Root/mm/hugetlb.c

1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/page-isolation.h>
25
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/tlb.h>
29
30#include <linux/io.h>
31#include <linux/hugetlb.h>
32#include <linux/hugetlb_cgroup.h>
33#include <linux/node.h>
34#include "internal.h"
35
36const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37unsigned long hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42
43__initdata LIST_HEAD(huge_boot_pages);
44
45/* for command line parsing */
46static struct hstate * __initdata parsed_hstate;
47static unsigned long __initdata default_hstate_max_huge_pages;
48static unsigned long __initdata default_hstate_size;
49
50/*
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
53 */
54DEFINE_SPINLOCK(hugetlb_lock);
55
56static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57{
58    bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60    spin_unlock(&spool->lock);
61
62    /* If no pages are used, and no other handles to the subpool
63     * remain, free the subpool the subpool remain */
64    if (free)
65        kfree(spool);
66}
67
68struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69{
70    struct hugepage_subpool *spool;
71
72    spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73    if (!spool)
74        return NULL;
75
76    spin_lock_init(&spool->lock);
77    spool->count = 1;
78    spool->max_hpages = nr_blocks;
79    spool->used_hpages = 0;
80
81    return spool;
82}
83
84void hugepage_put_subpool(struct hugepage_subpool *spool)
85{
86    spin_lock(&spool->lock);
87    BUG_ON(!spool->count);
88    spool->count--;
89    unlock_or_release_subpool(spool);
90}
91
92static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                      long delta)
94{
95    int ret = 0;
96
97    if (!spool)
98        return 0;
99
100    spin_lock(&spool->lock);
101    if ((spool->used_hpages + delta) <= spool->max_hpages) {
102        spool->used_hpages += delta;
103    } else {
104        ret = -ENOMEM;
105    }
106    spin_unlock(&spool->lock);
107
108    return ret;
109}
110
111static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                       long delta)
113{
114    if (!spool)
115        return;
116
117    spin_lock(&spool->lock);
118    spool->used_hpages -= delta;
119    /* If hugetlbfs_put_super couldn't free spool due to
120    * an outstanding quota reference, free it now. */
121    unlock_or_release_subpool(spool);
122}
123
124static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125{
126    return HUGETLBFS_SB(inode->i_sb)->spool;
127}
128
129static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130{
131    return subpool_inode(file_inode(vma->vm_file));
132}
133
134/*
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
137 *
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
142 *
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
147 */
148struct file_region {
149    struct list_head link;
150    long from;
151    long to;
152};
153
154static long region_add(struct list_head *head, long f, long t)
155{
156    struct file_region *rg, *nrg, *trg;
157
158    /* Locate the region we are either in or before. */
159    list_for_each_entry(rg, head, link)
160        if (f <= rg->to)
161            break;
162
163    /* Round our left edge to the current segment if it encloses us. */
164    if (f > rg->from)
165        f = rg->from;
166
167    /* Check for and consume any regions we now overlap with. */
168    nrg = rg;
169    list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170        if (&rg->link == head)
171            break;
172        if (rg->from > t)
173            break;
174
175        /* If this area reaches higher then extend our area to
176         * include it completely. If this is not the first area
177         * which we intend to reuse, free it. */
178        if (rg->to > t)
179            t = rg->to;
180        if (rg != nrg) {
181            list_del(&rg->link);
182            kfree(rg);
183        }
184    }
185    nrg->from = f;
186    nrg->to = t;
187    return 0;
188}
189
190static long region_chg(struct list_head *head, long f, long t)
191{
192    struct file_region *rg, *nrg;
193    long chg = 0;
194
195    /* Locate the region we are before or in. */
196    list_for_each_entry(rg, head, link)
197        if (f <= rg->to)
198            break;
199
200    /* If we are below the current region then a new region is required.
201     * Subtle, allocate a new region at the position but make it zero
202     * size such that we can guarantee to record the reservation. */
203    if (&rg->link == head || t < rg->from) {
204        nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205        if (!nrg)
206            return -ENOMEM;
207        nrg->from = f;
208        nrg->to = f;
209        INIT_LIST_HEAD(&nrg->link);
210        list_add(&nrg->link, rg->link.prev);
211
212        return t - f;
213    }
214
215    /* Round our left edge to the current segment if it encloses us. */
216    if (f > rg->from)
217        f = rg->from;
218    chg = t - f;
219
220    /* Check for and consume any regions we now overlap with. */
221    list_for_each_entry(rg, rg->link.prev, link) {
222        if (&rg->link == head)
223            break;
224        if (rg->from > t)
225            return chg;
226
227        /* We overlap with this area, if it extends further than
228         * us then we must extend ourselves. Account for its
229         * existing reservation. */
230        if (rg->to > t) {
231            chg += rg->to - t;
232            t = rg->to;
233        }
234        chg -= rg->to - rg->from;
235    }
236    return chg;
237}
238
239static long region_truncate(struct list_head *head, long end)
240{
241    struct file_region *rg, *trg;
242    long chg = 0;
243
244    /* Locate the region we are either in or before. */
245    list_for_each_entry(rg, head, link)
246        if (end <= rg->to)
247            break;
248    if (&rg->link == head)
249        return 0;
250
251    /* If we are in the middle of a region then adjust it. */
252    if (end > rg->from) {
253        chg = rg->to - end;
254        rg->to = end;
255        rg = list_entry(rg->link.next, typeof(*rg), link);
256    }
257
258    /* Drop any remaining regions. */
259    list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260        if (&rg->link == head)
261            break;
262        chg += rg->to - rg->from;
263        list_del(&rg->link);
264        kfree(rg);
265    }
266    return chg;
267}
268
269static long region_count(struct list_head *head, long f, long t)
270{
271    struct file_region *rg;
272    long chg = 0;
273
274    /* Locate each segment we overlap with, and count that overlap. */
275    list_for_each_entry(rg, head, link) {
276        long seg_from;
277        long seg_to;
278
279        if (rg->to <= f)
280            continue;
281        if (rg->from >= t)
282            break;
283
284        seg_from = max(rg->from, f);
285        seg_to = min(rg->to, t);
286
287        chg += seg_to - seg_from;
288    }
289
290    return chg;
291}
292
293/*
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
296 */
297static pgoff_t vma_hugecache_offset(struct hstate *h,
298            struct vm_area_struct *vma, unsigned long address)
299{
300    return ((address - vma->vm_start) >> huge_page_shift(h)) +
301            (vma->vm_pgoff >> huge_page_order(h));
302}
303
304pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                     unsigned long address)
306{
307    return vma_hugecache_offset(hstate_vma(vma), vma, address);
308}
309
310/*
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
313 */
314unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315{
316    struct hstate *hstate;
317
318    if (!is_vm_hugetlb_page(vma))
319        return PAGE_SIZE;
320
321    hstate = hstate_vma(vma);
322
323    return 1UL << huge_page_shift(hstate);
324}
325EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327/*
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
332 */
333#ifndef vma_mmu_pagesize
334unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335{
336    return vma_kernel_pagesize(vma);
337}
338#endif
339
340/*
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
344 */
345#define HPAGE_RESV_OWNER (1UL << 0)
346#define HPAGE_RESV_UNMAPPED (1UL << 1)
347#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349/*
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
353 *
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
358 *
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
367 */
368static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369{
370    return (unsigned long)vma->vm_private_data;
371}
372
373static void set_vma_private_data(struct vm_area_struct *vma,
374                            unsigned long value)
375{
376    vma->vm_private_data = (void *)value;
377}
378
379struct resv_map {
380    struct kref refs;
381    struct list_head regions;
382};
383
384static struct resv_map *resv_map_alloc(void)
385{
386    struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387    if (!resv_map)
388        return NULL;
389
390    kref_init(&resv_map->refs);
391    INIT_LIST_HEAD(&resv_map->regions);
392
393    return resv_map;
394}
395
396static void resv_map_release(struct kref *ref)
397{
398    struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400    /* Clear out any active regions before we release the map. */
401    region_truncate(&resv_map->regions, 0);
402    kfree(resv_map);
403}
404
405static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406{
407    VM_BUG_ON(!is_vm_hugetlb_page(vma));
408    if (!(vma->vm_flags & VM_MAYSHARE))
409        return (struct resv_map *)(get_vma_private_data(vma) &
410                            ~HPAGE_RESV_MASK);
411    return NULL;
412}
413
414static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415{
416    VM_BUG_ON(!is_vm_hugetlb_page(vma));
417    VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419    set_vma_private_data(vma, (get_vma_private_data(vma) &
420                HPAGE_RESV_MASK) | (unsigned long)map);
421}
422
423static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424{
425    VM_BUG_ON(!is_vm_hugetlb_page(vma));
426    VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428    set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429}
430
431static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432{
433    VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435    return (get_vma_private_data(vma) & flag) != 0;
436}
437
438/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440{
441    VM_BUG_ON(!is_vm_hugetlb_page(vma));
442    if (!(vma->vm_flags & VM_MAYSHARE))
443        vma->vm_private_data = (void *)0;
444}
445
446/* Returns true if the VMA has associated reserve pages */
447static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448{
449    if (vma->vm_flags & VM_NORESERVE) {
450        /*
451         * This address is already reserved by other process(chg == 0),
452         * so, we should decrement reserved count. Without decrementing,
453         * reserve count remains after releasing inode, because this
454         * allocated page will go into page cache and is regarded as
455         * coming from reserved pool in releasing step. Currently, we
456         * don't have any other solution to deal with this situation
457         * properly, so add work-around here.
