
339 | * create_mem_extents - create a list of memory extents representing |
340 | * contiguous ranges of PFNs |
341 | * @list - list to put the extents into |
342 | * @gfp_mask - mask to use for memory allocations |
343 | */ |
344 | static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) |
345 | { |
346 | struct zone *zone; |
347 | |
348 | INIT_LIST_HEAD(list); |
349 | |
350 | for_each_populated_zone(zone) { |
351 | unsigned long zone_start, zone_end; |
352 | struct mem_extent *ext, *cur, *aux; |
353 | |
354 | zone_start = zone->zone_start_pfn; |
355 | zone_end = zone->zone_start_pfn + zone->spanned_pages; |
356 | |
357 | list_for_each_entry(ext, list, hook) |
358 | if (zone_start <= ext->end) |
359 | break; |
360 | |
361 | if (&ext->hook == list || zone_end < ext->start) { |
362 | /* New extent is necessary */ |
363 | struct mem_extent *new_ext; |
364 | |
365 | new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); |
366 | if (!new_ext) { |
367 | free_mem_extents(list); |
368 | return -ENOMEM; |
369 | } |
370 | new_ext->start = zone_start; |
371 | new_ext->end = zone_end; |
372 | list_add_tail(&new_ext->hook, &ext->hook); |
373 | continue; |
374 | } |
375 | |
376 | /* Merge this zone's range of PFNs with the existing one */ |
377 | if (zone_start < ext->start) |
378 | ext->start = zone_start; |
379 | if (zone_end > ext->end) |
380 | ext->end = zone_end; |
381 | |
382 | /* More merging may be possible */ |
383 | cur = ext; |
384 | list_for_each_entry_safe_continue(cur, aux, list, hook) { |
385 | if (zone_end < cur->start) |
386 | break; |
387 | if (zone_end < cur->end) |
388 | ext->end = cur->end; |
389 | list_del(&cur->hook); |
390 | kfree(cur); |
391 | } |
392 | } |
393 | |
394 | return 0; |
395 | } |
396 | |
397 | /** |
398 | * memory_bm_create - allocate memory for a memory bitmap |
399 | */ |
400 | static int |
401 | memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) |
402 | { |
403 | struct chain_allocator ca; |
404 | struct list_head mem_extents; |
405 | struct mem_extent *ext; |
406 | int error; |
407 | |
408 | chain_init(&ca, gfp_mask, safe_needed); |
409 | INIT_LIST_HEAD(&bm->blocks); |
410 | |
411 | error = create_mem_extents(&mem_extents, gfp_mask); |
412 | if (error) |
413 | return error; |
414 | |
415 | list_for_each_entry(ext, &mem_extents, hook) { |
416 | struct bm_block *bb; |
417 | unsigned long pfn = ext->start; |
418 | unsigned long pages = ext->end - ext->start; |
419 | |
420 | bb = list_entry(bm->blocks.prev, struct bm_block, hook); |
421 | |
422 | error = create_bm_block_list(pages, bm->blocks.prev, &ca); |
423 | if (error) |
424 | goto Error; |
425 | |
426 | list_for_each_entry_continue(bb, &bm->blocks, hook) { |
427 | bb->data = get_image_page(gfp_mask, safe_needed); |
428 | if (!bb->data) { |
429 | error = -ENOMEM; |
430 | goto Error; |
431 | } |
432 | |
433 | bb->start_pfn = pfn; |
434 | if (pages >= BM_BITS_PER_BLOCK) { |
435 | pfn += BM_BITS_PER_BLOCK; |
436 | pages -= BM_BITS_PER_BLOCK; |
437 | } else { |
438 | /* This is executed only once in the loop */ |
439 | pfn += pages; |
440 | } |
441 | bb->end_pfn = pfn; |
442 | } |
443 | } |
444 | |
445 | bm->p_list = ca.chain; |
446 | memory_bm_position_reset(bm); |
447 | Exit: |
448 | free_mem_extents(&mem_extents); |
449 | return error; |
450 | |
451 | Error: |
452 | bm->p_list = ca.chain; |
453 | memory_bm_free(bm, PG_UNSAFE_CLEAR); |
454 | goto Exit; |
455 | } |
456 | |
457 | /** |
458 | * memory_bm_free - free memory occupied by the memory bitmap @bm |
459 | */ |
460 | static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) |
461 | { |
462 | struct bm_block *bb; |
463 | |
464 | list_for_each_entry(bb, &bm->blocks, hook) |
465 | if (bb->data) |
466 | free_image_page(bb->data, clear_nosave_free); |
467 | |
468 | free_list_of_pages(bm->p_list, clear_nosave_free); |
469 | |
470 | INIT_LIST_HEAD(&bm->blocks); |
471 | } |
472 | |
473 | /** |
474 | * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds |
475 | * to given pfn. The cur_zone_bm member of @bm and the cur_block member |
476 | * of @bm->cur_zone_bm are updated. |
477 | */ |
478 | static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, |
479 | void **addr, unsigned int *bit_nr) |
480 | { |
481 | struct bm_block *bb; |
482 | |
483 | /* |
484 | * Check if the pfn corresponds to the current bitmap block and find |
485 | * the block where it fits if this is not the case. |
486 | */ |
487 | bb = bm->cur.block; |
488 | if (pfn < bb->start_pfn) |
489 | list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) |
490 | if (pfn >= bb->start_pfn) |
491 | break; |
492 | |
493 | if (pfn >= bb->end_pfn) |
494 | list_for_each_entry_continue(bb, &bm->blocks, hook) |
495 | if (pfn >= bb->start_pfn && pfn < bb->end_pfn) |
496 | break; |
497 | |
498 | if (&bb->hook == &bm->blocks) |
499 | return -EFAULT; |
500 | |
501 | /* The block has been found */ |
502 | bm->cur.block = bb; |
503 | pfn -= bb->start_pfn; |
504 | bm->cur.bit = pfn + 1; |
505 | *bit_nr = pfn; |
506 | *addr = bb->data; |
507 | return 0; |
508 | } |
509 | |
510 | static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) |
511 | { |
512 | void *addr; |
513 | unsigned int bit; |
514 | int error; |
515 | |
516 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
517 | BUG_ON(error); |
518 | set_bit(bit, addr); |
519 | } |
520 | |
521 | static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) |
522 | { |
523 | void *addr; |
524 | unsigned int bit; |
525 | int error; |
526 | |
527 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
528 | if (!error) |
529 | set_bit(bit, addr); |
530 | return error; |
531 | } |
532 | |
533 | static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) |
534 | { |
535 | void *addr; |
536 | unsigned int bit; |
537 | int error; |
538 | |
539 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
540 | BUG_ON(error); |
541 | clear_bit(bit, addr); |
542 | } |
543 | |
544 | static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) |
545 | { |
546 | void *addr; |
547 | unsigned int bit; |
548 | int error; |
549 | |
550 | error = memory_bm_find_bit(bm, pfn, &addr, &bit); |
551 | BUG_ON(error); |
552 | return test_bit(bit, addr); |
553 | } |
554 | |
555 | static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) |
556 | { |
557 | void *addr; |
558 | unsigned int bit; |
559 | |
560 | return !memory_bm_find_bit(bm, pfn, &addr, &bit); |
561 | } |
562 | |
563 | /** |
564 | * memory_bm_next_pfn - find the pfn that corresponds to the next set bit |
565 | * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is |
566 | * returned. |
567 | * |
568 | * It is required to run memory_bm_position_reset() before the first call to |
569 | * this function. |
570 | */ |
571 | |
572 | static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) |
573 | { |
574 | struct bm_block *bb; |
575 | int bit; |
576 | |
577 | bb = bm->cur.block; |
578 | do { |
579 | bit = bm->cur.bit; |
580 | bit = find_next_bit(bb->data, bm_block_bits(bb), bit); |
581 | if (bit < bm_block_bits(bb)) |
582 | goto Return_pfn; |
583 | |
584 | bb = list_entry(bb->hook.next, struct bm_block, hook); |
585 | bm->cur.block = bb; |
586 | bm->cur.bit = 0; |
587 | } while (&bb->hook != &bm->blocks); |
588 | |
589 | memory_bm_position_reset(bm); |
590 | return BM_END_OF_MAP; |
591 | |
592 | Return_pfn: |
593 | bm->cur.bit = bit + 1; |
594 | return bb->start_pfn + bit; |
595 | } |
596 | |
597 | /** |
598 | * This structure represents a range of page frames the contents of which |
599 | * should not be saved during the suspend. |
600 | */ |
601 | |
602 | struct nosave_region { |
603 | struct list_head list; |
604 | unsigned long start_pfn; |
605 | unsigned long end_pfn; |
606 | }; |
607 | |
608 | static LIST_HEAD(nosave_regions); |
609 | |
610 | /** |
611 | * register_nosave_region - register a range of page frames the contents |
612 | * of which should not be saved during the suspend (to be used in the early |
613 | * initialization code) |
614 | */ |
615 | |
616 | void __init |
617 | __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, |
618 | int use_kmalloc) |
619 | { |
620 | struct nosave_region *region; |
621 | |
622 | if (start_pfn >= end_pfn) |
623 | return; |
624 | |
625 | if (!list_empty(&nosave_regions)) { |
