Root/
1 | /* |
2 | * linux/mm/compaction.c |
3 | * |
4 | * Memory compaction for the reduction of external fragmentation. Note that |
5 | * this heavily depends upon page migration to do all the real heavy |
6 | * lifting |
7 | * |
8 | * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie> |
9 | */ |
10 | #include <linux/swap.h> |
11 | #include <linux/migrate.h> |
12 | #include <linux/compaction.h> |
13 | #include <linux/mm_inline.h> |
14 | #include <linux/backing-dev.h> |
15 | #include <linux/sysctl.h> |
16 | #include <linux/sysfs.h> |
17 | #include <linux/balloon_compaction.h> |
18 | #include <linux/page-isolation.h> |
19 | #include "internal.h" |
20 | |
21 | #ifdef CONFIG_COMPACTION |
22 | static inline void count_compact_event(enum vm_event_item item) |
23 | { |
24 | count_vm_event(item); |
25 | } |
26 | |
27 | static inline void count_compact_events(enum vm_event_item item, long delta) |
28 | { |
29 | count_vm_events(item, delta); |
30 | } |
31 | #else |
32 | #define count_compact_event(item) do { } while (0) |
33 | #define count_compact_events(item, delta) do { } while (0) |
34 | #endif |
35 | |
36 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
37 | |
38 | #define CREATE_TRACE_POINTS |
39 | #include <trace/events/compaction.h> |
40 | |
41 | static unsigned long release_freepages(struct list_head *freelist) |
42 | { |
43 | struct page *page, *next; |
44 | unsigned long count = 0; |
45 | |
46 | list_for_each_entry_safe(page, next, freelist, lru) { |
47 | list_del(&page->lru); |
48 | __free_page(page); |
49 | count++; |
50 | } |
51 | |
52 | return count; |
53 | } |
54 | |
55 | static void map_pages(struct list_head *list) |
56 | { |
57 | struct page *page; |
58 | |
59 | list_for_each_entry(page, list, lru) { |
60 | arch_alloc_page(page, 0); |
61 | kernel_map_pages(page, 1, 1); |
62 | } |
63 | } |
64 | |
65 | static inline bool migrate_async_suitable(int migratetype) |
66 | { |
67 | return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE; |
68 | } |
69 | |
70 | #ifdef CONFIG_COMPACTION |
71 | /* Returns true if the pageblock should be scanned for pages to isolate. */ |
72 | static inline bool isolation_suitable(struct compact_control *cc, |
73 | struct page *page) |
74 | { |
75 | if (cc->ignore_skip_hint) |
76 | return true; |
77 | |
78 | return !get_pageblock_skip(page); |
79 | } |
80 | |
81 | /* |
82 | * This function is called to clear all cached information on pageblocks that |
83 | * should be skipped for page isolation when the migrate and free page scanner |
84 | * meet. |
85 | */ |
86 | static void __reset_isolation_suitable(struct zone *zone) |
87 | { |
88 | unsigned long start_pfn = zone->zone_start_pfn; |
89 | unsigned long end_pfn = zone_end_pfn(zone); |
90 | unsigned long pfn; |
91 | |
92 | zone->compact_cached_migrate_pfn = start_pfn; |
93 | zone->compact_cached_free_pfn = end_pfn; |
94 | zone->compact_blockskip_flush = false; |
95 | |
96 | /* Walk the zone and mark every pageblock as suitable for isolation */ |
97 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
98 | struct page *page; |
99 | |
100 | cond_resched(); |
101 | |
102 | if (!pfn_valid(pfn)) |
103 | continue; |
104 | |
105 | page = pfn_to_page(pfn); |
106 | if (zone != page_zone(page)) |
107 | continue; |
108 | |
109 | clear_pageblock_skip(page); |
110 | } |
111 | } |
112 | |
113 | void reset_isolation_suitable(pg_data_t *pgdat) |
114 | { |
115 | int zoneid; |
116 | |
117 | for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { |
118 | struct zone *zone = &pgdat->node_zones[zoneid]; |
119 | if (!populated_zone(zone)) |
120 | continue; |
121 | |
122 | /* Only flush if a full compaction finished recently */ |
123 | if (zone->compact_blockskip_flush) |
124 | __reset_isolation_suitable(zone); |
125 | } |
126 | } |
127 | |
128 | /* |
129 | * If no pages were isolated then mark this pageblock to be skipped in the |
130 | * future. The information is later cleared by __reset_isolation_suitable(). |
131 | */ |
132 | static void update_pageblock_skip(struct compact_control *cc, |
133 | struct page *page, unsigned long nr_isolated, |
134 | bool migrate_scanner) |
135 | { |
136 | struct zone *zone = cc->zone; |
137 | if (!page) |
138 | return; |
139 | |
140 | if (!nr_isolated) { |
141 | unsigned long pfn = page_to_pfn(page); |
142 | set_pageblock_skip(page); |
143 | |
144 | /* Update where compaction should restart */ |
145 | if (migrate_scanner) { |
146 | if (!cc->finished_update_migrate && |
147 | pfn > zone->compact_cached_migrate_pfn) |
148 | zone->compact_cached_migrate_pfn = pfn; |
149 | } else { |
150 | if (!cc->finished_update_free && |
151 | pfn < zone->compact_cached_free_pfn) |
152 | zone->compact_cached_free_pfn = pfn; |
153 | } |
154 | } |
155 | } |
156 | #else |
157 | static inline bool isolation_suitable(struct compact_control *cc, |
158 | struct page *page) |
159 | { |
160 | return true; |
161 | } |
162 | |
163 | static void update_pageblock_skip(struct compact_control *cc, |
164 | struct page *page, unsigned long nr_isolated, |
165 | bool migrate_scanner) |
166 | { |
167 | } |
168 | #endif /* CONFIG_COMPACTION */ |
169 | |
