Root/
1 | /* |
2 | * linux/mm/filemap.c |
3 | * |
4 | * Copyright (C) 1994-1999 Linus Torvalds |
5 | */ |
6 | |
7 | /* |
8 | * This file handles the generic file mmap semantics used by |
9 | * most "normal" filesystems (but you don't /have/ to use this: |
10 | * the NFS filesystem used to do this differently, for example) |
11 | */ |
12 | #include <linux/export.h> |
13 | #include <linux/compiler.h> |
14 | #include <linux/fs.h> |
15 | #include <linux/uaccess.h> |
16 | #include <linux/aio.h> |
17 | #include <linux/capability.h> |
18 | #include <linux/kernel_stat.h> |
19 | #include <linux/gfp.h> |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> |
22 | #include <linux/mman.h> |
23 | #include <linux/pagemap.h> |
24 | #include <linux/file.h> |
25 | #include <linux/uio.h> |
26 | #include <linux/hash.h> |
27 | #include <linux/writeback.h> |
28 | #include <linux/backing-dev.h> |
29 | #include <linux/pagevec.h> |
30 | #include <linux/blkdev.h> |
31 | #include <linux/security.h> |
32 | #include <linux/cpuset.h> |
33 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
34 | #include <linux/memcontrol.h> |
35 | #include <linux/cleancache.h> |
36 | #include "internal.h" |
37 | |
38 | #define CREATE_TRACE_POINTS |
39 | #include <trace/events/filemap.h> |
40 | |
41 | /* |
42 | * FIXME: remove all knowledge of the buffer layer from the core VM |
43 | */ |
44 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
45 | |
46 | #include <asm/mman.h> |
47 | |
48 | /* |
49 | * Shared mappings implemented 30.11.1994. It's not fully working yet, |
50 | * though. |
51 | * |
52 | * Shared mappings now work. 15.8.1995 Bruno. |
53 | * |
54 | * finished 'unifying' the page and buffer cache and SMP-threaded the |
55 | * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> |
56 | * |
57 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> |
58 | */ |
59 | |
60 | /* |
61 | * Lock ordering: |
62 | * |
63 | * ->i_mmap_mutex (truncate_pagecache) |
64 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
65 | * ->swap_lock (exclusive_swap_page, others) |
66 | * ->mapping->tree_lock |
67 | * |
68 | * ->i_mutex |
69 | * ->i_mmap_mutex (truncate->unmap_mapping_range) |
70 | * |
71 | * ->mmap_sem |
72 | * ->i_mmap_mutex |
73 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
74 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
75 | * |
76 | * ->mmap_sem |
77 | * ->lock_page (access_process_vm) |
78 | * |
79 | * ->i_mutex (generic_file_buffered_write) |
80 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
81 | * |
82 | * bdi->wb.list_lock |
83 | * sb_lock (fs/fs-writeback.c) |
84 | * ->mapping->tree_lock (__sync_single_inode) |
85 | * |
86 | * ->i_mmap_mutex |
87 | * ->anon_vma.lock (vma_adjust) |
88 | * |
89 | * ->anon_vma.lock |
90 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
91 | * |
92 | * ->page_table_lock or pte_lock |
93 | * ->swap_lock (try_to_unmap_one) |
94 | * ->private_lock (try_to_unmap_one) |
95 | * ->tree_lock (try_to_unmap_one) |
96 | * ->zone.lru_lock (follow_page->mark_page_accessed) |
97 | * ->zone.lru_lock (check_pte_range->isolate_lru_page) |
98 | * ->private_lock (page_remove_rmap->set_page_dirty) |
99 | * ->tree_lock (page_remove_rmap->set_page_dirty) |
100 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
101 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
102 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
103 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
104 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
105 | * |
106 | * ->i_mmap_mutex |
107 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
108 | */ |
109 | |
110 | /* |
111 | * Delete a page from the page cache and free it. Caller has to make |
112 | * sure the page is locked and that nobody else uses it - or that usage |
113 | * is safe. The caller must hold the mapping's tree_lock. |
114 | */ |
115 | void __delete_from_page_cache(struct page *page) |
116 | { |
117 | struct address_space *mapping = page->mapping; |
118 | |
119 | trace_mm_filemap_delete_from_page_cache(page); |
120 | /* |
121 | * if we're uptodate, flush out into the cleancache, otherwise |
122 | * invalidate any existing cleancache entries. We can't leave |
123 | * stale data around in the cleancache once our page is gone |
124 | */ |
125 | if (PageUptodate(page) && PageMappedToDisk(page)) |
126 | cleancache_put_page(page); |
127 | else |
128 | cleancache_invalidate_page(mapping, page); |
129 | |
130 | radix_tree_delete(&mapping->page_tree, page->index); |
131 | page->mapping = NULL; |
132 | /* Leave page->index set: truncation lookup relies upon it */ |
133 | mapping->nrpages--; |
134 | __dec_zone_page_state(page, NR_FILE_PAGES); |
135 | if (PageSwapBacked(page)) |
136 | __dec_zone_page_state(page, NR_SHMEM); |
137 | BUG_ON(page_mapped(page)); |
138 | |
139 | /* |
140 | * Some filesystems seem to re-dirty the page even after |
141 | * the VM has canceled the dirty bit (eg ext3 journaling). |
142 | * |
143 | * Fix it up by doing a final dirty accounting check after |
144 | * having removed the page entirely. |
145 | */ |
146 | if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { |
147 | dec_zone_page_state(page, NR_FILE_DIRTY); |
148 | dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); |
149 | } |
150 | } |
151 | |
152 | /** |
153 | * delete_from_page_cache - delete page from page cache |
154 | * @page: the page which the kernel is trying to remove from page cache |
155 | * |
156 | * This must be called only on pages that have been verified to be in the page |
157 | * cache and locked. It will never put the page into the free list, the caller |
158 | * has a reference on the page. |
159 | */ |
160 | void delete_from_page_cache(struct page *page) |
161 | { |
162 | struct address_space *mapping = page->mapping; |
163 | void (*freepage)(struct page *); |
164 | |
165 | BUG_ON(!PageLocked(page)); |
166 | |
167 | freepage = mapping->a_ops->freepage; |
168 | spin_lock_irq(&mapping->tree_lock); |
169 | __delete_from_page_cache(page); |
170 | spin_unlock_irq(&mapping->tree_lock); |
171 | mem_cgroup_uncharge_cache_page(page); |
172 | |
173 | if (freepage) |
174 | freepage(page); |
175 | page_cache_release(page); |
176 | } |
177 | EXPORT_SYMBOL(delete_from_page_cache); |
178 | |
179 | static int sleep_on_page(void *word) |
180 | { |
181 | io_schedule(); |
182 | return 0; |
183 | } |
184 | |
185 | static int sleep_on_page_killable(void *word) |
186 | { |
187 | sleep_on_page(word); |
188 | return fatal_signal_pending(current) ? -EINTR : 0; |
189 | } |
190 | |
191 | static int filemap_check_errors(struct address_space *mapping) |
192 | { |
193 | int ret = 0; |
194 | /* Check for outstanding write errors */ |
195 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) |
196 | ret = -ENOSPC; |
197 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) |
198 | ret = -EIO; |
199 | return ret; |
200 | } |
201 | |
202 | /** |
203 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
204 | * @mapping: address space structure to write |
205 | * @start: offset in bytes where the range starts |
206 | * @end: offset in bytes where the range ends (inclusive) |
207 | * @sync_mode: enable synchronous operation |
208 | * |
209 | * Start writeback against all of a mapping's dirty pages that lie |
210 | * within the byte offsets <start, end> inclusive. |
211 | * |
212 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
213 | * opposed to a regular memory cleansing writeback. The difference between |
214 | * these two operations is that if a dirty page/buffer is encountered, it must |
215 | * be waited upon, and not just skipped over. |
216 | */ |
217 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
218 | loff_t end, int sync_mode) |
219 | { |
220 | int ret; |
221 | struct writeback_control wbc = { |
222 | .sync_mode = sync_mode, |
223 | .nr_to_write = LONG_MAX, |
224 | .range_start = start, |
225 | .range_end = end, |
226 | }; |
227 | |
228 | if (!mapping_cap_writeback_dirty(mapping)) |
229 | return 0; |
230 | |
231 | ret = do_writepages(mapping, &wbc); |
232 | return ret; |
233 | } |
234 | |
235 | static inline int __filemap_fdatawrite(struct address_space *mapping, |
236 | int sync_mode) |
237 | { |
238 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
239 | } |
240 | |
241 | int filemap_fdatawrite(struct address_space *mapping) |
242 | { |
243 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); |
244 | } |
245 | EXPORT_SYMBOL(filemap_fdatawrite); |
246 | |
247 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
248 | loff_t end) |
249 | { |
250 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); |
251 | } |
252 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
253 | |
254 | /** |
255 | * filemap_flush - mostly a non-blocking flush |
256 | * @mapping: target address_space |
257 | * |
258 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
259 | * purposes - I/O may not be started against all dirty pages. |
260 | */ |
261 | int filemap_flush(struct address_space *mapping) |
262 | { |
263 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); |
264 | } |
265 | EXPORT_SYMBOL(filemap_flush); |
266 | |
267 | /** |
268 | * filemap_fdatawait_range - wait for writeback to complete |
269 | * @mapping: address space structure to wait for |
270 | * @start_byte: offset in bytes where the range starts |
271 | * @end_byte: offset in bytes where the range ends (inclusive) |
272 | * |
273 | * Walk the list of under-writeback pages of the given address space |
274 | * in the given range and wait for all of them. |
275 | */ |
276 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, |
277 | loff_t end_byte) |
278 | { |
279 | pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; |
280 | pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; |
281 | struct pagevec pvec; |
282 | int nr_pages; |
283 | int ret2, ret = 0; |
284 | |
285 | if (end_byte < start_byte) |
286 | goto out; |
287 | |
288 | pagevec_init(&pvec, 0); |
289 | while ((index <= end) && |
290 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, |
291 | PAGECACHE_TAG_WRITEBACK, |
292 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { |
293 | unsigned i; |
294 | |
295 | for (i = 0; i < nr_pages; i++) { |
296 | struct page *page = pvec.pages[i]; |
297 | |
298 | /* until radix tree lookup accepts end_index */ |
299 | if (page->index > end) |
300 | continue; |
301 | |
302 | wait_on_page_writeback(page); |
303 | if (TestClearPageError(page)) |
304 | ret = -EIO; |
305 | } |
306 | pagevec_release(&pvec); |
307 | cond_resched(); |
308 | } |
309 | out: |
310 | ret2 = filemap_check_errors(mapping); |
311 | if (!ret) |
312 | ret = ret2; |
313 | |
314 | return ret; |
315 | } |
316 | EXPORT_SYMBOL(filemap_fdatawait_range); |
317 | |
