Root/mm/nobootmem.c

1/*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11#include <linux/init.h>
12#include <linux/pfn.h>
13#include <linux/slab.h>
14#include <linux/bootmem.h>
15#include <linux/module.h>
16#include <linux/kmemleak.h>
17#include <linux/range.h>
18#include <linux/memblock.h>
19
20#include <asm/bug.h>
21#include <asm/io.h>
22#include <asm/processor.h>
23
24#include "internal.h"
25
26#ifndef CONFIG_NEED_MULTIPLE_NODES
27struct pglist_data __refdata contig_page_data;
28EXPORT_SYMBOL(contig_page_data);
29#endif
30
31unsigned long max_low_pfn;
32unsigned long min_low_pfn;
33unsigned long max_pfn;
34
35static void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
36                    u64 goal, u64 limit)
37{
38    void *ptr;
39    u64 addr;
40
41    if (limit > memblock.current_limit)
42        limit = memblock.current_limit;
43
44    addr = find_memory_core_early(nid, size, align, goal, limit);
45
46    if (addr == MEMBLOCK_ERROR)
47        return NULL;
48
49    ptr = phys_to_virt(addr);
50    memset(ptr, 0, size);
51    memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
52    /*
53     * The min_count is set to 0 so that bootmem allocated blocks
54     * are never reported as leaks.
55     */
56    kmemleak_alloc(ptr, size, 0, 0);
57    return ptr;
58}
59
60/*
61 * free_bootmem_late - free bootmem pages directly to page allocator
62 * @addr: starting address of the range
63 * @size: size of the range in bytes
64 *
65 * This is only useful when the bootmem allocator has already been torn
66 * down, but we are still initializing the system. Pages are given directly
67 * to the page allocator, no bootmem metadata is updated because it is gone.
68 */
69void __init free_bootmem_late(unsigned long addr, unsigned long size)
70{
71    unsigned long cursor, end;
72
73    kmemleak_free_part(__va(addr), size);
74
75    cursor = PFN_UP(addr);
76    end = PFN_DOWN(addr + size);
77
78    for (; cursor < end; cursor++) {
79        __free_pages_bootmem(pfn_to_page(cursor), 0);
80        totalram_pages++;
81    }
82}
83
84static void __init __free_pages_memory(unsigned long start, unsigned long end)
85{
86    int i;
87    unsigned long start_aligned, end_aligned;
88    int order = ilog2(BITS_PER_LONG);
89
90    start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
91    end_aligned = end & ~(BITS_PER_LONG - 1);
92
93    if (end_aligned <= start_aligned) {
94        for (i = start; i < end; i++)
95            __free_pages_bootmem(pfn_to_page(i), 0);
96
97        return;
98    }
99
100    for (i = start; i < start_aligned; i++)
101        __free_pages_bootmem(pfn_to_page(i), 0);
102
103    for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
104        __free_pages_bootmem(pfn_to_page(i), order);
105
106    for (i = end_aligned; i < end; i++)
107        __free_pages_bootmem(pfn_to_page(i), 0);
108}
109
110unsigned long __init free_all_memory_core_early(int nodeid)
111{
112    int i;
113    u64 start, end;
114    unsigned long count = 0;
115    struct range *range = NULL;
116    int nr_range;
117
118    nr_range = get_free_all_memory_range(&range, nodeid);
119
120    for (i = 0; i < nr_range; i++) {
121        start = range[i].start;
122        end = range[i].end;
123        count += end - start;
124        __free_pages_memory(start, end);
125    }
126
127    return count;
128}
129
130/**
131 * free_all_bootmem_node - release a node's free pages to the buddy allocator
132 * @pgdat: node to be released
133 *
134 * Returns the number of pages actually released.
135 */
136unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
137{
138    register_page_bootmem_info_node(pgdat);
139
140    /* free_all_memory_core_early(MAX_NUMNODES) will be called later */
141    return 0;
142}
143
144/**
145 * free_all_bootmem - release free pages to the buddy allocator
146 *
147 * Returns the number of pages actually released.
148 */
149unsigned long __init free_all_bootmem(void)
150{
151    /*
152     * We need to use MAX_NUMNODES instead of NODE_DATA(0)->node_id
153     * because in some case like Node0 doesn't have RAM installed
154     * low ram will be on Node1
155     * Use MAX_NUMNODES will make sure all ranges in early_node_map[]
156     * will be used instead of only Node0 related
157     */
158    return free_all_memory_core_early(MAX_NUMNODES);
159}
160
161/**
162 * free_bootmem_node - mark a page range as usable
163 * @pgdat: node the range resides on
164 * @physaddr: starting address of the range
165 * @size: size of the range in bytes
166 *
167 * Partial pages will be considered reserved and left as they are.
168 *
169 * The range must reside completely on the specified node.
170 */
171void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
172                  unsigned long size)
173{
174    kmemleak_free_part(__va(physaddr), size);
175    memblock_x86_free_range(physaddr, physaddr + size);
176}
177
178/**
179 * free_bootmem - mark a page range as usable
180 * @addr: starting address of the range
181 * @size: size of the range in bytes
182 *
183 * Partial pages will be considered reserved and left as they are.
184 *
185 * The range must be contiguous but may span node boundaries.
186 */
187void __init free_bootmem(unsigned long addr, unsigned long size)
188{
189    kmemleak_free_part(__va(addr), size);
190    memblock_x86_free_range(addr, addr + size);
191}
192
193static void * __init ___alloc_bootmem_nopanic(unsigned long size,
194                    unsigned long align,
195                    unsigned long goal,
196                    unsigned long limit)
197{
198    void *ptr;
199
200    if (WARN_ON_ONCE(slab_is_available()))
201        return kzalloc(size, GFP_NOWAIT);
202
203restart:
204
205    ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
206
207    if (ptr)
208        return ptr;
209
210    if (goal != 0) {
211        goal = 0;
212        goto restart;
213    }
214
215    return NULL;
216}
217
218/**
219 * __alloc_bootmem_nopanic - allocate boot memory without panicking
220 * @size: size of the request in bytes
