Root/mm/compaction.c

1/*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10#include <linux/swap.h>
11#include <linux/migrate.h>
12#include <linux/compaction.h>
13#include <linux/mm_inline.h>
14#include <linux/backing-dev.h>
15#include <linux/sysctl.h>
16#include <linux/sysfs.h>
17#include <linux/balloon_compaction.h>
18#include <linux/page-isolation.h>
19#include "internal.h"
20
21#ifdef CONFIG_COMPACTION
22static inline void count_compact_event(enum vm_event_item item)
23{
24    count_vm_event(item);
25}
26
27static inline void count_compact_events(enum vm_event_item item, long delta)
28{
29    count_vm_events(item, delta);
30}
31#else
32#define count_compact_event(item) do { } while (0)
33#define count_compact_events(item, delta) do { } while (0)
34#endif
35
36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/compaction.h>
40
41static unsigned long release_freepages(struct list_head *freelist)
42{
43    struct page *page, *next;
44    unsigned long count = 0;
45
46    list_for_each_entry_safe(page, next, freelist, lru) {
47        list_del(&page->lru);
48        __free_page(page);
49        count++;
50    }
51
52    return count;
53}
54
55static void map_pages(struct list_head *list)
56{
57    struct page *page;
58
59    list_for_each_entry(page, list, lru) {
60        arch_alloc_page(page, 0);
61        kernel_map_pages(page, 1, 1);
62    }
63}
64
65static inline bool migrate_async_suitable(int migratetype)
66{
67    return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68}
69
70#ifdef CONFIG_COMPACTION
71/* Returns true if the pageblock should be scanned for pages to isolate. */
72static inline bool isolation_suitable(struct compact_control *cc,
73                    struct page *page)
74{
75    if (cc->ignore_skip_hint)
76        return true;
77
78    return !get_pageblock_skip(page);
79}
80
81/*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86static void __reset_isolation_suitable(struct zone *zone)
87{
88    unsigned long start_pfn = zone->zone_start_pfn;
89    unsigned long end_pfn = zone_end_pfn(zone);
90    unsigned long pfn;
91
92    zone->compact_cached_migrate_pfn = start_pfn;
93    zone->compact_cached_free_pfn = end_pfn;
94    zone->compact_blockskip_flush = false;
95
96    /* Walk the zone and mark every pageblock as suitable for isolation */
97    for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98        struct page *page;
99
100        cond_resched();
101
102        if (!pfn_valid(pfn))
103            continue;
104
105        page = pfn_to_page(pfn);
106        if (zone != page_zone(page))
107            continue;
108
109        clear_pageblock_skip(page);
110    }
111}
112
113void reset_isolation_suitable(pg_data_t *pgdat)
114{
115    int zoneid;
116
117    for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118        struct zone *zone = &pgdat->node_zones[zoneid];
119        if (!populated_zone(zone))
120            continue;
121
122        /* Only flush if a full compaction finished recently */
123        if (zone->compact_blockskip_flush)
124            __reset_isolation_suitable(zone);
125    }
126}
127
128/*
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
131 */
132static void update_pageblock_skip(struct compact_control *cc,
133            struct page *page, unsigned long nr_isolated,
134            bool migrate_scanner)
135{
136    struct zone *zone = cc->zone;
137    if (!page)
138        return;
139
140    if (!nr_isolated) {
141        unsigned long pfn = page_to_pfn(page);
142        set_pageblock_skip(page);
143
144        /* Update where compaction should restart */
145        if (migrate_scanner) {
146            if (!cc->finished_update_migrate &&
147                pfn > zone->compact_cached_migrate_pfn)
148                zone->compact_cached_migrate_pfn = pfn;
149        } else {
150            if (!cc->finished_update_free &&
151                pfn < zone->compact_cached_free_pfn)
152                zone->compact_cached_free_pfn = pfn;
153        }
154    }
155}
156#else
157static inline bool isolation_suitable(struct compact_control *cc,
158                    struct page *page)
159{
160    return true;
161}
162
163static void update_pageblock_skip(struct compact_control *cc,
164            struct page *page, unsigned long nr_isolated,
165            bool migrate_scanner)
166{
167}
168#endif /* CONFIG_COMPACTION */
169
170static inline bool should_release_lock(spinlock_t *lock)
171{
172    return need_resched() || spin_is_contended(lock);
173}
174
175/*
176 * Compaction requires the taking of some coarse locks that are potentially
177 * very heavily contended. Check if the process needs to be scheduled or
178 * if the lock is contended. For async compaction, back out in the event
179 * if contention is severe. For sync compaction, schedule.