318 | /** |
319 | * filemap_fdatawait - wait for all under-writeback pages to complete |
320 | * @mapping: address space structure to wait for |
321 | * |
322 | * Walk the list of under-writeback pages of the given address space |
323 | * and wait for all of them. |
324 | */ |
325 | int filemap_fdatawait(struct address_space *mapping) |
326 | { |
327 | loff_t i_size = i_size_read(mapping->host); |
328 | |
329 | if (i_size == 0) |
330 | return 0; |
331 | |
332 | return filemap_fdatawait_range(mapping, 0, i_size - 1); |
333 | } |
334 | EXPORT_SYMBOL(filemap_fdatawait); |
335 | |
336 | int filemap_write_and_wait(struct address_space *mapping) |
337 | { |
338 | int err = 0; |
339 | |
340 | if (mapping->nrpages) { |
341 | err = filemap_fdatawrite(mapping); |
342 | /* |
343 | * Even if the above returned error, the pages may be |
344 | * written partially (e.g. -ENOSPC), so we wait for it. |
345 | * But the -EIO is special case, it may indicate the worst |
346 | * thing (e.g. bug) happened, so we avoid waiting for it. |
347 | */ |
348 | if (err != -EIO) { |
349 | int err2 = filemap_fdatawait(mapping); |
350 | if (!err) |
351 | err = err2; |
352 | } |
353 | } else { |
354 | err = filemap_check_errors(mapping); |
355 | } |
356 | return err; |
357 | } |
358 | EXPORT_SYMBOL(filemap_write_and_wait); |
359 | |
360 | /** |
361 | * filemap_write_and_wait_range - write out & wait on a file range |
362 | * @mapping: the address_space for the pages |
363 | * @lstart: offset in bytes where the range starts |
364 | * @lend: offset in bytes where the range ends (inclusive) |
365 | * |
366 | * Write out and wait upon file offsets lstart->lend, inclusive. |
367 | * |
368 | * Note that `lend' is inclusive (describes the last byte to be written) so |
369 | * that this function can be used to write to the very end-of-file (end = -1). |
370 | */ |
371 | int filemap_write_and_wait_range(struct address_space *mapping, |
372 | loff_t lstart, loff_t lend) |
373 | { |
374 | int err = 0; |
375 | |
376 | if (mapping->nrpages) { |
377 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
378 | WB_SYNC_ALL); |
379 | /* See comment of filemap_write_and_wait() */ |
380 | if (err != -EIO) { |
381 | int err2 = filemap_fdatawait_range(mapping, |
382 | lstart, lend); |
383 | if (!err) |
384 | err = err2; |
385 | } |
386 | } else { |
387 | err = filemap_check_errors(mapping); |
388 | } |
389 | return err; |
390 | } |
391 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
392 | |
393 | /** |
394 | * replace_page_cache_page - replace a pagecache page with a new one |
395 | * @old: page to be replaced |
396 | * @new: page to replace with |
397 | * @gfp_mask: allocation mode |
398 | * |
399 | * This function replaces a page in the pagecache with a new one. On |
400 | * success it acquires the pagecache reference for the new page and |
401 | * drops it for the old page. Both the old and new pages must be |
402 | * locked. This function does not add the new page to the LRU, the |
403 | * caller must do that. |
404 | * |
405 | * The remove + add is atomic. The only way this function can fail is |
406 | * memory allocation failure. |
407 | */ |
408 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) |
409 | { |
410 | int error; |
411 | |
412 | VM_BUG_ON(!PageLocked(old)); |
413 | VM_BUG_ON(!PageLocked(new)); |
414 | VM_BUG_ON(new->mapping); |
415 | |
416 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
417 | if (!error) { |
418 | struct address_space *mapping = old->mapping; |
419 | void (*freepage)(struct page *); |
420 | |
421 | pgoff_t offset = old->index; |
422 | freepage = mapping->a_ops->freepage; |
423 | |
424 | page_cache_get(new); |
425 | new->mapping = mapping; |
426 | new->index = offset; |
427 | |
428 | spin_lock_irq(&mapping->tree_lock); |
429 | __delete_from_page_cache(old); |
430 | error = radix_tree_insert(&mapping->page_tree, offset, new); |
431 | BUG_ON(error); |
432 | mapping->nrpages++; |
433 | __inc_zone_page_state(new, NR_FILE_PAGES); |
434 | if (PageSwapBacked(new)) |
435 | __inc_zone_page_state(new, NR_SHMEM); |
436 | spin_unlock_irq(&mapping->tree_lock); |
437 | /* mem_cgroup codes must not be called under tree_lock */ |
438 | mem_cgroup_replace_page_cache(old, new); |
439 | radix_tree_preload_end(); |
440 | if (freepage) |
441 | freepage(old); |
442 | page_cache_release(old); |
443 | } |
444 | |
445 | return error; |
446 | } |
447 | EXPORT_SYMBOL_GPL(replace_page_cache_page); |
448 | |
449 | /** |
450 | * add_to_page_cache_locked - add a locked page to the pagecache |
451 | * @page: page to add |
452 | * @mapping: the page's address_space |
453 | * @offset: page index |
454 | * @gfp_mask: page allocation mode |
455 | * |
456 | * This function is used to add a page to the pagecache. It must be locked. |
457 | * This function does not add the page to the LRU. The caller must do that. |
458 | */ |
459 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, |
460 | pgoff_t offset, gfp_t gfp_mask) |
461 | { |
462 | int error; |
463 | |
464 | VM_BUG_ON(!PageLocked(page)); |
465 | VM_BUG_ON(PageSwapBacked(page)); |
466 | |
467 | error = mem_cgroup_cache_charge(page, current->mm, |
468 | gfp_mask & GFP_RECLAIM_MASK); |
469 | if (error) |
470 | return error; |
471 | |
472 | error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); |
473 | if (error) { |
474 | mem_cgroup_uncharge_cache_page(page); |
475 | return error; |
476 | } |
477 | |
478 | page_cache_get(page); |
479 | page->mapping = mapping; |
480 | page->index = offset; |
481 | |
482 | spin_lock_irq(&mapping->tree_lock); |
483 | error = radix_tree_insert(&mapping->page_tree, offset, page); |
484 | radix_tree_preload_end(); |
485 | if (unlikely(error)) |
486 | goto err_insert; |
487 | mapping->nrpages++; |
488 | __inc_zone_page_state(page, NR_FILE_PAGES); |
489 | spin_unlock_irq(&mapping->tree_lock); |
490 | trace_mm_filemap_add_to_page_cache(page); |
491 | return 0; |
492 | err_insert: |
493 | page->mapping = NULL; |
494 | /* Leave page->index set: truncation relies upon it */ |
495 | spin_unlock_irq(&mapping->tree_lock); |
496 | mem_cgroup_uncharge_cache_page(page); |
497 | page_cache_release(page); |
498 | return error; |
499 | } |
500 | EXPORT_SYMBOL(add_to_page_cache_locked); |
501 | |
502 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, |
503 | pgoff_t offset, gfp_t gfp_mask) |
504 | { |
505 | int ret; |
506 | |
507 | ret = add_to_page_cache(page, mapping, offset, gfp_mask); |
508 | if (ret == 0) |
509 | lru_cache_add_file(page); |
510 | return ret; |
511 | } |
512 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
513 | |
514 | #ifdef CONFIG_NUMA |
515 | struct page *__page_cache_alloc(gfp_t gfp) |
516 | { |
517 | int n; |
518 | struct page *page; |
519 | |
520 | if (cpuset_do_page_mem_spread()) { |
521 | unsigned int cpuset_mems_cookie; |
522 | do { |
523 | cpuset_mems_cookie = get_mems_allowed(); |
524 | n = cpuset_mem_spread_node(); |
525 | page = alloc_pages_exact_node(n, gfp, 0); |
526 | } while (!put_mems_allowed(cpuset_mems_cookie) && !page); |
527 | |
528 | return page; |
529 | } |
530 | return alloc_pages(gfp, 0); |
531 | } |
532 | EXPORT_SYMBOL(__page_cache_alloc); |
533 | #endif |
534 | |
535 | /* |
536 | * In order to wait for pages to become available there must be |
537 | * waitqueues associated with pages. By using a hash table of |
538 | * waitqueues where the bucket discipline is to maintain all |
539 | * waiters on the same queue and wake all when any of the pages |
540 | * become available, and for the woken contexts to check to be |
541 | * sure the appropriate page became available, this saves space |
542 | * at a cost of "thundering herd" phenomena during rare hash |
543 | * collisions. |
544 | */ |
545 | static wait_queue_head_t *page_waitqueue(struct page *page) |
546 | { |
547 | const struct zone *zone = page_zone(page); |
548 | |
549 | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; |
550 | } |
551 | |
552 | static inline void wake_up_page(struct page *page, int bit) |
553 | { |
554 | __wake_up_bit(page_waitqueue(page), &page->flags, bit); |
555 | } |
556 | |
557 | void wait_on_page_bit(struct page *page, int bit_nr) |
558 | { |
559 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); |
560 | |
561 | if (test_bit(bit_nr, &page->flags)) |
562 | __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, |
563 | TASK_UNINTERRUPTIBLE); |
564 | } |
565 | EXPORT_SYMBOL(wait_on_page_bit); |
566 | |
567 | int wait_on_page_bit_killable(struct page *page, int bit_nr) |
568 | { |
569 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); |
570 | |
571 | if (!test_bit(bit_nr, &page->flags)) |
572 | return 0; |
573 | |
574 | return __wait_on_bit(page_waitqueue(page), &wait, |
575 | sleep_on_page_killable, TASK_KILLABLE); |
576 | } |
577 | |
578 | /** |
579 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue |
580 | * @page: Page defining the wait queue of interest |
581 | * @waiter: Waiter to add to the queue |
582 | * |
583 | * Add an arbitrary @waiter to the wait queue for the nominated @page. |
584 | */ |
585 | void add_page_wait_queue(struct page *page, wait_queue_t *waiter) |
586 | { |
587 | wait_queue_head_t *q = page_waitqueue(page); |
588 | unsigned long flags; |
589 | |
590 | spin_lock_irqsave(&q->lock, flags); |
591 | __add_wait_queue(q, waiter); |
592 | spin_unlock_irqrestore(&q->lock, flags); |
593 | } |
594 | EXPORT_SYMBOL_GPL(add_page_wait_queue); |
595 | |
596 | /** |
597 | * unlock_page - unlock a locked page |
598 | * @page: the page |
599 | * |
600 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). |
601 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup |
602 | * mechananism between PageLocked pages and PageWriteback pages is shared. |
603 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
604 | * |
605 | * The mb is necessary to enforce ordering between the clear_bit and the read |
606 | * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). |
607 | */ |
608 | void unlock_page(struct page *page) |
609 | { |
610 | VM_BUG_ON(!PageLocked(page)); |
611 | clear_bit_unlock(PG_locked, &page->flags); |
612 | smp_mb__after_clear_bit(); |
613 | wake_up_page(page, PG_locked); |
614 | } |
615 | EXPORT_SYMBOL(unlock_page); |
616 | |
617 | /** |
618 | * end_page_writeback - end writeback against a page |
619 | * @page: the page |
620 | */ |
621 | void end_page_writeback(struct page *page) |
622 | { |
623 | if (TestClearPageReclaim(page)) |
624 | rotate_reclaimable_page(page); |
625 | |
626 | if (!test_clear_page_writeback(page)) |
627 | BUG(); |
628 | |
629 | smp_mb__after_clear_bit(); |
630 | wake_up_page(page, PG_writeback); |
631 | } |
632 | EXPORT_SYMBOL(end_page_writeback); |
633 | |
634 | /** |
635 | * __lock_page - get a lock on the page, assuming we need to sleep to get it |