626 | /* Try to extend the previous region (they should be sorted) */ |
627 | region = list_entry(nosave_regions.prev, |
628 | struct nosave_region, list); |
629 | if (region->end_pfn == start_pfn) { |
630 | region->end_pfn = end_pfn; |
631 | goto Report; |
632 | } |
633 | } |
634 | if (use_kmalloc) { |
635 | /* during init, this shouldn't fail */ |
636 | region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); |
637 | BUG_ON(!region); |
638 | } else |
639 | /* This allocation cannot fail */ |
640 | region = alloc_bootmem(sizeof(struct nosave_region)); |
641 | region->start_pfn = start_pfn; |
642 | region->end_pfn = end_pfn; |
643 | list_add_tail(®ion->list, &nosave_regions); |
644 | Report: |
645 | printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", |
646 | start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); |
647 | } |
648 | |
649 | /* |
650 | * Set bits in this map correspond to the page frames the contents of which |
651 | * should not be saved during the suspend. |
652 | */ |
653 | static struct memory_bitmap *forbidden_pages_map; |
654 | |
655 | /* Set bits in this map correspond to free page frames. */ |
656 | static struct memory_bitmap *free_pages_map; |
657 | |
658 | /* |
659 | * Each page frame allocated for creating the image is marked by setting the |
660 | * corresponding bits in forbidden_pages_map and free_pages_map simultaneously |
661 | */ |
662 | |
663 | void swsusp_set_page_free(struct page *page) |
664 | { |
665 | if (free_pages_map) |
666 | memory_bm_set_bit(free_pages_map, page_to_pfn(page)); |
667 | } |
668 | |
669 | static int swsusp_page_is_free(struct page *page) |
670 | { |
671 | return free_pages_map ? |
672 | memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; |
673 | } |
674 | |
675 | void swsusp_unset_page_free(struct page *page) |
676 | { |
677 | if (free_pages_map) |
678 | memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); |
679 | } |
680 | |
681 | static void swsusp_set_page_forbidden(struct page *page) |
682 | { |
683 | if (forbidden_pages_map) |
684 | memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); |
685 | } |
686 | |
687 | int swsusp_page_is_forbidden(struct page *page) |
688 | { |
689 | return forbidden_pages_map ? |
690 | memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; |
691 | } |
692 | |
693 | static void swsusp_unset_page_forbidden(struct page *page) |
694 | { |
695 | if (forbidden_pages_map) |
696 | memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); |
697 | } |
698 | |
699 | /** |
700 | * mark_nosave_pages - set bits corresponding to the page frames the |
701 | * contents of which should not be saved in a given bitmap. |
702 | */ |
703 | |
704 | static void mark_nosave_pages(struct memory_bitmap *bm) |
705 | { |
706 | struct nosave_region *region; |
707 | |
708 | if (list_empty(&nosave_regions)) |
709 | return; |
710 | |
711 | list_for_each_entry(region, &nosave_regions, list) { |
712 | unsigned long pfn; |
713 | |
714 | pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", |
715 | region->start_pfn << PAGE_SHIFT, |
716 | region->end_pfn << PAGE_SHIFT); |
717 | |
718 | for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) |
719 | if (pfn_valid(pfn)) { |
720 | /* |
721 | * It is safe to ignore the result of |
722 | * mem_bm_set_bit_check() here, since we won't |
723 | * touch the PFNs for which the error is |
724 | * returned anyway. |
725 | */ |
726 | mem_bm_set_bit_check(bm, pfn); |
727 | } |
728 | } |
729 | } |
730 | |
731 | /** |
732 | * create_basic_memory_bitmaps - create bitmaps needed for marking page |
733 | * frames that should not be saved and free page frames. The pointers |
734 | * forbidden_pages_map and free_pages_map are only modified if everything |
735 | * goes well, because we don't want the bits to be used before both bitmaps |
736 | * are set up. |
737 | */ |
738 | |
739 | int create_basic_memory_bitmaps(void) |
740 | { |
741 | struct memory_bitmap *bm1, *bm2; |
742 | int error = 0; |
743 | |
744 | BUG_ON(forbidden_pages_map || free_pages_map); |
745 | |
746 | bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); |
747 | if (!bm1) |
748 | return -ENOMEM; |
749 | |
750 | error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); |
751 | if (error) |
752 | goto Free_first_object; |
753 | |
754 | bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); |
755 | if (!bm2) |
756 | goto Free_first_bitmap; |
757 | |
758 | error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); |
759 | if (error) |
760 | goto Free_second_object; |
761 | |
762 | forbidden_pages_map = bm1; |
763 | free_pages_map = bm2; |
764 | mark_nosave_pages(forbidden_pages_map); |
765 | |
766 | pr_debug("PM: Basic memory bitmaps created\n"); |
767 | |
768 | return 0; |
769 | |
770 | Free_second_object: |
771 | kfree(bm2); |
772 | Free_first_bitmap: |
773 | memory_bm_free(bm1, PG_UNSAFE_CLEAR); |
774 | Free_first_object: |
775 | kfree(bm1); |
776 | return -ENOMEM; |
777 | } |
778 | |
779 | /** |
780 | * free_basic_memory_bitmaps - free memory bitmaps allocated by |
781 | * create_basic_memory_bitmaps(). The auxiliary pointers are necessary |
782 | * so that the bitmaps themselves are not referred to while they are being |
783 | * freed. |
784 | */ |
785 | |
786 | void free_basic_memory_bitmaps(void) |
787 | { |
788 | struct memory_bitmap *bm1, *bm2; |
789 | |
790 | BUG_ON(!(forbidden_pages_map && free_pages_map)); |
791 | |
792 | bm1 = forbidden_pages_map; |
793 | bm2 = free_pages_map; |
794 | forbidden_pages_map = NULL; |
795 | free_pages_map = NULL; |
796 | memory_bm_free(bm1, PG_UNSAFE_CLEAR); |
797 | kfree(bm1); |
798 | memory_bm_free(bm2, PG_UNSAFE_CLEAR); |
799 | kfree(bm2); |
800 | |
801 | pr_debug("PM: Basic memory bitmaps freed\n"); |
802 | } |
803 | |
804 | /** |
805 | * snapshot_additional_pages - estimate the number of additional pages |
806 | * be needed for setting up the suspend image data structures for given |
807 | * zone (usually the returned value is greater than the exact number) |
808 | */ |
809 | |
810 | unsigned int snapshot_additional_pages(struct zone *zone) |
811 | { |
812 | unsigned int res; |
813 | |
814 | res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); |
815 | res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); |
816 | return 2 * res; |
817 | } |
818 | |
819 | #ifdef CONFIG_HIGHMEM |
820 | /** |
821 | * count_free_highmem_pages - compute the total number of free highmem |
822 | * pages, system-wide. |
823 | */ |
824 | |
825 | static unsigned int count_free_highmem_pages(void) |
826 | { |
827 | struct zone *zone; |
828 | unsigned int cnt = 0; |
829 | |
830 | for_each_populated_zone(zone) |
831 | if (is_highmem(zone)) |
832 | cnt += zone_page_state(zone, NR_FREE_PAGES); |
833 | |
834 | return cnt; |
835 | } |
836 | |
837 | /** |
838 | * saveable_highmem_page - Determine whether a highmem page should be |
839 | * included in the suspend image. |
840 | * |
841 | * We should save the page if it isn't Nosave or NosaveFree, or Reserved, |
842 | * and it isn't a part of a free chunk of pages. |
843 | */ |
844 | static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) |
845 | { |
846 | struct page *page; |
847 | |
848 | if (!pfn_valid(pfn)) |
849 | return NULL; |
850 | |
851 | page = pfn_to_page(pfn); |
852 | if (page_zone(page) != zone) |
853 | return NULL; |
854 | |
855 | BUG_ON(!PageHighMem(page)); |
856 | |
857 | if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || |
858 | PageReserved(page)) |
859 | return NULL; |
860 | |
861 | return page; |
862 | } |
863 | |
864 | /** |
865 | * count_highmem_pages - compute the total number of saveable highmem |
866 | * pages. |
867 | */ |
868 | |
869 | static unsigned int count_highmem_pages(void) |
870 | { |
871 | struct zone *zone; |
872 | unsigned int n = 0; |
873 | |
874 | for_each_populated_zone(zone) { |
875 | unsigned long pfn, max_zone_pfn; |
876 | |
877 | if (!is_highmem(zone)) |
878 | continue; |
879 | |
880 | mark_free_pages(zone); |
881 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
882 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
883 | if (saveable_highmem_page(zone, pfn)) |
884 | n++; |
885 | } |
886 | return n; |
887 | } |
888 | #else |
889 | static inline void *saveable_highmem_page(struct zone *z, unsigned long p) |
