Root/security/security.c

1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/security.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <net/flow.h>
29
30#define MAX_LSM_EVM_XATTR 2
31
32/* Boot-time LSM user choice */
33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34    CONFIG_DEFAULT_SECURITY;
35
36static struct security_operations *security_ops;
37static struct security_operations default_security_ops = {
38    .name = "default",
39};
40
41static inline int __init verify(struct security_operations *ops)
42{
43    /* verify the security_operations structure exists */
44    if (!ops)
45        return -EINVAL;
46    security_fixup_ops(ops);
47    return 0;
48}
49
50static void __init do_security_initcalls(void)
51{
52    initcall_t *call;
53    call = __security_initcall_start;
54    while (call < __security_initcall_end) {
55        (*call) ();
56        call++;
57    }
58}
59
60/**
61 * security_init - initializes the security framework
62 *
63 * This should be called early in the kernel initialization sequence.
64 */
65int __init security_init(void)
66{
67    printk(KERN_INFO "Security Framework initialized\n");
68
69    security_fixup_ops(&default_security_ops);
70    security_ops = &default_security_ops;
71    do_security_initcalls();
72
73    return 0;
74}
75
76void reset_security_ops(void)
77{
78    security_ops = &default_security_ops;
79}
80
81/* Save user chosen LSM */
82static int __init choose_lsm(char *str)
83{
84    strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85    return 1;
86}
87__setup("security=", choose_lsm);
88
89/**
90 * security_module_enable - Load given security module on boot ?
91 * @ops: a pointer to the struct security_operations that is to be checked.
92 *
93 * Each LSM must pass this method before registering its own operations
94 * to avoid security registration races. This method may also be used
95 * to check if your LSM is currently loaded during kernel initialization.
96 *
97 * Return true if:
98 * -The passed LSM is the one chosen by user at boot time,
99 * -or the passed LSM is configured as the default and the user did not
100 * choose an alternate LSM at boot time.
101 * Otherwise, return false.
102 */
103int __init security_module_enable(struct security_operations *ops)
104{
105    return !strcmp(ops->name, chosen_lsm);
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120int __init register_security(struct security_operations *ops)
121{
122    if (verify(ops)) {
123        printk(KERN_DEBUG "%s could not verify "
124               "security_operations structure.\n", __func__);
125        return -EINVAL;
126    }
127
128    if (security_ops != &default_security_ops)
129        return -EAGAIN;
130
131    security_ops = ops;
132
133    return 0;
134}
135
136/* Security operations */
137
138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139{
140#ifdef CONFIG_SECURITY_YAMA_STACKED
141    int rc;
142    rc = yama_ptrace_access_check(child, mode);
143    if (rc)
144        return rc;
145#endif
146    return security_ops->ptrace_access_check(child, mode);
147}
148
149int security_ptrace_traceme(struct task_struct *parent)
150{
151#ifdef CONFIG_SECURITY_YAMA_STACKED
152    int rc;
153    rc = yama_ptrace_traceme(parent);
154    if (rc)
155        return rc;
156#endif
157    return security_ops->ptrace_traceme(parent);
158}
159
160int security_capget(struct task_struct *target,
161             kernel_cap_t *effective,
162             kernel_cap_t *inheritable,
163             kernel_cap_t *permitted)
164{
165    return security_ops->capget(target, effective, inheritable, permitted);
166}
167
168int security_capset(struct cred *new, const struct cred *old,
169            const kernel_cap_t *effective,
170            const kernel_cap_t *inheritable,
171            const kernel_cap_t *permitted)
172{
173    return security_ops->capset(new, old,
174                    effective, inheritable, permitted);
175}
176
177int security_capable(const struct cred *cred, struct user_namespace *ns,
178             int cap)
179{
180    return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181}
182
183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184                 int cap)
185{
186    return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187}
188
189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190{
191    return security_ops->quotactl(cmds, type, id, sb);
192}
193
194int security_quota_on(struct dentry *dentry)
195{
196    return security_ops->quota_on(dentry);
197}
198
199int security_syslog(int type)
200{
201    return security_ops->syslog(type);
202}
203
204int security_settime(const struct timespec *ts, const struct timezone *tz)
205{
206    return security_ops->settime(ts, tz);
207}
208
209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210{
211    return security_ops->vm_enough_memory(mm, pages);
212}
213
214int security_bprm_set_creds(struct linux_binprm *bprm)
215{
216    return security_ops->bprm_set_creds(bprm);
