Root/tools/perf/builtin-timechart.c

1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/callchain.h"
25#include "util/strlist.h"
26
27#include "perf.h"
28#include "util/header.h"
29#include "util/parse-options.h"
30#include "util/parse-events.h"
31#include "util/event.h"
32#include "util/session.h"
33#include "util/svghelper.h"
34
35#define SUPPORT_OLD_POWER_EVENTS 1
36#define PWR_EVENT_EXIT -1
37
38
39static char const *input_name = "perf.data";
40static char const *output_name = "output.svg";
41
42static unsigned int numcpus;
43static u64 min_freq; /* Lowest CPU frequency seen */
44static u64 max_freq; /* Highest CPU frequency seen */
45static u64 turbo_frequency;
46
47static u64 first_time, last_time;
48
49static bool power_only;
50
51
52struct per_pid;
53struct per_pidcomm;
54
55struct cpu_sample;
56struct power_event;
57struct wake_event;
58
59struct sample_wrapper;
60
61/*
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
69 */
70
71struct per_pid {
72    struct per_pid *next;
73
74    int pid;
75    int ppid;
76
77    u64 start_time;
78    u64 end_time;
79    u64 total_time;
80    int display;
81
82    struct per_pidcomm *all;
83    struct per_pidcomm *current;
84};
85
86
87struct per_pidcomm {
88    struct per_pidcomm *next;
89
90    u64 start_time;
91    u64 end_time;
92    u64 total_time;
93
94    int Y;
95    int display;
96
97    long state;
98    u64 state_since;
99
100    char *comm;
101
102    struct cpu_sample *samples;
103};
104
105struct sample_wrapper {
106    struct sample_wrapper *next;
107
108    u64 timestamp;
109    unsigned char data[0];
110};
111
112#define TYPE_NONE 0
113#define TYPE_RUNNING 1
114#define TYPE_WAITING 2
115#define TYPE_BLOCKED 3
116
117struct cpu_sample {
118    struct cpu_sample *next;
119
120    u64 start_time;
121    u64 end_time;
122    int type;
123    int cpu;
124};
125
126static struct per_pid *all_data;
127
128#define CSTATE 1
129#define PSTATE 2
130
131struct power_event {
132    struct power_event *next;
133    int type;
134    int state;
135    u64 start_time;
136    u64 end_time;
137    int cpu;
138};
139
140struct wake_event {
141    struct wake_event *next;
142    int waker;
143    int wakee;
144    u64 time;
145};
146
147static struct power_event *power_events;
148static struct wake_event *wake_events;
149
150struct process_filter;
151struct process_filter {
152    char *name;
153    int pid;
154    struct process_filter *next;
155};
156
157static struct process_filter *process_filter;
158
159
160static struct per_pid *find_create_pid(int pid)
161{
162    struct per_pid *cursor = all_data;
163
164    while (cursor) {
165        if (cursor->pid == pid)
166            return cursor;
167        cursor = cursor->next;
168    }
169    cursor = malloc(sizeof(struct per_pid));
170    assert(cursor != NULL);
171    memset(cursor, 0, sizeof(struct per_pid));
172    cursor->pid = pid;
173    cursor->next = all_data;
174    all_data = cursor;
175    return cursor;
176}
177
178static void pid_set_comm(int pid, char *comm)
179{
180    struct per_pid *p;
181    struct per_pidcomm *c;
182    p = find_create_pid(pid);
183    c = p->all;
184    while (c) {
185        if (c->comm && strcmp(c->comm, comm) == 0) {
186            p->current = c;
187            return;
188        }
189        if (!c->comm) {
190            c->comm = strdup(comm);
191            p->current = c;
192            return;
193        }
194        c = c->next;
195    }
196    c = malloc(sizeof(struct per_pidcomm));
197    assert(c != NULL);
198    memset(c, 0, sizeof(struct per_pidcomm));
199    c->comm = strdup(comm);
200    p->current = c;
201    c->next = p->all;
202    p->all = c;
203}
204
205static void pid_fork(int pid, int ppid, u64 timestamp)
206{
207    struct per_pid *p, *pp;
208    p = find_create_pid(pid);
209    pp = find_create_pid(ppid);
210    p->ppid = ppid;
211    if (pp->current && pp->current->comm && !p->current)
212        pid_set_comm(pid, pp->current->comm);
213
214    p->start_time = timestamp;
215    if (p->current) {
216        p->current->start_time = timestamp;
217        p->current->state_since = timestamp;
218    }
219}
220
221static void pid_exit(int pid, u64 timestamp)