890 | { |
891 | return NULL; |
892 | } |
893 | #endif /* CONFIG_HIGHMEM */ |
894 | |
895 | /** |
896 | * saveable_page - Determine whether a non-highmem page should be included |
897 | * in the suspend image. |
898 | * |
899 | * We should save the page if it isn't Nosave, and is not in the range |
900 | * of pages statically defined as 'unsaveable', and it isn't a part of |
901 | * a free chunk of pages. |
902 | */ |
903 | static struct page *saveable_page(struct zone *zone, unsigned long pfn) |
904 | { |
905 | struct page *page; |
906 | |
907 | if (!pfn_valid(pfn)) |
908 | return NULL; |
909 | |
910 | page = pfn_to_page(pfn); |
911 | if (page_zone(page) != zone) |
912 | return NULL; |
913 | |
914 | BUG_ON(PageHighMem(page)); |
915 | |
916 | if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) |
917 | return NULL; |
918 | |
919 | if (PageReserved(page) |
920 | && (!kernel_page_present(page) || pfn_is_nosave(pfn))) |
921 | return NULL; |
922 | |
923 | return page; |
924 | } |
925 | |
926 | /** |
927 | * count_data_pages - compute the total number of saveable non-highmem |
928 | * pages. |
929 | */ |
930 | |
931 | static unsigned int count_data_pages(void) |
932 | { |
933 | struct zone *zone; |
934 | unsigned long pfn, max_zone_pfn; |
935 | unsigned int n = 0; |
936 | |
937 | for_each_populated_zone(zone) { |
938 | if (is_highmem(zone)) |
939 | continue; |
940 | |
941 | mark_free_pages(zone); |
942 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
943 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
944 | if (saveable_page(zone, pfn)) |
945 | n++; |
946 | } |
947 | return n; |
948 | } |
949 | |
950 | /* This is needed, because copy_page and memcpy are not usable for copying |
951 | * task structs. |
952 | */ |
953 | static inline void do_copy_page(long *dst, long *src) |
954 | { |
955 | int n; |
956 | |
957 | for (n = PAGE_SIZE / sizeof(long); n; n--) |
958 | *dst++ = *src++; |
959 | } |
960 | |
961 | |
962 | /** |
963 | * safe_copy_page - check if the page we are going to copy is marked as |
964 | * present in the kernel page tables (this always is the case if |
965 | * CONFIG_DEBUG_PAGEALLOC is not set and in that case |
966 | * kernel_page_present() always returns 'true'). |
967 | */ |
968 | static void safe_copy_page(void *dst, struct page *s_page) |
969 | { |
970 | if (kernel_page_present(s_page)) { |
971 | do_copy_page(dst, page_address(s_page)); |
972 | } else { |
973 | kernel_map_pages(s_page, 1, 1); |
974 | do_copy_page(dst, page_address(s_page)); |
975 | kernel_map_pages(s_page, 1, 0); |
976 | } |
977 | } |
978 | |
979 | |
980 | #ifdef CONFIG_HIGHMEM |
981 | static inline struct page * |
982 | page_is_saveable(struct zone *zone, unsigned long pfn) |
983 | { |
984 | return is_highmem(zone) ? |
985 | saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); |
986 | } |
987 | |
988 | static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) |
989 | { |
990 | struct page *s_page, *d_page; |
991 | void *src, *dst; |
992 | |
993 | s_page = pfn_to_page(src_pfn); |
994 | d_page = pfn_to_page(dst_pfn); |
995 | if (PageHighMem(s_page)) { |
996 | src = kmap_atomic(s_page, KM_USER0); |
997 | dst = kmap_atomic(d_page, KM_USER1); |
998 | do_copy_page(dst, src); |
999 | kunmap_atomic(dst, KM_USER1); |
1000 | kunmap_atomic(src, KM_USER0); |
1001 | } else { |
1002 | if (PageHighMem(d_page)) { |
1003 | /* Page pointed to by src may contain some kernel |
1004 | * data modified by kmap_atomic() |
1005 | */ |
1006 | safe_copy_page(buffer, s_page); |
1007 | dst = kmap_atomic(d_page, KM_USER0); |
1008 | copy_page(dst, buffer); |
1009 | kunmap_atomic(dst, KM_USER0); |
1010 | } else { |
1011 | safe_copy_page(page_address(d_page), s_page); |
1012 | } |
1013 | } |
1014 | } |
1015 | #else |
1016 | #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) |
1017 | |
1018 | static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) |
1019 | { |
1020 | safe_copy_page(page_address(pfn_to_page(dst_pfn)), |
1021 | pfn_to_page(src_pfn)); |
1022 | } |
1023 | #endif /* CONFIG_HIGHMEM */ |
1024 | |
1025 | static void |
1026 | copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) |
1027 | { |
1028 | struct zone *zone; |
1029 | unsigned long pfn; |
1030 | |
1031 | for_each_populated_zone(zone) { |
1032 | unsigned long max_zone_pfn; |
1033 | |
1034 | mark_free_pages(zone); |
1035 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
1036 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1037 | if (page_is_saveable(zone, pfn)) |
1038 | memory_bm_set_bit(orig_bm, pfn); |
1039 | } |
1040 | memory_bm_position_reset(orig_bm); |
1041 | memory_bm_position_reset(copy_bm); |
1042 | for(;;) { |
1043 | pfn = memory_bm_next_pfn(orig_bm); |
1044 | if (unlikely(pfn == BM_END_OF_MAP)) |
1045 | break; |
1046 | copy_data_page(memory_bm_next_pfn(copy_bm), pfn); |
1047 | } |
1048 | } |
1049 | |
1050 | /* Total number of image pages */ |
1051 | static unsigned int nr_copy_pages; |
1052 | /* Number of pages needed for saving the original pfns of the image pages */ |
1053 | static unsigned int nr_meta_pages; |
1054 | /* |
1055 | * Numbers of normal and highmem page frames allocated for hibernation image |
1056 | * before suspending devices. |
1057 | */ |
1058 | unsigned int alloc_normal, alloc_highmem; |
1059 | /* |
1060 | * Memory bitmap used for marking saveable pages (during hibernation) or |
1061 | * hibernation image pages (during restore) |
1062 | */ |
1063 | static struct memory_bitmap orig_bm; |
1064 | /* |
1065 | * Memory bitmap used during hibernation for marking allocated page frames that |
1066 | * will contain copies of saveable pages. During restore it is initially used |
1067 | * for marking hibernation image pages, but then the set bits from it are |
1068 | * duplicated in @orig_bm and it is released. On highmem systems it is next |
1069 | * used for marking "safe" highmem pages, but it has to be reinitialized for |
1070 | * this purpose. |
1071 | */ |
1072 | static struct memory_bitmap copy_bm; |
1073 | |
1074 | /** |
1075 | * swsusp_free - free pages allocated for the suspend. |
1076 | * |
1077 | * Suspend pages are alocated before the atomic copy is made, so we |
1078 | * need to release them after the resume. |
1079 | */ |
1080 | |
1081 | void swsusp_free(void) |
1082 | { |
1083 | struct zone *zone; |
1084 | unsigned long pfn, max_zone_pfn; |
1085 | |
1086 | for_each_populated_zone(zone) { |
1087 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
1088 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1089 | if (pfn_valid(pfn)) { |
1090 | struct page *page = pfn_to_page(pfn); |
1091 | |
1092 | if (swsusp_page_is_forbidden(page) && |
1093 | swsusp_page_is_free(page)) { |
1094 | swsusp_unset_page_forbidden(page); |
1095 | swsusp_unset_page_free(page); |
1096 | __free_page(page); |
1097 | } |
1098 | } |
1099 | } |
1100 | nr_copy_pages = 0; |
1101 | nr_meta_pages = 0; |
1102 | restore_pblist = NULL; |
1103 | buffer = NULL; |
1104 | alloc_normal = 0; |
1105 | alloc_highmem = 0; |
1106 | } |
1107 | |
1108 | /* Helper functions used for the shrinking of memory. */ |
1109 | |
1110 | #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) |
1111 | |
1112 | /** |
1113 | * preallocate_image_pages - Allocate a number of pages for hibernation image |
1114 | * @nr_pages: Number of page frames to allocate. |
1115 | * @mask: GFP flags to use for the allocation. |
1116 | * |
1117 | * Return value: Number of page frames actually allocated |
1118 | */ |
1119 | static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) |
1120 | { |
1121 | unsigned long nr_alloc = 0; |
1122 | |
1123 | while (nr_pages > 0) { |
1124 | struct page *page; |
1125 | |
1126 | page = alloc_image_page(mask); |
1127 | if (!page) |
1128 | break; |
1129 | memory_bm_set_bit(©_bm, page_to_pfn(page)); |
1130 | if (PageHighMem(page)) |
1131 | alloc_highmem++; |
1132 | else |
1133 | alloc_normal++; |
1134 | nr_pages--; |
1135 | nr_alloc++; |
1136 | } |
1137 | |
1138 | return nr_alloc; |
1139 | } |
1140 | |
1141 | static unsigned long preallocate_image_memory(unsigned long nr_pages, |
1142 | unsigned long avail_normal) |
1143 | { |
1144 | unsigned long alloc; |
1145 | |
1146 | if (avail_normal <= alloc_normal) |
1147 | return 0; |
1148 | |