217}
218
219int security_bprm_check(struct linux_binprm *bprm)
220{
221    int ret;
222
223    ret = security_ops->bprm_check_security(bprm);
224    if (ret)
225        return ret;
226    return ima_bprm_check(bprm);
227}
228
229void security_bprm_committing_creds(struct linux_binprm *bprm)
230{
231    security_ops->bprm_committing_creds(bprm);
232}
233
234void security_bprm_committed_creds(struct linux_binprm *bprm)
235{
236    security_ops->bprm_committed_creds(bprm);
237}
238
239int security_bprm_secureexec(struct linux_binprm *bprm)
240{
241    return security_ops->bprm_secureexec(bprm);
242}
243
244int security_sb_alloc(struct super_block *sb)
245{
246    return security_ops->sb_alloc_security(sb);
247}
248
249void security_sb_free(struct super_block *sb)
250{
251    security_ops->sb_free_security(sb);
252}
253
254int security_sb_copy_data(char *orig, char *copy)
255{
256    return security_ops->sb_copy_data(orig, copy);
257}
258EXPORT_SYMBOL(security_sb_copy_data);
259
260int security_sb_remount(struct super_block *sb, void *data)
261{
262    return security_ops->sb_remount(sb, data);
263}
264
265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266{
267    return security_ops->sb_kern_mount(sb, flags, data);
268}
269
270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271{
272    return security_ops->sb_show_options(m, sb);
273}
274
275int security_sb_statfs(struct dentry *dentry)
276{
277    return security_ops->sb_statfs(dentry);
278}
279
280int security_sb_mount(const char *dev_name, struct path *path,
281                       const char *type, unsigned long flags, void *data)
282{
283    return security_ops->sb_mount(dev_name, path, type, flags, data);
284}
285
286int security_sb_umount(struct vfsmount *mnt, int flags)
287{
288    return security_ops->sb_umount(mnt, flags);
289}
290
291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292{
293    return security_ops->sb_pivotroot(old_path, new_path);
294}
295
296int security_sb_set_mnt_opts(struct super_block *sb,
297                struct security_mnt_opts *opts,
298                unsigned long kern_flags,
299                unsigned long *set_kern_flags)
300{
301    return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302                        set_kern_flags);
303}
304EXPORT_SYMBOL(security_sb_set_mnt_opts);
305
306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307                struct super_block *newsb)
308{
309    return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310}
311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312
313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314{
315    return security_ops->sb_parse_opts_str(options, opts);
316}
317EXPORT_SYMBOL(security_sb_parse_opts_str);
318
319int security_inode_alloc(struct inode *inode)
320{
321    inode->i_security = NULL;
322    return security_ops->inode_alloc_security(inode);
323}
324
325void security_inode_free(struct inode *inode)
326{
327    integrity_inode_free(inode);
328    security_ops->inode_free_security(inode);
329}
330
331int security_dentry_init_security(struct dentry *dentry, int mode,
332                    struct qstr *name, void **ctx,
333                    u32 *ctxlen)
334{
335    return security_ops->dentry_init_security(dentry, mode, name,
336                            ctx, ctxlen);
337}
338EXPORT_SYMBOL(security_dentry_init_security);
339
340int security_inode_init_security(struct inode *inode, struct inode *dir,
341                 const struct qstr *qstr,
342                 const initxattrs initxattrs, void *fs_data)
343{
344    struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345    struct xattr *lsm_xattr, *evm_xattr, *xattr;
346    int ret;
347
348    if (unlikely(IS_PRIVATE(inode)))
349        return 0;
350
351    memset(new_xattrs, 0, sizeof new_xattrs);
352    if (!initxattrs)
353        return security_ops->inode_init_security(inode, dir, qstr,
354                             NULL, NULL, NULL);
355    lsm_xattr = new_xattrs;
356    ret = security_ops->inode_init_security(inode, dir, qstr,
357                        &lsm_xattr->name,
358                        &lsm_xattr->value,
359                        &lsm_xattr->value_len);
360    if (ret)
361        goto out;
362
363    evm_xattr = lsm_xattr + 1;
364    ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365    if (ret)
366        goto out;
367    ret = initxattrs(inode, new_xattrs, fs_data);
368out:
369    for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
370        kfree(xattr->name);
371        kfree(xattr->value);
372    }
373    return (ret == -EOPNOTSUPP) ? 0 : ret;
374}
375EXPORT_SYMBOL(security_inode_init_security);
376
377int security_old_inode_init_security(struct inode *inode, struct inode *dir,
378                     const struct qstr *qstr, char **name,
379                     void **value, size_t *len)
380{
381    if (unlikely(IS_PRIVATE(inode)))
382        return -EOPNOTSUPP;