170 | static inline bool should_release_lock(spinlock_t *lock) |
171 | { |
172 | return need_resched() || spin_is_contended(lock); |
173 | } |
174 | |
175 | /* |
176 | * Compaction requires the taking of some coarse locks that are potentially |
177 | * very heavily contended. Check if the process needs to be scheduled or |
178 | * if the lock is contended. For async compaction, back out in the event |
179 | * if contention is severe. For sync compaction, schedule. |
180 | * |
181 | * Returns true if the lock is held. |
182 | * Returns false if the lock is released and compaction should abort |
183 | */ |
184 | static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags, |
185 | bool locked, struct compact_control *cc) |
186 | { |
187 | if (should_release_lock(lock)) { |
188 | if (locked) { |
189 | spin_unlock_irqrestore(lock, *flags); |
190 | locked = false; |
191 | } |
192 | |
193 | /* async aborts if taking too long or contended */ |
194 | if (!cc->sync) { |
195 | cc->contended = true; |
196 | return false; |
197 | } |
198 | |
199 | cond_resched(); |
200 | } |
201 | |
202 | if (!locked) |
203 | spin_lock_irqsave(lock, *flags); |
204 | return true; |
205 | } |
206 | |
207 | static inline bool compact_trylock_irqsave(spinlock_t *lock, |
208 | unsigned long *flags, struct compact_control *cc) |
209 | { |
210 | return compact_checklock_irqsave(lock, flags, false, cc); |
211 | } |
212 | |
213 | /* Returns true if the page is within a block suitable for migration to */ |
214 | static bool suitable_migration_target(struct page *page) |
215 | { |
216 | int migratetype = get_pageblock_migratetype(page); |
217 | |
218 | /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */ |
219 | if (migratetype == MIGRATE_RESERVE) |
220 | return false; |
221 | |
222 | if (is_migrate_isolate(migratetype)) |
223 | return false; |
224 | |
225 | /* If the page is a large free page, then allow migration */ |
226 | if (PageBuddy(page) && page_order(page) >= pageblock_order) |
227 | return true; |
228 | |
229 | /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */ |
230 | if (migrate_async_suitable(migratetype)) |
231 | return true; |
232 | |
233 | /* Otherwise skip the block */ |
234 | return false; |
235 | } |
236 | |
237 | /* |
238 | * Isolate free pages onto a private freelist. Caller must hold zone->lock. |
239 | * If @strict is true, will abort returning 0 on any invalid PFNs or non-free |
240 | * pages inside of the pageblock (even though it may still end up isolating |
241 | * some pages). |
242 | */ |
243 | static unsigned long isolate_freepages_block(struct compact_control *cc, |
244 | unsigned long blockpfn, |
245 | unsigned long end_pfn, |
246 | struct list_head *freelist, |
247 | bool strict) |
248 | { |
249 | int nr_scanned = 0, total_isolated = 0; |
250 | struct page *cursor, *valid_page = NULL; |
251 | unsigned long nr_strict_required = end_pfn - blockpfn; |
252 | unsigned long flags; |
253 | bool locked = false; |
254 | |
255 | cursor = pfn_to_page(blockpfn); |
256 | |
257 | /* Isolate free pages. */ |
258 | for (; blockpfn < end_pfn; blockpfn++, cursor++) { |
259 | int isolated, i; |
260 | struct page *page = cursor; |
261 | |
262 | nr_scanned++; |
263 | if (!pfn_valid_within(blockpfn)) |
264 | continue; |
265 | if (!valid_page) |
266 | valid_page = page; |
267 | if (!PageBuddy(page)) |
268 | continue; |
269 | |
270 | /* |
271 | * The zone lock must be held to isolate freepages. |
272 | * Unfortunately this is a very coarse lock and can be |
273 | * heavily contended if there are parallel allocations |
274 | * or parallel compactions. For async compaction do not |
275 | * spin on the lock and we acquire the lock as late as |
276 | * possible. |
277 | */ |
278 | locked = compact_checklock_irqsave(&cc->zone->lock, &flags, |
279 | locked, cc); |
280 | if (!locked) |
281 | break; |
282 | |
283 | /* Recheck this is a suitable migration target under lock */ |
284 | if (!strict && !suitable_migration_target(page)) |
285 | break; |
286 | |
287 | /* Recheck this is a buddy page under lock */ |
288 | if (!PageBuddy(page)) |
289 | continue; |
290 | |
291 | /* Found a free page, break it into order-0 pages */ |
292 | isolated = split_free_page(page); |
293 | if (!isolated && strict) |
294 | break; |
295 | total_isolated += isolated; |
296 | for (i = 0; i < isolated; i++) { |
297 | list_add(&page->lru, freelist); |
298 | page++; |
299 | } |
300 | |
301 | /* If a page was split, advance to the end of it */ |
302 | if (isolated) { |
303 | blockpfn += isolated - 1; |
304 | cursor += isolated - 1; |
305 | } |
306 | } |
307 | |
308 | trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated); |
309 | |
310 | /* |
311 | * If strict isolation is requested by CMA then check that all the |
312 | * pages requested were isolated. If there were any failures, 0 is |
313 | * returned and CMA will fail. |
314 | */ |
315 | if (strict && nr_strict_required > total_isolated) |
316 | total_isolated = 0; |
317 | |
318 | if (locked) |
319 | spin_unlock_irqrestore(&cc->zone->lock, flags); |
320 | |
321 | /* Update the pageblock-skip if the whole pageblock was scanned */ |
322 | if (blockpfn == end_pfn) |