1149 | alloc = avail_normal - alloc_normal; |
1150 | if (nr_pages < alloc) |
1151 | alloc = nr_pages; |
1152 | |
1153 | return preallocate_image_pages(alloc, GFP_IMAGE); |
1154 | } |
1155 | |
1156 | #ifdef CONFIG_HIGHMEM |
1157 | static unsigned long preallocate_image_highmem(unsigned long nr_pages) |
1158 | { |
1159 | return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); |
1160 | } |
1161 | |
1162 | /** |
1163 | * __fraction - Compute (an approximation of) x * (multiplier / base) |
1164 | */ |
1165 | static unsigned long __fraction(u64 x, u64 multiplier, u64 base) |
1166 | { |
1167 | x *= multiplier; |
1168 | do_div(x, base); |
1169 | return (unsigned long)x; |
1170 | } |
1171 | |
1172 | static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
1173 | unsigned long highmem, |
1174 | unsigned long total) |
1175 | { |
1176 | unsigned long alloc = __fraction(nr_pages, highmem, total); |
1177 | |
1178 | return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); |
1179 | } |
1180 | #else /* CONFIG_HIGHMEM */ |
1181 | static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) |
1182 | { |
1183 | return 0; |
1184 | } |
1185 | |
1186 | static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, |
1187 | unsigned long highmem, |
1188 | unsigned long total) |
1189 | { |
1190 | return 0; |
1191 | } |
1192 | #endif /* CONFIG_HIGHMEM */ |
1193 | |
1194 | /** |
1195 | * free_unnecessary_pages - Release preallocated pages not needed for the image |
1196 | */ |
1197 | static void free_unnecessary_pages(void) |
1198 | { |
1199 | unsigned long save, to_free_normal, to_free_highmem; |
1200 | |
1201 | save = count_data_pages(); |
1202 | if (alloc_normal >= save) { |
1203 | to_free_normal = alloc_normal - save; |
1204 | save = 0; |
1205 | } else { |
1206 | to_free_normal = 0; |
1207 | save -= alloc_normal; |
1208 | } |
1209 | save += count_highmem_pages(); |
1210 | if (alloc_highmem >= save) { |
1211 | to_free_highmem = alloc_highmem - save; |
1212 | } else { |
1213 | to_free_highmem = 0; |
1214 | save -= alloc_highmem; |
1215 | if (to_free_normal > save) |
1216 | to_free_normal -= save; |
1217 | else |
1218 | to_free_normal = 0; |
1219 | } |
1220 | |
1221 | memory_bm_position_reset(©_bm); |
1222 | |
1223 | while (to_free_normal > 0 || to_free_highmem > 0) { |
1224 | unsigned long pfn = memory_bm_next_pfn(©_bm); |
1225 | struct page *page = pfn_to_page(pfn); |
1226 | |
1227 | if (PageHighMem(page)) { |
1228 | if (!to_free_highmem) |
1229 | continue; |
1230 | to_free_highmem--; |
1231 | alloc_highmem--; |
1232 | } else { |
1233 | if (!to_free_normal) |
1234 | continue; |
1235 | to_free_normal--; |
1236 | alloc_normal--; |
1237 | } |
1238 | memory_bm_clear_bit(©_bm, pfn); |
1239 | swsusp_unset_page_forbidden(page); |
1240 | swsusp_unset_page_free(page); |
1241 | __free_page(page); |
1242 | } |
1243 | } |
1244 | |
1245 | /** |
1246 | * minimum_image_size - Estimate the minimum acceptable size of an image |
1247 | * @saveable: Number of saveable pages in the system. |
1248 | * |
1249 | * We want to avoid attempting to free too much memory too hard, so estimate the |
1250 | * minimum acceptable size of a hibernation image to use as the lower limit for |
1251 | * preallocating memory. |
1252 | * |
1253 | * We assume that the minimum image size should be proportional to |
1254 | * |
1255 | * [number of saveable pages] - [number of pages that can be freed in theory] |
1256 | * |
1257 | * where the second term is the sum of (1) reclaimable slab pages, (2) active |
1258 | * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, |
1259 | * minus mapped file pages. |
1260 | */ |
1261 | static unsigned long minimum_image_size(unsigned long saveable) |
1262 | { |
1263 | unsigned long size; |
1264 | |
1265 | size = global_page_state(NR_SLAB_RECLAIMABLE) |
1266 | + global_page_state(NR_ACTIVE_ANON) |
1267 | + global_page_state(NR_INACTIVE_ANON) |
1268 | + global_page_state(NR_ACTIVE_FILE) |
1269 | + global_page_state(NR_INACTIVE_FILE) |
1270 | - global_page_state(NR_FILE_MAPPED); |
1271 | |
1272 | return saveable <= size ? 0 : saveable - size; |
1273 | } |
1274 | |
1275 | /** |
1276 | * hibernate_preallocate_memory - Preallocate memory for hibernation image |
1277 | * |
1278 | * To create a hibernation image it is necessary to make a copy of every page |
1279 | * frame in use. We also need a number of page frames to be free during |
1280 | * hibernation for allocations made while saving the image and for device |
1281 | * drivers, in case they need to allocate memory from their hibernation |
1282 | * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough |
1283 | * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through |
1284 | * /sys/power/reserved_size, respectively). To make this happen, we compute the |
1285 | * total number of available page frames and allocate at least |
1286 | * |
1287 | * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 |
1288 | * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE) |
1289 | * |
1290 | * of them, which corresponds to the maximum size of a hibernation image. |
1291 | * |
1292 | * If image_size is set below the number following from the above formula, |
1293 | * the preallocation of memory is continued until the total number of saveable |
1294 | * pages in the system is below the requested image size or the minimum |
1295 | * acceptable image size returned by minimum_image_size(), whichever is greater. |
1296 | */ |
1297 | int hibernate_preallocate_memory(void) |
1298 | { |
1299 | struct zone *zone; |
1300 | unsigned long saveable, size, max_size, count, highmem, pages = 0; |
1301 | unsigned long alloc, save_highmem, pages_highmem, avail_normal; |
1302 | struct timeval start, stop; |
1303 | int error; |
1304 | |
1305 | printk(KERN_INFO "PM: Preallocating image memory... "); |
1306 | do_gettimeofday(&start); |
1307 | |
1308 | error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); |
1309 | if (error) |
1310 | goto err_out; |
1311 | |
1312 | error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); |
1313 | if (error) |
1314 | goto err_out; |
1315 | |
1316 | alloc_normal = 0; |
1317 | alloc_highmem = 0; |
1318 | |
1319 | /* Count the number of saveable data pages. */ |
1320 | save_highmem = count_highmem_pages(); |
1321 | saveable = count_data_pages(); |
1322 | |
1323 | /* |
1324 | * Compute the total number of page frames we can use (count) and the |
1325 | * number of pages needed for image metadata (size). |
1326 | */ |
1327 | count = saveable; |
1328 | saveable += save_highmem; |
1329 | highmem = save_highmem; |
1330 | size = 0; |
1331 | for_each_populated_zone(zone) { |
1332 | size += snapshot_additional_pages(zone); |
1333 | if (is_highmem(zone)) |
1334 | highmem += zone_page_state(zone, NR_FREE_PAGES); |
1335 | else |
1336 | count += zone_page_state(zone, NR_FREE_PAGES); |
1337 | } |
1338 | avail_normal = count; |
1339 | count += highmem; |
1340 | count -= totalreserve_pages; |
1341 | |
1342 | /* Compute the maximum number of saveable pages to leave in memory. */ |
1343 | max_size = (count - (size + PAGES_FOR_IO)) / 2 |
1344 | - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE); |
1345 | /* Compute the desired number of image pages specified by image_size. */ |
1346 | size = DIV_ROUND_UP(image_size, PAGE_SIZE); |
1347 | if (size > max_size) |
1348 | size = max_size; |
1349 | /* |
1350 | * If the desired number of image pages is at least as large as the |
1351 | * current number of saveable pages in memory, allocate page frames for |
1352 | * the image and we're done. |
1353 | */ |
1354 | if (size >= saveable) { |
1355 | pages = preallocate_image_highmem(save_highmem); |
1356 | pages += preallocate_image_memory(saveable - pages, avail_normal); |
1357 | goto out; |
1358 | } |
1359 | |
1360 | /* Estimate the minimum size of the image. */ |
1361 | pages = minimum_image_size(saveable); |
1362 | /* |
1363 | * To avoid excessive pressure on the normal zone, leave room in it to |
1364 | * accommodate an image of the minimum size (unless it's already too |
1365 | * small, in which case don't preallocate pages from it at all). |
1366 | */ |
1367 | if (avail_normal > pages) |
1368 | avail_normal -= pages; |
1369 | else |
1370 | avail_normal = 0; |
1371 | if (size < pages) |