180 *
181 * Returns true if the lock is held.
182 * Returns false if the lock is released and compaction should abort
183 */
184static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
185                      bool locked, struct compact_control *cc)
186{
187    if (should_release_lock(lock)) {
188        if (locked) {
189            spin_unlock_irqrestore(lock, *flags);
190            locked = false;
191        }
192
193        /* async aborts if taking too long or contended */
194        if (!cc->sync) {
195            cc->contended = true;
196            return false;
197        }
198
199        cond_resched();
200    }
201
202    if (!locked)
203        spin_lock_irqsave(lock, *flags);
204    return true;
205}
206
207static inline bool compact_trylock_irqsave(spinlock_t *lock,
208            unsigned long *flags, struct compact_control *cc)
209{
210    return compact_checklock_irqsave(lock, flags, false, cc);
211}
212
213/* Returns true if the page is within a block suitable for migration to */
214static bool suitable_migration_target(struct page *page)
215{
216    int migratetype = get_pageblock_migratetype(page);
217
218    /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
219    if (migratetype == MIGRATE_RESERVE)
220        return false;
221
222    if (is_migrate_isolate(migratetype))
223        return false;
224
225    /* If the page is a large free page, then allow migration */
226    if (PageBuddy(page) && page_order(page) >= pageblock_order)
227        return true;
228
229    /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
230    if (migrate_async_suitable(migratetype))
231        return true;
232
233    /* Otherwise skip the block */
234    return false;
235}
236
237/*
238 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
239 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
240 * pages inside of the pageblock (even though it may still end up isolating
241 * some pages).
242 */
243static unsigned long isolate_freepages_block(struct compact_control *cc,
244                unsigned long blockpfn,
245                unsigned long end_pfn,
246                struct list_head *freelist,
247                bool strict)
248{
249    int nr_scanned = 0, total_isolated = 0;
250    struct page *cursor, *valid_page = NULL;
251    unsigned long nr_strict_required = end_pfn - blockpfn;
252    unsigned long flags;
253    bool locked = false;
254
255    cursor = pfn_to_page(blockpfn);
256
257    /* Isolate free pages. */
258    for (; blockpfn < end_pfn; blockpfn++, cursor++) {
259        int isolated, i;
260        struct page *page = cursor;
261
262        nr_scanned++;
263        if (!pfn_valid_within(blockpfn))
264            continue;
265        if (!valid_page)
266            valid_page = page;
267        if (!PageBuddy(page))
268            continue;
269
270        /*
271         * The zone lock must be held to isolate freepages.
272         * Unfortunately this is a very coarse lock and can be
273         * heavily contended if there are parallel allocations
274         * or parallel compactions. For async compaction do not
275         * spin on the lock and we acquire the lock as late as
276         * possible.
277         */
278        locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
279                                locked, cc);
280        if (!locked)
281            break;
282
283        /* Recheck this is a suitable migration target under lock */
284        if (!strict && !suitable_migration_target(page))
285            break;
286
287        /* Recheck this is a buddy page under lock */
288        if (!PageBuddy(page))
289            continue;
290
291        /* Found a free page, break it into order-0 pages */
292        isolated = split_free_page(page);
293        if (!isolated && strict)
294            break;
295        total_isolated += isolated;
296        for (i = 0; i < isolated; i++) {
297            list_add(&page->lru, freelist);
298            page++;
299        }
300
301        /* If a page was split, advance to the end of it */
302        if (isolated) {
303            blockpfn += isolated - 1;
304            cursor += isolated - 1;
305        }
306    }
307
308    trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
309
310    /*
311     * If strict isolation is requested by CMA then check that all the
312     * pages requested were isolated. If there were any failures, 0 is
313     * returned and CMA will fail.
314     */
315    if (strict && nr_strict_required > total_isolated)
316        total_isolated = 0;
317
318    if (locked)
319        spin_unlock_irqrestore(&cc->zone->lock, flags);
320
321    /* Update the pageblock-skip if the whole pageblock was scanned */
322    if (blockpfn == end_pfn)
323        update_pageblock_skip(cc, valid_page, total_isolated, false);
324
325    count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
326    if (total_isolated)
327        count_compact_events(COMPACTISOLATED, total_isolated);
328    return total_isolated;
329}
330
331/**
332 * isolate_freepages_range() - isolate free pages.
333 * @start_pfn: The first PFN to start isolating.
334 * @end_pfn: The one-past-last PFN.
335 *
336 * Non-free pages, invalid PFNs, or zone boundaries within the
337 * [start_pfn, end_pfn) range are considered errors, cause function to
338 * undo its actions and return zero.