222{
223    struct per_pid *p;
224    p = find_create_pid(pid);
225    p->end_time = timestamp;
226    if (p->current)
227        p->current->end_time = timestamp;
228}
229
230static void
231pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232{
233    struct per_pid *p;
234    struct per_pidcomm *c;
235    struct cpu_sample *sample;
236
237    p = find_create_pid(pid);
238    c = p->current;
239    if (!c) {
240        c = malloc(sizeof(struct per_pidcomm));
241        assert(c != NULL);
242        memset(c, 0, sizeof(struct per_pidcomm));
243        p->current = c;
244        c->next = p->all;
245        p->all = c;
246    }
247
248    sample = malloc(sizeof(struct cpu_sample));
249    assert(sample != NULL);
250    memset(sample, 0, sizeof(struct cpu_sample));
251    sample->start_time = start;
252    sample->end_time = end;
253    sample->type = type;
254    sample->next = c->samples;
255    sample->cpu = cpu;
256    c->samples = sample;
257
258    if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259        c->total_time += (end-start);
260        p->total_time += (end-start);
261    }
262
263    if (c->start_time == 0 || c->start_time > start)
264        c->start_time = start;
265    if (p->start_time == 0 || p->start_time > start)
266        p->start_time = start;
267}
268
269#define MAX_CPUS 4096
270
271static u64 cpus_cstate_start_times[MAX_CPUS];
272static int cpus_cstate_state[MAX_CPUS];
273static u64 cpus_pstate_start_times[MAX_CPUS];
274static u64 cpus_pstate_state[MAX_CPUS];
275
276static int process_comm_event(union perf_event *event,
277                  struct perf_sample *sample __used,
278                  struct perf_session *session __used)
279{
280    pid_set_comm(event->comm.tid, event->comm.comm);
281    return 0;
282}
283
284static int process_fork_event(union perf_event *event,
285                  struct perf_sample *sample __used,
286                  struct perf_session *session __used)
287{
288    pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289    return 0;
290}
291
292static int process_exit_event(union perf_event *event,
293                  struct perf_sample *sample __used,
294                  struct perf_session *session __used)
295{
296    pid_exit(event->fork.pid, event->fork.time);
297    return 0;
298}
299
300struct trace_entry {
301    unsigned short type;
302    unsigned char flags;
303    unsigned char preempt_count;
304    int pid;
305    int lock_depth;
306};
307
308#ifdef SUPPORT_OLD_POWER_EVENTS
309static int use_old_power_events;
310struct power_entry_old {
311    struct trace_entry te;
312    u64 type;
313    u64 value;
314    u64 cpu_id;
315};
316#endif
317
318struct power_processor_entry {
319    struct trace_entry te;
320    u32 state;
321    u32 cpu_id;
322};
323
324#define TASK_COMM_LEN 16
325struct wakeup_entry {
326    struct trace_entry te;
327    char comm[TASK_COMM_LEN];
328    int pid;
329    int prio;
330    int success;
331};
332
333/*
334 * trace_flag_type is an enumeration that holds different
335 * states when a trace occurs. These are:
336 * IRQS_OFF - interrupts were disabled
337 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
338 * NEED_RESCED - reschedule is requested
339 * HARDIRQ - inside an interrupt handler
340 * SOFTIRQ - inside a softirq handler
341 */
342enum trace_flag_type {
343    TRACE_FLAG_IRQS_OFF = 0x01,
344    TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
345    TRACE_FLAG_NEED_RESCHED = 0x04,
346    TRACE_FLAG_HARDIRQ = 0x08,
347    TRACE_FLAG_SOFTIRQ = 0x10,
348};
349
350
351
352struct sched_switch {
353    struct trace_entry te;
354    char prev_comm[TASK_COMM_LEN];
355    int prev_pid;
356    int prev_prio;
357    long prev_state; /* Arjan weeps. */
358    char next_comm[TASK_COMM_LEN];
359    int next_pid;
360    int next_prio;
361};
362
363static void c_state_start(int cpu, u64 timestamp, int state)
364{
365    cpus_cstate_start_times[cpu] = timestamp;
366    cpus_cstate_state[cpu] = state;
367}
368
369static void c_state_end(int cpu, u64 timestamp)
370{
371    struct power_event *pwr;
372    pwr = malloc(sizeof(struct power_event));
373    if (!pwr)
374        return;