458         */
459        if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460            return 1;
461        else
462            return 0;
463    }
464
465    /* Shared mappings always use reserves */
466    if (vma->vm_flags & VM_MAYSHARE)
467        return 1;
468
469    /*
470     * Only the process that called mmap() has reserves for
471     * private mappings.
472     */
473    if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474        return 1;
475
476    return 0;
477}
478
479static void copy_gigantic_page(struct page *dst, struct page *src)
480{
481    int i;
482    struct hstate *h = page_hstate(src);
483    struct page *dst_base = dst;
484    struct page *src_base = src;
485
486    for (i = 0; i < pages_per_huge_page(h); ) {
487        cond_resched();
488        copy_highpage(dst, src);
489
490        i++;
491        dst = mem_map_next(dst, dst_base, i);
492        src = mem_map_next(src, src_base, i);
493    }
494}
495
496void copy_huge_page(struct page *dst, struct page *src)
497{
498    int i;
499    struct hstate *h = page_hstate(src);
500
501    if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
502        copy_gigantic_page(dst, src);
503        return;
504    }
505
506    might_sleep();
507    for (i = 0; i < pages_per_huge_page(h); i++) {
508        cond_resched();
509        copy_highpage(dst + i, src + i);
510    }
511}
512
513static void enqueue_huge_page(struct hstate *h, struct page *page)
514{
515    int nid = page_to_nid(page);
516    list_move(&page->lru, &h->hugepage_freelists[nid]);
517    h->free_huge_pages++;
518    h->free_huge_pages_node[nid]++;
519}
520
521static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
522{
523    struct page *page;
524
525    list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
526        if (!is_migrate_isolate_page(page))
527            break;
528    /*
529     * if 'non-isolated free hugepage' not found on the list,
530     * the allocation fails.
531     */
532    if (&h->hugepage_freelists[nid] == &page->lru)
533        return NULL;
534    list_move(&page->lru, &h->hugepage_activelist);
535    set_page_refcounted(page);
536    h->free_huge_pages--;
537    h->free_huge_pages_node[nid]--;
538    return page;
539}
540
541/* Movability of hugepages depends on migration support. */
542static inline gfp_t htlb_alloc_mask(struct hstate *h)
543{
544    if (hugepages_treat_as_movable || hugepage_migration_support(h))
545        return GFP_HIGHUSER_MOVABLE;
546    else
547        return GFP_HIGHUSER;
548}
549
550static struct page *dequeue_huge_page_vma(struct hstate *h,
551                struct vm_area_struct *vma,
552                unsigned long address, int avoid_reserve,
553                long chg)
554{
555    struct page *page = NULL;
556    struct mempolicy *mpol;
557    nodemask_t *nodemask;
558    struct zonelist *zonelist;
559    struct zone *zone;
560    struct zoneref *z;
561    unsigned int cpuset_mems_cookie;
562
563    /*
564     * A child process with MAP_PRIVATE mappings created by their parent
565     * have no page reserves. This check ensures that reservations are
566     * not "stolen". The child may still get SIGKILLed
567     */
568    if (!vma_has_reserves(vma, chg) &&
569            h->free_huge_pages - h->resv_huge_pages == 0)
570        goto err;
571
572    /* If reserves cannot be used, ensure enough pages are in the pool */
573    if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574        goto err;
575
576retry_cpuset:
577    cpuset_mems_cookie = get_mems_allowed();
578    zonelist = huge_zonelist(vma, address,
579                    htlb_alloc_mask(h), &mpol, &nodemask);
580
581    for_each_zone_zonelist_nodemask(zone, z, zonelist,
582                        MAX_NR_ZONES - 1, nodemask) {
583        if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584            page = dequeue_huge_page_node(h, zone_to_nid(zone));
585            if (page) {
586                if (avoid_reserve)
587                    break;
588                if (!vma_has_reserves(vma, chg))
589                    break;
590
591                SetPagePrivate(page);
592                h->resv_huge_pages--;
593                break;
594            }
595        }
596    }
597
598    mpol_cond_put(mpol);
599    if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
600        goto retry_cpuset;
601    return page;
602
603err:
604    return NULL;
605}
606
607static void update_and_free_page(struct hstate *h, struct page *page)
608{
609    int i;
610
611    VM_BUG_ON(h->order >= MAX_ORDER);
612
613    h->nr_huge_pages--;
614    h->nr_huge_pages_node[page_to_nid(page)]--;
615    for (i = 0; i < pages_per_huge_page(h); i++) {
616        page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
617                1 << PG_referenced | 1 << PG_dirty |
618                1 << PG_active | 1 << PG_reserved |
619                1 << PG_private | 1 << PG_writeback);
620    }
621    VM_BUG_ON(hugetlb_cgroup_from_page(page));
622    set_compound_page_dtor(page, NULL);
623    set_page_refcounted(page);
624    arch_release_hugepage(page);
625    __free_pages(page, huge_page_order(h));
626}
627
628struct hstate *size_to_hstate(unsigned long size)
629{
630    struct hstate *h;
631
632    for_each_hstate(h) {
633        if (huge_page_size(h) == size)
634            return h;
635    }
636    return NULL;
637}
638
639static void free_huge_page(struct page *page)
640{
641    /*
642     * Can't pass hstate in here because it is called from the
643     * compound page destructor.
644     */
645    struct hstate *h = page_hstate(page);
646    int nid = page_to_nid(page);
647    struct hugepage_subpool *spool =
648        (struct hugepage_subpool *)page_private(page);
649    bool restore_reserve;
650
651    set_page_private(page, 0);
652    page->mapping = NULL;
653    BUG_ON(page_count(page));
654    BUG_ON(page_mapcount(page));
655    restore_reserve = PagePrivate(page);
656    ClearPagePrivate(page);
657
658    spin_lock(&hugetlb_lock);
659    hugetlb_cgroup_uncharge_page(hstate_index(h),
660                     pages_per_huge_page(h), page);
661    if (restore_reserve)
662        h->resv_huge_pages++;
663
664    if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665        /* remove the page from active list */
666        list_del(&page->lru);
667        update_and_free_page(h, page);
668        h->surplus_huge_pages--;
669        h->surplus_huge_pages_node[nid]--;
670    } else {
671        arch_clear_hugepage_flags(page);
672        enqueue_huge_page(h, page);
673    }
674    spin_unlock(&hugetlb_lock);
675    hugepage_subpool_put_pages(spool, 1);
676}
677
678static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
679{
680    INIT_LIST_HEAD(&page->lru);
681    set_compound_page_dtor(page, free_huge_page);
682    spin_lock(&hugetlb_lock);
683    set_hugetlb_cgroup(page, NULL);
684    h->nr_huge_pages++;
685    h->nr_huge_pages_node[nid]++;
686    spin_unlock(&hugetlb_lock);
687    put_page(page); /* free it into the hugepage allocator */
688}
689
690static void prep_compound_gigantic_page(struct page *page, unsigned long order)
691{
692    int i;
693    int nr_pages = 1 << order;
694    struct page *p = page + 1;
695
696    /* we rely on prep_new_huge_page to set the destructor */
697    set_compound_order(page, order);
698    __SetPageHead(page);
699    __ClearPageReserved(page);
700    for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
701        __SetPageTail(p);
702        /*
703         * For gigantic hugepages allocated through bootmem at
704         * boot, it's safer to be consistent with the not-gigantic
705         * hugepages and clear the PG_reserved bit from all tail pages
706         * too. Otherwse drivers using get_user_pages() to access tail
707         * pages may get the reference counting wrong if they see
708         * PG_reserved set on a tail page (despite the head page not
709         * having PG_reserved set). Enforcing this consistency between
710         * head and tail pages allows drivers to optimize away a check
711         * on the head page when they need know if put_page() is needed
712         * after get_user_pages().