339 *
340 * Otherwise, function returns one-past-the-last PFN of isolated page
341 * (which may be greater then end_pfn if end fell in a middle of
342 * a free page).
343 */
344unsigned long
345isolate_freepages_range(struct compact_control *cc,
346            unsigned long start_pfn, unsigned long end_pfn)
347{
348    unsigned long isolated, pfn, block_end_pfn;
349    LIST_HEAD(freelist);
350
351    for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
352        if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
353            break;
354
355        /*
356         * On subsequent iterations ALIGN() is actually not needed,
357         * but we keep it that we not to complicate the code.
358         */
359        block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
360        block_end_pfn = min(block_end_pfn, end_pfn);
361
362        isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
363                           &freelist, true);
364
365        /*
366         * In strict mode, isolate_freepages_block() returns 0 if
367         * there are any holes in the block (ie. invalid PFNs or
368         * non-free pages).
369         */
370        if (!isolated)
371            break;
372
373        /*
374         * If we managed to isolate pages, it is always (1 << n) *
375         * pageblock_nr_pages for some non-negative n. (Max order
376         * page may span two pageblocks).
377         */
378    }
379
380    /* split_free_page does not map the pages */
381    map_pages(&freelist);
382
383    if (pfn < end_pfn) {
384        /* Loop terminated early, cleanup. */
385        release_freepages(&freelist);
386        return 0;
387    }
388
389    /* We don't use freelists for anything. */
390    return pfn;
391}
392
393/* Update the number of anon and file isolated pages in the zone */
394static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
395{
396    struct page *page;
397    unsigned int count[2] = { 0, };
398
399    list_for_each_entry(page, &cc->migratepages, lru)
400        count[!!page_is_file_cache(page)]++;
401
402    /* If locked we can use the interrupt unsafe versions */
403    if (locked) {
404        __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
405        __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
406    } else {
407        mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
408        mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
409    }
410}
411
412/* Similar to reclaim, but different enough that they don't share logic */
413static bool too_many_isolated(struct zone *zone)
414{
415    unsigned long active, inactive, isolated;
416
417    inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
418                    zone_page_state(zone, NR_INACTIVE_ANON);
419    active = zone_page_state(zone, NR_ACTIVE_FILE) +
420                    zone_page_state(zone, NR_ACTIVE_ANON);
421    isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
422                    zone_page_state(zone, NR_ISOLATED_ANON);
423
424    return isolated > (inactive + active) / 2;
425}
426
427/**
428 * isolate_migratepages_range() - isolate all migrate-able pages in range.
429 * @zone: Zone pages are in.
430 * @cc: Compaction control structure.
431 * @low_pfn: The first PFN of the range.
432 * @end_pfn: The one-past-the-last PFN of the range.
433 * @unevictable: true if it allows to isolate unevictable pages
434 *
435 * Isolate all pages that can be migrated from the range specified by
436 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
437 * pending), otherwise PFN of the first page that was not scanned
438 * (which may be both less, equal to or more then end_pfn).
439 *
440 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
441 * zero.
442 *
443 * Apart from cc->migratepages and cc->nr_migratetypes this function
444 * does not modify any cc's fields, in particular it does not modify
445 * (or read for that matter) cc->migrate_pfn.
446 */
447unsigned long
448isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
449        unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
450{
451    unsigned long last_pageblock_nr = 0, pageblock_nr;
452    unsigned long nr_scanned = 0, nr_isolated = 0;
453    struct list_head *migratelist = &cc->migratepages;
454    isolate_mode_t mode = 0;
455    struct lruvec *lruvec;
456    unsigned long flags;
457    bool locked = false;
458    struct page *page = NULL, *valid_page = NULL;
459
460    /*
461     * Ensure that there are not too many pages isolated from the LRU
462     * list by either parallel reclaimers or compaction. If there are,
463     * delay for some time until fewer pages are isolated
464     */
465    while (unlikely(too_many_isolated(zone))) {
466        /* async migration should just abort */
467        if (!cc->sync)
468            return 0;
469
470        congestion_wait(BLK_RW_ASYNC, HZ/10);
471
472        if (fatal_signal_pending(current))
473            return 0;
474    }
475
476    /* Time to isolate some pages for migration */
477    cond_resched();
478    for (; low_pfn < end_pfn; low_pfn++) {
479        /* give a chance to irqs before checking need_resched() */
480        if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
481            if (should_release_lock(&zone->lru_lock)) {
482                spin_unlock_irqrestore(&zone->lru_lock, flags);
483                locked = false;
484            }
485        }
486
487        /*
488         * migrate_pfn does not necessarily start aligned to a
489         * pageblock. Ensure that pfn_valid is called when moving
490         * into a new MAX_ORDER_NR_PAGES range in case of large
491         * memory holes within the zone
492         */
493        if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
494            if (!pfn_valid(low_pfn)) {
495                low_pfn += MAX_ORDER_NR_PAGES - 1;
496                continue;
497            }
498        }
499
500        if (!pfn_valid_within(low_pfn))
501            continue;
502        nr_scanned++;
503
504        /*
505         * Get the page and ensure the page is within the same zone.