1372 | size = min_t(unsigned long, pages, max_size); |
1373 | |
1374 | /* |
1375 | * Let the memory management subsystem know that we're going to need a |
1376 | * large number of page frames to allocate and make it free some memory. |
1377 | * NOTE: If this is not done, performance will be hurt badly in some |
1378 | * test cases. |
1379 | */ |
1380 | shrink_all_memory(saveable - size); |
1381 | |
1382 | /* |
1383 | * The number of saveable pages in memory was too high, so apply some |
1384 | * pressure to decrease it. First, make room for the largest possible |
1385 | * image and fail if that doesn't work. Next, try to decrease the size |
1386 | * of the image as much as indicated by 'size' using allocations from |
1387 | * highmem and non-highmem zones separately. |
1388 | */ |
1389 | pages_highmem = preallocate_image_highmem(highmem / 2); |
1390 | alloc = (count - max_size) - pages_highmem; |
1391 | pages = preallocate_image_memory(alloc, avail_normal); |
1392 | if (pages < alloc) { |
1393 | /* We have exhausted non-highmem pages, try highmem. */ |
1394 | alloc -= pages; |
1395 | pages += pages_highmem; |
1396 | pages_highmem = preallocate_image_highmem(alloc); |
1397 | if (pages_highmem < alloc) |
1398 | goto err_out; |
1399 | pages += pages_highmem; |
1400 | /* |
1401 | * size is the desired number of saveable pages to leave in |
1402 | * memory, so try to preallocate (all memory - size) pages. |
1403 | */ |
1404 | alloc = (count - pages) - size; |
1405 | pages += preallocate_image_highmem(alloc); |
1406 | } else { |
1407 | /* |
1408 | * There are approximately max_size saveable pages at this point |
1409 | * and we want to reduce this number down to size. |
1410 | */ |
1411 | alloc = max_size - size; |
1412 | size = preallocate_highmem_fraction(alloc, highmem, count); |
1413 | pages_highmem += size; |
1414 | alloc -= size; |
1415 | size = preallocate_image_memory(alloc, avail_normal); |
1416 | pages_highmem += preallocate_image_highmem(alloc - size); |
1417 | pages += pages_highmem + size; |
1418 | } |
1419 | |
1420 | /* |
1421 | * We only need as many page frames for the image as there are saveable |
1422 | * pages in memory, but we have allocated more. Release the excessive |
1423 | * ones now. |
1424 | */ |
1425 | free_unnecessary_pages(); |
1426 | |
1427 | out: |
1428 | do_gettimeofday(&stop); |
1429 | printk(KERN_CONT "done (allocated %lu pages)\n", pages); |
1430 | swsusp_show_speed(&start, &stop, pages, "Allocated"); |
1431 | |
1432 | return 0; |
1433 | |
1434 | err_out: |
1435 | printk(KERN_CONT "\n"); |
1436 | swsusp_free(); |
1437 | return -ENOMEM; |
1438 | } |
1439 | |
1440 | #ifdef CONFIG_HIGHMEM |
1441 | /** |
1442 | * count_pages_for_highmem - compute the number of non-highmem pages |
1443 | * that will be necessary for creating copies of highmem pages. |
1444 | */ |
1445 | |
1446 | static unsigned int count_pages_for_highmem(unsigned int nr_highmem) |
1447 | { |
1448 | unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; |
1449 | |
1450 | if (free_highmem >= nr_highmem) |
1451 | nr_highmem = 0; |
1452 | else |
1453 | nr_highmem -= free_highmem; |
1454 | |
1455 | return nr_highmem; |
1456 | } |
1457 | #else |
1458 | static unsigned int |
1459 | count_pages_for_highmem(unsigned int nr_highmem) { return 0; } |
1460 | #endif /* CONFIG_HIGHMEM */ |
1461 | |
1462 | /** |
1463 | * enough_free_mem - Make sure we have enough free memory for the |
1464 | * snapshot image. |
1465 | */ |
1466 | |
1467 | static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) |
1468 | { |
1469 | struct zone *zone; |
1470 | unsigned int free = alloc_normal; |
1471 | |
1472 | for_each_populated_zone(zone) |
1473 | if (!is_highmem(zone)) |
1474 | free += zone_page_state(zone, NR_FREE_PAGES); |
1475 | |
1476 | nr_pages += count_pages_for_highmem(nr_highmem); |
1477 | pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", |
1478 | nr_pages, PAGES_FOR_IO, free); |
1479 | |
1480 | return free > nr_pages + PAGES_FOR_IO; |
1481 | } |
1482 | |
1483 | #ifdef CONFIG_HIGHMEM |
1484 | /** |
1485 | * get_highmem_buffer - if there are some highmem pages in the suspend |
1486 | * image, we may need the buffer to copy them and/or load their data. |
1487 | */ |
1488 | |
1489 | static inline int get_highmem_buffer(int safe_needed) |
1490 | { |
1491 | buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); |
1492 | return buffer ? 0 : -ENOMEM; |
1493 | } |
1494 | |
1495 | /** |
1496 | * alloc_highmem_image_pages - allocate some highmem pages for the image. |
1497 | * Try to allocate as many pages as needed, but if the number of free |
1498 | * highmem pages is lesser than that, allocate them all. |
1499 | */ |
1500 | |
1501 | static inline unsigned int |
1502 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) |
1503 | { |
1504 | unsigned int to_alloc = count_free_highmem_pages(); |
1505 | |
1506 | if (to_alloc > nr_highmem) |
1507 | to_alloc = nr_highmem; |
1508 | |
1509 | nr_highmem -= to_alloc; |
1510 | while (to_alloc-- > 0) { |
1511 | struct page *page; |
1512 | |
1513 | page = alloc_image_page(__GFP_HIGHMEM); |
1514 | memory_bm_set_bit(bm, page_to_pfn(page)); |
1515 | } |
1516 | return nr_highmem; |
1517 | } |
1518 | #else |
1519 | static inline int get_highmem_buffer(int safe_needed) { return 0; } |
1520 | |
1521 | static inline unsigned int |
1522 | alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } |
1523 | #endif /* CONFIG_HIGHMEM */ |
1524 | |
1525 | /** |
1526 | * swsusp_alloc - allocate memory for the suspend image |
1527 | * |
1528 | * We first try to allocate as many highmem pages as there are |
1529 | * saveable highmem pages in the system. If that fails, we allocate |
1530 | * non-highmem pages for the copies of the remaining highmem ones. |
1531 | * |
1532 | * In this approach it is likely that the copies of highmem pages will |
1533 | * also be located in the high memory, because of the way in which |
1534 | * copy_data_pages() works. |
1535 | */ |
1536 | |
1537 | static int |
1538 | swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, |
1539 | unsigned int nr_pages, unsigned int nr_highmem) |
1540 | { |
1541 | if (nr_highmem > 0) { |
1542 | if (get_highmem_buffer(PG_ANY)) |
1543 | goto err_out; |
1544 | if (nr_highmem > alloc_highmem) { |
1545 | nr_highmem -= alloc_highmem; |
1546 | nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); |
1547 | } |
1548 | } |
1549 | if (nr_pages > alloc_normal) { |
1550 | nr_pages -= alloc_normal; |
1551 | while (nr_pages-- > 0) { |
1552 | struct page *page; |
1553 | |
1554 | page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); |
1555 | if (!page) |
1556 | goto err_out; |
1557 | memory_bm_set_bit(copy_bm, page_to_pfn(page)); |
1558 | } |
1559 | } |
1560 | |
1561 | return 0; |
1562 | |
1563 | err_out: |
1564 | swsusp_free(); |
1565 | return -ENOMEM; |
1566 | } |
1567 | |
1568 | asmlinkage int swsusp_save(void) |
1569 | { |
1570 | unsigned int nr_pages, nr_highmem; |
1571 | |
1572 | printk(KERN_INFO "PM: Creating hibernation image:\n"); |
1573 | |
1574 | drain_local_pages(NULL); |
1575 | nr_pages = count_data_pages(); |
1576 | nr_highmem = count_highmem_pages(); |
1577 | printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); |
1578 | |
1579 | if (!enough_free_mem(nr_pages, nr_highmem)) { |
1580 | printk(KERN_ERR "PM: Not enough free memory\n"); |
1581 | return -ENOMEM; |
1582 | } |
1583 | |
1584 | if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { |
1585 | printk(KERN_ERR "PM: Memory allocation failed\n"); |
1586 | return -ENOMEM; |
1587 | } |
1588 | |
1589 | /* During allocating of suspend pagedir, new cold pages may appear. |
1590 | * Kill them. |
1591 | */ |
1592 | drain_local_pages(NULL); |
1593 | copy_data_pages(©_bm, &orig_bm); |
1594 | |
1595 | /* |
1596 | * End of critical section. From now on, we can write to memory, |
1597 | * but we should not touch disk. This specially means we must _not_ |
1598 | * touch swap space! Except we must write out our image of course. |
1599 | */ |
1600 | |
1601 | nr_pages += nr_highmem; |
1602 | nr_copy_pages = nr_pages; |
1603 | nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); |
1604 | |
1605 | printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", |
1606 | nr_pages); |
1607 | |