713         */
714        __ClearPageReserved(p);
715        set_page_count(p, 0);
716        p->first_page = page;
717    }
718}
719
720/*
721 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
722 * transparent huge pages. See the PageTransHuge() documentation for more
723 * details.
724 */
725int PageHuge(struct page *page)
726{
727    compound_page_dtor *dtor;
728
729    if (!PageCompound(page))
730        return 0;
731
732    page = compound_head(page);
733    dtor = get_compound_page_dtor(page);
734
735    return dtor == free_huge_page;
736}
737EXPORT_SYMBOL_GPL(PageHuge);
738
739pgoff_t __basepage_index(struct page *page)
740{
741    struct page *page_head = compound_head(page);
742    pgoff_t index = page_index(page_head);
743    unsigned long compound_idx;
744
745    if (!PageHuge(page_head))
746        return page_index(page);
747
748    if (compound_order(page_head) >= MAX_ORDER)
749        compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
750    else
751        compound_idx = page - page_head;
752
753    return (index << compound_order(page_head)) + compound_idx;
754}
755
756static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
757{
758    struct page *page;
759
760    if (h->order >= MAX_ORDER)
761        return NULL;
762
763    page = alloc_pages_exact_node(nid,
764        htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
765                        __GFP_REPEAT|__GFP_NOWARN,
766        huge_page_order(h));
767    if (page) {
768        if (arch_prepare_hugepage(page)) {
769            __free_pages(page, huge_page_order(h));
770            return NULL;
771        }
772        prep_new_huge_page(h, page, nid);
773    }
774
775    return page;
776}
777
778/*
779 * common helper functions for hstate_next_node_to_{alloc|free}.
780 * We may have allocated or freed a huge page based on a different
781 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
782 * be outside of *nodes_allowed. Ensure that we use an allowed
783 * node for alloc or free.
784 */
785static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
786{
787    nid = next_node(nid, *nodes_allowed);
788    if (nid == MAX_NUMNODES)
789        nid = first_node(*nodes_allowed);
790    VM_BUG_ON(nid >= MAX_NUMNODES);
791
792    return nid;
793}
794
795static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
796{
797    if (!node_isset(nid, *nodes_allowed))
798        nid = next_node_allowed(nid, nodes_allowed);
799    return nid;
800}
801
802/*
803 * returns the previously saved node ["this node"] from which to
804 * allocate a persistent huge page for the pool and advance the
805 * next node from which to allocate, handling wrap at end of node
806 * mask.
807 */
808static int hstate_next_node_to_alloc(struct hstate *h,
809                    nodemask_t *nodes_allowed)
810{
811    int nid;
812
813    VM_BUG_ON(!nodes_allowed);
814
815    nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
816    h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
817
818    return nid;
819}
820
821/*
822 * helper for free_pool_huge_page() - return the previously saved
823 * node ["this node"] from which to free a huge page. Advance the
824 * next node id whether or not we find a free huge page to free so
825 * that the next attempt to free addresses the next node.
826 */
827static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
828{
829    int nid;
830
831    VM_BUG_ON(!nodes_allowed);
832
833    nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
834    h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
835
836    return nid;
837}
838
839#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
840    for (nr_nodes = nodes_weight(*mask); \
841        nr_nodes > 0 && \
842        ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
843        nr_nodes--)
844
845#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
846    for (nr_nodes = nodes_weight(*mask); \
847        nr_nodes > 0 && \
848        ((node = hstate_next_node_to_free(hs, mask)) || 1); \
849        nr_nodes--)
850
851static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
852{
853    struct page *page;
854    int nr_nodes, node;
855    int ret = 0;
856
857    for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
858        page = alloc_fresh_huge_page_node(h, node);
859        if (page) {
860            ret = 1;
861            break;
862        }
863    }
864
865    if (ret)
866        count_vm_event(HTLB_BUDDY_PGALLOC);
867    else
868        count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
869
870    return ret;
871}
872
873/*
874 * Free huge page from pool from next node to free.
875 * Attempt to keep persistent huge pages more or less
876 * balanced over allowed nodes.
877 * Called with hugetlb_lock locked.
878 */
879static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
880                             bool acct_surplus)
881{
882    int nr_nodes, node;
883    int ret = 0;
884
885    for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
886        /*
887         * If we're returning unused surplus pages, only examine
888         * nodes with surplus pages.
889         */
890        if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
891            !list_empty(&h->hugepage_freelists[node])) {
892            struct page *page =
893                list_entry(h->hugepage_freelists[node].next,
894                      struct page, lru);
895            list_del(&page->lru);
896            h->free_huge_pages--;
897            h->free_huge_pages_node[node]--;
898            if (acct_surplus) {
899                h->surplus_huge_pages--;
900                h->surplus_huge_pages_node[node]--;
901            }
902            update_and_free_page(h, page);
903            ret = 1;
904            break;
905        }
906    }
907
908    return ret;
909}
910
911/*
912 * Dissolve a given free hugepage into free buddy pages. This function does
913 * nothing for in-use (including surplus) hugepages.
914 */
915static void dissolve_free_huge_page(struct page *page)
916{
917    spin_lock(&hugetlb_lock);
918    if (PageHuge(page) && !page_count(page)) {
919        struct hstate *h = page_hstate(page);
920        int nid = page_to_nid(page);
921        list_del(&page->lru);
922        h->free_huge_pages--;
923        h->free_huge_pages_node[nid]--;
924        update_and_free_page(h, page);
925    }
926    spin_unlock(&hugetlb_lock);
927}
928
929/*
930 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
931 * make specified memory blocks removable from the system.
932 * Note that start_pfn should aligned with (minimum) hugepage size.
933 */
934void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
935{
936    unsigned int order = 8 * sizeof(void *);
937    unsigned long pfn;
938    struct hstate *h;
939
940    /* Set scan step to minimum hugepage size */
941    for_each_hstate(h)
942        if (order > huge_page_order(h))
943            order = huge_page_order(h);
944    VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
945    for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
946        dissolve_free_huge_page(pfn_to_page(pfn));
947}
948
949static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
950{
951    struct page *page;
952    unsigned int r_nid;
953
954    if (h->order >= MAX_ORDER)
955        return NULL;
956
957    /*
958     * Assume we will successfully allocate the surplus page to
959     * prevent racing processes from causing the surplus to exceed
960     * overcommit
961     *
962     * This however introduces a different race, where a process B
963     * tries to grow the static hugepage pool while alloc_pages() is
964     * called by process A. B will only examine the per-node
965     * counters in determining if surplus huge pages can be
966     * converted to normal huge pages in adjust_pool_surplus(). A
967     * won't be able to increment the per-node counter, until the
968     * lock is dropped by B, but B doesn't drop hugetlb_lock until
969     * no more huge pages can be converted from surplus to normal
970     * state (and doesn't try to convert again). Thus, we have a
971     * case where a surplus huge page exists, the pool is grown, and
972     * the surplus huge page still exists after, even though it
973     * should just have been converted to a normal huge page. This
974     * does not leak memory, though, as the hugepage will be freed
975     * once it is out of use. It also does not allow the counters to
976     * go out of whack in adjust_pool_surplus() as we don't modify
977     * the node values until we've gotten the hugepage and only the
978     * per-node value is checked there.