383    return security_ops->inode_init_security(inode, dir, qstr, name, value,
384                         len);
385}
386EXPORT_SYMBOL(security_old_inode_init_security);
387
388#ifdef CONFIG_SECURITY_PATH
389int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
390            unsigned int dev)
391{
392    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
393        return 0;
394    return security_ops->path_mknod(dir, dentry, mode, dev);
395}
396EXPORT_SYMBOL(security_path_mknod);
397
398int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
399{
400    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
401        return 0;
402    return security_ops->path_mkdir(dir, dentry, mode);
403}
404EXPORT_SYMBOL(security_path_mkdir);
405
406int security_path_rmdir(struct path *dir, struct dentry *dentry)
407{
408    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
409        return 0;
410    return security_ops->path_rmdir(dir, dentry);
411}
412
413int security_path_unlink(struct path *dir, struct dentry *dentry)
414{
415    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
416        return 0;
417    return security_ops->path_unlink(dir, dentry);
418}
419EXPORT_SYMBOL(security_path_unlink);
420
421int security_path_symlink(struct path *dir, struct dentry *dentry,
422              const char *old_name)
423{
424    if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425        return 0;
426    return security_ops->path_symlink(dir, dentry, old_name);
427}
428
429int security_path_link(struct dentry *old_dentry, struct path *new_dir,
430               struct dentry *new_dentry)
431{
432    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
433        return 0;
434    return security_ops->path_link(old_dentry, new_dir, new_dentry);
435}
436
437int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
438             struct path *new_dir, struct dentry *new_dentry)
439{
440    if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
441             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
442        return 0;
443    return security_ops->path_rename(old_dir, old_dentry, new_dir,
444                     new_dentry);
445}
446EXPORT_SYMBOL(security_path_rename);
447
448int security_path_truncate(struct path *path)
449{
450    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
451        return 0;
452    return security_ops->path_truncate(path);
453}
454
455int security_path_chmod(struct path *path, umode_t mode)
456{
457    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458        return 0;
459    return security_ops->path_chmod(path, mode);
460}
461
462int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
463{
464    if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465        return 0;
466    return security_ops->path_chown(path, uid, gid);
467}
468
469int security_path_chroot(struct path *path)
470{
471    return security_ops->path_chroot(path);
472}
473#endif
474
475int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
476{
477    if (unlikely(IS_PRIVATE(dir)))
478        return 0;
479    return security_ops->inode_create(dir, dentry, mode);
480}
481EXPORT_SYMBOL_GPL(security_inode_create);
482
483int security_inode_link(struct dentry *old_dentry, struct inode *dir,
484             struct dentry *new_dentry)
485{
486    if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
487        return 0;
488    return security_ops->inode_link(old_dentry, dir, new_dentry);
489}
490
491int security_inode_unlink(struct inode *dir, struct dentry *dentry)
492{
493    if (unlikely(IS_PRIVATE(dentry->d_inode)))
494        return 0;
495    return security_ops->inode_unlink(dir, dentry);
496}
497
498int security_inode_symlink(struct inode *dir, struct dentry *dentry,
499                const char *old_name)
500{
501    if (unlikely(IS_PRIVATE(dir)))
502        return 0;
503    return security_ops->inode_symlink(dir, dentry, old_name);
504}
505
506int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
507{
508    if (unlikely(IS_PRIVATE(dir)))
509        return 0;
510    return security_ops->inode_mkdir(dir, dentry, mode);
511}
512EXPORT_SYMBOL_GPL(security_inode_mkdir);
513
514int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
515{
516    if (unlikely(IS_PRIVATE(dentry->d_inode)))
517        return 0;
518    return security_ops->inode_rmdir(dir, dentry);
519}
520
521int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
522{
523    if (unlikely(IS_PRIVATE(dir)))
524        return 0;
525    return security_ops->inode_mknod(dir, dentry, mode, dev);
526}
527
528int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
529               struct inode *new_dir, struct dentry *new_dentry)
530{
531        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
532            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
533        return 0;
534    return security_ops->inode_rename(old_dir, old_dentry,
535                       new_dir, new_dentry);