375    memset(pwr, 0, sizeof(struct power_event));
376
377    pwr->state = cpus_cstate_state[cpu];
378    pwr->start_time = cpus_cstate_start_times[cpu];
379    pwr->end_time = timestamp;
380    pwr->cpu = cpu;
381    pwr->type = CSTATE;
382    pwr->next = power_events;
383
384    power_events = pwr;
385}
386
387static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388{
389    struct power_event *pwr;
390    pwr = malloc(sizeof(struct power_event));
391
392    if (new_freq > 8000000) /* detect invalid data */
393        return;
394
395    if (!pwr)
396        return;
397    memset(pwr, 0, sizeof(struct power_event));
398
399    pwr->state = cpus_pstate_state[cpu];
400    pwr->start_time = cpus_pstate_start_times[cpu];
401    pwr->end_time = timestamp;
402    pwr->cpu = cpu;
403    pwr->type = PSTATE;
404    pwr->next = power_events;
405
406    if (!pwr->start_time)
407        pwr->start_time = first_time;
408
409    power_events = pwr;
410
411    cpus_pstate_state[cpu] = new_freq;
412    cpus_pstate_start_times[cpu] = timestamp;
413
414    if ((u64)new_freq > max_freq)
415        max_freq = new_freq;
416
417    if (new_freq < min_freq || min_freq == 0)
418        min_freq = new_freq;
419
420    if (new_freq == max_freq - 1000)
421            turbo_frequency = max_freq;
422}
423
424static void
425sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426{
427    struct wake_event *we;
428    struct per_pid *p;
429    struct wakeup_entry *wake = (void *)te;
430
431    we = malloc(sizeof(struct wake_event));
432    if (!we)
433        return;
434
435    memset(we, 0, sizeof(struct wake_event));
436    we->time = timestamp;
437    we->waker = pid;
438
439    if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440        we->waker = -1;
441
442    we->wakee = wake->pid;
443    we->next = wake_events;
444    wake_events = we;
445    p = find_create_pid(we->wakee);
446
447    if (p && p->current && p->current->state == TYPE_NONE) {
448        p->current->state_since = timestamp;
449        p->current->state = TYPE_WAITING;
450    }
451    if (p && p->current && p->current->state == TYPE_BLOCKED) {
452        pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453        p->current->state_since = timestamp;
454        p->current->state = TYPE_WAITING;
455    }
456}
457
458static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459{
460    struct per_pid *p = NULL, *prev_p;
461    struct sched_switch *sw = (void *)te;
462
463
464    prev_p = find_create_pid(sw->prev_pid);
465
466    p = find_create_pid(sw->next_pid);
467
468    if (prev_p->current && prev_p->current->state != TYPE_NONE)
469        pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470    if (p && p->current) {
471        if (p->current->state != TYPE_NONE)
472            pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
474        p->current->state_since = timestamp;
475        p->current->state = TYPE_RUNNING;
476    }
477
478    if (prev_p->current) {
479        prev_p->current->state = TYPE_NONE;
480        prev_p->current->state_since = timestamp;
481        if (sw->prev_state & 2)
482            prev_p->current->state = TYPE_BLOCKED;
483        if (sw->prev_state == 0)
484            prev_p->current->state = TYPE_WAITING;
485    }
486}
487
488
489static int process_sample_event(union perf_event *event __used,
490                struct perf_sample *sample,
491                struct perf_evsel *evsel __used,
492                struct perf_session *session)
493{
494    struct trace_entry *te;
495
496    if (session->sample_type & PERF_SAMPLE_TIME) {
497        if (!first_time || first_time > sample->time)
498            first_time = sample->time;
499        if (last_time < sample->time)
500            last_time = sample->time;
501    }
502
503    te = (void *)sample->raw_data;
504    if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
505        char *event_str;
506#ifdef SUPPORT_OLD_POWER_EVENTS
507        struct power_entry_old *peo;
508        peo = (void *)te;
509#endif
510        /*
511         * FIXME: use evsel, its already mapped from id to perf_evsel,
512         * remove perf_header__find_event infrastructure bits.