506         * See the comment in isolate_freepages about overlapping
507         * nodes. It is deliberate that the new zone lock is not taken
508         * as memory compaction should not move pages between nodes.
509         */
510        page = pfn_to_page(low_pfn);
511        if (page_zone(page) != zone)
512            continue;
513
514        if (!valid_page)
515            valid_page = page;
516
517        /* If isolation recently failed, do not retry */
518        pageblock_nr = low_pfn >> pageblock_order;
519        if (!isolation_suitable(cc, page))
520            goto next_pageblock;
521
522        /* Skip if free */
523        if (PageBuddy(page))
524            continue;
525
526        /*
527         * For async migration, also only scan in MOVABLE blocks. Async
528         * migration is optimistic to see if the minimum amount of work
529         * satisfies the allocation
530         */
531        if (!cc->sync && last_pageblock_nr != pageblock_nr &&
532            !migrate_async_suitable(get_pageblock_migratetype(page))) {
533            cc->finished_update_migrate = true;
534            goto next_pageblock;
535        }
536
537        /*
538         * Check may be lockless but that's ok as we recheck later.
539         * It's possible to migrate LRU pages and balloon pages
540         * Skip any other type of page
541         */
542        if (!PageLRU(page)) {
543            if (unlikely(balloon_page_movable(page))) {
544                if (locked && balloon_page_isolate(page)) {
545                    /* Successfully isolated */
546                    cc->finished_update_migrate = true;
547                    list_add(&page->lru, migratelist);
548                    cc->nr_migratepages++;
549                    nr_isolated++;
550                    goto check_compact_cluster;
551                }
552            }
553            continue;
554        }
555
556        /*
557         * PageLRU is set. lru_lock normally excludes isolation
558         * splitting and collapsing (collapsing has already happened
559         * if PageLRU is set) but the lock is not necessarily taken
560         * here and it is wasteful to take it just to check transhuge.
561         * Check TransHuge without lock and skip the whole pageblock if
562         * it's either a transhuge or hugetlbfs page, as calling
563         * compound_order() without preventing THP from splitting the
564         * page underneath us may return surprising results.
565         */
566        if (PageTransHuge(page)) {
567            if (!locked)
568                goto next_pageblock;
569            low_pfn += (1 << compound_order(page)) - 1;
570            continue;
571        }
572
573        /* Check if it is ok to still hold the lock */
574        locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
575                                locked, cc);
576        if (!locked || fatal_signal_pending(current))
577            break;
578
579        /* Recheck PageLRU and PageTransHuge under lock */
580        if (!PageLRU(page))
581            continue;
582        if (PageTransHuge(page)) {
583            low_pfn += (1 << compound_order(page)) - 1;
584            continue;
585        }
586
587        if (!cc->sync)
588            mode |= ISOLATE_ASYNC_MIGRATE;
589
590        if (unevictable)
591            mode |= ISOLATE_UNEVICTABLE;
592
593        lruvec = mem_cgroup_page_lruvec(page, zone);
594
595        /* Try isolate the page */
596        if (__isolate_lru_page(page, mode) != 0)
597            continue;
598
599        VM_BUG_ON(PageTransCompound(page));
600
601        /* Successfully isolated */
602        cc->finished_update_migrate = true;
603        del_page_from_lru_list(page, lruvec, page_lru(page));
604        list_add(&page->lru, migratelist);
605        cc->nr_migratepages++;
606        nr_isolated++;
607
608check_compact_cluster:
609        /* Avoid isolating too much */
610        if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
611            ++low_pfn;
612            break;
613        }
614
615        continue;
616
617next_pageblock:
618        low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
619        last_pageblock_nr = pageblock_nr;
620    }
621
622    acct_isolated(zone, locked, cc);
623
624    if (locked)
625        spin_unlock_irqrestore(&zone->lru_lock, flags);
626
627    /* Update the pageblock-skip if the whole pageblock was scanned */
628    if (low_pfn == end_pfn)
629        update_pageblock_skip(cc, valid_page, nr_isolated, true);
630
631    trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
632
633    count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
634    if (nr_isolated)
635        count_compact_events(COMPACTISOLATED, nr_isolated);
636
637    return low_pfn;
638}
639
640#endif /* CONFIG_COMPACTION || CONFIG_CMA */
641#ifdef CONFIG_COMPACTION
642/*
643 * Based on information in the current compact_control, find blocks
644 * suitable for isolating free pages from and then isolate them.