323 | update_pageblock_skip(cc, valid_page, total_isolated, false); |
324 | |
325 | count_compact_events(COMPACTFREE_SCANNED, nr_scanned); |
326 | if (total_isolated) |
327 | count_compact_events(COMPACTISOLATED, total_isolated); |
328 | return total_isolated; |
329 | } |
330 | |
331 | /** |
332 | * isolate_freepages_range() - isolate free pages. |
333 | * @start_pfn: The first PFN to start isolating. |
334 | * @end_pfn: The one-past-last PFN. |
335 | * |
336 | * Non-free pages, invalid PFNs, or zone boundaries within the |
337 | * [start_pfn, end_pfn) range are considered errors, cause function to |
338 | * undo its actions and return zero. |
339 | * |
340 | * Otherwise, function returns one-past-the-last PFN of isolated page |
341 | * (which may be greater then end_pfn if end fell in a middle of |
342 | * a free page). |
343 | */ |
344 | unsigned long |
345 | isolate_freepages_range(struct compact_control *cc, |
346 | unsigned long start_pfn, unsigned long end_pfn) |
347 | { |
348 | unsigned long isolated, pfn, block_end_pfn; |
349 | LIST_HEAD(freelist); |
350 | |
351 | for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) { |
352 | if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn))) |
353 | break; |
354 | |
355 | /* |
356 | * On subsequent iterations ALIGN() is actually not needed, |
357 | * but we keep it that we not to complicate the code. |
358 | */ |
359 | block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); |
360 | block_end_pfn = min(block_end_pfn, end_pfn); |
361 | |
362 | isolated = isolate_freepages_block(cc, pfn, block_end_pfn, |
363 | &freelist, true); |
364 | |
365 | /* |
366 | * In strict mode, isolate_freepages_block() returns 0 if |
367 | * there are any holes in the block (ie. invalid PFNs or |
368 | * non-free pages). |
369 | */ |
370 | if (!isolated) |
371 | break; |
372 | |
373 | /* |
374 | * If we managed to isolate pages, it is always (1 << n) * |
375 | * pageblock_nr_pages for some non-negative n. (Max order |
376 | * page may span two pageblocks). |
377 | */ |
378 | } |
379 | |
380 | /* split_free_page does not map the pages */ |
381 | map_pages(&freelist); |
382 | |
383 | if (pfn < end_pfn) { |
384 | /* Loop terminated early, cleanup. */ |
385 | release_freepages(&freelist); |
386 | return 0; |
387 | } |
388 | |
389 | /* We don't use freelists for anything. */ |
390 | return pfn; |
391 | } |
392 | |
393 | /* Update the number of anon and file isolated pages in the zone */ |
394 | static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc) |
395 | { |
396 | struct page *page; |
397 | unsigned int count[2] = { 0, }; |
398 | |
399 | list_for_each_entry(page, &cc->migratepages, lru) |
400 | count[!!page_is_file_cache(page)]++; |
401 | |
402 | /* If locked we can use the interrupt unsafe versions */ |
403 | if (locked) { |
404 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); |
405 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); |
406 | } else { |
407 | mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); |
408 | mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); |
409 | } |
410 | } |
411 | |
412 | /* Similar to reclaim, but different enough that they don't share logic */ |
413 | static bool too_many_isolated(struct zone *zone) |
414 | { |
415 | unsigned long active, inactive, isolated; |
416 | |
417 | inactive = zone_page_state(zone, NR_INACTIVE_FILE) + |
418 | zone_page_state(zone, NR_INACTIVE_ANON); |
419 | active = zone_page_state(zone, NR_ACTIVE_FILE) + |
420 | zone_page_state(zone, NR_ACTIVE_ANON); |
421 | isolated = zone_page_state(zone, NR_ISOLATED_FILE) + |
422 | zone_page_state(zone, NR_ISOLATED_ANON); |
423 | |
424 | return isolated > (inactive + active) / 2; |
425 | } |
426 | |
427 | /** |
428 | * isolate_migratepages_range() - isolate all migrate-able pages in range. |
429 | * @zone: Zone pages are in. |
430 | * @cc: Compaction control structure. |
431 | * @low_pfn: The first PFN of the range. |
432 | * @end_pfn: The one-past-the-last PFN of the range. |
433 | * @unevictable: true if it allows to isolate unevictable pages |
434 | * |
435 | * Isolate all pages that can be migrated from the range specified by |
436 | * [low_pfn, end_pfn). Returns zero if there is a fatal signal |
437 | * pending), otherwise PFN of the first page that was not scanned |
438 | * (which may be both less, equal to or more then end_pfn). |
439 | * |
440 | * Assumes that cc->migratepages is empty and cc->nr_migratepages is |
441 | * zero. |
442 | * |
443 | * Apart from cc->migratepages and cc->nr_migratetypes this function |
444 | * does not modify any cc's fields, in particular it does not modify |
445 | * (or read for that matter) cc->migrate_pfn. |
446 | */ |
447 | unsigned long |
448 | isolate_migratepages_range(struct zone *zone, struct compact_control *cc, |
449 | unsigned long low_pfn, unsigned long end_pfn, bool unevictable) |
450 | { |
451 | unsigned long last_pageblock_nr = 0, pageblock_nr; |
452 | unsigned long nr_scanned = 0, nr_isolated = 0; |
453 | struct list_head *migratelist = &cc->migratepages; |
454 | isolate_mode_t mode = 0; |
455 | struct lruvec *lruvec; |
456 | unsigned long flags; |
457 | bool locked = false; |