513         * Mapping all these "power:cpu_idle" strings to the tracepoint
514         * ID and then just comparing against evsel->attr.config.
515         *
516         * e.g.:
517         *
518         * if (evsel->attr.config == power_cpu_idle_id)
519         */
520        event_str = perf_header__find_event(te->type);
521
522        if (!event_str)
523            return 0;
524
525        if (sample->cpu > numcpus)
526            numcpus = sample->cpu;
527
528        if (strcmp(event_str, "power:cpu_idle") == 0) {
529            struct power_processor_entry *ppe = (void *)te;
530            if (ppe->state == (u32)PWR_EVENT_EXIT)
531                c_state_end(ppe->cpu_id, sample->time);
532            else
533                c_state_start(ppe->cpu_id, sample->time,
534                          ppe->state);
535        }
536        else if (strcmp(event_str, "power:cpu_frequency") == 0) {
537            struct power_processor_entry *ppe = (void *)te;
538            p_state_change(ppe->cpu_id, sample->time, ppe->state);
539        }
540
541        else if (strcmp(event_str, "sched:sched_wakeup") == 0)
542            sched_wakeup(sample->cpu, sample->time, sample->pid, te);
543
544        else if (strcmp(event_str, "sched:sched_switch") == 0)
545            sched_switch(sample->cpu, sample->time, te);
546
547#ifdef SUPPORT_OLD_POWER_EVENTS
548        if (use_old_power_events) {
549            if (strcmp(event_str, "power:power_start") == 0)
550                c_state_start(peo->cpu_id, sample->time,
551                          peo->value);
552
553            else if (strcmp(event_str, "power:power_end") == 0)
554                c_state_end(sample->cpu, sample->time);
555
556            else if (strcmp(event_str,
557                    "power:power_frequency") == 0)
558                p_state_change(peo->cpu_id, sample->time,
559                           peo->value);
560        }
561#endif
562    }
563    return 0;
564}
565
566/*
567 * After the last sample we need to wrap up the current C/P state
568 * and close out each CPU for these.
569 */
570static void end_sample_processing(void)
571{
572    u64 cpu;
573    struct power_event *pwr;
574
575    for (cpu = 0; cpu <= numcpus; cpu++) {
576        pwr = malloc(sizeof(struct power_event));
577        if (!pwr)
578            return;
579        memset(pwr, 0, sizeof(struct power_event));
580
581        /* C state */
582#if 0
583        pwr->state = cpus_cstate_state[cpu];
584        pwr->start_time = cpus_cstate_start_times[cpu];
585        pwr->end_time = last_time;
586        pwr->cpu = cpu;
587        pwr->type = CSTATE;
588        pwr->next = power_events;
589
590        power_events = pwr;
591#endif
592        /* P state */
593
594        pwr = malloc(sizeof(struct power_event));
595        if (!pwr)
596            return;
597        memset(pwr, 0, sizeof(struct power_event));
598
599        pwr->state = cpus_pstate_state[cpu];
600        pwr->start_time = cpus_pstate_start_times[cpu];
601        pwr->end_time = last_time;
602        pwr->cpu = cpu;
603        pwr->type = PSTATE;
604        pwr->next = power_events;
605
606        if (!pwr->start_time)
607            pwr->start_time = first_time;
608        if (!pwr->state)
609            pwr->state = min_freq;
610        power_events = pwr;
611    }
612}
613
614/*
615 * Sort the pid datastructure
616 */
617static void sort_pids(void)
618{
619    struct per_pid *new_list, *p, *cursor, *prev;
620    /* sort by ppid first, then by pid, lowest to highest */
621
622    new_list = NULL;
623
624    while (all_data) {
625        p = all_data;
626        all_data = p->next;
627        p->next = NULL;
628
629        if (new_list == NULL) {
630            new_list = p;
631            p->next = NULL;
632            continue;
633        }
634        prev = NULL;
635        cursor = new_list;
636        while (cursor) {
637            if (cursor->ppid > p->ppid ||
638                (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
639                /* must insert before */
640                if (prev) {
641                    p->next = prev->next;
642                    prev->next = p;
643                    cursor = NULL;
644                    continue;
645                } else {
646                    p->next = new_list;
647                    new_list = p;
648                    cursor = NULL;