645 */
646static void isolate_freepages(struct zone *zone,
647                struct compact_control *cc)
648{
649    struct page *page;
650    unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
651    int nr_freepages = cc->nr_freepages;
652    struct list_head *freelist = &cc->freepages;
653
654    /*
655     * Initialise the free scanner. The starting point is where we last
656     * scanned from (or the end of the zone if starting). The low point
657     * is the end of the pageblock the migration scanner is using.
658     */
659    pfn = cc->free_pfn;
660    low_pfn = cc->migrate_pfn + pageblock_nr_pages;
661
662    /*
663     * Take care that if the migration scanner is at the end of the zone
664     * that the free scanner does not accidentally move to the next zone
665     * in the next isolation cycle.
666     */
667    high_pfn = min(low_pfn, pfn);
668
669    z_end_pfn = zone_end_pfn(zone);
670
671    /*
672     * Isolate free pages until enough are available to migrate the
673     * pages on cc->migratepages. We stop searching if the migrate
674     * and free page scanners meet or enough free pages are isolated.
675     */
676    for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
677                    pfn -= pageblock_nr_pages) {
678        unsigned long isolated;
679
680        /*
681         * This can iterate a massively long zone without finding any
682         * suitable migration targets, so periodically check if we need
683         * to schedule.
684         */
685        cond_resched();
686
687        if (!pfn_valid(pfn))
688            continue;
689
690        /*
691         * Check for overlapping nodes/zones. It's possible on some
692         * configurations to have a setup like
693         * node0 node1 node0
694         * i.e. it's possible that all pages within a zones range of
695         * pages do not belong to a single zone.
696         */
697        page = pfn_to_page(pfn);
698        if (page_zone(page) != zone)
699            continue;
700
701        /* Check the block is suitable for migration */
702        if (!suitable_migration_target(page))
703            continue;
704
705        /* If isolation recently failed, do not retry */
706        if (!isolation_suitable(cc, page))
707            continue;
708
709        /* Found a block suitable for isolating free pages from */
710        isolated = 0;
711
712        /*
713         * As pfn may not start aligned, pfn+pageblock_nr_page
714         * may cross a MAX_ORDER_NR_PAGES boundary and miss
715         * a pfn_valid check. Ensure isolate_freepages_block()
716         * only scans within a pageblock
717         */
718        end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
719        end_pfn = min(end_pfn, z_end_pfn);
720        isolated = isolate_freepages_block(cc, pfn, end_pfn,
721                           freelist, false);
722        nr_freepages += isolated;
723
724        /*
725         * Record the highest PFN we isolated pages from. When next
726         * looking for free pages, the search will restart here as
727         * page migration may have returned some pages to the allocator
728         */
729        if (isolated) {
730            cc->finished_update_free = true;
731            high_pfn = max(high_pfn, pfn);
732        }
733    }
734
735    /* split_free_page does not map the pages */
736    map_pages(freelist);
737
738    cc->free_pfn = high_pfn;
739    cc->nr_freepages = nr_freepages;
740}
741
742/*
743 * This is a migrate-callback that "allocates" freepages by taking pages
744 * from the isolated freelists in the block we are migrating to.
745 */
746static struct page *compaction_alloc(struct page *migratepage,
747                    unsigned long data,
748                    int **result)
749{
750    struct compact_control *cc = (struct compact_control *)data;
751    struct page *freepage;
752
753    /* Isolate free pages if necessary */
754    if (list_empty(&cc->freepages)) {
755        isolate_freepages(cc->zone, cc);
756
757        if (list_empty(&cc->freepages))
758            return NULL;
759    }
760
761    freepage = list_entry(cc->freepages.next, struct page, lru);
762    list_del(&freepage->lru);
763    cc->nr_freepages--;
764
765    return freepage;
766}
767
768/*
769 * We cannot control nr_migratepages and nr_freepages fully when migration is
770 * running as migrate_pages() has no knowledge of compact_control. When
771 * migration is complete, we count the number of pages on the lists by hand.