979     */
980    spin_lock(&hugetlb_lock);
981    if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
982        spin_unlock(&hugetlb_lock);
983        return NULL;
984    } else {
985        h->nr_huge_pages++;
986        h->surplus_huge_pages++;
987    }
988    spin_unlock(&hugetlb_lock);
989
990    if (nid == NUMA_NO_NODE)
991        page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
992                   __GFP_REPEAT|__GFP_NOWARN,
993                   huge_page_order(h));
994    else
995        page = alloc_pages_exact_node(nid,
996            htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
997            __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
998
999    if (page && arch_prepare_hugepage(page)) {
1000        __free_pages(page, huge_page_order(h));
1001        page = NULL;
1002    }
1003
1004    spin_lock(&hugetlb_lock);
1005    if (page) {
1006        INIT_LIST_HEAD(&page->lru);
1007        r_nid = page_to_nid(page);
1008        set_compound_page_dtor(page, free_huge_page);
1009        set_hugetlb_cgroup(page, NULL);
1010        /*
1011         * We incremented the global counters already
1012         */
1013        h->nr_huge_pages_node[r_nid]++;
1014        h->surplus_huge_pages_node[r_nid]++;
1015        __count_vm_event(HTLB_BUDDY_PGALLOC);
1016    } else {
1017        h->nr_huge_pages--;
1018        h->surplus_huge_pages--;
1019        __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020    }
1021    spin_unlock(&hugetlb_lock);
1022
1023    return page;
1024}
1025
1026/*
1027 * This allocation function is useful in the context where vma is irrelevant.
1028 * E.g. soft-offlining uses this function because it only cares physical
1029 * address of error page.
1030 */
1031struct page *alloc_huge_page_node(struct hstate *h, int nid)
1032{
1033    struct page *page = NULL;
1034
1035    spin_lock(&hugetlb_lock);
1036    if (h->free_huge_pages - h->resv_huge_pages > 0)
1037        page = dequeue_huge_page_node(h, nid);
1038    spin_unlock(&hugetlb_lock);
1039
1040    if (!page)
1041        page = alloc_buddy_huge_page(h, nid);
1042
1043    return page;
1044}
1045
1046/*
1047 * Increase the hugetlb pool such that it can accommodate a reservation
1048 * of size 'delta'.
1049 */
1050static int gather_surplus_pages(struct hstate *h, int delta)
1051{
1052    struct list_head surplus_list;
1053    struct page *page, *tmp;
1054    int ret, i;
1055    int needed, allocated;
1056    bool alloc_ok = true;
1057
1058    needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1059    if (needed <= 0) {
1060        h->resv_huge_pages += delta;
1061        return 0;
1062    }
1063
1064    allocated = 0;
1065    INIT_LIST_HEAD(&surplus_list);
1066
1067    ret = -ENOMEM;
1068retry:
1069    spin_unlock(&hugetlb_lock);
1070    for (i = 0; i < needed; i++) {
1071        page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1072        if (!page) {
1073            alloc_ok = false;
1074            break;
1075        }
1076        list_add(&page->lru, &surplus_list);
1077    }
1078    allocated += i;
1079
1080    /*
1081     * After retaking hugetlb_lock, we need to recalculate 'needed'
1082     * because either resv_huge_pages or free_huge_pages may have changed.
1083     */
1084    spin_lock(&hugetlb_lock);
1085    needed = (h->resv_huge_pages + delta) -
1086            (h->free_huge_pages + allocated);
1087    if (needed > 0) {
1088        if (alloc_ok)
1089            goto retry;
1090        /*
1091         * We were not able to allocate enough pages to
1092         * satisfy the entire reservation so we free what
1093         * we've allocated so far.
1094         */
1095        goto free;
1096    }
1097    /*
1098     * The surplus_list now contains _at_least_ the number of extra pages
1099     * needed to accommodate the reservation. Add the appropriate number
1100     * of pages to the hugetlb pool and free the extras back to the buddy
1101     * allocator. Commit the entire reservation here to prevent another
1102     * process from stealing the pages as they are added to the pool but
1103     * before they are reserved.
1104     */
1105    needed += allocated;
1106    h->resv_huge_pages += delta;
1107    ret = 0;
1108
1109    /* Free the needed pages to the hugetlb pool */
1110    list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1111        if ((--needed) < 0)
1112            break;
1113        /*
1114         * This page is now managed by the hugetlb allocator and has
1115         * no users -- drop the buddy allocator's reference.
1116         */
1117        put_page_testzero(page);
1118        VM_BUG_ON(page_count(page));
1119        enqueue_huge_page(h, page);
1120    }
1121free:
1122    spin_unlock(&hugetlb_lock);
1123
1124    /* Free unnecessary surplus pages to the buddy allocator */
1125    list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1126        put_page(page);
1127    spin_lock(&hugetlb_lock);
1128
1129    return ret;
1130}
1131
1132/*
1133 * When releasing a hugetlb pool reservation, any surplus pages that were
1134 * allocated to satisfy the reservation must be explicitly freed if they were
1135 * never used.
1136 * Called with hugetlb_lock held.
1137 */
1138static void return_unused_surplus_pages(struct hstate *h,
1139                    unsigned long unused_resv_pages)
1140{
1141    unsigned long nr_pages;
1142
1143    /* Uncommit the reservation */
1144    h->resv_huge_pages -= unused_resv_pages;
1145
1146    /* Cannot return gigantic pages currently */
1147    if (h->order >= MAX_ORDER)
1148        return;
1149
1150    nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1151
1152    /*
1153     * We want to release as many surplus pages as possible, spread
1154     * evenly across all nodes with memory. Iterate across these nodes
1155     * until we can no longer free unreserved surplus pages. This occurs
1156     * when the nodes with surplus pages have no free pages.
1157     * free_pool_huge_page() will balance the the freed pages across the
1158     * on-line nodes with memory and will handle the hstate accounting.
1159     */
1160    while (nr_pages--) {
1161        if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1162            break;
1163    }
1164}
1165
1166/*
1167 * Determine if the huge page at addr within the vma has an associated
1168 * reservation. Where it does not we will need to logically increase
1169 * reservation and actually increase subpool usage before an allocation
1170 * can occur. Where any new reservation would be required the
1171 * reservation change is prepared, but not committed. Once the page
1172 * has been allocated from the subpool and instantiated the change should
1173 * be committed via vma_commit_reservation. No action is required on
1174 * failure.
1175 */
1176static long vma_needs_reservation(struct hstate *h,
1177            struct vm_area_struct *vma, unsigned long addr)
1178{
1179    struct address_space *mapping = vma->vm_file->f_mapping;
1180    struct inode *inode = mapping->host;
1181
1182    if (vma->vm_flags & VM_MAYSHARE) {
1183        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184        return region_chg(&inode->i_mapping->private_list,
1185                            idx, idx + 1);
1186
1187    } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1188        return 1;
1189
1190    } else {
1191        long err;
1192        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1193        struct resv_map *resv = vma_resv_map(vma);
1194
1195        err = region_chg(&resv->regions, idx, idx + 1);
1196        if (err < 0)
1197            return err;
1198        return 0;
1199    }
1200}
1201static void vma_commit_reservation(struct hstate *h,
1202            struct vm_area_struct *vma, unsigned long addr)
1203{
1204    struct address_space *mapping = vma->vm_file->f_mapping;
1205    struct inode *inode = mapping->host;
1206
1207    if (vma->vm_flags & VM_MAYSHARE) {
1208        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1209        region_add(&inode->i_mapping->private_list, idx, idx + 1);
1210
1211    } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1212        pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1213        struct resv_map *resv = vma_resv_map(vma);
1214
1215        /* Mark this page used in the map. */
1216        region_add(&resv->regions, idx, idx + 1);
1217    }
1218}
1219
1220static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221                    unsigned long addr, int avoid_reserve)
1222{
1223    struct hugepage_subpool *spool = subpool_vma(vma);
1224    struct hstate *h = hstate_vma(vma);
1225    struct page *page;
1226    long chg;
1227    int ret, idx;
1228    struct hugetlb_cgroup *h_cg;
1229
1230    idx = hstate_index(h);
1231    /*
1232     * Processes that did not create the mapping will have no
1233     * reserves and will not have accounted against subpool
1234     * limit. Check that the subpool limit can be made before
1235     * satisfying the allocation MAP_NORESERVE mappings may also
1236     * need pages and subpool limit allocated allocated if no reserve
1237     * mapping overlaps.