458 | struct page *page = NULL, *valid_page = NULL; |
459 | |
460 | /* |
461 | * Ensure that there are not too many pages isolated from the LRU |
462 | * list by either parallel reclaimers or compaction. If there are, |
463 | * delay for some time until fewer pages are isolated |
464 | */ |
465 | while (unlikely(too_many_isolated(zone))) { |
466 | /* async migration should just abort */ |
467 | if (!cc->sync) |
468 | return 0; |
469 | |
470 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
471 | |
472 | if (fatal_signal_pending(current)) |
473 | return 0; |
474 | } |
475 | |
476 | /* Time to isolate some pages for migration */ |
477 | cond_resched(); |
478 | for (; low_pfn < end_pfn; low_pfn++) { |
479 | /* give a chance to irqs before checking need_resched() */ |
480 | if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) { |
481 | if (should_release_lock(&zone->lru_lock)) { |
482 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
483 | locked = false; |
484 | } |
485 | } |
486 | |
487 | /* |
488 | * migrate_pfn does not necessarily start aligned to a |
489 | * pageblock. Ensure that pfn_valid is called when moving |
490 | * into a new MAX_ORDER_NR_PAGES range in case of large |
491 | * memory holes within the zone |
492 | */ |
493 | if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { |
494 | if (!pfn_valid(low_pfn)) { |
495 | low_pfn += MAX_ORDER_NR_PAGES - 1; |
496 | continue; |
497 | } |
498 | } |
499 | |
500 | if (!pfn_valid_within(low_pfn)) |
501 | continue; |
502 | nr_scanned++; |
503 | |
504 | /* |
505 | * Get the page and ensure the page is within the same zone. |
506 | * See the comment in isolate_freepages about overlapping |
507 | * nodes. It is deliberate that the new zone lock is not taken |
508 | * as memory compaction should not move pages between nodes. |
509 | */ |
510 | page = pfn_to_page(low_pfn); |
511 | if (page_zone(page) != zone) |
512 | continue; |
513 | |
514 | if (!valid_page) |
515 | valid_page = page; |
516 | |
517 | /* If isolation recently failed, do not retry */ |
518 | pageblock_nr = low_pfn >> pageblock_order; |
519 | if (!isolation_suitable(cc, page)) |
520 | goto next_pageblock; |
521 | |
522 | /* Skip if free */ |
523 | if (PageBuddy(page)) |
524 | continue; |
525 | |
526 | /* |
527 | * For async migration, also only scan in MOVABLE blocks. Async |
528 | * migration is optimistic to see if the minimum amount of work |
529 | * satisfies the allocation |
530 | */ |
531 | if (!cc->sync && last_pageblock_nr != pageblock_nr && |
532 | !migrate_async_suitable(get_pageblock_migratetype(page))) { |
533 | cc->finished_update_migrate = true; |
534 | goto next_pageblock; |
535 | } |
536 | |
537 | /* |
538 | * Check may be lockless but that's ok as we recheck later. |
539 | * It's possible to migrate LRU pages and balloon pages |
540 | * Skip any other type of page |
541 | */ |
542 | if (!PageLRU(page)) { |
543 | if (unlikely(balloon_page_movable(page))) { |
544 | if (locked && balloon_page_isolate(page)) { |
545 | /* Successfully isolated */ |
546 | cc->finished_update_migrate = true; |
547 | list_add(&page->lru, migratelist); |
548 | cc->nr_migratepages++; |
549 | nr_isolated++; |
550 | goto check_compact_cluster; |
551 | } |
552 | } |
553 | continue; |
554 | } |
555 | |
556 | /* |
557 | * PageLRU is set. lru_lock normally excludes isolation |
558 | * splitting and collapsing (collapsing has already happened |
559 | * if PageLRU is set) but the lock is not necessarily taken |
560 | * here and it is wasteful to take it just to check transhuge. |
561 | * Check TransHuge without lock and skip the whole pageblock if |
562 | * it's either a transhuge or hugetlbfs page, as calling |
563 | * compound_order() without preventing THP from splitting the |
564 | * page underneath us may return surprising results. |
565 | */ |
566 | if (PageTransHuge(page)) { |
567 | if (!locked) |
568 | goto next_pageblock; |
569 | low_pfn += (1 << compound_order(page)) - 1; |
570 | continue; |
571 | } |
572 | |
573 | /* Check if it is ok to still hold the lock */ |
574 | locked = compact_checklock_irqsave(&zone->lru_lock, &flags, |
575 | locked, cc); |
576 | if (!locked || fatal_signal_pending(current)) |
577 | break; |
578 | |
579 | /* Recheck PageLRU and PageTransHuge under lock */ |
580 | if (!PageLRU(page)) |
581 | continue; |
582 | if (PageTransHuge(page)) { |
583 | low_pfn += (1 << compound_order(page)) - 1; |
584 | continue; |
585 | } |
586 | |
587 | if (!cc->sync) |
588 | mode |= ISOLATE_ASYNC_MIGRATE; |
589 | |
590 | if (unevictable) |
591 | mode |= ISOLATE_UNEVICTABLE; |
592 | |
593 | lruvec = mem_cgroup_page_lruvec(page, zone); |
594 | |
595 | /* Try isolate the page */ |
596 | if (__isolate_lru_page(page, mode) != 0) |
597 | continue; |
598 | |
599 | VM_BUG_ON(PageTransCompound(page)); |
600 | |
601 | /* Successfully isolated */ |
602 | cc->finished_update_migrate = true; |
603 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
604 | list_add(&page->lru, migratelist); |
605 | cc->nr_migratepages++; |
606 | nr_isolated++; |
607 | |
608 | check_compact_cluster: |
609 | /* Avoid isolating too much */ |