536}
537
538int security_inode_readlink(struct dentry *dentry)
539{
540    if (unlikely(IS_PRIVATE(dentry->d_inode)))
541        return 0;
542    return security_ops->inode_readlink(dentry);
543}
544
545int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
546{
547    if (unlikely(IS_PRIVATE(dentry->d_inode)))
548        return 0;
549    return security_ops->inode_follow_link(dentry, nd);
550}
551
552int security_inode_permission(struct inode *inode, int mask)
553{
554    if (unlikely(IS_PRIVATE(inode)))
555        return 0;
556    return security_ops->inode_permission(inode, mask);
557}
558
559int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
560{
561    int ret;
562
563    if (unlikely(IS_PRIVATE(dentry->d_inode)))
564        return 0;
565    ret = security_ops->inode_setattr(dentry, attr);
566    if (ret)
567        return ret;
568    return evm_inode_setattr(dentry, attr);
569}
570EXPORT_SYMBOL_GPL(security_inode_setattr);
571
572int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
573{
574    if (unlikely(IS_PRIVATE(dentry->d_inode)))
575        return 0;
576    return security_ops->inode_getattr(mnt, dentry);
577}
578
579int security_inode_setxattr(struct dentry *dentry, const char *name,
580                const void *value, size_t size, int flags)
581{
582    int ret;
583
584    if (unlikely(IS_PRIVATE(dentry->d_inode)))
585        return 0;
586    ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
587    if (ret)
588        return ret;
589    ret = ima_inode_setxattr(dentry, name, value, size);
590    if (ret)
591        return ret;
592    return evm_inode_setxattr(dentry, name, value, size);
593}
594
595void security_inode_post_setxattr(struct dentry *dentry, const char *name,
596                  const void *value, size_t size, int flags)
597{
598    if (unlikely(IS_PRIVATE(dentry->d_inode)))
599        return;
600    security_ops->inode_post_setxattr(dentry, name, value, size, flags);
601    evm_inode_post_setxattr(dentry, name, value, size);
602}
603
604int security_inode_getxattr(struct dentry *dentry, const char *name)
605{
606    if (unlikely(IS_PRIVATE(dentry->d_inode)))
607        return 0;
608    return security_ops->inode_getxattr(dentry, name);
609}
610
611int security_inode_listxattr(struct dentry *dentry)
612{
613    if (unlikely(IS_PRIVATE(dentry->d_inode)))
614        return 0;
615    return security_ops->inode_listxattr(dentry);
616}
617
618int security_inode_removexattr(struct dentry *dentry, const char *name)
619{
620    int ret;
621
622    if (unlikely(IS_PRIVATE(dentry->d_inode)))
623        return 0;
624    ret = security_ops->inode_removexattr(dentry, name);
625    if (ret)
626        return ret;
627    ret = ima_inode_removexattr(dentry, name);
628    if (ret)
629        return ret;
630    return evm_inode_removexattr(dentry, name);
631}
632
633int security_inode_need_killpriv(struct dentry *dentry)
634{
635    return security_ops->inode_need_killpriv(dentry);
636}
637
638int security_inode_killpriv(struct dentry *dentry)
639{
640    return security_ops->inode_killpriv(dentry);
641}
642
643int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
644{
645    if (unlikely(IS_PRIVATE(inode)))
646        return -EOPNOTSUPP;
647    return security_ops->inode_getsecurity(inode, name, buffer, alloc);
648}
649
650int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
651{
652    if (unlikely(IS_PRIVATE(inode)))
653        return -EOPNOTSUPP;
654    return security_ops->inode_setsecurity(inode, name, value, size, flags);
655}
656
657int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
658{
659    if (unlikely(IS_PRIVATE(inode)))
660        return 0;
661    return security_ops->inode_listsecurity(inode, buffer, buffer_size);
662}
663EXPORT_SYMBOL(security_inode_listsecurity);
664
665void security_inode_getsecid(const struct inode *inode, u32 *secid)
666{
667    security_ops->inode_getsecid(inode, secid);
668}
669
670int security_file_permission(struct file *file, int mask)
671{
672    int ret;
673
674    ret = security_ops->file_permission(file, mask);
675    if (ret)
676        return ret;
677
678    return fsnotify_perm(file, mask);
679}
680
681int security_file_alloc(struct file *file)
682{
683    return security_ops->file_alloc_security(file);
684}
685
686void security_file_free(struct file *file)
687{
688    security_ops->file_free_security(file);
689}
690
691int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
692{
693    return security_ops->file_ioctl(file, cmd, arg);
694}
695
696static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
697{
698    /*
699     * Does we have PROT_READ and does the application expect
700     * it to imply PROT_EXEC? If not, nothing to talk about...
701     */
702    if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
703        return prot;
704    if (!(current->personality & READ_IMPLIES_EXEC))
705        return prot;
706    /*
707     * if that's an anonymous mapping, let it.