1238     */
1239    chg = vma_needs_reservation(h, vma, addr);
1240    if (chg < 0)
1241        return ERR_PTR(-ENOMEM);
1242    if (chg || avoid_reserve)
1243        if (hugepage_subpool_get_pages(spool, 1))
1244            return ERR_PTR(-ENOSPC);
1245
1246    ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247    if (ret) {
1248        if (chg || avoid_reserve)
1249            hugepage_subpool_put_pages(spool, 1);
1250        return ERR_PTR(-ENOSPC);
1251    }
1252    spin_lock(&hugetlb_lock);
1253    page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254    if (!page) {
1255        spin_unlock(&hugetlb_lock);
1256        page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1257        if (!page) {
1258            hugetlb_cgroup_uncharge_cgroup(idx,
1259                               pages_per_huge_page(h),
1260                               h_cg);
1261            if (chg || avoid_reserve)
1262                hugepage_subpool_put_pages(spool, 1);
1263            return ERR_PTR(-ENOSPC);
1264        }
1265        spin_lock(&hugetlb_lock);
1266        list_move(&page->lru, &h->hugepage_activelist);
1267        /* Fall through */
1268    }
1269    hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270    spin_unlock(&hugetlb_lock);
1271
1272    set_page_private(page, (unsigned long)spool);
1273
1274    vma_commit_reservation(h, vma, addr);
1275    return page;
1276}
1277
1278/*
1279 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281 * where no ERR_VALUE is expected to be returned.
1282 */
1283struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284                unsigned long addr, int avoid_reserve)
1285{
1286    struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287    if (IS_ERR(page))
1288        page = NULL;
1289    return page;
1290}
1291
1292int __weak alloc_bootmem_huge_page(struct hstate *h)
1293{
1294    struct huge_bootmem_page *m;
1295    int nr_nodes, node;
1296
1297    for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298        void *addr;
1299
1300        addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1301                huge_page_size(h), huge_page_size(h), 0);
1302
1303        if (addr) {
1304            /*
1305             * Use the beginning of the huge page to store the
1306             * huge_bootmem_page struct (until gather_bootmem
1307             * puts them into the mem_map).
1308             */
1309            m = addr;
1310            goto found;
1311        }
1312    }
1313    return 0;
1314
1315found:
1316    BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317    /* Put them into a private list first because mem_map is not up yet */
1318    list_add(&m->list, &huge_boot_pages);
1319    m->hstate = h;
1320    return 1;
1321}
1322
1323static void prep_compound_huge_page(struct page *page, int order)
1324{
1325    if (unlikely(order > (MAX_ORDER - 1)))
1326        prep_compound_gigantic_page(page, order);
1327    else
1328        prep_compound_page(page, order);
1329}
1330
1331/* Put bootmem huge pages into the standard lists after mem_map is up */
1332static void __init gather_bootmem_prealloc(void)
1333{
1334    struct huge_bootmem_page *m;
1335
1336    list_for_each_entry(m, &huge_boot_pages, list) {
1337        struct hstate *h = m->hstate;
1338        struct page *page;
1339
1340#ifdef CONFIG_HIGHMEM
1341        page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342        free_bootmem_late((unsigned long)m,
1343                  sizeof(struct huge_bootmem_page));
1344#else
1345        page = virt_to_page(m);
1346#endif
1347        WARN_ON(page_count(page) != 1);
1348        prep_compound_huge_page(page, h->order);
1349        WARN_ON(PageReserved(page));
1350        prep_new_huge_page(h, page, page_to_nid(page));
1351        /*
1352         * If we had gigantic hugepages allocated at boot time, we need
1353         * to restore the 'stolen' pages to totalram_pages in order to
1354         * fix confusing memory reports from free(1) and another
1355         * side-effects, like CommitLimit going negative.
1356         */
1357        if (h->order > (MAX_ORDER - 1))
1358            adjust_managed_page_count(page, 1 << h->order);
1359    }
1360}
1361
1362static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1363{
1364    unsigned long i;
1365
1366    for (i = 0; i < h->max_huge_pages; ++i) {
1367        if (h->order >= MAX_ORDER) {
1368            if (!alloc_bootmem_huge_page(h))
1369                break;
1370        } else if (!alloc_fresh_huge_page(h,
1371                     &node_states[N_MEMORY]))
1372            break;
1373    }
1374    h->max_huge_pages = i;
1375}
1376
1377static void __init hugetlb_init_hstates(void)
1378{
1379    struct hstate *h;
1380
1381    for_each_hstate(h) {
1382        /* oversize hugepages were init'ed in early boot */
1383        if (h->order < MAX_ORDER)
1384            hugetlb_hstate_alloc_pages(h);
1385    }
1386}
1387
1388static char * __init memfmt(char *buf, unsigned long n)
1389{
1390    if (n >= (1UL << 30))
1391        sprintf(buf, "%lu GB", n >> 30);
1392    else if (n >= (1UL << 20))
1393        sprintf(buf, "%lu MB", n >> 20);
1394    else
1395        sprintf(buf, "%lu KB", n >> 10);
1396    return buf;
1397}
1398
1399static void __init report_hugepages(void)
1400{
1401    struct hstate *h;
1402
1403    for_each_hstate(h) {
1404        char buf[32];
1405        pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406            memfmt(buf, huge_page_size(h)),
1407            h->free_huge_pages);
1408    }
1409}
1410
1411#ifdef CONFIG_HIGHMEM
1412static void try_to_free_low(struct hstate *h, unsigned long count,
1413                        nodemask_t *nodes_allowed)
1414{
1415    int i;
1416
1417    if (h->order >= MAX_ORDER)
1418        return;
1419
1420    for_each_node_mask(i, *nodes_allowed) {
1421        struct page *page, *next;
1422        struct list_head *freel = &h->hugepage_freelists[i];
1423        list_for_each_entry_safe(page, next, freel, lru) {
1424            if (count >= h->nr_huge_pages)
1425                return;
1426            if (PageHighMem(page))
1427                continue;
1428            list_del(&page->lru);
1429            update_and_free_page(h, page);
1430            h->free_huge_pages--;
1431            h->free_huge_pages_node[page_to_nid(page)]--;
1432        }
1433    }
1434}
1435#else
1436static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437                        nodemask_t *nodes_allowed)
1438{
1439}
1440#endif
1441
1442/*
1443 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1444 * balanced by operating on them in a round-robin fashion.
1445 * Returns 1 if an adjustment was made.
1446 */
1447static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448                int delta)
1449{
1450    int nr_nodes, node;
1451
1452    VM_BUG_ON(delta != -1 && delta != 1);
1453
1454    if (delta < 0) {
1455        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456            if (h->surplus_huge_pages_node[node])
1457                goto found;
1458        }
1459    } else {
1460        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461            if (h->surplus_huge_pages_node[node] <
1462                    h->nr_huge_pages_node[node])
1463                goto found;
1464        }
1465    }
1466    return 0;
1467
1468found:
1469    h->surplus_huge_pages += delta;
1470    h->surplus_huge_pages_node[node] += delta;
1471    return 1;
1472}
1473
1474#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476                        nodemask_t *nodes_allowed)
1477{
1478    unsigned long min_count, ret;
1479
1480    if (h->order >= MAX_ORDER)
1481        return h->max_huge_pages;
1482
1483    /*
1484     * Increase the pool size
1485     * First take pages out of surplus state. Then make up the
1486     * remaining difference by allocating fresh huge pages.
1487     *
1488     * We might race with alloc_buddy_huge_page() here and be unable
1489     * to convert a surplus huge page to a normal huge page. That is
1490     * not critical, though, it just means the overall size of the
1491     * pool might be one hugepage larger than it needs to be, but
1492     * within all the constraints specified by the sysctls.