221 * @align: alignment of the region
222 * @goal: preferred starting address of the region
223 *
224 * The goal is dropped if it can not be satisfied and the allocation will
225 * fall back to memory below @goal.
226 *
227 * Allocation may happen on any node in the system.
228 *
229 * Returns NULL on failure.
230 */
231void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
232                    unsigned long goal)
233{
234    unsigned long limit = -1UL;
235
236    return ___alloc_bootmem_nopanic(size, align, goal, limit);
237}
238
239static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
240                    unsigned long goal, unsigned long limit)
241{
242    void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
243
244    if (mem)
245        return mem;
246    /*
247     * Whoops, we cannot satisfy the allocation request.
248     */
249    printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
250    panic("Out of memory");
251    return NULL;
252}
253
254/**
255 * __alloc_bootmem - allocate boot memory
256 * @size: size of the request in bytes
257 * @align: alignment of the region
258 * @goal: preferred starting address of the region
259 *
260 * The goal is dropped if it can not be satisfied and the allocation will
261 * fall back to memory below @goal.
262 *
263 * Allocation may happen on any node in the system.
264 *
265 * The function panics if the request can not be satisfied.
266 */
267void * __init __alloc_bootmem(unsigned long size, unsigned long align,
268                  unsigned long goal)
269{
270    unsigned long limit = -1UL;
271
272    return ___alloc_bootmem(size, align, goal, limit);
273}
274
275/**
276 * __alloc_bootmem_node - allocate boot memory from a specific node
277 * @pgdat: node to allocate from
278 * @size: size of the request in bytes
279 * @align: alignment of the region
280 * @goal: preferred starting address of the region
281 *
282 * The goal is dropped if it can not be satisfied and the allocation will
283 * fall back to memory below @goal.
284 *
285 * Allocation may fall back to any node in the system if the specified node
286 * can not hold the requested memory.
287 *
288 * The function panics if the request can not be satisfied.
289 */
290void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
291                   unsigned long align, unsigned long goal)
292{
293    void *ptr;
294
295    if (WARN_ON_ONCE(slab_is_available()))
296        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
297
298    ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
299                     goal, -1ULL);
300    if (ptr)
301        return ptr;
302
303    return __alloc_memory_core_early(MAX_NUMNODES, size, align,
304                     goal, -1ULL);
305}
306
307void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
308                   unsigned long align, unsigned long goal)
309{
310    return __alloc_bootmem_node(pgdat, size, align, goal);
311}
312
313#ifdef CONFIG_SPARSEMEM
314/**
315 * alloc_bootmem_section - allocate boot memory from a specific section
316 * @size: size of the request in bytes
317 * @section_nr: sparse map section to allocate from
318 *
319 * Return NULL on failure.
320 */
321void * __init alloc_bootmem_section(unsigned long size,
322                    unsigned long section_nr)
323{
324    unsigned long pfn, goal, limit;
325
326    pfn = section_nr_to_pfn(section_nr);
327    goal = pfn << PAGE_SHIFT;
328    limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
329
330    return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
331                     SMP_CACHE_BYTES, goal, limit);
332}
333#endif
334
335void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
336                   unsigned long align, unsigned long goal)
337{
338    void *ptr;
339
340    if (WARN_ON_ONCE(slab_is_available()))
341        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
342
343    ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
344                         goal, -1ULL);
345    if (ptr)
346        return ptr;
347
348    return __alloc_bootmem_nopanic(size, align, goal);
349}
350
351#ifndef ARCH_LOW_ADDRESS_LIMIT
352#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
353#endif
354
355/**
356 * __alloc_bootmem_low - allocate low boot memory
357 * @size: size of the request in bytes
358 * @align: alignment of the region
359 * @goal: preferred starting address of the region
360 *
361 * The goal is dropped if it can not be satisfied and the allocation will
362 * fall back to memory below @goal.
363 *
364 * Allocation may happen on any node in the system.
365 *
366 * The function panics if the request can not be satisfied.
367 */
368void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
369                  unsigned long goal)
370{
371    return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
372}
373
374/**
375 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
376 * @pgdat: node to allocate from
377 * @size: size of the request in bytes
378 * @align: alignment of the region
379 * @goal: preferred starting address of the region
380 *
381 * The goal is dropped if it can not be satisfied and the allocation will
382 * fall back to memory below @goal.
383 *
384 * Allocation may fall back to any node in the system if the specified node
385 * can not hold the requested memory.
386 *
387 * The function panics if the request can not be satisfied.
388 */
389void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
390                       unsigned long align, unsigned long goal)
391{
392    void *ptr;
393
394    if (WARN_ON_ONCE(slab_is_available()))
395        return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
396
397    ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
398                goal, ARCH_LOW_ADDRESS_LIMIT);
399    if (ptr)
400        return ptr;
401
402    return __alloc_memory_core_early(MAX_NUMNODES, size, align,
403                goal, ARCH_LOW_ADDRESS_LIMIT);
404}
405

Archive Download this file



interactive