708     */
709    if (!file)
710        return prot | PROT_EXEC;
711    /*
712     * ditto if it's not on noexec mount, except that on !MMU we need
713     * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
714     */
715    if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
716#ifndef CONFIG_MMU
717        unsigned long caps = 0;
718        struct address_space *mapping = file->f_mapping;
719        if (mapping && mapping->backing_dev_info)
720            caps = mapping->backing_dev_info->capabilities;
721        if (!(caps & BDI_CAP_EXEC_MAP))
722            return prot;
723#endif
724        return prot | PROT_EXEC;
725    }
726    /* anything on noexec mount won't get PROT_EXEC */
727    return prot;
728}
729
730int security_mmap_file(struct file *file, unsigned long prot,
731            unsigned long flags)
732{
733    int ret;
734    ret = security_ops->mmap_file(file, prot,
735                    mmap_prot(file, prot), flags);
736    if (ret)
737        return ret;
738    return ima_file_mmap(file, prot);
739}
740
741int security_mmap_addr(unsigned long addr)
742{
743    return security_ops->mmap_addr(addr);
744}
745
746int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
747                unsigned long prot)
748{
749    return security_ops->file_mprotect(vma, reqprot, prot);
750}
751
752int security_file_lock(struct file *file, unsigned int cmd)
753{
754    return security_ops->file_lock(file, cmd);
755}
756
757int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
758{
759    return security_ops->file_fcntl(file, cmd, arg);
760}
761
762int security_file_set_fowner(struct file *file)
763{
764    return security_ops->file_set_fowner(file);
765}
766
767int security_file_send_sigiotask(struct task_struct *tsk,
768                  struct fown_struct *fown, int sig)
769{
770    return security_ops->file_send_sigiotask(tsk, fown, sig);
771}
772
773int security_file_receive(struct file *file)
774{
775    return security_ops->file_receive(file);
776}
777
778int security_file_open(struct file *file, const struct cred *cred)
779{
780    int ret;
781
782    ret = security_ops->file_open(file, cred);
783    if (ret)
784        return ret;
785
786    return fsnotify_perm(file, MAY_OPEN);
787}
788
789int security_task_create(unsigned long clone_flags)
790{
791    return security_ops->task_create(clone_flags);
792}
793
794void security_task_free(struct task_struct *task)
795{
796#ifdef CONFIG_SECURITY_YAMA_STACKED
797    yama_task_free(task);
798#endif
799    security_ops->task_free(task);
800}
801
802int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
803{
804    return security_ops->cred_alloc_blank(cred, gfp);
805}
806
807void security_cred_free(struct cred *cred)
808{
809    security_ops->cred_free(cred);
810}
811
812int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
813{
814    return security_ops->cred_prepare(new, old, gfp);
815}
816
817void security_transfer_creds(struct cred *new, const struct cred *old)
818{
819    security_ops->cred_transfer(new, old);
820}
821
822int security_kernel_act_as(struct cred *new, u32 secid)
823{
824    return security_ops->kernel_act_as(new, secid);
825}
826
827int security_kernel_create_files_as(struct cred *new, struct inode *inode)
828{
829    return security_ops->kernel_create_files_as(new, inode);
830}
831
832int security_kernel_module_request(char *kmod_name)
833{
834    return security_ops->kernel_module_request(kmod_name);
835}
836
837int security_kernel_module_from_file(struct file *file)
838{
839    int ret;
840
841    ret = security_ops->kernel_module_from_file(file);
842    if (ret)
843        return ret;
844    return ima_module_check(file);
845}
846
847int security_task_fix_setuid(struct cred *new, const struct cred *old,
848                 int flags)
849{
850    return security_ops->task_fix_setuid(new, old, flags);
851}
852
853int security_task_setpgid(struct task_struct *p, pid_t pgid)
854{
855    return security_ops->task_setpgid(p, pgid);
856}
857
858int security_task_getpgid(struct task_struct *p)
859{
860    return security_ops->task_getpgid(p);
861}
862
863int security_task_getsid(struct task_struct *p)
864{
865    return security_ops->task_getsid(p);
866}
867
868void security_task_getsecid(struct task_struct *p, u32 *secid)
869{
870    security_ops->task_getsecid(p, secid);
871}
872EXPORT_SYMBOL(security_task_getsecid);
873
874int security_task_setnice(struct task_struct *p, int nice)
875{
876    return security_ops->task_setnice(p, nice);
877}
878
879int security_task_setioprio(struct task_struct *p, int ioprio)
880{
881    return security_ops->task_setioprio(p, ioprio);
882}
883
884int security_task_getioprio(struct task_struct *p)
885{
886    return security_ops->task_getioprio(p);
887}
888
889int security_task_setrlimit(struct task_struct *p, unsigned int resource,
890        struct rlimit *new_rlim)
891{
892    return security_ops->task_setrlimit(p, resource, new_rlim);
893}
894
895int security_task_setscheduler(struct task_struct *p)
896{
897    return security_ops->task_setscheduler(p);
898}
899
900int security_task_getscheduler(struct task_struct *p)
901{
902    return security_ops->task_getscheduler(p);
903}
904