772 */
773static void update_nr_listpages(struct compact_control *cc)
774{
775    int nr_migratepages = 0;
776    int nr_freepages = 0;
777    struct page *page;
778
779    list_for_each_entry(page, &cc->migratepages, lru)
780        nr_migratepages++;
781    list_for_each_entry(page, &cc->freepages, lru)
782        nr_freepages++;
783
784    cc->nr_migratepages = nr_migratepages;
785    cc->nr_freepages = nr_freepages;
786}
787
788/* possible outcome of isolate_migratepages */
789typedef enum {
790    ISOLATE_ABORT, /* Abort compaction now */
791    ISOLATE_NONE, /* No pages isolated, continue scanning */
792    ISOLATE_SUCCESS, /* Pages isolated, migrate */
793} isolate_migrate_t;
794
795/*
796 * Isolate all pages that can be migrated from the block pointed to by
797 * the migrate scanner within compact_control.
798 */
799static isolate_migrate_t isolate_migratepages(struct zone *zone,
800                    struct compact_control *cc)
801{
802    unsigned long low_pfn, end_pfn;
803
804    /* Do not scan outside zone boundaries */
805    low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
806
807    /* Only scan within a pageblock boundary */
808    end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
809
810    /* Do not cross the free scanner or scan within a memory hole */
811    if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
812        cc->migrate_pfn = end_pfn;
813        return ISOLATE_NONE;
814    }
815
816    /* Perform the isolation */
817    low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
818    if (!low_pfn || cc->contended)
819        return ISOLATE_ABORT;
820
821    cc->migrate_pfn = low_pfn;
822
823    return ISOLATE_SUCCESS;
824}
825
826static int compact_finished(struct zone *zone,
827                struct compact_control *cc)
828{
829    unsigned int order;
830    unsigned long watermark;
831
832    if (fatal_signal_pending(current))
833        return COMPACT_PARTIAL;
834
835    /* Compaction run completes if the migrate and free scanner meet */
836    if (cc->free_pfn <= cc->migrate_pfn) {
837        /*
838         * Mark that the PG_migrate_skip information should be cleared
839         * by kswapd when it goes to sleep. kswapd does not set the
840         * flag itself as the decision to be clear should be directly
841         * based on an allocation request.
842         */
843        if (!current_is_kswapd())
844            zone->compact_blockskip_flush = true;
845
846        return COMPACT_COMPLETE;
847    }
848
849    /*
850     * order == -1 is expected when compacting via
851     * /proc/sys/vm/compact_memory
852     */
853    if (cc->order == -1)
854        return COMPACT_CONTINUE;
855
856    /* Compaction run is not finished if the watermark is not met */
857    watermark = low_wmark_pages(zone);
858    watermark += (1 << cc->order);
859
860    if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
861        return COMPACT_CONTINUE;
862
863    /* Direct compactor: Is a suitable page free? */
864    for (order = cc->order; order < MAX_ORDER; order++) {
865        struct free_area *area = &zone->free_area[order];
866
867        /* Job done if page is free of the right migratetype */
868        if (!list_empty(&area->free_list[cc->migratetype]))
869            return COMPACT_PARTIAL;
870
871        /* Job done if allocation would set block type */
872        if (cc->order >= pageblock_order && area->nr_free)
873            return COMPACT_PARTIAL;
874    }
875
876    return COMPACT_CONTINUE;
877}
878
879/*
880 * compaction_suitable: Is this suitable to run compaction on this zone now?
881 * Returns
882 * COMPACT_SKIPPED - If there are too few free pages for compaction
883 * COMPACT_PARTIAL - If the allocation would succeed without compaction
884 * COMPACT_CONTINUE - If compaction should run now
885 */
886unsigned long compaction_suitable(struct zone *zone, int order)
887{
888    int fragindex;
889    unsigned long watermark;
890
891    /*
892     * order == -1 is expected when compacting via
893     * /proc/sys/vm/compact_memory
894     */
895    if (order == -1)
896        return COMPACT_CONTINUE;
897
898    /*
899     * Watermarks for order-0 must be met for compaction. Note the 2UL.
900     * This is because during migration, copies of pages need to be
901     * allocated and for a short time, the footprint is higher
902     */
903    watermark = low_wmark_pages(zone) + (2UL << order);
904    if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
905        return COMPACT_SKIPPED;
906
907    /*
908     * fragmentation index determines if allocation failures are due to
909     * low memory or external fragmentation
910     *
911     * index of -1000 implies allocations might succeed depending on
912     * watermarks
913     * index towards 0 implies failure is due to lack of memory
914     * index towards 1000 implies failure is due to fragmentation
915     *
916     * Only compact if a failure would be due to fragmentation.