1493     */
1494    spin_lock(&hugetlb_lock);
1495    while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496        if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497            break;
1498    }
1499
1500    while (count > persistent_huge_pages(h)) {
1501        /*
1502         * If this allocation races such that we no longer need the
1503         * page, free_huge_page will handle it by freeing the page
1504         * and reducing the surplus.
1505         */
1506        spin_unlock(&hugetlb_lock);
1507        ret = alloc_fresh_huge_page(h, nodes_allowed);
1508        spin_lock(&hugetlb_lock);
1509        if (!ret)
1510            goto out;
1511
1512        /* Bail for signals. Probably ctrl-c from user */
1513        if (signal_pending(current))
1514            goto out;
1515    }
1516
1517    /*
1518     * Decrease the pool size
1519     * First return free pages to the buddy allocator (being careful
1520     * to keep enough around to satisfy reservations). Then place
1521     * pages into surplus state as needed so the pool will shrink
1522     * to the desired size as pages become free.
1523     *
1524     * By placing pages into the surplus state independent of the
1525     * overcommit value, we are allowing the surplus pool size to
1526     * exceed overcommit. There are few sane options here. Since
1527     * alloc_buddy_huge_page() is checking the global counter,
1528     * though, we'll note that we're not allowed to exceed surplus
1529     * and won't grow the pool anywhere else. Not until one of the
1530     * sysctls are changed, or the surplus pages go out of use.
1531     */
1532    min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533    min_count = max(count, min_count);
1534    try_to_free_low(h, min_count, nodes_allowed);
1535    while (min_count < persistent_huge_pages(h)) {
1536        if (!free_pool_huge_page(h, nodes_allowed, 0))
1537            break;
1538    }
1539    while (count < persistent_huge_pages(h)) {
1540        if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541            break;
1542    }
1543out:
1544    ret = persistent_huge_pages(h);
1545    spin_unlock(&hugetlb_lock);
1546    return ret;
1547}
1548
1549#define HSTATE_ATTR_RO(_name) \
1550    static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551
1552#define HSTATE_ATTR(_name) \
1553    static struct kobj_attribute _name##_attr = \
1554        __ATTR(_name, 0644, _name##_show, _name##_store)
1555
1556static struct kobject *hugepages_kobj;
1557static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558
1559static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560
1561static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562{
1563    int i;
1564
1565    for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566        if (hstate_kobjs[i] == kobj) {
1567            if (nidp)
1568                *nidp = NUMA_NO_NODE;
1569            return &hstates[i];
1570        }
1571
1572    return kobj_to_node_hstate(kobj, nidp);
1573}
1574
1575static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576                    struct kobj_attribute *attr, char *buf)
1577{
1578    struct hstate *h;
1579    unsigned long nr_huge_pages;
1580    int nid;
1581
1582    h = kobj_to_hstate(kobj, &nid);
1583    if (nid == NUMA_NO_NODE)
1584        nr_huge_pages = h->nr_huge_pages;
1585    else
1586        nr_huge_pages = h->nr_huge_pages_node[nid];
1587
1588    return sprintf(buf, "%lu\n", nr_huge_pages);
1589}
1590
1591static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592            struct kobject *kobj, struct kobj_attribute *attr,
1593            const char *buf, size_t len)
1594{
1595    int err;
1596    int nid;
1597    unsigned long count;
1598    struct hstate *h;
1599    NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600
1601    err = kstrtoul(buf, 10, &count);
1602    if (err)
1603        goto out;
1604
1605    h = kobj_to_hstate(kobj, &nid);
1606    if (h->order >= MAX_ORDER) {
1607        err = -EINVAL;
1608        goto out;
1609    }
1610
1611    if (nid == NUMA_NO_NODE) {
1612        /*
1613         * global hstate attribute
1614         */
1615        if (!(obey_mempolicy &&
1616                init_nodemask_of_mempolicy(nodes_allowed))) {
1617            NODEMASK_FREE(nodes_allowed);
1618            nodes_allowed = &node_states[N_MEMORY];
1619        }
1620    } else if (nodes_allowed) {
1621        /*
1622         * per node hstate attribute: adjust count to global,
1623         * but restrict alloc/free to the specified node.
1624         */
1625        count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626        init_nodemask_of_node(nodes_allowed, nid);
1627    } else
1628        nodes_allowed = &node_states[N_MEMORY];
1629
1630    h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631
1632    if (nodes_allowed != &node_states[N_MEMORY])
1633        NODEMASK_FREE(nodes_allowed);
1634
1635    return len;
1636out:
1637    NODEMASK_FREE(nodes_allowed);
1638    return err;
1639}
1640
1641static ssize_t nr_hugepages_show(struct kobject *kobj,
1642                       struct kobj_attribute *attr, char *buf)
1643{
1644    return nr_hugepages_show_common(kobj, attr, buf);
1645}
1646
1647static ssize_t nr_hugepages_store(struct kobject *kobj,
1648           struct kobj_attribute *attr, const char *buf, size_t len)
1649{
1650    return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651}
1652HSTATE_ATTR(nr_hugepages);
1653
1654#ifdef CONFIG_NUMA
1655
1656/*
1657 * hstate attribute for optionally mempolicy-based constraint on persistent
1658 * huge page alloc/free.
1659 */
1660static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661                       struct kobj_attribute *attr, char *buf)
1662{
1663    return nr_hugepages_show_common(kobj, attr, buf);
1664}
1665
1666static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667           struct kobj_attribute *attr, const char *buf, size_t len)
1668{
1669    return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670}
1671HSTATE_ATTR(nr_hugepages_mempolicy);
1672#endif
1673
1674
1675static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676                    struct kobj_attribute *attr, char *buf)
1677{
1678    struct hstate *h = kobj_to_hstate(kobj, NULL);
1679    return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680}
1681
1682static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683        struct kobj_attribute *attr, const char *buf, size_t count)
1684{
1685    int err;
1686    unsigned long input;
1687    struct hstate *h = kobj_to_hstate(kobj, NULL);
1688
1689    if (h->order >= MAX_ORDER)
1690        return -EINVAL;
1691
1692    err = kstrtoul(buf, 10, &input);
1693    if (err)
1694        return err;
1695
1696    spin_lock(&hugetlb_lock);
1697    h->nr_overcommit_huge_pages = input;
1698    spin_unlock(&hugetlb_lock);
1699
1700    return count;
1701}
1702HSTATE_ATTR(nr_overcommit_hugepages);
1703
1704static ssize_t free_hugepages_show(struct kobject *kobj,
1705                    struct kobj_attribute *attr, char *buf)
1706{
1707    struct hstate *h;
1708    unsigned long free_huge_pages;
1709    int nid;
1710
1711    h = kobj_to_hstate(kobj, &nid);
1712    if (nid == NUMA_NO_NODE)
1713        free_huge_pages = h->free_huge_pages;
1714    else
1715        free_huge_pages = h->free_huge_pages_node[nid];
1716
1717    return sprintf(buf, "%lu\n", free_huge_pages);
1718}
1719HSTATE_ATTR_RO(free_hugepages);
1720
1721static ssize_t resv_hugepages_show(struct kobject *kobj,
1722                    struct kobj_attribute *attr, char *buf)
1723{
1724    struct hstate *h = kobj_to_hstate(kobj, NULL);
1725    return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726}
1727HSTATE_ATTR_RO(resv_hugepages);
1728
1729static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730                    struct kobj_attribute *attr, char *buf)
1731{
1732    struct hstate *h;
1733    unsigned long surplus_huge_pages;
1734    int nid;
1735
1736    h = kobj_to_hstate(kobj, &nid);
1737    if (nid == NUMA_NO_NODE)
1738        surplus_huge_pages = h->surplus_huge_pages;
1739    else
1740        surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741
1742    return sprintf(buf, "%lu\n", surplus_huge_pages);
1743}
1744HSTATE_ATTR_RO(surplus_hugepages);
1745
1746static struct attribute *hstate_attrs[] = {
1747    &nr_hugepages_attr.attr,
1748    &nr_overcommit_hugepages_attr.attr,
1749    &free_hugepages_attr.attr,
1750    &resv_hugepages_attr.attr,
1751    &surplus_hugepages_attr.attr,
1752#ifdef CONFIG_NUMA
1753    &nr_hugepages_mempolicy_attr.attr,
1754#endif
1755    NULL,
1756};
1757
1758static struct attribute_group hstate_attr_group = {
1759    .attrs = hstate_attrs,
1760};
1761
1762static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763                    struct kobject **hstate_kobjs,
1764                    struct attribute_group *hstate_attr_group)
1765{
1766    int retval;
1767    int hi = hstate_index(h);
1768
1769    hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770    if (!hstate_kobjs[hi])
1771        return -ENOMEM;
1772
1773    retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774    if (retval)
1775        kobject_put(hstate_kobjs[hi]);
1776
1777    return retval;
1778}
1779
1780static void __init hugetlb_sysfs_init(void)
1781{
1782    struct hstate *h;
1783    int err;
1784
1785    hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786    if (!hugepages_kobj)
1787        return;
1788
1789    for_each_hstate(h) {
1790        err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791                     hstate_kobjs, &hstate_attr_group);
1792        if (err)
1793            pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794    }
1795}
1796
1797#ifdef CONFIG_NUMA
1798
1799/*
1800 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 * with node devices in node_devices[] using a parallel array. The array
1802 * index of a node device or _hstate == node id.