636 | * @page: the page to lock |
637 | */ |
638 | void __lock_page(struct page *page) |
639 | { |
640 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); |
641 | |
642 | __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, |
643 | TASK_UNINTERRUPTIBLE); |
644 | } |
645 | EXPORT_SYMBOL(__lock_page); |
646 | |
647 | int __lock_page_killable(struct page *page) |
648 | { |
649 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); |
650 | |
651 | return __wait_on_bit_lock(page_waitqueue(page), &wait, |
652 | sleep_on_page_killable, TASK_KILLABLE); |
653 | } |
654 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
655 | |
656 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
657 | unsigned int flags) |
658 | { |
659 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
660 | /* |
661 | * CAUTION! In this case, mmap_sem is not released |
662 | * even though return 0. |
663 | */ |
664 | if (flags & FAULT_FLAG_RETRY_NOWAIT) |
665 | return 0; |
666 | |
667 | up_read(&mm->mmap_sem); |
668 | if (flags & FAULT_FLAG_KILLABLE) |
669 | wait_on_page_locked_killable(page); |
670 | else |
671 | wait_on_page_locked(page); |
672 | return 0; |
673 | } else { |
674 | if (flags & FAULT_FLAG_KILLABLE) { |
675 | int ret; |
676 | |
677 | ret = __lock_page_killable(page); |
678 | if (ret) { |
679 | up_read(&mm->mmap_sem); |
680 | return 0; |
681 | } |
682 | } else |
683 | __lock_page(page); |
684 | return 1; |
685 | } |
686 | } |
687 | |
688 | /** |
689 | * find_get_page - find and get a page reference |
690 | * @mapping: the address_space to search |
691 | * @offset: the page index |
692 | * |
693 | * Is there a pagecache struct page at the given (mapping, offset) tuple? |
694 | * If yes, increment its refcount and return it; if no, return NULL. |
695 | */ |
696 | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) |
697 | { |
698 | void **pagep; |
699 | struct page *page; |
700 | |
701 | rcu_read_lock(); |
702 | repeat: |
703 | page = NULL; |
704 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); |
705 | if (pagep) { |
706 | page = radix_tree_deref_slot(pagep); |
707 | if (unlikely(!page)) |
708 | goto out; |
709 | if (radix_tree_exception(page)) { |
710 | if (radix_tree_deref_retry(page)) |
711 | goto repeat; |
712 | /* |
713 | * Otherwise, shmem/tmpfs must be storing a swap entry |
714 | * here as an exceptional entry: so return it without |
715 | * attempting to raise page count. |
716 | */ |
717 | goto out; |
718 | } |
719 | if (!page_cache_get_speculative(page)) |
720 | goto repeat; |
721 | |
722 | /* |
723 | * Has the page moved? |
724 | * This is part of the lockless pagecache protocol. See |
725 | * include/linux/pagemap.h for details. |
726 | */ |
727 | if (unlikely(page != *pagep)) { |
728 | page_cache_release(page); |
729 | goto repeat; |
730 | } |
731 | } |
732 | out: |
733 | rcu_read_unlock(); |
734 | |
735 | return page; |
736 | } |
737 | EXPORT_SYMBOL(find_get_page); |
738 | |
739 | /** |
740 | * find_lock_page - locate, pin and lock a pagecache page |
741 | * @mapping: the address_space to search |
742 | * @offset: the page index |
743 | * |
744 | * Locates the desired pagecache page, locks it, increments its reference |
745 | * count and returns its address. |
746 | * |
747 | * Returns zero if the page was not present. find_lock_page() may sleep. |
748 | */ |
749 | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) |
750 | { |
751 | struct page *page; |
752 | |
753 | repeat: |
754 | page = find_get_page(mapping, offset); |
755 | if (page && !radix_tree_exception(page)) { |
756 | lock_page(page); |
757 | /* Has the page been truncated? */ |
758 | if (unlikely(page->mapping != mapping)) { |
759 | unlock_page(page); |
760 | page_cache_release(page); |
761 | goto repeat; |
762 | } |
763 | VM_BUG_ON(page->index != offset); |
764 | } |
765 | return page; |
766 | } |
767 | EXPORT_SYMBOL(find_lock_page); |
768 | |
769 | /** |
770 | * find_or_create_page - locate or add a pagecache page |
771 | * @mapping: the page's address_space |
772 | * @index: the page's index into the mapping |
773 | * @gfp_mask: page allocation mode |
774 | * |
775 | * Locates a page in the pagecache. If the page is not present, a new page |
776 | * is allocated using @gfp_mask and is added to the pagecache and to the VM's |
777 | * LRU list. The returned page is locked and has its reference count |
778 | * incremented. |
779 | * |
780 | * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic |
781 | * allocation! |
782 | * |
783 | * find_or_create_page() returns the desired page's address, or zero on |
784 | * memory exhaustion. |
785 | */ |
786 | struct page *find_or_create_page(struct address_space *mapping, |
787 | pgoff_t index, gfp_t gfp_mask) |
788 | { |
789 | struct page *page; |
790 | int err; |
791 | repeat: |
792 | page = find_lock_page(mapping, index); |
793 | if (!page) { |
794 | page = __page_cache_alloc(gfp_mask); |
795 | if (!page) |
796 | return NULL; |
797 | /* |
798 | * We want a regular kernel memory (not highmem or DMA etc) |
799 | * allocation for the radix tree nodes, but we need to honour |
800 | * the context-specific requirements the caller has asked for. |
801 | * GFP_RECLAIM_MASK collects those requirements. |
802 | */ |
803 | err = add_to_page_cache_lru(page, mapping, index, |
804 | (gfp_mask & GFP_RECLAIM_MASK)); |
805 | if (unlikely(err)) { |
806 | page_cache_release(page); |
807 | page = NULL; |
808 | if (err == -EEXIST) |
809 | goto repeat; |
810 | } |
811 | } |
812 | return page; |
813 | } |
814 | EXPORT_SYMBOL(find_or_create_page); |
815 | |
816 | /** |
817 | * find_get_pages - gang pagecache lookup |
818 | * @mapping: The address_space to search |
819 | * @start: The starting page index |
820 | * @nr_pages: The maximum number of pages |
821 | * @pages: Where the resulting pages are placed |
822 | * |
823 | * find_get_pages() will search for and return a group of up to |
824 | * @nr_pages pages in the mapping. The pages are placed at @pages. |
825 | * find_get_pages() takes a reference against the returned pages. |
826 | * |
827 | * The search returns a group of mapping-contiguous pages with ascending |
828 | * indexes. There may be holes in the indices due to not-present pages. |
829 | * |
830 | * find_get_pages() returns the number of pages which were found. |
831 | */ |
832 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, |
833 | unsigned int nr_pages, struct page **pages) |
834 | { |
835 | struct radix_tree_iter iter; |
836 | void **slot; |
837 | unsigned ret = 0; |
838 | |
839 | if (unlikely(!nr_pages)) |
840 | return 0; |
841 | |
842 | rcu_read_lock(); |
843 | restart: |
844 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
845 | struct page *page; |
846 | repeat: |
847 | page = radix_tree_deref_slot(slot); |
848 | if (unlikely(!page)) |
849 | continue; |
850 | |
851 | if (radix_tree_exception(page)) { |
852 | if (radix_tree_deref_retry(page)) { |
853 | /* |
854 | * Transient condition which can only trigger |
855 | * when entry at index 0 moves out of or back |
856 | * to root: none yet gotten, safe to restart. |
857 | */ |
858 | WARN_ON(iter.index); |
859 | goto restart; |
860 | } |
861 | /* |
862 | * Otherwise, shmem/tmpfs must be storing a swap entry |
863 | * here as an exceptional entry: so skip over it - |
864 | * we only reach this from invalidate_mapping_pages(). |
865 | */ |
866 | continue; |
867 | } |
868 | |
869 | if (!page_cache_get_speculative(page)) |
870 | goto repeat; |
871 | |
872 | /* Has the page moved? */ |
873 | if (unlikely(page != *slot)) { |
874 | page_cache_release(page); |
875 | goto repeat; |
876 | } |
877 | |
878 | pages[ret] = page; |
879 | if (++ret == nr_pages) |
880 | break; |
881 | } |
882 | |
883 | rcu_read_unlock(); |
884 | return ret; |
885 | } |
886 | |
887 | /** |
888 | * find_get_pages_contig - gang contiguous pagecache lookup |
889 | * @mapping: The address_space to search |
890 | * @index: The starting page index |
891 | * @nr_pages: The maximum number of pages |
892 | * @pages: Where the resulting pages are placed |
893 | * |
894 | * find_get_pages_contig() works exactly like find_get_pages(), except |
895 | * that the returned number of pages are guaranteed to be contiguous. |
896 | * |
897 | * find_get_pages_contig() returns the number of pages which were found. |
898 | */ |
899 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, |
900 | unsigned int nr_pages, struct page **pages) |
901 | { |
902 | struct radix_tree_iter iter; |
903 | void **slot; |
904 | unsigned int ret = 0; |
905 | |
906 | if (unlikely(!nr_pages)) |
907 | return 0; |
908 | |
909 | rcu_read_lock(); |
910 | restart: |
911 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
912 | struct page *page; |
913 | repeat: |
914 | page = radix_tree_deref_slot(slot); |
915 | /* The hole, there no reason to continue */ |
916 | if (unlikely(!page)) |
917 | break; |
918 | |
919 | if (radix_tree_exception(page)) { |
920 | if (radix_tree_deref_retry(page)) { |
921 | /* |
922 | * Transient condition which can only trigger |
923 | * when entry at index 0 moves out of or back |
924 | * to root: none yet gotten, safe to restart. |
925 | */ |
926 | goto restart; |
927 | } |
928 | /* |
929 | * Otherwise, shmem/tmpfs must be storing a swap entry |
930 | * here as an exceptional entry: so stop looking for |
931 | * contiguous pages. |
932 | */ |
933 | break; |
934 | } |
935 | |
936 | if (!page_cache_get_speculative(page)) |
937 | goto repeat; |
938 | |
939 | /* Has the page moved? */ |
940 | if (unlikely(page != *slot)) { |
941 | page_cache_release(page); |
942 | goto repeat; |
943 | } |
944 | |
945 | /* |
946 | * must check mapping and index after taking the ref. |
947 | * otherwise we can get both false positives and false |
948 | * negatives, which is just confusing to the caller. |
949 | */ |
950 | if (page->mapping == NULL || page->index != iter.index) { |
951 | page_cache_release(page); |
952 | break; |
953 | } |
954 | |
955 | pages[ret] = page; |
956 | if (++ret == nr_pages) |
957 | break; |
958 | } |
959 | rcu_read_unlock(); |
960 | return ret; |
961 | } |
962 | EXPORT_SYMBOL(find_get_pages_contig); |
963 | |
964 | /** |
965 | * find_get_pages_tag - find and return pages that match @tag |
966 | * @mapping: the address_space to search |
967 | * @index: the starting page index |
968 | * @tag: the tag index |
969 | * @nr_pages: the maximum number of pages |
970 | * @pages: where the resulting pages are placed |
971 | * |
972 | * Like find_get_pages, except we only return pages which are tagged with |
973 | * @tag. We update @index to index the next page for the traversal. |
974 | */ |
975 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, |
976 | int tag, unsigned int nr_pages, struct page **pages) |