1608 | return 0; |
1609 | } |
1610 | |
1611 | #ifndef CONFIG_ARCH_HIBERNATION_HEADER |
1612 | static int init_header_complete(struct swsusp_info *info) |
1613 | { |
1614 | memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); |
1615 | info->version_code = LINUX_VERSION_CODE; |
1616 | return 0; |
1617 | } |
1618 | |
1619 | static char *check_image_kernel(struct swsusp_info *info) |
1620 | { |
1621 | if (info->version_code != LINUX_VERSION_CODE) |
1622 | return "kernel version"; |
1623 | if (strcmp(info->uts.sysname,init_utsname()->sysname)) |
1624 | return "system type"; |
1625 | if (strcmp(info->uts.release,init_utsname()->release)) |
1626 | return "kernel release"; |
1627 | if (strcmp(info->uts.version,init_utsname()->version)) |
1628 | return "version"; |
1629 | if (strcmp(info->uts.machine,init_utsname()->machine)) |
1630 | return "machine"; |
1631 | return NULL; |
1632 | } |
1633 | #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ |
1634 | |
1635 | unsigned long snapshot_get_image_size(void) |
1636 | { |
1637 | return nr_copy_pages + nr_meta_pages + 1; |
1638 | } |
1639 | |
1640 | static int init_header(struct swsusp_info *info) |
1641 | { |
1642 | memset(info, 0, sizeof(struct swsusp_info)); |
1643 | info->num_physpages = num_physpages; |
1644 | info->image_pages = nr_copy_pages; |
1645 | info->pages = snapshot_get_image_size(); |
1646 | info->size = info->pages; |
1647 | info->size <<= PAGE_SHIFT; |
1648 | return init_header_complete(info); |
1649 | } |
1650 | |
1651 | /** |
1652 | * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm |
1653 | * are stored in the array @buf[] (1 page at a time) |
1654 | */ |
1655 | |
1656 | static inline void |
1657 | pack_pfns(unsigned long *buf, struct memory_bitmap *bm) |
1658 | { |
1659 | int j; |
1660 | |
1661 | for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { |
1662 | buf[j] = memory_bm_next_pfn(bm); |
1663 | if (unlikely(buf[j] == BM_END_OF_MAP)) |
1664 | break; |
1665 | } |
1666 | } |
1667 | |
1668 | /** |
1669 | * snapshot_read_next - used for reading the system memory snapshot. |
1670 | * |
1671 | * On the first call to it @handle should point to a zeroed |
1672 | * snapshot_handle structure. The structure gets updated and a pointer |
1673 | * to it should be passed to this function every next time. |
1674 | * |
1675 | * On success the function returns a positive number. Then, the caller |
1676 | * is allowed to read up to the returned number of bytes from the memory |
1677 | * location computed by the data_of() macro. |
1678 | * |
1679 | * The function returns 0 to indicate the end of data stream condition, |
1680 | * and a negative number is returned on error. In such cases the |
1681 | * structure pointed to by @handle is not updated and should not be used |
1682 | * any more. |
1683 | */ |
1684 | |
1685 | int snapshot_read_next(struct snapshot_handle *handle) |
1686 | { |
1687 | if (handle->cur > nr_meta_pages + nr_copy_pages) |
1688 | return 0; |
1689 | |
1690 | if (!buffer) { |
1691 | /* This makes the buffer be freed by swsusp_free() */ |
1692 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); |
1693 | if (!buffer) |
1694 | return -ENOMEM; |
1695 | } |
1696 | if (!handle->cur) { |
1697 | int error; |
1698 | |
1699 | error = init_header((struct swsusp_info *)buffer); |
1700 | if (error) |
1701 | return error; |
1702 | handle->buffer = buffer; |
1703 | memory_bm_position_reset(&orig_bm); |
1704 | memory_bm_position_reset(©_bm); |
1705 | } else if (handle->cur <= nr_meta_pages) { |
1706 | clear_page(buffer); |
1707 | pack_pfns(buffer, &orig_bm); |
1708 | } else { |
1709 | struct page *page; |
1710 | |
1711 | page = pfn_to_page(memory_bm_next_pfn(©_bm)); |
1712 | if (PageHighMem(page)) { |
1713 | /* Highmem pages are copied to the buffer, |
1714 | * because we can't return with a kmapped |
1715 | * highmem page (we may not be called again). |
1716 | */ |
1717 | void *kaddr; |
1718 | |
1719 | kaddr = kmap_atomic(page, KM_USER0); |
1720 | copy_page(buffer, kaddr); |
1721 | kunmap_atomic(kaddr, KM_USER0); |
1722 | handle->buffer = buffer; |
1723 | } else { |
1724 | handle->buffer = page_address(page); |
1725 | } |
1726 | } |
1727 | handle->cur++; |
1728 | return PAGE_SIZE; |
1729 | } |
1730 | |
1731 | /** |
1732 | * mark_unsafe_pages - mark the pages that cannot be used for storing |
1733 | * the image during resume, because they conflict with the pages that |
1734 | * had been used before suspend |
1735 | */ |
1736 | |
1737 | static int mark_unsafe_pages(struct memory_bitmap *bm) |
1738 | { |
1739 | struct zone *zone; |
1740 | unsigned long pfn, max_zone_pfn; |
1741 | |
1742 | /* Clear page flags */ |
1743 | for_each_populated_zone(zone) { |
1744 | max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; |
1745 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1746 | if (pfn_valid(pfn)) |
1747 | swsusp_unset_page_free(pfn_to_page(pfn)); |
1748 | } |
1749 | |
1750 | /* Mark pages that correspond to the "original" pfns as "unsafe" */ |
1751 | memory_bm_position_reset(bm); |
1752 | do { |
1753 | pfn = memory_bm_next_pfn(bm); |
1754 | if (likely(pfn != BM_END_OF_MAP)) { |
1755 | if (likely(pfn_valid(pfn))) |
1756 | swsusp_set_page_free(pfn_to_page(pfn)); |
1757 | else |
1758 | return -EFAULT; |
1759 | } |
1760 | } while (pfn != BM_END_OF_MAP); |
1761 | |
1762 | allocated_unsafe_pages = 0; |
1763 | |
1764 | return 0; |
1765 | } |
1766 | |
1767 | static void |
1768 | duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) |
1769 | { |
1770 | unsigned long pfn; |
1771 | |
1772 | memory_bm_position_reset(src); |
1773 | pfn = memory_bm_next_pfn(src); |
1774 | while (pfn != BM_END_OF_MAP) { |
1775 | memory_bm_set_bit(dst, pfn); |
1776 | pfn = memory_bm_next_pfn(src); |
1777 | } |
1778 | } |
1779 | |
1780 | static int check_header(struct swsusp_info *info) |
1781 | { |
1782 | char *reason; |
1783 | |
1784 | reason = check_image_kernel(info); |
1785 | if (!reason && info->num_physpages != num_physpages) |
1786 | reason = "memory size"; |
1787 | if (reason) { |
1788 | printk(KERN_ERR "PM: Image mismatch: %s\n", reason); |
1789 | return -EPERM; |
1790 | } |
1791 | return 0; |
1792 | } |
1793 | |
1794 | /** |
1795 | * load header - check the image header and copy data from it |
1796 | */ |
1797 | |
1798 | static int |
1799 | load_header(struct swsusp_info *info) |
1800 | { |
1801 | int error; |
1802 | |
1803 | restore_pblist = NULL; |
1804 | error = check_header(info); |
1805 | if (!error) { |
1806 | nr_copy_pages = info->image_pages; |
1807 | nr_meta_pages = info->pages - info->image_pages - 1; |
1808 | } |
1809 | return error; |
1810 | } |
1811 | |
1812 | /** |
1813 | * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set |
1814 | * the corresponding bit in the memory bitmap @bm |
1815 | */ |
1816 | static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) |
1817 | { |
1818 | int j; |
1819 | |
1820 | for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { |
1821 | if (unlikely(buf[j] == BM_END_OF_MAP)) |
1822 | break; |
1823 | |
1824 | if (memory_bm_pfn_present(bm, buf[j])) |
1825 | memory_bm_set_bit(bm, buf[j]); |
1826 | else |
1827 | return -EFAULT; |
1828 | } |
1829 | |
1830 | return 0; |
1831 | } |
1832 | |
1833 | /* List of "safe" pages that may be used to store data loaded from the suspend |
1834 | * image |
1835 | */ |
1836 | static struct linked_page *safe_pages_list; |
1837 | |
1838 | #ifdef CONFIG_HIGHMEM |
1839 | /* struct highmem_pbe is used for creating the list of highmem pages that |
1840 | * should be restored atomically during the resume from disk, because the page |
1841 | * frames they have occupied before the suspend are in use. |
1842 | */ |
1843 | struct highmem_pbe { |
1844 | struct page *copy_page; /* data is here now */ |
1845 | struct page *orig_page; /* data was here before the suspend */ |
1846 | struct highmem_pbe *next; |
1847 | }; |
1848 | |
1849 | /* List of highmem PBEs needed for restoring the highmem pages that were |
1850 | * allocated before the suspend and included in the suspend image, but have |
1851 | * also been allocated by the "resume" kernel, so their contents cannot be |
1852 | * written directly to their "original" page frames. |
1853 | */ |
1854 | static struct highmem_pbe *highmem_pblist; |