610 | if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) { |
611 | ++low_pfn; |
612 | break; |
613 | } |
614 | |
615 | continue; |
616 | |
617 | next_pageblock: |
618 | low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1; |
619 | last_pageblock_nr = pageblock_nr; |
620 | } |
621 | |
622 | acct_isolated(zone, locked, cc); |
623 | |
624 | if (locked) |
625 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
626 | |
627 | /* Update the pageblock-skip if the whole pageblock was scanned */ |
628 | if (low_pfn == end_pfn) |
629 | update_pageblock_skip(cc, valid_page, nr_isolated, true); |
630 | |
631 | trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated); |
632 | |
633 | count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned); |
634 | if (nr_isolated) |
635 | count_compact_events(COMPACTISOLATED, nr_isolated); |
636 | |
637 | return low_pfn; |
638 | } |
639 | |
640 | #endif /* CONFIG_COMPACTION || CONFIG_CMA */ |
641 | #ifdef CONFIG_COMPACTION |
642 | /* |
643 | * Based on information in the current compact_control, find blocks |
644 | * suitable for isolating free pages from and then isolate them. |
645 | */ |
646 | static void isolate_freepages(struct zone *zone, |
647 | struct compact_control *cc) |
648 | { |
649 | struct page *page; |
650 | unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn; |
651 | int nr_freepages = cc->nr_freepages; |
652 | struct list_head *freelist = &cc->freepages; |
653 | |
654 | /* |
655 | * Initialise the free scanner. The starting point is where we last |
656 | * scanned from (or the end of the zone if starting). The low point |
657 | * is the end of the pageblock the migration scanner is using. |
658 | */ |
659 | pfn = cc->free_pfn; |
660 | low_pfn = cc->migrate_pfn + pageblock_nr_pages; |
661 | |
662 | /* |
663 | * Take care that if the migration scanner is at the end of the zone |
664 | * that the free scanner does not accidentally move to the next zone |
665 | * in the next isolation cycle. |
666 | */ |
667 | high_pfn = min(low_pfn, pfn); |
668 | |
669 | z_end_pfn = zone_end_pfn(zone); |
670 | |
671 | /* |
672 | * Isolate free pages until enough are available to migrate the |
673 | * pages on cc->migratepages. We stop searching if the migrate |
674 | * and free page scanners meet or enough free pages are isolated. |
675 | */ |
676 | for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages; |
677 | pfn -= pageblock_nr_pages) { |
678 | unsigned long isolated; |
679 | |
680 | /* |
681 | * This can iterate a massively long zone without finding any |
682 | * suitable migration targets, so periodically check if we need |
683 | * to schedule. |
684 | */ |
685 | cond_resched(); |
686 | |
687 | if (!pfn_valid(pfn)) |
688 | continue; |
689 | |
690 | /* |
691 | * Check for overlapping nodes/zones. It's possible on some |
692 | * configurations to have a setup like |
693 | * node0 node1 node0 |
694 | * i.e. it's possible that all pages within a zones range of |
695 | * pages do not belong to a single zone. |
696 | */ |
697 | page = pfn_to_page(pfn); |
698 | if (page_zone(page) != zone) |
699 | continue; |
700 | |
701 | /* Check the block is suitable for migration */ |
702 | if (!suitable_migration_target(page)) |
703 | continue; |
704 | |
705 | /* If isolation recently failed, do not retry */ |
706 | if (!isolation_suitable(cc, page)) |
707 | continue; |
708 | |
709 | /* Found a block suitable for isolating free pages from */ |
710 | isolated = 0; |
711 | |
712 | /* |
713 | * As pfn may not start aligned, pfn+pageblock_nr_page |
714 | * may cross a MAX_ORDER_NR_PAGES boundary and miss |
715 | * a pfn_valid check. Ensure isolate_freepages_block() |
716 | * only scans within a pageblock |
717 | */ |
718 | end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); |
719 | end_pfn = min(end_pfn, z_end_pfn); |
720 | isolated = isolate_freepages_block(cc, pfn, end_pfn, |
721 | freelist, false); |
722 | nr_freepages += isolated; |
723 | |
724 | /* |
725 | * Record the highest PFN we isolated pages from. When next |
726 | * looking for free pages, the search will restart here as |
727 | * page migration may have returned some pages to the allocator |
728 | */ |
729 | if (isolated) { |
730 | cc->finished_update_free = true; |
731 | high_pfn = max(high_pfn, pfn); |
732 | } |
733 | } |
734 | |
735 | /* split_free_page does not map the pages */ |
736 | map_pages(freelist); |
737 | |
738 | cc->free_pfn = high_pfn; |
739 | cc->nr_freepages = nr_freepages; |
740 | } |
741 | |
742 | /* |
743 | * This is a migrate-callback that "allocates" freepages by taking pages |
744 | * from the isolated freelists in the block we are migrating to. |
745 | */ |
746 | static struct page *compaction_alloc(struct page *migratepage, |
747 | unsigned long data, |
748 | int **result) |
749 | { |
750 | struct compact_control *cc = (struct compact_control *)data; |
751 | struct page *freepage; |
752 | |
753 | /* Isolate free pages if necessary */ |
754 | if (list_empty(&cc->freepages)) { |
755 | isolate_freepages(cc->zone, cc); |
756 | |
757 | if (list_empty(&cc->freepages)) |
758 | return NULL; |
759 | } |
760 | |
761 | freepage = list_entry(cc->freepages.next, struct page, lru); |