977 | { |
978 | struct radix_tree_iter iter; |
979 | void **slot; |
980 | unsigned ret = 0; |
981 | |
982 | if (unlikely(!nr_pages)) |
983 | return 0; |
984 | |
985 | rcu_read_lock(); |
986 | restart: |
987 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
988 | &iter, *index, tag) { |
989 | struct page *page; |
990 | repeat: |
991 | page = radix_tree_deref_slot(slot); |
992 | if (unlikely(!page)) |
993 | continue; |
994 | |
995 | if (radix_tree_exception(page)) { |
996 | if (radix_tree_deref_retry(page)) { |
997 | /* |
998 | * Transient condition which can only trigger |
999 | * when entry at index 0 moves out of or back |
1000 | * to root: none yet gotten, safe to restart. |
1001 | */ |
1002 | goto restart; |
1003 | } |
1004 | /* |
1005 | * This function is never used on a shmem/tmpfs |
1006 | * mapping, so a swap entry won't be found here. |
1007 | */ |
1008 | BUG(); |
1009 | } |
1010 | |
1011 | if (!page_cache_get_speculative(page)) |
1012 | goto repeat; |
1013 | |
1014 | /* Has the page moved? */ |
1015 | if (unlikely(page != *slot)) { |
1016 | page_cache_release(page); |
1017 | goto repeat; |
1018 | } |
1019 | |
1020 | pages[ret] = page; |
1021 | if (++ret == nr_pages) |
1022 | break; |
1023 | } |
1024 | |
1025 | rcu_read_unlock(); |
1026 | |
1027 | if (ret) |
1028 | *index = pages[ret - 1]->index + 1; |
1029 | |
1030 | return ret; |
1031 | } |
1032 | EXPORT_SYMBOL(find_get_pages_tag); |
1033 | |
1034 | /** |
1035 | * grab_cache_page_nowait - returns locked page at given index in given cache |
1036 | * @mapping: target address_space |
1037 | * @index: the page index |
1038 | * |
1039 | * Same as grab_cache_page(), but do not wait if the page is unavailable. |
1040 | * This is intended for speculative data generators, where the data can |
1041 | * be regenerated if the page couldn't be grabbed. This routine should |
1042 | * be safe to call while holding the lock for another page. |
1043 | * |
1044 | * Clear __GFP_FS when allocating the page to avoid recursion into the fs |
1045 | * and deadlock against the caller's locked page. |
1046 | */ |
1047 | struct page * |
1048 | grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) |
1049 | { |
1050 | struct page *page = find_get_page(mapping, index); |
1051 | |
1052 | if (page) { |
1053 | if (trylock_page(page)) |
1054 | return page; |
1055 | page_cache_release(page); |
1056 | return NULL; |
1057 | } |
1058 | page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); |
1059 | if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { |
1060 | page_cache_release(page); |
1061 | page = NULL; |
1062 | } |
1063 | return page; |
1064 | } |
1065 | EXPORT_SYMBOL(grab_cache_page_nowait); |
1066 | |
1067 | /* |
1068 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail |
1069 | * a _large_ part of the i/o request. Imagine the worst scenario: |
1070 | * |
1071 | * ---R__________________________________________B__________ |
1072 | * ^ reading here ^ bad block(assume 4k) |
1073 | * |
1074 | * read(R) => miss => readahead(R...B) => media error => frustrating retries |
1075 | * => failing the whole request => read(R) => read(R+1) => |
1076 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => |
1077 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => |
1078 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... |
1079 | * |
1080 | * It is going insane. Fix it by quickly scaling down the readahead size. |
1081 | */ |
1082 | static void shrink_readahead_size_eio(struct file *filp, |
1083 | struct file_ra_state *ra) |
1084 | { |
1085 | ra->ra_pages /= 4; |
1086 | } |
1087 | |
1088 | /** |
1089 | * do_generic_file_read - generic file read routine |
1090 | * @filp: the file to read |
1091 | * @ppos: current file position |
1092 | * @desc: read_descriptor |
1093 | * @actor: read method |
1094 | * |
1095 | * This is a generic file read routine, and uses the |
1096 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1097 | * |
1098 | * This is really ugly. But the goto's actually try to clarify some |
1099 | * of the logic when it comes to error handling etc. |
1100 | */ |
1101 | static void do_generic_file_read(struct file *filp, loff_t *ppos, |
1102 | read_descriptor_t *desc, read_actor_t actor) |
1103 | { |
1104 | struct address_space *mapping = filp->f_mapping; |
1105 | struct inode *inode = mapping->host; |
1106 | struct file_ra_state *ra = &filp->f_ra; |
1107 | pgoff_t index; |
1108 | pgoff_t last_index; |
1109 | pgoff_t prev_index; |
1110 | unsigned long offset; /* offset into pagecache page */ |
1111 | unsigned int prev_offset; |
1112 | int error; |
1113 | |
1114 | index = *ppos >> PAGE_CACHE_SHIFT; |
1115 | prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; |
1116 | prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); |
1117 | last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; |
1118 | offset = *ppos & ~PAGE_CACHE_MASK; |
1119 | |
1120 | for (;;) { |
1121 | struct page *page; |
1122 | pgoff_t end_index; |
1123 | loff_t isize; |
1124 | unsigned long nr, ret; |
1125 | |
1126 | cond_resched(); |
1127 | find_page: |
1128 | page = find_get_page(mapping, index); |
1129 | if (!page) { |
1130 | page_cache_sync_readahead(mapping, |
1131 | ra, filp, |
1132 | index, last_index - index); |
1133 | page = find_get_page(mapping, index); |
1134 | if (unlikely(page == NULL)) |
1135 | goto no_cached_page; |
1136 | } |
1137 | if (PageReadahead(page)) { |
1138 | page_cache_async_readahead(mapping, |
1139 | ra, filp, page, |
1140 | index, last_index - index); |
1141 | } |
1142 | if (!PageUptodate(page)) { |
1143 | if (inode->i_blkbits == PAGE_CACHE_SHIFT || |
1144 | !mapping->a_ops->is_partially_uptodate) |
1145 | goto page_not_up_to_date; |
1146 | if (!trylock_page(page)) |
1147 | goto page_not_up_to_date; |
1148 | /* Did it get truncated before we got the lock? */ |
1149 | if (!page->mapping) |
1150 | goto page_not_up_to_date_locked; |
1151 | if (!mapping->a_ops->is_partially_uptodate(page, |
1152 | desc, offset)) |
1153 | goto page_not_up_to_date_locked; |
1154 | unlock_page(page); |
1155 | } |
1156 | page_ok: |
1157 | /* |
1158 | * i_size must be checked after we know the page is Uptodate. |
1159 | * |
1160 | * Checking i_size after the check allows us to calculate |
1161 | * the correct value for "nr", which means the zero-filled |
1162 | * part of the page is not copied back to userspace (unless |
1163 | * another truncate extends the file - this is desired though). |
1164 | */ |
1165 | |
1166 | isize = i_size_read(inode); |
1167 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; |
1168 | if (unlikely(!isize || index > end_index)) { |
1169 | page_cache_release(page); |
1170 | goto out; |
1171 | } |
1172 | |
1173 | /* nr is the maximum number of bytes to copy from this page */ |
1174 | nr = PAGE_CACHE_SIZE; |
1175 | if (index == end_index) { |
1176 | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; |
1177 | if (nr <= offset) { |
1178 | page_cache_release(page); |
1179 | goto out; |
1180 | } |
1181 | } |
1182 | nr = nr - offset; |
1183 | |
1184 | /* If users can be writing to this page using arbitrary |
1185 | * virtual addresses, take care about potential aliasing |
1186 | * before reading the page on the kernel side. |
1187 | */ |
1188 | if (mapping_writably_mapped(mapping)) |
1189 | flush_dcache_page(page); |
1190 | |
1191 | /* |
1192 | * When a sequential read accesses a page several times, |
1193 | * only mark it as accessed the first time. |
1194 | */ |
1195 | if (prev_index != index || offset != prev_offset) |
1196 | mark_page_accessed(page); |
1197 | prev_index = index; |
1198 | |
1199 | /* |
1200 | * Ok, we have the page, and it's up-to-date, so |
1201 | * now we can copy it to user space... |
1202 | * |
1203 | * The actor routine returns how many bytes were actually used.. |
1204 | * NOTE! This may not be the same as how much of a user buffer |
1205 | * we filled up (we may be padding etc), so we can only update |
1206 | * "pos" here (the actor routine has to update the user buffer |
1207 | * pointers and the remaining count). |
1208 | */ |
1209 | ret = actor(desc, page, offset, nr); |
1210 | offset += ret; |
1211 | index += offset >> PAGE_CACHE_SHIFT; |
1212 | offset &= ~PAGE_CACHE_MASK; |
1213 | prev_offset = offset; |
1214 | |
1215 | page_cache_release(page); |
1216 | if (ret == nr && desc->count) |
1217 | continue; |
1218 | goto out; |
1219 | |
1220 | page_not_up_to_date: |
1221 | /* Get exclusive access to the page ... */ |
1222 | error = lock_page_killable(page); |
1223 | if (unlikely(error)) |
1224 | goto readpage_error; |
1225 | |
1226 | page_not_up_to_date_locked: |
1227 | /* Did it get truncated before we got the lock? */ |
1228 | if (!page->mapping) { |
1229 | unlock_page(page); |
1230 | page_cache_release(page); |
1231 | continue; |
1232 | } |
1233 | |
1234 | /* Did somebody else fill it already? */ |
1235 | if (PageUptodate(page)) { |
1236 | unlock_page(page); |
1237 | goto page_ok; |
1238 | } |
1239 | |
1240 | readpage: |
1241 | /* |
1242 | * A previous I/O error may have been due to temporary |
1243 | * failures, eg. multipath errors. |
1244 | * PG_error will be set again if readpage fails. |
1245 | */ |
1246 | ClearPageError(page); |
1247 | /* Start the actual read. The read will unlock the page. */ |
1248 | error = mapping->a_ops->readpage(filp, page); |
1249 | |
1250 | if (unlikely(error)) { |
1251 | if (error == AOP_TRUNCATED_PAGE) { |
1252 | page_cache_release(page); |
1253 | goto find_page; |
1254 | } |
1255 | goto readpage_error; |
1256 | } |
1257 | |
1258 | if (!PageUptodate(page)) { |
1259 | error = lock_page_killable(page); |
1260 | if (unlikely(error)) |
1261 | goto readpage_error; |
1262 | if (!PageUptodate(page)) { |
1263 | if (page->mapping == NULL) { |
1264 | /* |
1265 | * invalidate_mapping_pages got it |
1266 | */ |
1267 | unlock_page(page); |
1268 | page_cache_release(page); |
1269 | goto find_page; |
1270 | } |
1271 | unlock_page(page); |
1272 | shrink_readahead_size_eio(filp, ra); |
1273 | error = -EIO; |
1274 | goto readpage_error; |
1275 | } |
1276 | unlock_page(page); |
1277 | } |
1278 | |
1279 | goto page_ok; |
1280 | |
1281 | readpage_error: |
1282 | /* UHHUH! A synchronous read error occurred. Report it */ |
1283 | desc->error = error; |
1284 | page_cache_release(page); |
1285 | goto out; |
1286 | |
1287 | no_cached_page: |
1288 | /* |
1289 | * Ok, it wasn't cached, so we need to create a new |
1290 | * page.. |
1291 | */ |
1292 | page = page_cache_alloc_cold(mapping); |
1293 | if (!page) { |
1294 | desc->error = -ENOMEM; |
1295 | goto out; |
1296 | } |
1297 | error = add_to_page_cache_lru(page, mapping, |
1298 | index, GFP_KERNEL); |
1299 | if (error) { |
1300 | page_cache_release(page); |
1301 | if (error == -EEXIST) |