1803 * This is here to avoid any static dependency of the node device driver, in
1804 * the base kernel, on the hugetlb module.
1805 */
1806struct node_hstate {
1807    struct kobject *hugepages_kobj;
1808    struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1809};
1810struct node_hstate node_hstates[MAX_NUMNODES];
1811
1812/*
1813 * A subset of global hstate attributes for node devices
1814 */
1815static struct attribute *per_node_hstate_attrs[] = {
1816    &nr_hugepages_attr.attr,
1817    &free_hugepages_attr.attr,
1818    &surplus_hugepages_attr.attr,
1819    NULL,
1820};
1821
1822static struct attribute_group per_node_hstate_attr_group = {
1823    .attrs = per_node_hstate_attrs,
1824};
1825
1826/*
1827 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 * Returns node id via non-NULL nidp.
1829 */
1830static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831{
1832    int nid;
1833
1834    for (nid = 0; nid < nr_node_ids; nid++) {
1835        struct node_hstate *nhs = &node_hstates[nid];
1836        int i;
1837        for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838            if (nhs->hstate_kobjs[i] == kobj) {
1839                if (nidp)
1840                    *nidp = nid;
1841                return &hstates[i];
1842            }
1843    }
1844
1845    BUG();
1846    return NULL;
1847}
1848
1849/*
1850 * Unregister hstate attributes from a single node device.
1851 * No-op if no hstate attributes attached.
1852 */
1853static void hugetlb_unregister_node(struct node *node)
1854{
1855    struct hstate *h;
1856    struct node_hstate *nhs = &node_hstates[node->dev.id];
1857
1858    if (!nhs->hugepages_kobj)
1859        return; /* no hstate attributes */
1860
1861    for_each_hstate(h) {
1862        int idx = hstate_index(h);
1863        if (nhs->hstate_kobjs[idx]) {
1864            kobject_put(nhs->hstate_kobjs[idx]);
1865            nhs->hstate_kobjs[idx] = NULL;
1866        }
1867    }
1868
1869    kobject_put(nhs->hugepages_kobj);
1870    nhs->hugepages_kobj = NULL;
1871}
1872
1873/*
1874 * hugetlb module exit: unregister hstate attributes from node devices
1875 * that have them.
1876 */
1877static void hugetlb_unregister_all_nodes(void)
1878{
1879    int nid;
1880
1881    /*
1882     * disable node device registrations.
1883     */
1884    register_hugetlbfs_with_node(NULL, NULL);
1885
1886    /*
1887     * remove hstate attributes from any nodes that have them.
1888     */
1889    for (nid = 0; nid < nr_node_ids; nid++)
1890        hugetlb_unregister_node(node_devices[nid]);
1891}
1892
1893/*
1894 * Register hstate attributes for a single node device.
1895 * No-op if attributes already registered.
1896 */
1897static void hugetlb_register_node(struct node *node)
1898{
1899    struct hstate *h;
1900    struct node_hstate *nhs = &node_hstates[node->dev.id];
1901    int err;
1902
1903    if (nhs->hugepages_kobj)
1904        return; /* already allocated */
1905
1906    nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907                            &node->dev.kobj);
1908    if (!nhs->hugepages_kobj)
1909        return;
1910
1911    for_each_hstate(h) {
1912        err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913                        nhs->hstate_kobjs,
1914                        &per_node_hstate_attr_group);
1915        if (err) {
1916            pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917                h->name, node->dev.id);
1918            hugetlb_unregister_node(node);
1919            break;
1920        }
1921    }
1922}
1923
1924/*
1925 * hugetlb init time: register hstate attributes for all registered node
1926 * devices of nodes that have memory. All on-line nodes should have
1927 * registered their associated device by this time.
1928 */
1929static void hugetlb_register_all_nodes(void)
1930{
1931    int nid;
1932
1933    for_each_node_state(nid, N_MEMORY) {
1934        struct node *node = node_devices[nid];
1935        if (node->dev.id == nid)
1936            hugetlb_register_node(node);
1937    }
1938
1939    /*
1940     * Let the node device driver know we're here so it can
1941     * [un]register hstate attributes on node hotplug.
1942     */
1943    register_hugetlbfs_with_node(hugetlb_register_node,
1944                     hugetlb_unregister_node);
1945}
1946#else /* !CONFIG_NUMA */
1947
1948static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949{
1950    BUG();
1951    if (nidp)
1952        *nidp = -1;
1953    return NULL;
1954}
1955
1956static void hugetlb_unregister_all_nodes(void) { }
1957
1958static void hugetlb_register_all_nodes(void) { }
1959
1960#endif
1961
1962static void __exit hugetlb_exit(void)
1963{
1964    struct hstate *h;
1965
1966    hugetlb_unregister_all_nodes();
1967
1968    for_each_hstate(h) {
1969        kobject_put(hstate_kobjs[hstate_index(h)]);
1970    }
1971
1972    kobject_put(hugepages_kobj);
1973}
1974module_exit(hugetlb_exit);
1975
1976static int __init hugetlb_init(void)
1977{
1978    /* Some platform decide whether they support huge pages at boot
1979     * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1980     * there is no such support
1981     */
1982    if (HPAGE_SHIFT == 0)
1983        return 0;
1984
1985    if (!size_to_hstate(default_hstate_size)) {
1986        default_hstate_size = HPAGE_SIZE;
1987        if (!size_to_hstate(default_hstate_size))
1988            hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1989    }
1990    default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1991    if (default_hstate_max_huge_pages)
1992        default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1993
1994    hugetlb_init_hstates();
1995    gather_bootmem_prealloc();
1996    report_hugepages();
1997
1998    hugetlb_sysfs_init();
1999    hugetlb_register_all_nodes();
2000    hugetlb_cgroup_file_init();
2001
2002    return 0;
2003}
2004module_init(hugetlb_init);
2005
2006/* Should be called on processing a hugepagesz=... option */
2007void __init hugetlb_add_hstate(unsigned order)
2008{
2009    struct hstate *h;
2010    unsigned long i;
2011
2012    if (size_to_hstate(PAGE_SIZE << order)) {
2013        pr_warning("hugepagesz= specified twice, ignoring\n");
2014        return;
2015    }
2016    BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2017    BUG_ON(order == 0);
2018    h = &hstates[hugetlb_max_hstate++];
2019    h->order = order;
2020    h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2021    h->nr_huge_pages = 0;
2022    h->free_huge_pages = 0;
2023    for (i = 0; i < MAX_NUMNODES; ++i)
2024        INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2025    INIT_LIST_HEAD(&h->hugepage_activelist);
2026    h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2027    h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2028    snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2029                    huge_page_size(h)/1024);
2030
2031    parsed_hstate = h;
2032}
2033
2034static int __init hugetlb_nrpages_setup(char *s)
2035{
2036    unsigned long *mhp;
2037    static unsigned long *last_mhp;
2038
2039    /*
2040     * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2041     * so this hugepages= parameter goes to the "default hstate".