905int security_task_movememory(struct task_struct *p)
906{
907    return security_ops->task_movememory(p);
908}
909
910int security_task_kill(struct task_struct *p, struct siginfo *info,
911            int sig, u32 secid)
912{
913    return security_ops->task_kill(p, info, sig, secid);
914}
915
916int security_task_wait(struct task_struct *p)
917{
918    return security_ops->task_wait(p);
919}
920
921int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
922             unsigned long arg4, unsigned long arg5)
923{
924#ifdef CONFIG_SECURITY_YAMA_STACKED
925    int rc;
926    rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
927    if (rc != -ENOSYS)
928        return rc;
929#endif
930    return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
931}
932
933void security_task_to_inode(struct task_struct *p, struct inode *inode)
934{
935    security_ops->task_to_inode(p, inode);
936}
937
938int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
939{
940    return security_ops->ipc_permission(ipcp, flag);
941}
942
943void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
944{
945    security_ops->ipc_getsecid(ipcp, secid);
946}
947
948int security_msg_msg_alloc(struct msg_msg *msg)
949{
950    return security_ops->msg_msg_alloc_security(msg);
951}
952
953void security_msg_msg_free(struct msg_msg *msg)
954{
955    security_ops->msg_msg_free_security(msg);
956}
957
958int security_msg_queue_alloc(struct msg_queue *msq)
959{
960    return security_ops->msg_queue_alloc_security(msq);
961}
962
963void security_msg_queue_free(struct msg_queue *msq)
964{
965    security_ops->msg_queue_free_security(msq);
966}
967
968int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
969{
970    return security_ops->msg_queue_associate(msq, msqflg);
971}
972
973int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
974{
975    return security_ops->msg_queue_msgctl(msq, cmd);
976}
977
978int security_msg_queue_msgsnd(struct msg_queue *msq,
979                   struct msg_msg *msg, int msqflg)
980{
981    return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
982}
983
984int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
985                   struct task_struct *target, long type, int mode)
986{
987    return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
988}
989
990int security_shm_alloc(struct shmid_kernel *shp)
991{
992    return security_ops->shm_alloc_security(shp);
993}
994
995void security_shm_free(struct shmid_kernel *shp)
996{
997    security_ops->shm_free_security(shp);
998}
999
1000int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1001{
1002    return security_ops->shm_associate(shp, shmflg);
1003}
1004
1005int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1006{
1007    return security_ops->shm_shmctl(shp, cmd);
1008}
1009
1010int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1011{
1012    return security_ops->shm_shmat(shp, shmaddr, shmflg);
1013}
1014
1015int security_sem_alloc(struct sem_array *sma)
1016{
1017    return security_ops->sem_alloc_security(sma);
1018}
1019
1020void security_sem_free(struct sem_array *sma)
1021{
1022    security_ops->sem_free_security(sma);
1023}
1024
1025int security_sem_associate(struct sem_array *sma, int semflg)
1026{
1027    return security_ops->sem_associate(sma, semflg);
1028}
1029
1030int security_sem_semctl(struct sem_array *sma, int cmd)
1031{
1032    return security_ops->sem_semctl(sma, cmd);
1033}
1034
1035int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1036            unsigned nsops, int alter)
1037{
1038    return security_ops->sem_semop(sma, sops, nsops, alter);
1039}
1040
1041void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1042{
1043    if (unlikely(inode && IS_PRIVATE(inode)))
1044        return;
1045    security_ops->d_instantiate(dentry, inode);
1046}
1047EXPORT_SYMBOL(security_d_instantiate);
1048
1049int security_getprocattr(struct task_struct *p, char *name, char **value)
1050{
1051    return security_ops->getprocattr(p, name, value);
1052}
1053
1054int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1055{
1056    return security_ops->setprocattr(p, name, value, size);
1057}
1058
1059int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1060{
1061    return security_ops->netlink_send(sk, skb);
1062}
1063
1064int security_ismaclabel(const char *name)
1065{
1066    return security_ops->ismaclabel(name);
1067}
1068EXPORT_SYMBOL(security_ismaclabel);
1069
1070int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1071{
1072    return security_ops->secid_to_secctx(secid, secdata, seclen);
1073}
1074EXPORT_SYMBOL(security_secid_to_secctx);
1075
1076int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1077{
1078    return security_ops->secctx_to_secid(secdata, seclen, secid);
1079}
1080EXPORT_SYMBOL(security_secctx_to_secid);
1081
1082void security_release_secctx(char *secdata, u32 seclen)
1083{
1084    security_ops->release_secctx(secdata, seclen);
1085}
1086EXPORT_SYMBOL(security_release_secctx);
1087
1088int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1089{
1090    return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1091}
1092EXPORT_SYMBOL(security_inode_notifysecctx);
1093
1094int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1095{