1302 | goto find_page; |
1303 | desc->error = error; |
1304 | goto out; |
1305 | } |
1306 | goto readpage; |
1307 | } |
1308 | |
1309 | out: |
1310 | ra->prev_pos = prev_index; |
1311 | ra->prev_pos <<= PAGE_CACHE_SHIFT; |
1312 | ra->prev_pos |= prev_offset; |
1313 | |
1314 | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; |
1315 | file_accessed(filp); |
1316 | } |
1317 | |
1318 | int file_read_actor(read_descriptor_t *desc, struct page *page, |
1319 | unsigned long offset, unsigned long size) |
1320 | { |
1321 | char *kaddr; |
1322 | unsigned long left, count = desc->count; |
1323 | |
1324 | if (size > count) |
1325 | size = count; |
1326 | |
1327 | /* |
1328 | * Faults on the destination of a read are common, so do it before |
1329 | * taking the kmap. |
1330 | */ |
1331 | if (!fault_in_pages_writeable(desc->arg.buf, size)) { |
1332 | kaddr = kmap_atomic(page); |
1333 | left = __copy_to_user_inatomic(desc->arg.buf, |
1334 | kaddr + offset, size); |
1335 | kunmap_atomic(kaddr); |
1336 | if (left == 0) |
1337 | goto success; |
1338 | } |
1339 | |
1340 | /* Do it the slow way */ |
1341 | kaddr = kmap(page); |
1342 | left = __copy_to_user(desc->arg.buf, kaddr + offset, size); |
1343 | kunmap(page); |
1344 | |
1345 | if (left) { |
1346 | size -= left; |
1347 | desc->error = -EFAULT; |
1348 | } |
1349 | success: |
1350 | desc->count = count - size; |
1351 | desc->written += size; |
1352 | desc->arg.buf += size; |
1353 | return size; |
1354 | } |
1355 | |
1356 | /* |
1357 | * Performs necessary checks before doing a write |
1358 | * @iov: io vector request |
1359 | * @nr_segs: number of segments in the iovec |
1360 | * @count: number of bytes to write |
1361 | * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE |
1362 | * |
1363 | * Adjust number of segments and amount of bytes to write (nr_segs should be |
1364 | * properly initialized first). Returns appropriate error code that caller |
1365 | * should return or zero in case that write should be allowed. |
1366 | */ |
1367 | int generic_segment_checks(const struct iovec *iov, |
1368 | unsigned long *nr_segs, size_t *count, int access_flags) |
1369 | { |
1370 | unsigned long seg; |
1371 | size_t cnt = 0; |
1372 | for (seg = 0; seg < *nr_segs; seg++) { |
1373 | const struct iovec *iv = &iov[seg]; |
1374 | |
1375 | /* |
1376 | * If any segment has a negative length, or the cumulative |
1377 | * length ever wraps negative then return -EINVAL. |
1378 | */ |
1379 | cnt += iv->iov_len; |
1380 | if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) |
1381 | return -EINVAL; |
1382 | if (access_ok(access_flags, iv->iov_base, iv->iov_len)) |
1383 | continue; |
1384 | if (seg == 0) |
1385 | return -EFAULT; |
1386 | *nr_segs = seg; |
1387 | cnt -= iv->iov_len; /* This segment is no good */ |
1388 | break; |
1389 | } |
1390 | *count = cnt; |
1391 | return 0; |
1392 | } |
1393 | EXPORT_SYMBOL(generic_segment_checks); |
1394 | |
1395 | /** |
1396 | * generic_file_aio_read - generic filesystem read routine |
1397 | * @iocb: kernel I/O control block |
1398 | * @iov: io vector request |
1399 | * @nr_segs: number of segments in the iovec |
1400 | * @pos: current file position |
1401 | * |
1402 | * This is the "read()" routine for all filesystems |
1403 | * that can use the page cache directly. |
1404 | */ |
1405 | ssize_t |
1406 | generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, |
1407 | unsigned long nr_segs, loff_t pos) |
1408 | { |
1409 | struct file *filp = iocb->ki_filp; |
1410 | ssize_t retval; |
1411 | unsigned long seg = 0; |
1412 | size_t count; |
1413 | loff_t *ppos = &iocb->ki_pos; |
1414 | |
1415 | count = 0; |
1416 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1417 | if (retval) |
1418 | return retval; |
1419 | |
1420 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ |
1421 | if (filp->f_flags & O_DIRECT) { |
1422 | loff_t size; |
1423 | struct address_space *mapping; |
1424 | struct inode *inode; |
1425 | |
1426 | mapping = filp->f_mapping; |
1427 | inode = mapping->host; |
1428 | if (!count) |
1429 | goto out; /* skip atime */ |
1430 | size = i_size_read(inode); |
1431 | if (pos < size) { |
1432 | retval = filemap_write_and_wait_range(mapping, pos, |
1433 | pos + iov_length(iov, nr_segs) - 1); |
1434 | if (!retval) { |
1435 | retval = mapping->a_ops->direct_IO(READ, iocb, |
1436 | iov, pos, nr_segs); |
1437 | } |
1438 | if (retval > 0) { |
1439 | *ppos = pos + retval; |
1440 | count -= retval; |
1441 | } |
1442 | |
1443 | /* |
1444 | * Btrfs can have a short DIO read if we encounter |
1445 | * compressed extents, so if there was an error, or if |
1446 | * we've already read everything we wanted to, or if |
1447 | * there was a short read because we hit EOF, go ahead |
1448 | * and return. Otherwise fallthrough to buffered io for |
1449 | * the rest of the read. |
1450 | */ |
1451 | if (retval < 0 || !count || *ppos >= size) { |
1452 | file_accessed(filp); |
1453 | goto out; |
1454 | } |
1455 | } |
1456 | } |
1457 | |
1458 | count = retval; |
1459 | for (seg = 0; seg < nr_segs; seg++) { |
1460 | read_descriptor_t desc; |
1461 | loff_t offset = 0; |
1462 | |
1463 | /* |
1464 | * If we did a short DIO read we need to skip the section of the |
1465 | * iov that we've already read data into. |
1466 | */ |
1467 | if (count) { |
1468 | if (count > iov[seg].iov_len) { |
1469 | count -= iov[seg].iov_len; |
1470 | continue; |
1471 | } |
1472 | offset = count; |
1473 | count = 0; |
1474 | } |
1475 | |
1476 | desc.written = 0; |
1477 | desc.arg.buf = iov[seg].iov_base + offset; |
1478 | desc.count = iov[seg].iov_len - offset; |
1479 | if (desc.count == 0) |
1480 | continue; |
1481 | desc.error = 0; |
1482 | do_generic_file_read(filp, ppos, &desc, file_read_actor); |
1483 | retval += desc.written; |
1484 | if (desc.error) { |
1485 | retval = retval ?: desc.error; |
1486 | break; |
1487 | } |
1488 | if (desc.count > 0) |
1489 | break; |
1490 | } |
1491 | out: |
1492 | return retval; |
1493 | } |
1494 | EXPORT_SYMBOL(generic_file_aio_read); |
1495 | |
1496 | #ifdef CONFIG_MMU |
1497 | /** |
1498 | * page_cache_read - adds requested page to the page cache if not already there |
1499 | * @file: file to read |
1500 | * @offset: page index |
1501 | * |
1502 | * This adds the requested page to the page cache if it isn't already there, |
1503 | * and schedules an I/O to read in its contents from disk. |
1504 | */ |
1505 | static int page_cache_read(struct file *file, pgoff_t offset) |
1506 | { |
1507 | struct address_space *mapping = file->f_mapping; |
1508 | struct page *page; |
1509 | int ret; |
1510 | |
1511 | do { |
1512 | page = page_cache_alloc_cold(mapping); |
1513 | if (!page) |
1514 | return -ENOMEM; |
1515 | |
1516 | ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); |
1517 | if (ret == 0) |
1518 | ret = mapping->a_ops->readpage(file, page); |
1519 | else if (ret == -EEXIST) |
1520 | ret = 0; /* losing race to add is OK */ |
1521 | |
1522 | page_cache_release(page); |
1523 | |
1524 | } while (ret == AOP_TRUNCATED_PAGE); |
1525 | |
1526 | return ret; |
1527 | } |
1528 | |
1529 | #define MMAP_LOTSAMISS (100) |
1530 | |
1531 | /* |
1532 | * Synchronous readahead happens when we don't even find |
1533 | * a page in the page cache at all. |
1534 | */ |
1535 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, |
1536 | struct file_ra_state *ra, |
1537 | struct file *file, |
1538 | pgoff_t offset) |
1539 | { |
1540 | unsigned long ra_pages; |
1541 | struct address_space *mapping = file->f_mapping; |
1542 | |
1543 | /* If we don't want any read-ahead, don't bother */ |
1544 | if (vma->vm_flags & VM_RAND_READ) |
1545 | return; |
1546 | if (!ra->ra_pages) |
1547 | return; |
1548 | |
1549 | if (vma->vm_flags & VM_SEQ_READ) { |
1550 | page_cache_sync_readahead(mapping, ra, file, offset, |
1551 | ra->ra_pages); |
1552 | return; |
1553 | } |
1554 | |
1555 | /* Avoid banging the cache line if not needed */ |
1556 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) |
1557 | ra->mmap_miss++; |
1558 | |
1559 | /* |
1560 | * Do we miss much more than hit in this file? If so, |
1561 | * stop bothering with read-ahead. It will only hurt. |
1562 | */ |
1563 | if (ra->mmap_miss > MMAP_LOTSAMISS) |
1564 | return; |
1565 | |
1566 | /* |
1567 | * mmap read-around |
1568 | */ |
1569 | ra_pages = max_sane_readahead(ra->ra_pages); |
1570 | ra->start = max_t(long, 0, offset - ra_pages / 2); |
1571 | ra->size = ra_pages; |
1572 | ra->async_size = ra_pages / 4; |
1573 | ra_submit(ra, mapping, file); |
1574 | } |
1575 | |
1576 | /* |
1577 | * Asynchronous readahead happens when we find the page and PG_readahead, |
1578 | * so we want to possibly extend the readahead further.. |
1579 | */ |
1580 | static void do_async_mmap_readahead(struct vm_area_struct *vma, |
1581 | struct file_ra_state *ra, |
1582 | struct file *file, |
1583 | struct page *page, |
1584 | pgoff_t offset) |
1585 | { |
1586 | struct address_space *mapping = file->f_mapping; |
1587 | |
1588 | /* If we don't want any read-ahead, don't bother */ |
1589 | if (vma->vm_flags & VM_RAND_READ) |
1590 | return; |
1591 | if (ra->mmap_miss > 0) |
1592 | ra->mmap_miss--; |
1593 | if (PageReadahead(page)) |
1594 | page_cache_async_readahead(mapping, ra, file, |
1595 | page, offset, ra->ra_pages); |
1596 | } |
1597 | |
1598 | /** |
1599 | * filemap_fault - read in file data for page fault handling |
1600 | * @vma: vma in which the fault was taken |
1601 | * @vmf: struct vm_fault containing details of the fault |
1602 | * |
1603 | * filemap_fault() is invoked via the vma operations vector for a |
1604 | * mapped memory region to read in file data during a page fault. |
1605 | * |
1606 | * The goto's are kind of ugly, but this streamlines the normal case of having |
1607 | * it in the page cache, and handles the special cases reasonably without |
1608 | * having a lot of duplicated code. |
1609 | */ |
1610 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1611 | { |
1612 | int error; |
1613 | struct file *file = vma->vm_file; |
1614 | struct address_space *mapping = file->f_mapping; |
1615 | struct file_ra_state *ra = &file->f_ra; |
1616 | struct inode *inode = mapping->host; |
1617 | pgoff_t offset = vmf->pgoff; |
1618 | struct page *page; |
1619 | pgoff_t size; |
1620 | int ret = 0; |
1621 | |
1622 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
1623 | if (offset >= size) |
1624 | return VM_FAULT_SIGBUS; |
1625 | |
1626 | /* |
1627 | * Do we have something in the page cache already? |
1628 | */ |
1629 | page = find_get_page(mapping, offset); |
1630 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1631 | /* |
1632 | * We found the page, so try async readahead before |
1633 | * waiting for the lock. |
1634 | */ |