917     */
918    fragindex = fragmentation_index(zone, order);
919    if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
920        return COMPACT_SKIPPED;
921
922    if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
923        0, 0))
924        return COMPACT_PARTIAL;
925
926    return COMPACT_CONTINUE;
927}
928
929static int compact_zone(struct zone *zone, struct compact_control *cc)
930{
931    int ret;
932    unsigned long start_pfn = zone->zone_start_pfn;
933    unsigned long end_pfn = zone_end_pfn(zone);
934
935    ret = compaction_suitable(zone, cc->order);
936    switch (ret) {
937    case COMPACT_PARTIAL:
938    case COMPACT_SKIPPED:
939        /* Compaction is likely to fail */
940        return ret;
941    case COMPACT_CONTINUE:
942        /* Fall through to compaction */
943        ;
944    }
945
946    /*
947     * Setup to move all movable pages to the end of the zone. Used cached
948     * information on where the scanners should start but check that it
949     * is initialised by ensuring the values are within zone boundaries.
950     */
951    cc->migrate_pfn = zone->compact_cached_migrate_pfn;
952    cc->free_pfn = zone->compact_cached_free_pfn;
953    if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
954        cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
955        zone->compact_cached_free_pfn = cc->free_pfn;
956    }
957    if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
958        cc->migrate_pfn = start_pfn;
959        zone->compact_cached_migrate_pfn = cc->migrate_pfn;
960    }
961
962    /*
963     * Clear pageblock skip if there were failures recently and compaction
964     * is about to be retried after being deferred. kswapd does not do
965     * this reset as it'll reset the cached information when going to sleep.
966     */
967    if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
968        __reset_isolation_suitable(zone);
969
970    migrate_prep_local();
971
972    while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
973        unsigned long nr_migrate, nr_remaining;
974        int err;
975
976        switch (isolate_migratepages(zone, cc)) {
977        case ISOLATE_ABORT:
978            ret = COMPACT_PARTIAL;
979            putback_movable_pages(&cc->migratepages);
980            cc->nr_migratepages = 0;
981            goto out;
982        case ISOLATE_NONE:
983            continue;
984        case ISOLATE_SUCCESS:
985            ;
986        }
987
988        nr_migrate = cc->nr_migratepages;
989        err = migrate_pages(&cc->migratepages, compaction_alloc,
990                (unsigned long)cc,
991                cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
992                MR_COMPACTION);
993        update_nr_listpages(cc);
994        nr_remaining = cc->nr_migratepages;
995
996        trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
997                        nr_remaining);
998
999        /* Release isolated pages not migrated */
1000        if (err) {
1001            putback_movable_pages(&cc->migratepages);
1002            cc->nr_migratepages = 0;
1003            if (err == -ENOMEM) {
1004                ret = COMPACT_PARTIAL;
1005                goto out;
1006            }
1007        }
1008    }
1009
1010out:
1011    /* Release free pages and check accounting */
1012    cc->nr_freepages -= release_freepages(&cc->freepages);
1013    VM_BUG_ON(cc->nr_freepages != 0);
1014
1015    return ret;
1016}
1017
1018static unsigned long compact_zone_order(struct zone *zone,
1019                 int order, gfp_t gfp_mask,
1020                 bool sync, bool *contended)
1021{
1022    unsigned long ret;
1023    struct compact_control cc = {
1024        .nr_freepages = 0,
1025        .nr_migratepages = 0,
1026        .order = order,
1027        .migratetype = allocflags_to_migratetype(gfp_mask),
1028        .zone = zone,
1029        .sync = sync,
1030    };
1031    INIT_LIST_HEAD(&cc.freepages);
1032    INIT_LIST_HEAD(&cc.migratepages);
1033
1034    ret = compact_zone(zone, &cc);
1035
1036    VM_BUG_ON(!list_empty(&cc.freepages));
1037    VM_BUG_ON(!list_empty(&cc.migratepages));
1038
1039    *contended = cc.contended;
1040    return ret;
1041}
1042
1043int sysctl_extfrag_threshold = 500;
1044
1045/**
1046 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1047 * @zonelist: The zonelist used for the current allocation
1048 * @order: The order of the current allocation
1049 * @gfp_mask: The GFP mask of the current allocation
1050 * @nodemask: The allowed nodes to allocate from
1051 * @sync: Whether migration is synchronous or not
1052 * @contended: Return value that is true if compaction was aborted due to lock contention
1053 * @page: Optionally capture a free page of the requested order during compaction
1054 *
1055 * This is the main entry point for direct page compaction.