1855 | |
1856 | /** |
1857 | * count_highmem_image_pages - compute the number of highmem pages in the |
1858 | * suspend image. The bits in the memory bitmap @bm that correspond to the |
1859 | * image pages are assumed to be set. |
1860 | */ |
1861 | |
1862 | static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) |
1863 | { |
1864 | unsigned long pfn; |
1865 | unsigned int cnt = 0; |
1866 | |
1867 | memory_bm_position_reset(bm); |
1868 | pfn = memory_bm_next_pfn(bm); |
1869 | while (pfn != BM_END_OF_MAP) { |
1870 | if (PageHighMem(pfn_to_page(pfn))) |
1871 | cnt++; |
1872 | |
1873 | pfn = memory_bm_next_pfn(bm); |
1874 | } |
1875 | return cnt; |
1876 | } |
1877 | |
1878 | /** |
1879 | * prepare_highmem_image - try to allocate as many highmem pages as |
1880 | * there are highmem image pages (@nr_highmem_p points to the variable |
1881 | * containing the number of highmem image pages). The pages that are |
1882 | * "safe" (ie. will not be overwritten when the suspend image is |
1883 | * restored) have the corresponding bits set in @bm (it must be |
1884 | * unitialized). |
1885 | * |
1886 | * NOTE: This function should not be called if there are no highmem |
1887 | * image pages. |
1888 | */ |
1889 | |
1890 | static unsigned int safe_highmem_pages; |
1891 | |
1892 | static struct memory_bitmap *safe_highmem_bm; |
1893 | |
1894 | static int |
1895 | prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) |
1896 | { |
1897 | unsigned int to_alloc; |
1898 | |
1899 | if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) |
1900 | return -ENOMEM; |
1901 | |
1902 | if (get_highmem_buffer(PG_SAFE)) |
1903 | return -ENOMEM; |
1904 | |
1905 | to_alloc = count_free_highmem_pages(); |
1906 | if (to_alloc > *nr_highmem_p) |
1907 | to_alloc = *nr_highmem_p; |
1908 | else |
1909 | *nr_highmem_p = to_alloc; |
1910 | |
1911 | safe_highmem_pages = 0; |
1912 | while (to_alloc-- > 0) { |
1913 | struct page *page; |
1914 | |
1915 | page = alloc_page(__GFP_HIGHMEM); |
1916 | if (!swsusp_page_is_free(page)) { |
1917 | /* The page is "safe", set its bit the bitmap */ |
1918 | memory_bm_set_bit(bm, page_to_pfn(page)); |
1919 | safe_highmem_pages++; |
1920 | } |
1921 | /* Mark the page as allocated */ |
1922 | swsusp_set_page_forbidden(page); |
1923 | swsusp_set_page_free(page); |
1924 | } |
1925 | memory_bm_position_reset(bm); |
1926 | safe_highmem_bm = bm; |
1927 | return 0; |
1928 | } |
1929 | |
1930 | /** |
1931 | * get_highmem_page_buffer - for given highmem image page find the buffer |
1932 | * that suspend_write_next() should set for its caller to write to. |
1933 | * |
1934 | * If the page is to be saved to its "original" page frame or a copy of |
1935 | * the page is to be made in the highmem, @buffer is returned. Otherwise, |
1936 | * the copy of the page is to be made in normal memory, so the address of |
1937 | * the copy is returned. |
1938 | * |
1939 | * If @buffer is returned, the caller of suspend_write_next() will write |
1940 | * the page's contents to @buffer, so they will have to be copied to the |
1941 | * right location on the next call to suspend_write_next() and it is done |
1942 | * with the help of copy_last_highmem_page(). For this purpose, if |
1943 | * @buffer is returned, @last_highmem page is set to the page to which |
1944 | * the data will have to be copied from @buffer. |
1945 | */ |
1946 | |
1947 | static struct page *last_highmem_page; |
1948 | |
1949 | static void * |
1950 | get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) |
1951 | { |
1952 | struct highmem_pbe *pbe; |
1953 | void *kaddr; |
1954 | |
1955 | if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { |
1956 | /* We have allocated the "original" page frame and we can |
1957 | * use it directly to store the loaded page. |
1958 | */ |
1959 | last_highmem_page = page; |
1960 | return buffer; |
1961 | } |
1962 | /* The "original" page frame has not been allocated and we have to |
1963 | * use a "safe" page frame to store the loaded page. |
1964 | */ |
1965 | pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); |
1966 | if (!pbe) { |
1967 | swsusp_free(); |
1968 | return ERR_PTR(-ENOMEM); |
1969 | } |
1970 | pbe->orig_page = page; |
1971 | if (safe_highmem_pages > 0) { |
1972 | struct page *tmp; |
1973 | |
1974 | /* Copy of the page will be stored in high memory */ |
1975 | kaddr = buffer; |
1976 | tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); |
1977 | safe_highmem_pages--; |
1978 | last_highmem_page = tmp; |
1979 | pbe->copy_page = tmp; |
1980 | } else { |
1981 | /* Copy of the page will be stored in normal memory */ |
1982 | kaddr = safe_pages_list; |
1983 | safe_pages_list = safe_pages_list->next; |
1984 | pbe->copy_page = virt_to_page(kaddr); |
1985 | } |
1986 | pbe->next = highmem_pblist; |
1987 | highmem_pblist = pbe; |
1988 | return kaddr; |
1989 | } |
1990 | |
1991 | /** |
1992 | * copy_last_highmem_page - copy the contents of a highmem image from |
1993 | * @buffer, where the caller of snapshot_write_next() has place them, |
1994 | * to the right location represented by @last_highmem_page . |
1995 | */ |
1996 | |
1997 | static void copy_last_highmem_page(void) |
1998 | { |
1999 | if (last_highmem_page) { |
2000 | void *dst; |
2001 | |
2002 | dst = kmap_atomic(last_highmem_page, KM_USER0); |
2003 | copy_page(dst, buffer); |
2004 | kunmap_atomic(dst, KM_USER0); |
2005 | last_highmem_page = NULL; |
2006 | } |
2007 | } |
2008 | |
2009 | static inline int last_highmem_page_copied(void) |
2010 | { |
2011 | return !last_highmem_page; |
2012 | } |
2013 | |
2014 | static inline void free_highmem_data(void) |
2015 | { |
2016 | if (safe_highmem_bm) |
2017 | memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); |
2018 | |
2019 | if (buffer) |
2020 | free_image_page(buffer, PG_UNSAFE_CLEAR); |
2021 | } |
2022 | #else |
2023 | static inline int get_safe_write_buffer(void) { return 0; } |
2024 | |
2025 | static unsigned int |
2026 | count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } |
2027 | |
2028 | static inline int |
2029 | prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) |
2030 | { |
2031 | return 0; |
2032 | } |
2033 | |
2034 | static inline void * |
2035 | get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) |
2036 | { |
2037 | return ERR_PTR(-EINVAL); |
2038 | } |
2039 | |
2040 | static inline void copy_last_highmem_page(void) {} |
2041 | static inline int last_highmem_page_copied(void) { return 1; } |
2042 | static inline void free_highmem_data(void) {} |
2043 | #endif /* CONFIG_HIGHMEM */ |
2044 | |
2045 | /** |
2046 | * prepare_image - use the memory bitmap @bm to mark the pages that will |
2047 | * be overwritten in the process of restoring the system memory state |
2048 | * from the suspend image ("unsafe" pages) and allocate memory for the |
2049 | * image. |
2050 | * |
2051 | * The idea is to allocate a new memory bitmap first and then allocate |
2052 | * as many pages as needed for the image data, but not to assign these |
2053 | * pages to specific tasks initially. Instead, we just mark them as |
2054 | * allocated and create a lists of "safe" pages that will be used |
2055 | * later. On systems with high memory a list of "safe" highmem pages is |
2056 | * also created. |
2057 | */ |
2058 | |
2059 | #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) |
2060 | |
2061 | static int |
2062 | prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) |
2063 | { |
2064 | unsigned int nr_pages, nr_highmem; |
2065 | struct linked_page *sp_list, *lp; |
2066 | int error; |
2067 | |
2068 | /* If there is no highmem, the buffer will not be necessary */ |
2069 | free_image_page(buffer, PG_UNSAFE_CLEAR); |
2070 | buffer = NULL; |
2071 | |
2072 | nr_highmem = count_highmem_image_pages(bm); |
2073 | error = mark_unsafe_pages(bm); |
2074 | if (error) |
2075 | goto Free; |
2076 | |
2077 | error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); |
2078 | if (error) |
2079 | goto Free; |
2080 | |
2081 | duplicate_memory_bitmap(new_bm, bm); |
2082 | memory_bm_free(bm, PG_UNSAFE_KEEP); |
2083 | if (nr_highmem > 0) { |
2084 | error = prepare_highmem_image(bm, &nr_highmem); |
2085 | if (error) |
2086 | goto Free; |
2087 | } |
2088 | /* Reserve some safe pages for potential later use. |