1635 | do_async_mmap_readahead(vma, ra, file, page, offset); |
1636 | } else if (!page) { |
1637 | /* No page in the page cache at all */ |
1638 | do_sync_mmap_readahead(vma, ra, file, offset); |
1639 | count_vm_event(PGMAJFAULT); |
1640 | mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); |
1641 | ret = VM_FAULT_MAJOR; |
1642 | retry_find: |
1643 | page = find_get_page(mapping, offset); |
1644 | if (!page) |
1645 | goto no_cached_page; |
1646 | } |
1647 | |
1648 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { |
1649 | page_cache_release(page); |
1650 | return ret | VM_FAULT_RETRY; |
1651 | } |
1652 | |
1653 | /* Did it get truncated? */ |
1654 | if (unlikely(page->mapping != mapping)) { |
1655 | unlock_page(page); |
1656 | put_page(page); |
1657 | goto retry_find; |
1658 | } |
1659 | VM_BUG_ON(page->index != offset); |
1660 | |
1661 | /* |
1662 | * We have a locked page in the page cache, now we need to check |
1663 | * that it's up-to-date. If not, it is going to be due to an error. |
1664 | */ |
1665 | if (unlikely(!PageUptodate(page))) |
1666 | goto page_not_uptodate; |
1667 | |
1668 | /* |
1669 | * Found the page and have a reference on it. |
1670 | * We must recheck i_size under page lock. |
1671 | */ |
1672 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
1673 | if (unlikely(offset >= size)) { |
1674 | unlock_page(page); |
1675 | page_cache_release(page); |
1676 | return VM_FAULT_SIGBUS; |
1677 | } |
1678 | |
1679 | vmf->page = page; |
1680 | return ret | VM_FAULT_LOCKED; |
1681 | |
1682 | no_cached_page: |
1683 | /* |
1684 | * We're only likely to ever get here if MADV_RANDOM is in |
1685 | * effect. |
1686 | */ |
1687 | error = page_cache_read(file, offset); |
1688 | |
1689 | /* |
1690 | * The page we want has now been added to the page cache. |
1691 | * In the unlikely event that someone removed it in the |
1692 | * meantime, we'll just come back here and read it again. |
1693 | */ |
1694 | if (error >= 0) |
1695 | goto retry_find; |
1696 | |
1697 | /* |
1698 | * An error return from page_cache_read can result if the |
1699 | * system is low on memory, or a problem occurs while trying |
1700 | * to schedule I/O. |
1701 | */ |
1702 | if (error == -ENOMEM) |
1703 | return VM_FAULT_OOM; |
1704 | return VM_FAULT_SIGBUS; |
1705 | |
1706 | page_not_uptodate: |
1707 | /* |
1708 | * Umm, take care of errors if the page isn't up-to-date. |
1709 | * Try to re-read it _once_. We do this synchronously, |
1710 | * because there really aren't any performance issues here |
1711 | * and we need to check for errors. |
1712 | */ |
1713 | ClearPageError(page); |
1714 | error = mapping->a_ops->readpage(file, page); |
1715 | if (!error) { |
1716 | wait_on_page_locked(page); |
1717 | if (!PageUptodate(page)) |
1718 | error = -EIO; |
1719 | } |
1720 | page_cache_release(page); |
1721 | |
1722 | if (!error || error == AOP_TRUNCATED_PAGE) |
1723 | goto retry_find; |
1724 | |
1725 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
1726 | shrink_readahead_size_eio(file, ra); |
1727 | return VM_FAULT_SIGBUS; |
1728 | } |
1729 | EXPORT_SYMBOL(filemap_fault); |
1730 | |
1731 | int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) |
1732 | { |
1733 | struct page *page = vmf->page; |
1734 | struct inode *inode = file_inode(vma->vm_file); |
1735 | int ret = VM_FAULT_LOCKED; |
1736 | |
1737 | sb_start_pagefault(inode->i_sb); |
1738 | file_update_time(vma->vm_file); |
1739 | lock_page(page); |
1740 | if (page->mapping != inode->i_mapping) { |
1741 | unlock_page(page); |
1742 | ret = VM_FAULT_NOPAGE; |
1743 | goto out; |
1744 | } |
1745 | /* |
1746 | * We mark the page dirty already here so that when freeze is in |
1747 | * progress, we are guaranteed that writeback during freezing will |
1748 | * see the dirty page and writeprotect it again. |
1749 | */ |
1750 | set_page_dirty(page); |
1751 | wait_for_stable_page(page); |
1752 | out: |
1753 | sb_end_pagefault(inode->i_sb); |
1754 | return ret; |
1755 | } |
1756 | EXPORT_SYMBOL(filemap_page_mkwrite); |
1757 | |
1758 | const struct vm_operations_struct generic_file_vm_ops = { |
1759 | .fault = filemap_fault, |
1760 | .page_mkwrite = filemap_page_mkwrite, |
1761 | .remap_pages = generic_file_remap_pages, |
1762 | }; |
1763 | |
1764 | /* This is used for a general mmap of a disk file */ |
1765 | |
1766 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
1767 | { |
1768 | struct address_space *mapping = file->f_mapping; |
1769 | |
1770 | if (!mapping->a_ops->readpage) |
1771 | return -ENOEXEC; |
1772 | file_accessed(file); |
1773 | vma->vm_ops = &generic_file_vm_ops; |
1774 | return 0; |
1775 | } |
1776 | |
1777 | /* |
1778 | * This is for filesystems which do not implement ->writepage. |
1779 | */ |
1780 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) |
1781 | { |
1782 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) |
1783 | return -EINVAL; |
1784 | return generic_file_mmap(file, vma); |
1785 | } |
1786 | #else |
1787 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
1788 | { |
1789 | return -ENOSYS; |
1790 | } |
1791 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) |
1792 | { |
1793 | return -ENOSYS; |
1794 | } |
1795 | #endif /* CONFIG_MMU */ |
1796 | |
1797 | EXPORT_SYMBOL(generic_file_mmap); |
1798 | EXPORT_SYMBOL(generic_file_readonly_mmap); |
1799 | |
1800 | static struct page *__read_cache_page(struct address_space *mapping, |
1801 | pgoff_t index, |
1802 | int (*filler)(void *, struct page *), |
1803 | void *data, |
1804 | gfp_t gfp) |
1805 | { |
1806 | struct page *page; |
1807 | int err; |
1808 | repeat: |
1809 | page = find_get_page(mapping, index); |
1810 | if (!page) { |
1811 | page = __page_cache_alloc(gfp | __GFP_COLD); |
1812 | if (!page) |
1813 | return ERR_PTR(-ENOMEM); |
1814 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
1815 | if (unlikely(err)) { |
1816 | page_cache_release(page); |
1817 | if (err == -EEXIST) |
1818 | goto repeat; |
1819 | /* Presumably ENOMEM for radix tree node */ |
1820 | return ERR_PTR(err); |
1821 | } |
1822 | err = filler(data, page); |
1823 | if (err < 0) { |
1824 | page_cache_release(page); |
1825 | page = ERR_PTR(err); |
1826 | } |
1827 | } |
1828 | return page; |
1829 | } |
1830 | |
1831 | static struct page *do_read_cache_page(struct address_space *mapping, |
1832 | pgoff_t index, |
1833 | int (*filler)(void *, struct page *), |
1834 | void *data, |
1835 | gfp_t gfp) |
1836 | |
1837 | { |
1838 | struct page *page; |
1839 | int err; |
1840 | |
1841 | retry: |
1842 | page = __read_cache_page(mapping, index, filler, data, gfp); |
1843 | if (IS_ERR(page)) |
1844 | return page; |
1845 | if (PageUptodate(page)) |
1846 | goto out; |
1847 | |
1848 | lock_page(page); |
1849 | if (!page->mapping) { |
1850 | unlock_page(page); |
1851 | page_cache_release(page); |
1852 | goto retry; |
1853 | } |
1854 | if (PageUptodate(page)) { |
1855 | unlock_page(page); |
1856 | goto out; |
1857 | } |
1858 | err = filler(data, page); |
1859 | if (err < 0) { |
1860 | page_cache_release(page); |
1861 | return ERR_PTR(err); |
1862 | } |
1863 | out: |
1864 | mark_page_accessed(page); |
1865 | return page; |
1866 | } |
1867 | |
1868 | /** |
1869 | * read_cache_page_async - read into page cache, fill it if needed |
1870 | * @mapping: the page's address_space |
1871 | * @index: the page index |
1872 | * @filler: function to perform the read |
1873 | * @data: first arg to filler(data, page) function, often left as NULL |
1874 | * |
1875 | * Same as read_cache_page, but don't wait for page to become unlocked |
1876 | * after submitting it to the filler. |
1877 | * |
1878 | * Read into the page cache. If a page already exists, and PageUptodate() is |
1879 | * not set, try to fill the page but don't wait for it to become unlocked. |
1880 | * |
1881 | * If the page does not get brought uptodate, return -EIO. |
1882 | */ |
1883 | struct page *read_cache_page_async(struct address_space *mapping, |
1884 | pgoff_t index, |
1885 | int (*filler)(void *, struct page *), |
1886 | void *data) |
1887 | { |
1888 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); |
1889 | } |
1890 | EXPORT_SYMBOL(read_cache_page_async); |
1891 | |
1892 | static struct page *wait_on_page_read(struct page *page) |
1893 | { |
1894 | if (!IS_ERR(page)) { |
1895 | wait_on_page_locked(page); |
1896 | if (!PageUptodate(page)) { |
1897 | page_cache_release(page); |
1898 | page = ERR_PTR(-EIO); |
1899 | } |
1900 | } |
1901 | return page; |
1902 | } |
1903 | |
1904 | /** |
1905 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. |
1906 | * @mapping: the page's address_space |
1907 | * @index: the page index |
1908 | * @gfp: the page allocator flags to use if allocating |
1909 | * |
1910 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with |
1911 | * any new page allocations done using the specified allocation flags. |
1912 | * |
1913 | * If the page does not get brought uptodate, return -EIO. |
1914 | */ |
1915 | struct page *read_cache_page_gfp(struct address_space *mapping, |
1916 | pgoff_t index, |
1917 | gfp_t gfp) |
1918 | { |
1919 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; |
1920 | |
1921 | return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); |
1922 | } |
1923 | EXPORT_SYMBOL(read_cache_page_gfp); |
1924 | |
1925 | /** |
1926 | * read_cache_page - read into page cache, fill it if needed |
1927 | * @mapping: the page's address_space |
1928 | * @index: the page index |
1929 | * @filler: function to perform the read |
1930 | * @data: first arg to filler(data, page) function, often left as NULL |
1931 | * |
1932 | * Read into the page cache. If a page already exists, and PageUptodate() is |
1933 | * not set, try to fill the page then wait for it to become unlocked. |
1934 | * |
1935 | * If the page does not get brought uptodate, return -EIO. |
1936 | */ |
1937 | struct page *read_cache_page(struct address_space *mapping, |
1938 | pgoff_t index, |
1939 | int (*filler)(void *, struct page *), |
1940 | void *data) |
1941 | { |
1942 | return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); |
1943 | } |
1944 | EXPORT_SYMBOL(read_cache_page); |
1945 | |
1946 | static size_t __iovec_copy_from_user_inatomic(char *vaddr, |
1947 | const struct iovec *iov, size_t base, size_t bytes) |
1948 | { |
1949 | size_t copied = 0, left = 0; |
1950 | |
1951 | while (bytes) { |
1952 | char __user *buf = iov->iov_base + base; |
1953 | int copy = min(bytes, iov->iov_len - base); |
1954 | |
1955 | base = 0; |
1956 | left = __copy_from_user_inatomic(vaddr, buf, copy); |
1957 | copied += copy; |
1958 | bytes -= copy; |
1959 | vaddr += copy; |
1960 | iov++; |
1961 | |
1962 | if (unlikely(left)) |
1963 | break; |
1964 | } |
1965 | return copied - left; |
1966 | } |
1967 | |
1968 | /* |