649                    continue;
650                }
651            }
652
653            prev = cursor;
654            cursor = cursor->next;
655            if (!cursor)
656                prev->next = p;
657        }
658    }
659    all_data = new_list;
660}
661
662
663static void draw_c_p_states(void)
664{
665    struct power_event *pwr;
666    pwr = power_events;
667
668    /*
669     * two pass drawing so that the P state bars are on top of the C state blocks
670     */
671    while (pwr) {
672        if (pwr->type == CSTATE)
673            svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
674        pwr = pwr->next;
675    }
676
677    pwr = power_events;
678    while (pwr) {
679        if (pwr->type == PSTATE) {
680            if (!pwr->state)
681                pwr->state = min_freq;
682            svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
683        }
684        pwr = pwr->next;
685    }
686}
687
688static void draw_wakeups(void)
689{
690    struct wake_event *we;
691    struct per_pid *p;
692    struct per_pidcomm *c;
693
694    we = wake_events;
695    while (we) {
696        int from = 0, to = 0;
697        char *task_from = NULL, *task_to = NULL;
698
699        /* locate the column of the waker and wakee */
700        p = all_data;
701        while (p) {
702            if (p->pid == we->waker || p->pid == we->wakee) {
703                c = p->all;
704                while (c) {
705                    if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
706                        if (p->pid == we->waker && !from) {
707                            from = c->Y;
708                            task_from = strdup(c->comm);
709                        }
710                        if (p->pid == we->wakee && !to) {
711                            to = c->Y;
712                            task_to = strdup(c->comm);
713                        }
714                    }
715                    c = c->next;
716                }
717                c = p->all;
718                while (c) {
719                    if (p->pid == we->waker && !from) {
720                        from = c->Y;
721                        task_from = strdup(c->comm);
722                    }
723                    if (p->pid == we->wakee && !to) {
724                        to = c->Y;
725                        task_to = strdup(c->comm);
726                    }
727                    c = c->next;
728                }
729            }
730            p = p->next;
731        }
732
733        if (!task_from) {
734            task_from = malloc(40);
735            sprintf(task_from, "[%i]", we->waker);
736        }
737        if (!task_to) {
738            task_to = malloc(40);
739            sprintf(task_to, "[%i]", we->wakee);
740        }
741
742        if (we->waker == -1)
743            svg_interrupt(we->time, to);
744        else if (from && to && abs(from - to) == 1)
745            svg_wakeline(we->time, from, to);
746        else
747            svg_partial_wakeline(we->time, from, task_from, to, task_to);
748        we = we->next;
749
750        free(task_from);
751        free(task_to);
752    }
753}
754
755static void draw_cpu_usage(void)
756{
757    struct per_pid *p;
758    struct per_pidcomm *c;
759    struct cpu_sample *sample;
760    p = all_data;
761    while (p) {
762        c = p->all;
763        while (c) {
764            sample = c->samples;
765            while (sample) {
766                if (sample->type == TYPE_RUNNING)
767                    svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
768
769                sample = sample->next;
770            }
771            c = c->next;
772        }
773        p = p->next;
774    }
775}
776
777static void draw_process_bars(void)
778{
779    struct per_pid *p;
780    struct per_pidcomm *c;
781    struct cpu_sample *sample;
782    int Y = 0;
783
784    Y = 2 * numcpus + 2;
785
786    p = all_data;
787    while (p) {
788        c = p->all;
789        while (c) {
790            if (!c->display) {
791                c->Y = 0;
792                c = c->next;
793                continue;
794            }
795
796            svg_box(Y, c->start_time, c->end_time, "process");
797            sample = c->samples;
798            while (sample) {
799                if (sample->type == TYPE_RUNNING)