1096    return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1097}
1098EXPORT_SYMBOL(security_inode_setsecctx);
1099
1100int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1101{
1102    return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1103}
1104EXPORT_SYMBOL(security_inode_getsecctx);
1105
1106#ifdef CONFIG_SECURITY_NETWORK
1107
1108int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1109{
1110    return security_ops->unix_stream_connect(sock, other, newsk);
1111}
1112EXPORT_SYMBOL(security_unix_stream_connect);
1113
1114int security_unix_may_send(struct socket *sock, struct socket *other)
1115{
1116    return security_ops->unix_may_send(sock, other);
1117}
1118EXPORT_SYMBOL(security_unix_may_send);
1119
1120int security_socket_create(int family, int type, int protocol, int kern)
1121{
1122    return security_ops->socket_create(family, type, protocol, kern);
1123}
1124
1125int security_socket_post_create(struct socket *sock, int family,
1126                int type, int protocol, int kern)
1127{
1128    return security_ops->socket_post_create(sock, family, type,
1129                        protocol, kern);
1130}
1131
1132int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1133{
1134    return security_ops->socket_bind(sock, address, addrlen);
1135}
1136
1137int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1138{
1139    return security_ops->socket_connect(sock, address, addrlen);
1140}
1141
1142int security_socket_listen(struct socket *sock, int backlog)
1143{
1144    return security_ops->socket_listen(sock, backlog);
1145}
1146
1147int security_socket_accept(struct socket *sock, struct socket *newsock)
1148{
1149    return security_ops->socket_accept(sock, newsock);
1150}
1151
1152int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1153{
1154    return security_ops->socket_sendmsg(sock, msg, size);
1155}
1156
1157int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1158                int size, int flags)
1159{
1160    return security_ops->socket_recvmsg(sock, msg, size, flags);
1161}
1162
1163int security_socket_getsockname(struct socket *sock)
1164{
1165    return security_ops->socket_getsockname(sock);
1166}
1167
1168int security_socket_getpeername(struct socket *sock)
1169{
1170    return security_ops->socket_getpeername(sock);
1171}
1172
1173int security_socket_getsockopt(struct socket *sock, int level, int optname)
1174{
1175    return security_ops->socket_getsockopt(sock, level, optname);
1176}
1177
1178int security_socket_setsockopt(struct socket *sock, int level, int optname)
1179{
1180    return security_ops->socket_setsockopt(sock, level, optname);
1181}
1182
1183int security_socket_shutdown(struct socket *sock, int how)
1184{
1185    return security_ops->socket_shutdown(sock, how);
1186}
1187
1188int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1189{
1190    return security_ops->socket_sock_rcv_skb(sk, skb);
1191}
1192EXPORT_SYMBOL(security_sock_rcv_skb);
1193
1194int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1195                      int __user *optlen, unsigned len)
1196{
1197    return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1198}
1199
1200int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1201{
1202    return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1203}
1204EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1205
1206int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1207{
1208    return security_ops->sk_alloc_security(sk, family, priority);
1209}
1210
1211void security_sk_free(struct sock *sk)
1212{
1213    security_ops->sk_free_security(sk);
1214}
1215
1216void security_sk_clone(const struct sock *sk, struct sock *newsk)
1217{
1218    security_ops->sk_clone_security(sk, newsk);
1219}
1220EXPORT_SYMBOL(security_sk_clone);
1221
1222void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1223{
1224    security_ops->sk_getsecid(sk, &fl->flowi_secid);
1225}
1226EXPORT_SYMBOL(security_sk_classify_flow);
1227
1228void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1229{
1230    security_ops->req_classify_flow(req, fl);
1231}
1232EXPORT_SYMBOL(security_req_classify_flow);
1233
1234void security_sock_graft(struct sock *sk, struct socket *parent)
1235{
1236    security_ops->sock_graft(sk, parent);
1237}
1238EXPORT_SYMBOL(security_sock_graft);
1239
1240int security_inet_conn_request(struct sock *sk,
1241            struct sk_buff *skb, struct request_sock *req)
1242{
1243    return security_ops->inet_conn_request(sk, skb, req);
1244}
1245EXPORT_SYMBOL(security_inet_conn_request);
1246
1247void security_inet_csk_clone(struct sock *newsk,
1248            const struct request_sock *req)
1249{
1250    security_ops->inet_csk_clone(newsk, req);
1251}
1252
1253void security_inet_conn_established(struct sock *sk,
1254            struct sk_buff *skb)
1255{
1256    security_ops->inet_conn_established(sk, skb);
1257}
1258
1259int security_secmark_relabel_packet(u32 secid)
1260{
1261    return security_ops->secmark_relabel_packet(secid);
1262}
1263EXPORT_SYMBOL(security_secmark_relabel_packet);
1264
1265void security_secmark_refcount_inc(void)
1266{
1267    security_ops->secmark_refcount_inc();
1268}