1969 | * Copy as much as we can into the page and return the number of bytes which |
1970 | * were successfully copied. If a fault is encountered then return the number of |
1971 | * bytes which were copied. |
1972 | */ |
1973 | size_t iov_iter_copy_from_user_atomic(struct page *page, |
1974 | struct iov_iter *i, unsigned long offset, size_t bytes) |
1975 | { |
1976 | char *kaddr; |
1977 | size_t copied; |
1978 | |
1979 | BUG_ON(!in_atomic()); |
1980 | kaddr = kmap_atomic(page); |
1981 | if (likely(i->nr_segs == 1)) { |
1982 | int left; |
1983 | char __user *buf = i->iov->iov_base + i->iov_offset; |
1984 | left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); |
1985 | copied = bytes - left; |
1986 | } else { |
1987 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
1988 | i->iov, i->iov_offset, bytes); |
1989 | } |
1990 | kunmap_atomic(kaddr); |
1991 | |
1992 | return copied; |
1993 | } |
1994 | EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); |
1995 | |
1996 | /* |
1997 | * This has the same sideeffects and return value as |
1998 | * iov_iter_copy_from_user_atomic(). |
1999 | * The difference is that it attempts to resolve faults. |
2000 | * Page must not be locked. |
2001 | */ |
2002 | size_t iov_iter_copy_from_user(struct page *page, |
2003 | struct iov_iter *i, unsigned long offset, size_t bytes) |
2004 | { |
2005 | char *kaddr; |
2006 | size_t copied; |
2007 | |
2008 | kaddr = kmap(page); |
2009 | if (likely(i->nr_segs == 1)) { |
2010 | int left; |
2011 | char __user *buf = i->iov->iov_base + i->iov_offset; |
2012 | left = __copy_from_user(kaddr + offset, buf, bytes); |
2013 | copied = bytes - left; |
2014 | } else { |
2015 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, |
2016 | i->iov, i->iov_offset, bytes); |
2017 | } |
2018 | kunmap(page); |
2019 | return copied; |
2020 | } |
2021 | EXPORT_SYMBOL(iov_iter_copy_from_user); |
2022 | |
2023 | void iov_iter_advance(struct iov_iter *i, size_t bytes) |
2024 | { |
2025 | BUG_ON(i->count < bytes); |
2026 | |
2027 | if (likely(i->nr_segs == 1)) { |
2028 | i->iov_offset += bytes; |
2029 | i->count -= bytes; |
2030 | } else { |
2031 | const struct iovec *iov = i->iov; |
2032 | size_t base = i->iov_offset; |
2033 | unsigned long nr_segs = i->nr_segs; |
2034 | |
2035 | /* |
2036 | * The !iov->iov_len check ensures we skip over unlikely |
2037 | * zero-length segments (without overruning the iovec). |
2038 | */ |
2039 | while (bytes || unlikely(i->count && !iov->iov_len)) { |
2040 | int copy; |
2041 | |
2042 | copy = min(bytes, iov->iov_len - base); |
2043 | BUG_ON(!i->count || i->count < copy); |
2044 | i->count -= copy; |
2045 | bytes -= copy; |
2046 | base += copy; |
2047 | if (iov->iov_len == base) { |
2048 | iov++; |
2049 | nr_segs--; |
2050 | base = 0; |
2051 | } |
2052 | } |
2053 | i->iov = iov; |
2054 | i->iov_offset = base; |
2055 | i->nr_segs = nr_segs; |
2056 | } |
2057 | } |
2058 | EXPORT_SYMBOL(iov_iter_advance); |
2059 | |
2060 | /* |
2061 | * Fault in the first iovec of the given iov_iter, to a maximum length |
2062 | * of bytes. Returns 0 on success, or non-zero if the memory could not be |
2063 | * accessed (ie. because it is an invalid address). |
2064 | * |
2065 | * writev-intensive code may want this to prefault several iovecs -- that |
2066 | * would be possible (callers must not rely on the fact that _only_ the |
2067 | * first iovec will be faulted with the current implementation). |
2068 | */ |
2069 | int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) |
2070 | { |
2071 | char __user *buf = i->iov->iov_base + i->iov_offset; |
2072 | bytes = min(bytes, i->iov->iov_len - i->iov_offset); |
2073 | return fault_in_pages_readable(buf, bytes); |
2074 | } |
2075 | EXPORT_SYMBOL(iov_iter_fault_in_readable); |
2076 | |
2077 | /* |
2078 | * Return the count of just the current iov_iter segment. |
2079 | */ |
2080 | size_t iov_iter_single_seg_count(const struct iov_iter *i) |
2081 | { |
2082 | const struct iovec *iov = i->iov; |
2083 | if (i->nr_segs == 1) |
2084 | return i->count; |
2085 | else |
2086 | return min(i->count, iov->iov_len - i->iov_offset); |
2087 | } |
2088 | EXPORT_SYMBOL(iov_iter_single_seg_count); |
2089 | |
2090 | /* |
2091 | * Performs necessary checks before doing a write |
2092 | * |
2093 | * Can adjust writing position or amount of bytes to write. |
2094 | * Returns appropriate error code that caller should return or |
2095 | * zero in case that write should be allowed. |
2096 | */ |
2097 | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) |
2098 | { |
2099 | struct inode *inode = file->f_mapping->host; |
2100 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
2101 | |
2102 | if (unlikely(*pos < 0)) |
2103 | return -EINVAL; |
2104 | |
2105 | if (!isblk) { |
2106 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2107 | if (file->f_flags & O_APPEND) |
2108 | *pos = i_size_read(inode); |
2109 | |
2110 | if (limit != RLIM_INFINITY) { |
2111 | if (*pos >= limit) { |
2112 | send_sig(SIGXFSZ, current, 0); |
2113 | return -EFBIG; |
2114 | } |
2115 | if (*count > limit - (typeof(limit))*pos) { |
2116 | *count = limit - (typeof(limit))*pos; |
2117 | } |
2118 | } |
2119 | } |
2120 | |
2121 | /* |
2122 | * LFS rule |
2123 | */ |
2124 | if (unlikely(*pos + *count > MAX_NON_LFS && |
2125 | !(file->f_flags & O_LARGEFILE))) { |
2126 | if (*pos >= MAX_NON_LFS) { |
2127 | return -EFBIG; |
2128 | } |
2129 | if (*count > MAX_NON_LFS - (unsigned long)*pos) { |
2130 | *count = MAX_NON_LFS - (unsigned long)*pos; |
2131 | } |
2132 | } |
2133 | |
2134 | /* |
2135 | * Are we about to exceed the fs block limit ? |
2136 | * |
2137 | * If we have written data it becomes a short write. If we have |
2138 | * exceeded without writing data we send a signal and return EFBIG. |
2139 | * Linus frestrict idea will clean these up nicely.. |
2140 | */ |
2141 | if (likely(!isblk)) { |
2142 | if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { |
2143 | if (*count || *pos > inode->i_sb->s_maxbytes) { |
2144 | return -EFBIG; |
2145 | } |
2146 | /* zero-length writes at ->s_maxbytes are OK */ |
2147 | } |
2148 | |
2149 | if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) |
2150 | *count = inode->i_sb->s_maxbytes - *pos; |
2151 | } else { |
2152 | #ifdef CONFIG_BLOCK |
2153 | loff_t isize; |
2154 | if (bdev_read_only(I_BDEV(inode))) |
2155 | return -EPERM; |
2156 | isize = i_size_read(inode); |
2157 | if (*pos >= isize) { |
2158 | if (*count || *pos > isize) |
2159 | return -ENOSPC; |
2160 | } |
2161 | |
2162 | if (*pos + *count > isize) |
2163 | *count = isize - *pos; |
2164 | #else |
2165 | return -EPERM; |
2166 | #endif |
2167 | } |
2168 | return 0; |
2169 | } |
2170 | EXPORT_SYMBOL(generic_write_checks); |
2171 | |
2172 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2173 | loff_t pos, unsigned len, unsigned flags, |
2174 | struct page **pagep, void **fsdata) |
2175 | { |
2176 | const struct address_space_operations *aops = mapping->a_ops; |
2177 | |
2178 | return aops->write_begin(file, mapping, pos, len, flags, |
2179 | pagep, fsdata); |
2180 | } |
2181 | EXPORT_SYMBOL(pagecache_write_begin); |
2182 | |
2183 | int pagecache_write_end(struct file *file, struct address_space *mapping, |
2184 | loff_t pos, unsigned len, unsigned copied, |
2185 | struct page *page, void *fsdata) |
2186 | { |
2187 | const struct address_space_operations *aops = mapping->a_ops; |
2188 | |
2189 | mark_page_accessed(page); |
2190 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
2191 | } |
2192 | EXPORT_SYMBOL(pagecache_write_end); |
2193 | |
2194 | ssize_t |
2195 | generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, |
2196 | unsigned long *nr_segs, loff_t pos, loff_t *ppos, |
2197 | size_t count, size_t ocount) |
2198 | { |
2199 | struct file *file = iocb->ki_filp; |
2200 | struct address_space *mapping = file->f_mapping; |
2201 | struct inode *inode = mapping->host; |
2202 | ssize_t written; |
2203 | size_t write_len; |
2204 | pgoff_t end; |
2205 | |
2206 | if (count != ocount) |
2207 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); |
2208 | |
2209 | write_len = iov_length(iov, *nr_segs); |
2210 | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; |
2211 | |
2212 | written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); |
2213 | if (written) |
2214 | goto out; |
2215 | |
2216 | /* |
2217 | * After a write we want buffered reads to be sure to go to disk to get |
2218 | * the new data. We invalidate clean cached page from the region we're |
2219 | * about to write. We do this *before* the write so that we can return |
2220 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
2221 | */ |
2222 | if (mapping->nrpages) { |
2223 | written = invalidate_inode_pages2_range(mapping, |
2224 | pos >> PAGE_CACHE_SHIFT, end); |
2225 | /* |
2226 | * If a page can not be invalidated, return 0 to fall back |
2227 | * to buffered write. |
2228 | */ |
2229 | if (written) { |
2230 | if (written == -EBUSY) |
2231 | return 0; |
2232 | goto out; |
2233 | } |
2234 | } |
2235 | |
2236 | written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); |
2237 | |
2238 | /* |
2239 | * Finally, try again to invalidate clean pages which might have been |
2240 | * cached by non-direct readahead, or faulted in by get_user_pages() |
2241 | * if the source of the write was an mmap'ed region of the file |
2242 | * we're writing. Either one is a pretty crazy thing to do, |
2243 | * so we don't support it 100%. If this invalidation |
2244 | * fails, tough, the write still worked... |
2245 | */ |
2246 | if (mapping->nrpages) { |
2247 | invalidate_inode_pages2_range(mapping, |
2248 | pos >> PAGE_CACHE_SHIFT, end); |
2249 | } |
2250 | |
2251 | if (written > 0) { |
2252 | pos += written; |
2253 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2254 | i_size_write(inode, pos); |
2255 | mark_inode_dirty(inode); |
2256 | } |
2257 | *ppos = pos; |
2258 | } |
2259 | out: |
2260 | return written; |
2261 | } |
2262 | EXPORT_SYMBOL(generic_file_direct_write); |
2263 | |
2264 | /* |
2265 | * Find or create a page at the given pagecache position. Return the locked |
2266 | * page. This function is specifically for buffered writes. |
2267 | */ |
2268 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
2269 | pgoff_t index, unsigned flags) |
2270 | { |
2271 | int status; |
2272 | gfp_t gfp_mask; |
2273 | struct page *page; |
2274 | gfp_t gfp_notmask = 0; |
2275 | |
2276 | gfp_mask = mapping_gfp_mask(mapping); |
2277 | if (mapping_cap_account_dirty(mapping)) |
2278 | gfp_mask |= __GFP_WRITE; |
2279 | if (flags & AOP_FLAG_NOFS) |
2280 | gfp_notmask = __GFP_FS; |
2281 | repeat: |
2282 | page = find_lock_page(mapping, index); |
2283 | if (page) |
2284 | goto found; |
2285 | |
2286 | page = __page_cache_alloc(gfp_mask & ~gfp_notmask); |