800                    svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
801                if (sample->type == TYPE_BLOCKED)
802                    svg_box(Y, sample->start_time, sample->end_time, "blocked");
803                if (sample->type == TYPE_WAITING)
804                    svg_waiting(Y, sample->start_time, sample->end_time);
805                sample = sample->next;
806            }
807
808            if (c->comm) {
809                char comm[256];
810                if (c->total_time > 5000000000) /* 5 seconds */
811                    sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
812                else
813                    sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
814
815                svg_text(Y, c->start_time, comm);
816            }
817            c->Y = Y;
818            Y++;
819            c = c->next;
820        }
821        p = p->next;
822    }
823}
824
825static void add_process_filter(const char *string)
826{
827    struct process_filter *filt;
828    int pid;
829
830    pid = strtoull(string, NULL, 10);
831    filt = malloc(sizeof(struct process_filter));
832    if (!filt)
833        return;
834
835    filt->name = strdup(string);
836    filt->pid = pid;
837    filt->next = process_filter;
838
839    process_filter = filt;
840}
841
842static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
843{
844    struct process_filter *filt;
845    if (!process_filter)
846        return 1;
847
848    filt = process_filter;
849    while (filt) {
850        if (filt->pid && p->pid == filt->pid)
851            return 1;
852        if (strcmp(filt->name, c->comm) == 0)
853            return 1;
854        filt = filt->next;
855    }
856    return 0;
857}
858
859static int determine_display_tasks_filtered(void)
860{
861    struct per_pid *p;
862    struct per_pidcomm *c;
863    int count = 0;
864
865    p = all_data;
866    while (p) {
867        p->display = 0;
868        if (p->start_time == 1)
869            p->start_time = first_time;
870
871        /* no exit marker, task kept running to the end */
872        if (p->end_time == 0)
873            p->end_time = last_time;
874
875        c = p->all;
876
877        while (c) {
878            c->display = 0;
879
880            if (c->start_time == 1)
881                c->start_time = first_time;
882
883            if (passes_filter(p, c)) {
884                c->display = 1;
885                p->display = 1;
886                count++;
887            }
888
889            if (c->end_time == 0)
890                c->end_time = last_time;
891
892            c = c->next;
893        }
894        p = p->next;
895    }
896    return count;
897}
898
899static int determine_display_tasks(u64 threshold)
900{
901    struct per_pid *p;
902    struct per_pidcomm *c;
903    int count = 0;
904
905    if (process_filter)
906        return determine_display_tasks_filtered();
907
908    p = all_data;
909    while (p) {
910        p->display = 0;
911        if (p->start_time == 1)
912            p->start_time = first_time;
913
914        /* no exit marker, task kept running to the end */
915        if (p->end_time == 0)
916            p->end_time = last_time;
917        if (p->total_time >= threshold && !power_only)
918            p->display = 1;
919
920        c = p->all;
921
922        while (c) {
923            c->display = 0;
924
925            if (c->start_time == 1)
926                c->start_time = first_time;
927
928            if (c->total_time >= threshold && !power_only) {
929                c->display = 1;
930                count++;
931            }
932
933            if (c->end_time == 0)
934                c->end_time = last_time;
935
936            c = c->next;
937        }
938        p = p->next;
939    }
940    return count;
941}
942
943
944
945#define TIME_THRESH 10000000
946
947static void write_svg_file(const char *filename)
948{
949    u64 i;
950    int count;
951
952    numcpus++;
953
954
955    count = determine_display_tasks(TIME_THRESH);
956
957    /* We'd like to show at least 15 tasks; be less picky if we have fewer */
958    if (count < 15)
959        count = determine_display_tasks(TIME_THRESH / 10);
960
961    open_svg(filename, numcpus, count, first_time, last_time);
962
963    svg_time_grid();
964    svg_legenda();
965
966    for (i = 0; i < numcpus; i++)
967        svg_cpu_box(i, max_freq, turbo_frequency);