762 | list_del(&freepage->lru); |
763 | cc->nr_freepages--; |
764 | |
765 | return freepage; |
766 | } |
767 | |
768 | /* |
769 | * We cannot control nr_migratepages and nr_freepages fully when migration is |
770 | * running as migrate_pages() has no knowledge of compact_control. When |
771 | * migration is complete, we count the number of pages on the lists by hand. |
772 | */ |
773 | static void update_nr_listpages(struct compact_control *cc) |
774 | { |
775 | int nr_migratepages = 0; |
776 | int nr_freepages = 0; |
777 | struct page *page; |
778 | |
779 | list_for_each_entry(page, &cc->migratepages, lru) |
780 | nr_migratepages++; |
781 | list_for_each_entry(page, &cc->freepages, lru) |
782 | nr_freepages++; |
783 | |
784 | cc->nr_migratepages = nr_migratepages; |
785 | cc->nr_freepages = nr_freepages; |
786 | } |
787 | |
788 | /* possible outcome of isolate_migratepages */ |
789 | typedef enum { |
790 | ISOLATE_ABORT, /* Abort compaction now */ |
791 | ISOLATE_NONE, /* No pages isolated, continue scanning */ |
792 | ISOLATE_SUCCESS, /* Pages isolated, migrate */ |
793 | } isolate_migrate_t; |
794 | |
795 | /* |
796 | * Isolate all pages that can be migrated from the block pointed to by |
797 | * the migrate scanner within compact_control. |
798 | */ |
799 | static isolate_migrate_t isolate_migratepages(struct zone *zone, |
800 | struct compact_control *cc) |
801 | { |
802 | unsigned long low_pfn, end_pfn; |
803 | |
804 | /* Do not scan outside zone boundaries */ |
805 | low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); |
806 | |
807 | /* Only scan within a pageblock boundary */ |
808 | end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages); |
809 | |
810 | /* Do not cross the free scanner or scan within a memory hole */ |
811 | if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) { |
812 | cc->migrate_pfn = end_pfn; |
813 | return ISOLATE_NONE; |
814 | } |
815 | |
816 | /* Perform the isolation */ |
817 | low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false); |
818 | if (!low_pfn || cc->contended) |
819 | return ISOLATE_ABORT; |
820 | |
821 | cc->migrate_pfn = low_pfn; |
822 | |
823 | return ISOLATE_SUCCESS; |
824 | } |
825 | |
826 | static int compact_finished(struct zone *zone, |
827 | struct compact_control *cc) |
828 | { |
829 | unsigned int order; |
830 | unsigned long watermark; |
831 | |
832 | if (fatal_signal_pending(current)) |
833 | return COMPACT_PARTIAL; |
834 | |
835 | /* Compaction run completes if the migrate and free scanner meet */ |
836 | if (cc->free_pfn <= cc->migrate_pfn) { |
837 | /* |
838 | * Mark that the PG_migrate_skip information should be cleared |
839 | * by kswapd when it goes to sleep. kswapd does not set the |
840 | * flag itself as the decision to be clear should be directly |
841 | * based on an allocation request. |
842 | */ |
843 | if (!current_is_kswapd()) |
844 | zone->compact_blockskip_flush = true; |
845 | |
846 | return COMPACT_COMPLETE; |
847 | } |
848 | |
849 | /* |
850 | * order == -1 is expected when compacting via |
851 | * /proc/sys/vm/compact_memory |
852 | */ |
853 | if (cc->order == -1) |
854 | return COMPACT_CONTINUE; |
855 | |
856 | /* Compaction run is not finished if the watermark is not met */ |
857 | watermark = low_wmark_pages(zone); |
858 | watermark += (1 << cc->order); |
859 | |
860 | if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0)) |
861 | return COMPACT_CONTINUE; |
862 | |
863 | /* Direct compactor: Is a suitable page free? */ |
864 | for (order = cc->order; order < MAX_ORDER; order++) { |
865 | struct free_area *area = &zone->free_area[order]; |
866 | |
867 | /* Job done if page is free of the right migratetype */ |
868 | if (!list_empty(&area->free_list[cc->migratetype])) |
869 | return COMPACT_PARTIAL; |
870 | |
871 | /* Job done if allocation would set block type */ |
872 | if (cc->order >= pageblock_order && area->nr_free) |
873 | return COMPACT_PARTIAL; |
874 | } |
875 | |
876 | return COMPACT_CONTINUE; |
877 | } |
878 | |
879 | /* |
880 | * compaction_suitable: Is this suitable to run compaction on this zone now? |
881 | * Returns |
882 | * COMPACT_SKIPPED - If there are too few free pages for compaction |
883 | * COMPACT_PARTIAL - If the allocation would succeed without compaction |
884 | * COMPACT_CONTINUE - If compaction should run now |
885 | */ |
886 | unsigned long compaction_suitable(struct zone *zone, int order) |
887 | { |
888 | int fragindex; |
889 | unsigned long watermark; |
890 | |
891 | /* |
892 | * order == -1 is expected when compacting via |
893 | * /proc/sys/vm/compact_memory |
894 | */ |
895 | if (order == -1) |
896 | return COMPACT_CONTINUE; |
897 | |
898 | /* |
899 | * Watermarks for order-0 must be met for compaction. Note the 2UL. |
900 | * This is because during migration, copies of pages need to be |
901 | * allocated and for a short time, the footprint is higher |
902 | */ |
903 | watermark = low_wmark_pages(zone) + (2UL << order); |
904 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) |
905 | return COMPACT_SKIPPED; |
906 | |
907 | /* |
908 | * fragmentation index determines if allocation failures are due to |