2287 | if (!page) |
2288 | return NULL; |
2289 | status = add_to_page_cache_lru(page, mapping, index, |
2290 | GFP_KERNEL & ~gfp_notmask); |
2291 | if (unlikely(status)) { |
2292 | page_cache_release(page); |
2293 | if (status == -EEXIST) |
2294 | goto repeat; |
2295 | return NULL; |
2296 | } |
2297 | found: |
2298 | wait_for_stable_page(page); |
2299 | return page; |
2300 | } |
2301 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
2302 | |
2303 | static ssize_t generic_perform_write(struct file *file, |
2304 | struct iov_iter *i, loff_t pos) |
2305 | { |
2306 | struct address_space *mapping = file->f_mapping; |
2307 | const struct address_space_operations *a_ops = mapping->a_ops; |
2308 | long status = 0; |
2309 | ssize_t written = 0; |
2310 | unsigned int flags = 0; |
2311 | |
2312 | /* |
2313 | * Copies from kernel address space cannot fail (NFSD is a big user). |
2314 | */ |
2315 | if (segment_eq(get_fs(), KERNEL_DS)) |
2316 | flags |= AOP_FLAG_UNINTERRUPTIBLE; |
2317 | |
2318 | do { |
2319 | struct page *page; |
2320 | unsigned long offset; /* Offset into pagecache page */ |
2321 | unsigned long bytes; /* Bytes to write to page */ |
2322 | size_t copied; /* Bytes copied from user */ |
2323 | void *fsdata; |
2324 | |
2325 | offset = (pos & (PAGE_CACHE_SIZE - 1)); |
2326 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
2327 | iov_iter_count(i)); |
2328 | |
2329 | again: |
2330 | /* |
2331 | * Bring in the user page that we will copy from _first_. |
2332 | * Otherwise there's a nasty deadlock on copying from the |
2333 | * same page as we're writing to, without it being marked |
2334 | * up-to-date. |
2335 | * |
2336 | * Not only is this an optimisation, but it is also required |
2337 | * to check that the address is actually valid, when atomic |
2338 | * usercopies are used, below. |
2339 | */ |
2340 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { |
2341 | status = -EFAULT; |
2342 | break; |
2343 | } |
2344 | |
2345 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
2346 | &page, &fsdata); |
2347 | if (unlikely(status)) |
2348 | break; |
2349 | |
2350 | if (mapping_writably_mapped(mapping)) |
2351 | flush_dcache_page(page); |
2352 | |
2353 | pagefault_disable(); |
2354 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
2355 | pagefault_enable(); |
2356 | flush_dcache_page(page); |
2357 | |
2358 | mark_page_accessed(page); |
2359 | status = a_ops->write_end(file, mapping, pos, bytes, copied, |
2360 | page, fsdata); |
2361 | if (unlikely(status < 0)) |
2362 | break; |
2363 | copied = status; |
2364 | |
2365 | cond_resched(); |
2366 | |
2367 | iov_iter_advance(i, copied); |
2368 | if (unlikely(copied == 0)) { |
2369 | /* |
2370 | * If we were unable to copy any data at all, we must |
2371 | * fall back to a single segment length write. |
2372 | * |
2373 | * If we didn't fallback here, we could livelock |
2374 | * because not all segments in the iov can be copied at |
2375 | * once without a pagefault. |
2376 | */ |
2377 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
2378 | iov_iter_single_seg_count(i)); |
2379 | goto again; |
2380 | } |
2381 | pos += copied; |
2382 | written += copied; |
2383 | |
2384 | balance_dirty_pages_ratelimited(mapping); |
2385 | if (fatal_signal_pending(current)) { |
2386 | status = -EINTR; |
2387 | break; |
2388 | } |
2389 | } while (iov_iter_count(i)); |
2390 | |
2391 | return written ? written : status; |
2392 | } |
2393 | |
2394 | ssize_t |
2395 | generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, |
2396 | unsigned long nr_segs, loff_t pos, loff_t *ppos, |
2397 | size_t count, ssize_t written) |
2398 | { |
2399 | struct file *file = iocb->ki_filp; |
2400 | ssize_t status; |
2401 | struct iov_iter i; |
2402 | |
2403 | iov_iter_init(&i, iov, nr_segs, count, written); |
2404 | status = generic_perform_write(file, &i, pos); |
2405 | |
2406 | if (likely(status >= 0)) { |
2407 | written += status; |
2408 | *ppos = pos + status; |
2409 | } |
2410 | |
2411 | return written ? written : status; |
2412 | } |
2413 | EXPORT_SYMBOL(generic_file_buffered_write); |
2414 | |
2415 | /** |
2416 | * __generic_file_aio_write - write data to a file |
2417 | * @iocb: IO state structure (file, offset, etc.) |
2418 | * @iov: vector with data to write |
2419 | * @nr_segs: number of segments in the vector |
2420 | * @ppos: position where to write |
2421 | * |
2422 | * This function does all the work needed for actually writing data to a |
2423 | * file. It does all basic checks, removes SUID from the file, updates |
2424 | * modification times and calls proper subroutines depending on whether we |
2425 | * do direct IO or a standard buffered write. |
2426 | * |
2427 | * It expects i_mutex to be grabbed unless we work on a block device or similar |
2428 | * object which does not need locking at all. |
2429 | * |
2430 | * This function does *not* take care of syncing data in case of O_SYNC write. |
2431 | * A caller has to handle it. This is mainly due to the fact that we want to |
2432 | * avoid syncing under i_mutex. |
2433 | */ |
2434 | ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2435 | unsigned long nr_segs, loff_t *ppos) |
2436 | { |
2437 | struct file *file = iocb->ki_filp; |
2438 | struct address_space * mapping = file->f_mapping; |
2439 | size_t ocount; /* original count */ |
2440 | size_t count; /* after file limit checks */ |
2441 | struct inode *inode = mapping->host; |
2442 | loff_t pos; |
2443 | ssize_t written; |
2444 | ssize_t err; |
2445 | |
2446 | ocount = 0; |
2447 | err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); |
2448 | if (err) |
2449 | return err; |
2450 | |
2451 | count = ocount; |
2452 | pos = *ppos; |
2453 | |
2454 | /* We can write back this queue in page reclaim */ |
2455 | current->backing_dev_info = mapping->backing_dev_info; |
2456 | written = 0; |
2457 | |
2458 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); |
2459 | if (err) |
2460 | goto out; |
2461 | |
2462 | if (count == 0) |
2463 | goto out; |
2464 | |
2465 | err = file_remove_suid(file); |
2466 | if (err) |
2467 | goto out; |
2468 | |
2469 | err = file_update_time(file); |
2470 | if (err) |
2471 | goto out; |
2472 | |
2473 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ |
2474 | if (unlikely(file->f_flags & O_DIRECT)) { |
2475 | loff_t endbyte; |
2476 | ssize_t written_buffered; |
2477 | |
2478 | written = generic_file_direct_write(iocb, iov, &nr_segs, pos, |
2479 | ppos, count, ocount); |
2480 | if (written < 0 || written == count) |
2481 | goto out; |
2482 | /* |
2483 | * direct-io write to a hole: fall through to buffered I/O |
2484 | * for completing the rest of the request. |
2485 | */ |
2486 | pos += written; |
2487 | count -= written; |
2488 | written_buffered = generic_file_buffered_write(iocb, iov, |
2489 | nr_segs, pos, ppos, count, |
2490 | written); |
2491 | /* |
2492 | * If generic_file_buffered_write() retuned a synchronous error |
2493 | * then we want to return the number of bytes which were |
2494 | * direct-written, or the error code if that was zero. Note |
2495 | * that this differs from normal direct-io semantics, which |
2496 | * will return -EFOO even if some bytes were written. |
2497 | */ |
2498 | if (written_buffered < 0) { |
2499 | err = written_buffered; |
2500 | goto out; |
2501 | } |
2502 | |
2503 | /* |
2504 | * We need to ensure that the page cache pages are written to |
2505 | * disk and invalidated to preserve the expected O_DIRECT |
2506 | * semantics. |
2507 | */ |
2508 | endbyte = pos + written_buffered - written - 1; |
2509 | err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); |
2510 | if (err == 0) { |
2511 | written = written_buffered; |
2512 | invalidate_mapping_pages(mapping, |
2513 | pos >> PAGE_CACHE_SHIFT, |
2514 | endbyte >> PAGE_CACHE_SHIFT); |
2515 | } else { |
2516 | /* |
2517 | * We don't know how much we wrote, so just return |
2518 | * the number of bytes which were direct-written |
2519 | */ |
2520 | } |
2521 | } else { |
2522 | written = generic_file_buffered_write(iocb, iov, nr_segs, |
2523 | pos, ppos, count, written); |
2524 | } |
2525 | out: |
2526 | current->backing_dev_info = NULL; |
2527 | return written ? written : err; |
2528 | } |
2529 | EXPORT_SYMBOL(__generic_file_aio_write); |
2530 | |
2531 | /** |
2532 | * generic_file_aio_write - write data to a file |
2533 | * @iocb: IO state structure |
2534 | * @iov: vector with data to write |
2535 | * @nr_segs: number of segments in the vector |
2536 | * @pos: position in file where to write |
2537 | * |
2538 | * This is a wrapper around __generic_file_aio_write() to be used by most |
2539 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
2540 | * and acquires i_mutex as needed. |
2541 | */ |
2542 | ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2543 | unsigned long nr_segs, loff_t pos) |
2544 | { |
2545 | struct file *file = iocb->ki_filp; |
2546 | struct inode *inode = file->f_mapping->host; |
2547 | ssize_t ret; |
2548 | |
2549 | BUG_ON(iocb->ki_pos != pos); |
2550 | |
2551 | mutex_lock(&inode->i_mutex); |
2552 | ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); |
2553 | mutex_unlock(&inode->i_mutex); |
2554 | |
2555 | if (ret > 0) { |
2556 | ssize_t err; |
2557 | |
2558 | err = generic_write_sync(file, pos, ret); |
2559 | if (err < 0 && ret > 0) |
2560 | ret = err; |
2561 | } |
2562 | return ret; |
2563 | } |
2564 | EXPORT_SYMBOL(generic_file_aio_write); |
2565 | |
2566 | /** |
2567 | * try_to_release_page() - release old fs-specific metadata on a page |
2568 | * |
2569 | * @page: the page which the kernel is trying to free |
2570 | * @gfp_mask: memory allocation flags (and I/O mode) |
2571 | * |
2572 | * The address_space is to try to release any data against the page |
2573 | * (presumably at page->private). If the release was successful, return `1'. |
2574 | * Otherwise return zero. |
2575 | * |
2576 | * This may also be called if PG_fscache is set on a page, indicating that the |
2577 | * page is known to the local caching routines. |
2578 | * |
2579 | * The @gfp_mask argument specifies whether I/O may be performed to release |
2580 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
2581 | * |
2582 | */ |
2583 | int try_to_release_page(struct page *page, gfp_t gfp_mask) |
2584 | { |
2585 | struct address_space * const mapping = page->mapping; |
2586 | |
2587 | BUG_ON(!PageLocked(page)); |
2588 | if (PageWriteback(page)) |
2589 | return 0; |
2590 | |
2591 | if (mapping && mapping->a_ops->releasepage) |
2592 | return mapping->a_ops->releasepage(page, gfp_mask); |
2593 | return try_to_free_buffers(page); |
2594 | } |
2595 | |
2596 | EXPORT_SYMBOL(try_to_release_page); |
2597 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9