2089 | * |
2090 | * NOTE: This way we make sure there will be enough safe pages for the |
2091 | * chain_alloc() in get_buffer(). It is a bit wasteful, but |
2092 | * nr_copy_pages cannot be greater than 50% of the memory anyway. |
2093 | */ |
2094 | sp_list = NULL; |
2095 | /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ |
2096 | nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; |
2097 | nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); |
2098 | while (nr_pages > 0) { |
2099 | lp = get_image_page(GFP_ATOMIC, PG_SAFE); |
2100 | if (!lp) { |
2101 | error = -ENOMEM; |
2102 | goto Free; |
2103 | } |
2104 | lp->next = sp_list; |
2105 | sp_list = lp; |
2106 | nr_pages--; |
2107 | } |
2108 | /* Preallocate memory for the image */ |
2109 | safe_pages_list = NULL; |
2110 | nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; |
2111 | while (nr_pages > 0) { |
2112 | lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); |
2113 | if (!lp) { |
2114 | error = -ENOMEM; |
2115 | goto Free; |
2116 | } |
2117 | if (!swsusp_page_is_free(virt_to_page(lp))) { |
2118 | /* The page is "safe", add it to the list */ |
2119 | lp->next = safe_pages_list; |
2120 | safe_pages_list = lp; |
2121 | } |
2122 | /* Mark the page as allocated */ |
2123 | swsusp_set_page_forbidden(virt_to_page(lp)); |
2124 | swsusp_set_page_free(virt_to_page(lp)); |
2125 | nr_pages--; |
2126 | } |
2127 | /* Free the reserved safe pages so that chain_alloc() can use them */ |
2128 | while (sp_list) { |
2129 | lp = sp_list->next; |
2130 | free_image_page(sp_list, PG_UNSAFE_CLEAR); |
2131 | sp_list = lp; |
2132 | } |
2133 | return 0; |
2134 | |
2135 | Free: |
2136 | swsusp_free(); |
2137 | return error; |
2138 | } |
2139 | |
2140 | /** |
2141 | * get_buffer - compute the address that snapshot_write_next() should |
2142 | * set for its caller to write to. |
2143 | */ |
2144 | |
2145 | static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) |
2146 | { |
2147 | struct pbe *pbe; |
2148 | struct page *page; |
2149 | unsigned long pfn = memory_bm_next_pfn(bm); |
2150 | |
2151 | if (pfn == BM_END_OF_MAP) |
2152 | return ERR_PTR(-EFAULT); |
2153 | |
2154 | page = pfn_to_page(pfn); |
2155 | if (PageHighMem(page)) |
2156 | return get_highmem_page_buffer(page, ca); |
2157 | |
2158 | if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) |
2159 | /* We have allocated the "original" page frame and we can |
2160 | * use it directly to store the loaded page. |
2161 | */ |
2162 | return page_address(page); |
2163 | |
2164 | /* The "original" page frame has not been allocated and we have to |
2165 | * use a "safe" page frame to store the loaded page. |
2166 | */ |
2167 | pbe = chain_alloc(ca, sizeof(struct pbe)); |
2168 | if (!pbe) { |
2169 | swsusp_free(); |
2170 | return ERR_PTR(-ENOMEM); |
2171 | } |
2172 | pbe->orig_address = page_address(page); |
2173 | pbe->address = safe_pages_list; |
2174 | safe_pages_list = safe_pages_list->next; |
2175 | pbe->next = restore_pblist; |
2176 | restore_pblist = pbe; |
2177 | return pbe->address; |
2178 | } |
2179 | |
2180 | /** |
2181 | * snapshot_write_next - used for writing the system memory snapshot. |
2182 | * |
2183 | * On the first call to it @handle should point to a zeroed |
2184 | * snapshot_handle structure. The structure gets updated and a pointer |
2185 | * to it should be passed to this function every next time. |
2186 | * |
2187 | * On success the function returns a positive number. Then, the caller |
2188 | * is allowed to write up to the returned number of bytes to the memory |
2189 | * location computed by the data_of() macro. |
2190 | * |
2191 | * The function returns 0 to indicate the "end of file" condition, |
2192 | * and a negative number is returned on error. In such cases the |
2193 | * structure pointed to by @handle is not updated and should not be used |
2194 | * any more. |
2195 | */ |
2196 | |
2197 | int snapshot_write_next(struct snapshot_handle *handle) |
2198 | { |
2199 | static struct chain_allocator ca; |
2200 | int error = 0; |
2201 | |
2202 | /* Check if we have already loaded the entire image */ |
2203 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) |
2204 | return 0; |
2205 | |
2206 | handle->sync_read = 1; |
2207 | |
2208 | if (!handle->cur) { |
2209 | if (!buffer) |
2210 | /* This makes the buffer be freed by swsusp_free() */ |
2211 | buffer = get_image_page(GFP_ATOMIC, PG_ANY); |
2212 | |
2213 | if (!buffer) |
2214 | return -ENOMEM; |
2215 | |
2216 | handle->buffer = buffer; |
2217 | } else if (handle->cur == 1) { |
2218 | error = load_header(buffer); |
2219 | if (error) |
2220 | return error; |
2221 | |
2222 | error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); |
2223 | if (error) |
2224 | return error; |
2225 | |
2226 | } else if (handle->cur <= nr_meta_pages + 1) { |
2227 | error = unpack_orig_pfns(buffer, ©_bm); |
2228 | if (error) |
2229 | return error; |
2230 | |
2231 | if (handle->cur == nr_meta_pages + 1) { |
2232 | error = prepare_image(&orig_bm, ©_bm); |
2233 | if (error) |
2234 | return error; |
2235 | |
2236 | chain_init(&ca, GFP_ATOMIC, PG_SAFE); |
2237 | memory_bm_position_reset(&orig_bm); |
2238 | restore_pblist = NULL; |
2239 | handle->buffer = get_buffer(&orig_bm, &ca); |
2240 | handle->sync_read = 0; |
2241 | if (IS_ERR(handle->buffer)) |
2242 | return PTR_ERR(handle->buffer); |
2243 | } |
2244 | } else { |
2245 | copy_last_highmem_page(); |
2246 | handle->buffer = get_buffer(&orig_bm, &ca); |
2247 | if (IS_ERR(handle->buffer)) |
2248 | return PTR_ERR(handle->buffer); |
2249 | if (handle->buffer != buffer) |
2250 | handle->sync_read = 0; |
2251 | } |
2252 | handle->cur++; |
2253 | return PAGE_SIZE; |
2254 | } |
2255 | |
2256 | /** |
2257 | * snapshot_write_finalize - must be called after the last call to |
2258 | * snapshot_write_next() in case the last page in the image happens |
2259 | * to be a highmem page and its contents should be stored in the |
2260 | * highmem. Additionally, it releases the memory that will not be |
2261 | * used any more. |
2262 | */ |
2263 | |
2264 | void snapshot_write_finalize(struct snapshot_handle *handle) |
2265 | { |
2266 | copy_last_highmem_page(); |
2267 | /* Free only if we have loaded the image entirely */ |
2268 | if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { |
2269 | memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); |
2270 | free_highmem_data(); |
2271 | } |
2272 | } |
2273 | |
2274 | int snapshot_image_loaded(struct snapshot_handle *handle) |
2275 | { |
2276 | return !(!nr_copy_pages || !last_highmem_page_copied() || |
2277 | handle->cur <= nr_meta_pages + nr_copy_pages); |
2278 | } |
2279 | |
2280 | #ifdef CONFIG_HIGHMEM |
2281 | /* Assumes that @buf is ready and points to a "safe" page */ |
2282 | static inline void |
2283 | swap_two_pages_data(struct page *p1, struct page *p2, void *buf) |
2284 | { |
2285 | void *kaddr1, *kaddr2; |
2286 | |
2287 | kaddr1 = kmap_atomic(p1, KM_USER0); |
2288 | kaddr2 = kmap_atomic(p2, KM_USER1); |
2289 | copy_page(buf, kaddr1); |
2290 | copy_page(kaddr1, kaddr2); |
2291 | copy_page(kaddr2, buf); |
2292 | kunmap_atomic(kaddr2, KM_USER1); |
2293 | kunmap_atomic(kaddr1, KM_USER0); |
2294 | } |
2295 | |
2296 | /** |
2297 | * restore_highmem - for each highmem page that was allocated before |
2298 | * the suspend and included in the suspend image, and also has been |
2299 | * allocated by the "resume" kernel swap its current (ie. "before |
2300 | * resume") contents with the previous (ie. "before suspend") one. |
2301 | * |
2302 | * If the resume eventually fails, we can call this function once |
2303 | * again and restore the "before resume" highmem state. |
2304 | */ |
2305 | |
2306 | int restore_highmem(void) |
2307 | { |
2308 | struct highmem_pbe *pbe = highmem_pblist; |
2309 | void *buf; |
2310 | |
2311 | if (!pbe) |
2312 | return 0; |
2313 | |
2314 | buf = get_image_page(GFP_ATOMIC, PG_SAFE); |
2315 | if (!buf) |
2316 | return -ENOMEM; |
2317 | |
2318 | while (pbe) { |
2319 | swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); |
2320 | pbe = pbe->next; |
2321 | } |
2322 | free_image_page(buf, PG_UNSAFE_CLEAR); |
2323 | return 0; |
2324 | } |
2325 | #endif /* CONFIG_HIGHMEM */ |
2326 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9