909 | * low memory or external fragmentation |
910 | * |
911 | * index of -1000 implies allocations might succeed depending on |
912 | * watermarks |
913 | * index towards 0 implies failure is due to lack of memory |
914 | * index towards 1000 implies failure is due to fragmentation |
915 | * |
916 | * Only compact if a failure would be due to fragmentation. |
917 | */ |
918 | fragindex = fragmentation_index(zone, order); |
919 | if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold) |
920 | return COMPACT_SKIPPED; |
921 | |
922 | if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark, |
923 | 0, 0)) |
924 | return COMPACT_PARTIAL; |
925 | |
926 | return COMPACT_CONTINUE; |
927 | } |
928 | |
929 | static int compact_zone(struct zone *zone, struct compact_control *cc) |
930 | { |
931 | int ret; |
932 | unsigned long start_pfn = zone->zone_start_pfn; |
933 | unsigned long end_pfn = zone_end_pfn(zone); |
934 | |
935 | ret = compaction_suitable(zone, cc->order); |
936 | switch (ret) { |
937 | case COMPACT_PARTIAL: |
938 | case COMPACT_SKIPPED: |
939 | /* Compaction is likely to fail */ |
940 | return ret; |
941 | case COMPACT_CONTINUE: |
942 | /* Fall through to compaction */ |
943 | ; |
944 | } |
945 | |
946 | /* |
947 | * Setup to move all movable pages to the end of the zone. Used cached |
948 | * information on where the scanners should start but check that it |
949 | * is initialised by ensuring the values are within zone boundaries. |
950 | */ |
951 | cc->migrate_pfn = zone->compact_cached_migrate_pfn; |
952 | cc->free_pfn = zone->compact_cached_free_pfn; |
953 | if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) { |
954 | cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1); |
955 | zone->compact_cached_free_pfn = cc->free_pfn; |
956 | } |
957 | if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) { |
958 | cc->migrate_pfn = start_pfn; |
959 | zone->compact_cached_migrate_pfn = cc->migrate_pfn; |
960 | } |
961 | |
962 | /* |
963 | * Clear pageblock skip if there were failures recently and compaction |
964 | * is about to be retried after being deferred. kswapd does not do |
965 | * this reset as it'll reset the cached information when going to sleep. |
966 | */ |
967 | if (compaction_restarting(zone, cc->order) && !current_is_kswapd()) |
968 | __reset_isolation_suitable(zone); |
969 | |
970 | migrate_prep_local(); |
971 | |
972 | while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) { |
973 | unsigned long nr_migrate, nr_remaining; |
974 | int err; |
975 | |
976 | switch (isolate_migratepages(zone, cc)) { |
977 | case ISOLATE_ABORT: |
978 | ret = COMPACT_PARTIAL; |
979 | putback_movable_pages(&cc->migratepages); |
980 | cc->nr_migratepages = 0; |
981 | goto out; |
982 | case ISOLATE_NONE: |
983 | continue; |
984 | case ISOLATE_SUCCESS: |
985 | ; |
986 | } |
987 | |
988 | nr_migrate = cc->nr_migratepages; |
989 | err = migrate_pages(&cc->migratepages, compaction_alloc, |
990 | (unsigned long)cc, |
991 | cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC, |
992 | MR_COMPACTION); |
993 | update_nr_listpages(cc); |
994 | nr_remaining = cc->nr_migratepages; |
995 | |
996 | trace_mm_compaction_migratepages(nr_migrate - nr_remaining, |
997 | nr_remaining); |
998 | |
999 | /* Release isolated pages not migrated */ |
1000 | if (err) { |
1001 | putback_movable_pages(&cc->migratepages); |
1002 | cc->nr_migratepages = 0; |
1003 | if (err == -ENOMEM) { |
1004 | ret = COMPACT_PARTIAL; |
1005 | goto out; |
1006 | } |
1007 | } |
1008 | } |
1009 | |
1010 | out: |
1011 | /* Release free pages and check accounting */ |
1012 | cc->nr_freepages -= release_freepages(&cc->freepages); |
1013 | VM_BUG_ON(cc->nr_freepages != 0); |
1014 | |
1015 | return ret; |
1016 | } |
1017 | |
1018 | static unsigned long compact_zone_order(struct zone *zone, |
1019 | int order, gfp_t gfp_mask, |
1020 | bool sync, bool *contended) |
1021 | { |
1022 | unsigned long ret; |
1023 | struct compact_control cc = { |
1024 | .nr_freepages = 0, |
1025 | .nr_migratepages = 0, |
1026 | .order = order, |
1027 | .migratetype = allocflags_to_migratetype(gfp_mask), |
1028 | .zone = zone, |
1029 | .sync = sync, |
1030 | }; |
1031 | INIT_LIST_HEAD(&cc.freepages); |
1032 | INIT_LIST_HEAD(&cc.migratepages); |
1033 | |
1034 | ret = compact_zone(zone, &cc); |
1035 | |
1036 | VM_BUG_ON(!list_empty(&cc.freepages)); |
1037 | VM_BUG_ON(!list_empty(&cc.migratepages)); |
1038 | |
1039 | *contended = cc.contended; |
1040 | return ret; |
1041 | } |
1042 | |
1043 | int sysctl_extfrag_threshold = 500; |
1044 | |
1045 | /** |
1046 | * try_to_compact_pages - Direct compact to satisfy a high-order allocation |
1047 | * @zonelist: The zonelist used for the current allocation |
1048 | * @order: The order of the current allocation |
1049 | * @gfp_mask: The GFP mask of the current allocation |
1050 | * @nodemask: The allowed nodes to allocate from |
1051 | * @sync: Whether migration is synchronous or not |
1052 | * @contended: Return value that is true if compaction was aborted due to lock contention |
1053 | * @page: Optionally capture a free page of the requested order during compaction |
1054 | * |