1269EXPORT_SYMBOL(security_secmark_refcount_inc);
1270
1271void security_secmark_refcount_dec(void)
1272{
1273    security_ops->secmark_refcount_dec();
1274}
1275EXPORT_SYMBOL(security_secmark_refcount_dec);
1276
1277int security_tun_dev_alloc_security(void **security)
1278{
1279    return security_ops->tun_dev_alloc_security(security);
1280}
1281EXPORT_SYMBOL(security_tun_dev_alloc_security);
1282
1283void security_tun_dev_free_security(void *security)
1284{
1285    security_ops->tun_dev_free_security(security);
1286}
1287EXPORT_SYMBOL(security_tun_dev_free_security);
1288
1289int security_tun_dev_create(void)
1290{
1291    return security_ops->tun_dev_create();
1292}
1293EXPORT_SYMBOL(security_tun_dev_create);
1294
1295int security_tun_dev_attach_queue(void *security)
1296{
1297    return security_ops->tun_dev_attach_queue(security);
1298}
1299EXPORT_SYMBOL(security_tun_dev_attach_queue);
1300
1301int security_tun_dev_attach(struct sock *sk, void *security)
1302{
1303    return security_ops->tun_dev_attach(sk, security);
1304}
1305EXPORT_SYMBOL(security_tun_dev_attach);
1306
1307int security_tun_dev_open(void *security)
1308{
1309    return security_ops->tun_dev_open(security);
1310}
1311EXPORT_SYMBOL(security_tun_dev_open);
1312
1313void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1314{
1315    security_ops->skb_owned_by(skb, sk);
1316}
1317
1318#endif /* CONFIG_SECURITY_NETWORK */
1319
1320#ifdef CONFIG_SECURITY_NETWORK_XFRM
1321
1322int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1323{
1324    return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1325}
1326EXPORT_SYMBOL(security_xfrm_policy_alloc);
1327
1328int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1329                  struct xfrm_sec_ctx **new_ctxp)
1330{
1331    return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1332}
1333
1334void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1335{
1336    security_ops->xfrm_policy_free_security(ctx);
1337}
1338EXPORT_SYMBOL(security_xfrm_policy_free);
1339
1340int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1341{
1342    return security_ops->xfrm_policy_delete_security(ctx);
1343}
1344
1345int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1346{
1347    return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1348}
1349EXPORT_SYMBOL(security_xfrm_state_alloc);
1350
1351int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1352                      struct xfrm_sec_ctx *polsec, u32 secid)
1353{
1354    if (!polsec)
1355        return 0;
1356    /*
1357     * We want the context to be taken from secid which is usually
1358     * from the sock.
1359     */
1360    return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1361}
1362
1363int security_xfrm_state_delete(struct xfrm_state *x)
1364{
1365    return security_ops->xfrm_state_delete_security(x);
1366}
1367EXPORT_SYMBOL(security_xfrm_state_delete);
1368
1369void security_xfrm_state_free(struct xfrm_state *x)
1370{
1371    security_ops->xfrm_state_free_security(x);
1372}
1373
1374int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1375{
1376    return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1377}
1378
1379int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1380                       struct xfrm_policy *xp,
1381                       const struct flowi *fl)
1382{
1383    return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1384}
1385
1386int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1387{
1388    return security_ops->xfrm_decode_session(skb, secid, 1);
1389}
1390
1391void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1392{
1393    int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1394
1395    BUG_ON(rc);
1396}
1397EXPORT_SYMBOL(security_skb_classify_flow);
1398
1399#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1400
1401#ifdef CONFIG_KEYS
1402
1403int security_key_alloc(struct key *key, const struct cred *cred,
1404               unsigned long flags)
1405{
1406    return security_ops->key_alloc(key, cred, flags);
1407}
1408
1409void security_key_free(struct key *key)
1410{
1411    security_ops->key_free(key);
1412}
1413
1414int security_key_permission(key_ref_t key_ref,
1415                const struct cred *cred, key_perm_t perm)
1416{
1417    return security_ops->key_permission(key_ref, cred, perm);
1418}
1419
1420int security_key_getsecurity(struct key *key, char **_buffer)
1421{
1422    return security_ops->key_getsecurity(key, _buffer);
1423}
1424
1425#endif /* CONFIG_KEYS */
1426
1427#ifdef CONFIG_AUDIT
1428
1429int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1430{
1431    return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1432}
1433
1434int security_audit_rule_known(struct audit_krule *krule)
1435{
1436    return security_ops->audit_rule_known(krule);
1437}
1438
1439void security_audit_rule_free(void *lsmrule)
1440{
1441    security_ops->audit_rule_free(lsmrule);
1442}
1443
1444int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1445                  struct audit_context *actx)
1446{
1447    return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1448}
1449
1450#endif /* CONFIG_AUDIT */
1451

Archive Download this file



interactive