968
969    draw_cpu_usage();
970    draw_process_bars();
971    draw_c_p_states();
972    draw_wakeups();
973
974    svg_close();
975}
976
977static struct perf_event_ops event_ops = {
978    .comm = process_comm_event,
979    .fork = process_fork_event,
980    .exit = process_exit_event,
981    .sample = process_sample_event,
982    .ordered_samples = true,
983};
984
985static int __cmd_timechart(void)
986{
987    struct perf_session *session = perf_session__new(input_name, O_RDONLY,
988                             0, false, &event_ops);
989    int ret = -EINVAL;
990
991    if (session == NULL)
992        return -ENOMEM;
993
994    if (!perf_session__has_traces(session, "timechart record"))
995        goto out_delete;
996
997    ret = perf_session__process_events(session, &event_ops);
998    if (ret)
999        goto out_delete;
1000
1001    end_sample_processing();
1002
1003    sort_pids();
1004
1005    write_svg_file(output_name);
1006
1007    pr_info("Written %2.1f seconds of trace to %s.\n",
1008        (last_time - first_time) / 1000000000.0, output_name);
1009out_delete:
1010    perf_session__delete(session);
1011    return ret;
1012}
1013
1014static const char * const timechart_usage[] = {
1015    "perf timechart [<options>] {record}",
1016    NULL
1017};
1018
1019#ifdef SUPPORT_OLD_POWER_EVENTS
1020static const char * const record_old_args[] = {
1021    "record",
1022    "-a",
1023    "-R",
1024    "-f",
1025    "-c", "1",
1026    "-e", "power:power_start",
1027    "-e", "power:power_end",
1028    "-e", "power:power_frequency",
1029    "-e", "sched:sched_wakeup",
1030    "-e", "sched:sched_switch",
1031};
1032#endif
1033
1034static const char * const record_new_args[] = {
1035    "record",
1036    "-a",
1037    "-R",
1038    "-f",
1039    "-c", "1",
1040    "-e", "power:cpu_frequency",
1041    "-e", "power:cpu_idle",
1042    "-e", "sched:sched_wakeup",
1043    "-e", "sched:sched_switch",
1044};
1045
1046static int __cmd_record(int argc, const char **argv)
1047{
1048    unsigned int rec_argc, i, j;
1049    const char **rec_argv;
1050    const char * const *record_args = record_new_args;
1051    unsigned int record_elems = ARRAY_SIZE(record_new_args);
1052
1053#ifdef SUPPORT_OLD_POWER_EVENTS
1054    if (!is_valid_tracepoint("power:cpu_idle") &&
1055        is_valid_tracepoint("power:power_start")) {
1056        use_old_power_events = 1;
1057        record_args = record_old_args;
1058        record_elems = ARRAY_SIZE(record_old_args);
1059    }
1060#endif
1061
1062    rec_argc = record_elems + argc - 1;
1063    rec_argv = calloc(rec_argc + 1, sizeof(char *));
1064
1065    if (rec_argv == NULL)
1066        return -ENOMEM;
1067
1068    for (i = 0; i < record_elems; i++)
1069        rec_argv[i] = strdup(record_args[i]);
1070
1071    for (j = 1; j < (unsigned int)argc; j++, i++)
1072        rec_argv[i] = argv[j];
1073
1074    return cmd_record(i, rec_argv, NULL);
1075}
1076
1077static int
1078parse_process(const struct option *opt __used, const char *arg, int __used unset)
1079{
1080    if (arg)
1081        add_process_filter(arg);
1082    return 0;
1083}
1084
1085static const struct option options[] = {
1086    OPT_STRING('i', "input", &input_name, "file",
1087            "input file name"),
1088    OPT_STRING('o', "output", &output_name, "file",
1089            "output file name"),
1090    OPT_INTEGER('w', "width", &svg_page_width,
1091            "page width"),
1092    OPT_BOOLEAN('P', "power-only", &power_only,
1093            "output power data only"),
1094    OPT_CALLBACK('p', "process", NULL, "process",
1095              "process selector. Pass a pid or process name.",
1096               parse_process),
1097    OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1098            "Look for files with symbols relative to this directory"),
1099    OPT_END()
1100};
1101
1102
1103int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1104{
1105    argc = parse_options(argc, argv, options, timechart_usage,
1106            PARSE_OPT_STOP_AT_NON_OPTION);
1107
1108    symbol__init();
1109
1110    if (argc && !strncmp(argv[0], "rec", 3))
1111        return __cmd_record(argc, argv);
1112    else if (argc)
1113        usage_with_options(timechart_usage, options);
1114
1115    setup_pager();
1116
1117    return __cmd_timechart();
1118}
1119

Archive Download this file



interactive