1055 | * This is the main entry point for direct page compaction. |
1056 | */ |
1057 | unsigned long try_to_compact_pages(struct zonelist *zonelist, |
1058 | int order, gfp_t gfp_mask, nodemask_t *nodemask, |
1059 | bool sync, bool *contended) |
1060 | { |
1061 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); |
1062 | int may_enter_fs = gfp_mask & __GFP_FS; |
1063 | int may_perform_io = gfp_mask & __GFP_IO; |
1064 | struct zoneref *z; |
1065 | struct zone *zone; |
1066 | int rc = COMPACT_SKIPPED; |
1067 | int alloc_flags = 0; |
1068 | |
1069 | /* Check if the GFP flags allow compaction */ |
1070 | if (!order || !may_enter_fs || !may_perform_io) |
1071 | return rc; |
1072 | |
1073 | count_compact_event(COMPACTSTALL); |
1074 | |
1075 | #ifdef CONFIG_CMA |
1076 | if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
1077 | alloc_flags |= ALLOC_CMA; |
1078 | #endif |
1079 | /* Compact each zone in the list */ |
1080 | for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, |
1081 | nodemask) { |
1082 | int status; |
1083 | |
1084 | status = compact_zone_order(zone, order, gfp_mask, sync, |
1085 | contended); |
1086 | rc = max(status, rc); |
1087 | |
1088 | /* If a normal allocation would succeed, stop compacting */ |
1089 | if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, |
1090 | alloc_flags)) |
1091 | break; |
1092 | } |
1093 | |
1094 | return rc; |
1095 | } |
1096 | |
1097 | |
1098 | /* Compact all zones within a node */ |
1099 | static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc) |
1100 | { |
1101 | int zoneid; |
1102 | struct zone *zone; |
1103 | |
1104 | for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) { |
1105 | |
1106 | zone = &pgdat->node_zones[zoneid]; |
1107 | if (!populated_zone(zone)) |
1108 | continue; |
1109 | |
1110 | cc->nr_freepages = 0; |
1111 | cc->nr_migratepages = 0; |
1112 | cc->zone = zone; |
1113 | INIT_LIST_HEAD(&cc->freepages); |
1114 | INIT_LIST_HEAD(&cc->migratepages); |
1115 | |
1116 | if (cc->order == -1 || !compaction_deferred(zone, cc->order)) |
1117 | compact_zone(zone, cc); |
1118 | |
1119 | if (cc->order > 0) { |
1120 | int ok = zone_watermark_ok(zone, cc->order, |
1121 | low_wmark_pages(zone), 0, 0); |
1122 | if (ok && cc->order >= zone->compact_order_failed) |
1123 | zone->compact_order_failed = cc->order + 1; |
1124 | /* Currently async compaction is never deferred. */ |
1125 | else if (!ok && cc->sync) |
1126 | defer_compaction(zone, cc->order); |
1127 | } |
1128 | |
1129 | VM_BUG_ON(!list_empty(&cc->freepages)); |
1130 | VM_BUG_ON(!list_empty(&cc->migratepages)); |
1131 | } |
1132 | } |
1133 | |
1134 | void compact_pgdat(pg_data_t *pgdat, int order) |
1135 | { |
1136 | struct compact_control cc = { |
1137 | .order = order, |
1138 | .sync = false, |
1139 | }; |
1140 | |
1141 | if (!order) |
1142 | return; |
1143 | |
1144 | __compact_pgdat(pgdat, &cc); |
1145 | } |
1146 | |
1147 | static void compact_node(int nid) |
1148 | { |
1149 | struct compact_control cc = { |
1150 | .order = -1, |
1151 | .sync = true, |
1152 | }; |
1153 | |
1154 | __compact_pgdat(NODE_DATA(nid), &cc); |
1155 | } |
1156 | |
1157 | /* Compact all nodes in the system */ |
1158 | static void compact_nodes(void) |
1159 | { |
1160 | int nid; |
1161 | |
1162 | /* Flush pending updates to the LRU lists */ |
1163 | lru_add_drain_all(); |
1164 | |
1165 | for_each_online_node(nid) |
1166 | compact_node(nid); |
1167 | } |
1168 | |
1169 | /* The written value is actually unused, all memory is compacted */ |
1170 | int sysctl_compact_memory; |
1171 | |
1172 | /* This is the entry point for compacting all nodes via /proc/sys/vm */ |
1173 | int sysctl_compaction_handler(struct ctl_table *table, int write, |
1174 | void __user *buffer, size_t *length, loff_t *ppos) |
1175 | { |
1176 | if (write) |
1177 | compact_nodes(); |
1178 | |
1179 | return 0; |
1180 | } |
1181 | |
1182 | int sysctl_extfrag_handler(struct ctl_table *table, int write, |
1183 | void __user *buffer, size_t *length, loff_t *ppos) |
1184 | { |
1185 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1186 | |
1187 | return 0; |
1188 | } |
1189 | |
1190 | #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA) |
1191 | ssize_t sysfs_compact_node(struct device *dev, |
1192 | struct device_attribute *attr, |
1193 | const char *buf, size_t count) |
1194 | { |
1195 | int nid = dev->id; |
1196 | |
1197 | if (nid >= 0 && nid < nr_node_ids && node_online(nid)) { |
1198 | /* Flush pending updates to the LRU lists */ |
1199 | lru_add_drain_all(); |
1200 | |
1201 | compact_node(nid); |
1202 | } |
1203 | |
1204 | return count; |
1205 | } |
1206 | static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node); |
1207 | |
1208 | int compaction_register_node(struct node *node) |
1209 | { |
1210 | return device_create_file(&node->dev, &dev_attr_compact); |
1211 | } |
1212 | |
1213 | void compaction_unregister_node(struct node *node) |
1214 | { |
1215 | return device_remove_file(&node->dev, &dev_attr_compact); |
1216 | } |
1217 | #endif /* CONFIG_SYSFS && CONFIG_NUMA */ |
1218 | |
1219 | #endif /* CONFIG_COMPACTION */ |
1220 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9