1056 */
1057unsigned long try_to_compact_pages(struct zonelist *zonelist,
1058            int order, gfp_t gfp_mask, nodemask_t *nodemask,
1059            bool sync, bool *contended)
1060{
1061    enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1062    int may_enter_fs = gfp_mask & __GFP_FS;
1063    int may_perform_io = gfp_mask & __GFP_IO;
1064    struct zoneref *z;
1065    struct zone *zone;
1066    int rc = COMPACT_SKIPPED;
1067    int alloc_flags = 0;
1068
1069    /* Check if the GFP flags allow compaction */
1070    if (!order || !may_enter_fs || !may_perform_io)
1071        return rc;
1072
1073    count_compact_event(COMPACTSTALL);
1074
1075#ifdef CONFIG_CMA
1076    if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1077        alloc_flags |= ALLOC_CMA;
1078#endif
1079    /* Compact each zone in the list */
1080    for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1081                                nodemask) {
1082        int status;
1083
1084        status = compact_zone_order(zone, order, gfp_mask, sync,
1085                        contended);
1086        rc = max(status, rc);
1087
1088        /* If a normal allocation would succeed, stop compacting */
1089        if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1090                      alloc_flags))
1091            break;
1092    }
1093
1094    return rc;
1095}
1096
1097
1098/* Compact all zones within a node */
1099static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1100{
1101    int zoneid;
1102    struct zone *zone;
1103
1104    for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1105
1106        zone = &pgdat->node_zones[zoneid];
1107        if (!populated_zone(zone))
1108            continue;
1109
1110        cc->nr_freepages = 0;
1111        cc->nr_migratepages = 0;
1112        cc->zone = zone;
1113        INIT_LIST_HEAD(&cc->freepages);
1114        INIT_LIST_HEAD(&cc->migratepages);
1115
1116        if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1117            compact_zone(zone, cc);
1118
1119        if (cc->order > 0) {
1120            int ok = zone_watermark_ok(zone, cc->order,
1121                        low_wmark_pages(zone), 0, 0);
1122            if (ok && cc->order >= zone->compact_order_failed)
1123                zone->compact_order_failed = cc->order + 1;
1124            /* Currently async compaction is never deferred. */
1125            else if (!ok && cc->sync)
1126                defer_compaction(zone, cc->order);
1127        }
1128
1129        VM_BUG_ON(!list_empty(&cc->freepages));
1130        VM_BUG_ON(!list_empty(&cc->migratepages));
1131    }
1132}
1133
1134void compact_pgdat(pg_data_t *pgdat, int order)
1135{
1136    struct compact_control cc = {
1137        .order = order,
1138        .sync = false,
1139    };
1140
1141    if (!order)
1142        return;
1143
1144    __compact_pgdat(pgdat, &cc);
1145}
1146
1147static void compact_node(int nid)
1148{
1149    struct compact_control cc = {
1150        .order = -1,
1151        .sync = true,
1152    };
1153
1154    __compact_pgdat(NODE_DATA(nid), &cc);
1155}
1156
1157/* Compact all nodes in the system */
1158static void compact_nodes(void)
1159{
1160    int nid;
1161
1162    /* Flush pending updates to the LRU lists */
1163    lru_add_drain_all();
1164
1165    for_each_online_node(nid)
1166        compact_node(nid);
1167}
1168
1169/* The written value is actually unused, all memory is compacted */
1170int sysctl_compact_memory;
1171
1172/* This is the entry point for compacting all nodes via /proc/sys/vm */
1173int sysctl_compaction_handler(struct ctl_table *table, int write,
1174            void __user *buffer, size_t *length, loff_t *ppos)
1175{
1176    if (write)
1177        compact_nodes();
1178
1179    return 0;
1180}
1181
1182int sysctl_extfrag_handler(struct ctl_table *table, int write,
1183            void __user *buffer, size_t *length, loff_t *ppos)
1184{
1185    proc_dointvec_minmax(table, write, buffer, length, ppos);
1186
1187    return 0;
1188}
1189
1190#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1191ssize_t sysfs_compact_node(struct device *dev,
1192            struct device_attribute *attr,
1193            const char *buf, size_t count)
1194{
1195    int nid = dev->id;
1196
1197    if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1198        /* Flush pending updates to the LRU lists */
1199        lru_add_drain_all();
1200
1201        compact_node(nid);
1202    }
1203
1204    return count;
1205}
1206static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1207
1208int compaction_register_node(struct node *node)
1209{
1210    return device_create_file(&node->dev, &dev_attr_compact);
1211}
1212
1213void compaction_unregister_node(struct node *node)
1214{
1215    return device_remove_file(&node->dev, &dev_attr_compact);
1216}
1217#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1218
1219#endif /* CONFIG_COMPACTION */
1220

Archive Download this file



interactive