2042     */
2043    if (!hugetlb_max_hstate)
2044        mhp = &default_hstate_max_huge_pages;
2045    else
2046        mhp = &parsed_hstate->max_huge_pages;
2047
2048    if (mhp == last_mhp) {
2049        pr_warning("hugepages= specified twice without "
2050               "interleaving hugepagesz=, ignoring\n");
2051        return 1;
2052    }
2053
2054    if (sscanf(s, "%lu", mhp) <= 0)
2055        *mhp = 0;
2056
2057    /*
2058     * Global state is always initialized later in hugetlb_init.
2059     * But we need to allocate >= MAX_ORDER hstates here early to still
2060     * use the bootmem allocator.
2061     */
2062    if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2063        hugetlb_hstate_alloc_pages(parsed_hstate);
2064
2065    last_mhp = mhp;
2066
2067    return 1;
2068}
2069__setup("hugepages=", hugetlb_nrpages_setup);
2070
2071static int __init hugetlb_default_setup(char *s)
2072{
2073    default_hstate_size = memparse(s, &s);
2074    return 1;
2075}
2076__setup("default_hugepagesz=", hugetlb_default_setup);
2077
2078static unsigned int cpuset_mems_nr(unsigned int *array)
2079{
2080    int node;
2081    unsigned int nr = 0;
2082
2083    for_each_node_mask(node, cpuset_current_mems_allowed)
2084        nr += array[node];
2085
2086    return nr;
2087}
2088
2089#ifdef CONFIG_SYSCTL
2090static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2091             struct ctl_table *table, int write,
2092             void __user *buffer, size_t *length, loff_t *ppos)
2093{
2094    struct hstate *h = &default_hstate;
2095    unsigned long tmp;
2096    int ret;
2097
2098    tmp = h->max_huge_pages;
2099
2100    if (write && h->order >= MAX_ORDER)
2101        return -EINVAL;
2102
2103    table->data = &tmp;
2104    table->maxlen = sizeof(unsigned long);
2105    ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2106    if (ret)
2107        goto out;
2108
2109    if (write) {
2110        NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2111                        GFP_KERNEL | __GFP_NORETRY);
2112        if (!(obey_mempolicy &&
2113                   init_nodemask_of_mempolicy(nodes_allowed))) {
2114            NODEMASK_FREE(nodes_allowed);
2115            nodes_allowed = &node_states[N_MEMORY];
2116        }
2117        h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2118
2119        if (nodes_allowed != &node_states[N_MEMORY])
2120            NODEMASK_FREE(nodes_allowed);
2121    }
2122out:
2123    return ret;
2124}
2125
2126int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2127              void __user *buffer, size_t *length, loff_t *ppos)
2128{
2129
2130    return hugetlb_sysctl_handler_common(false, table, write,
2131                            buffer, length, ppos);
2132}
2133
2134#ifdef CONFIG_NUMA
2135int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2136              void __user *buffer, size_t *length, loff_t *ppos)
2137{
2138    return hugetlb_sysctl_handler_common(true, table, write,
2139                            buffer, length, ppos);
2140}
2141#endif /* CONFIG_NUMA */
2142
2143int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2144            void __user *buffer,
2145            size_t *length, loff_t *ppos)
2146{
2147    struct hstate *h = &default_hstate;
2148    unsigned long tmp;
2149    int ret;
2150
2151    tmp = h->nr_overcommit_huge_pages;
2152
2153    if (write && h->order >= MAX_ORDER)
2154        return -EINVAL;
2155
2156    table->data = &tmp;
2157    table->maxlen = sizeof(unsigned long);
2158    ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2159    if (ret)
2160        goto out;
2161
2162    if (write) {
2163        spin_lock(&hugetlb_lock);
2164        h->nr_overcommit_huge_pages = tmp;
2165        spin_unlock(&hugetlb_lock);
2166    }
2167out:
2168    return ret;
2169}
2170
2171#endif /* CONFIG_SYSCTL */
2172
2173void hugetlb_report_meminfo(struct seq_file *m)
2174{
2175    struct hstate *h = &default_hstate;
2176    seq_printf(m,
2177            "HugePages_Total: %5lu\n"
2178            "HugePages_Free: %5lu\n"
2179            "HugePages_Rsvd: %5lu\n"
2180            "HugePages_Surp: %5lu\n"
2181            "Hugepagesize: %8lu kB\n",
2182            h->nr_huge_pages,
2183            h->free_huge_pages,
2184            h->resv_huge_pages,
2185            h->surplus_huge_pages,
2186            1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2187}
2188
2189int hugetlb_report_node_meminfo(int nid, char *buf)
2190{
2191    struct hstate *h = &default_hstate;
2192    return sprintf(buf,
2193        "Node %d HugePages_Total: %5u\n"
2194        "Node %d HugePages_Free: %5u\n"
2195        "Node %d HugePages_Surp: %5u\n",
2196        nid, h->nr_huge_pages_node[nid],
2197        nid, h->free_huge_pages_node[nid],
2198        nid, h->surplus_huge_pages_node[nid]);
2199}
2200
2201void hugetlb_show_meminfo(void)
2202{
2203    struct hstate *h;
2204    int nid;
2205
2206    for_each_node_state(nid, N_MEMORY)
2207        for_each_hstate(h)
2208            pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2209                nid,
2210                h->nr_huge_pages_node[nid],
2211                h->free_huge_pages_node[nid],
2212                h->surplus_huge_pages_node[nid],
2213                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2214}
2215
2216/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2217unsigned long hugetlb_total_pages(void)
2218{
2219    struct hstate *h;
2220    unsigned long nr_total_pages = 0;
2221
2222    for_each_hstate(h)
2223        nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2224    return nr_total_pages;
2225}
2226
2227static int hugetlb_acct_memory(struct hstate *h, long delta)
2228{
2229    int ret = -ENOMEM;
2230
2231    spin_lock(&hugetlb_lock);
2232    /*
2233     * When cpuset is configured, it breaks the strict hugetlb page
2234     * reservation as the accounting is done on a global variable. Such
2235     * reservation is completely rubbish in the presence of cpuset because
2236     * the reservation is not checked against page availability for the
2237     * current cpuset. Application can still potentially OOM'ed by kernel
2238     * with lack of free htlb page in cpuset that the task is in.
2239     * Attempt to enforce strict accounting with cpuset is almost
2240     * impossible (or too ugly) because cpuset is too fluid that
2241     * task or memory node can be dynamically moved between cpusets.
2242     *
2243     * The change of semantics for shared hugetlb mapping with cpuset is
2244     * undesirable. However, in order to preserve some of the semantics,
2245     * we fall back to check against current free page availability as
2246     * a best attempt and hopefully to minimize the impact of changing
2247     * semantics that cpuset has.
2248     */
2249    if (delta > 0) {
2250        if (gather_surplus_pages(h, delta) < 0)
2251            goto out;
2252
2253        if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2254            return_unused_surplus_pages(h, delta);
2255            goto out;
2256        }
2257    }
2258
2259    ret = 0;
2260    if (delta < 0)
2261        return_unused_surplus_pages(h, (unsigned long) -delta);
2262
2263out:
2264    spin_unlock(&hugetlb_lock);
2265    return ret;
2266}
2267
2268static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2269{
2270    struct resv_map *resv = vma_resv_map(vma);
2271
2272    /*
2273     * This new VMA should share its siblings reservation map if present.
2274     * The VMA will only ever have a valid reservation map pointer where
2275     * it is being copied for another still existing VMA. As that VMA
2276     * has a reference to the reservation map it cannot disappear until
2277     * after this open call completes. It is therefore safe to take a
2278     * new reference here without additional locking.
2279     */
2280    if (resv)
2281        kref_get(&resv->refs);
2282}
2283
2284static void resv_map_put(struct vm_area_struct *vma)
2285{
2286    struct resv_map *resv = vma_resv_map(vma);
2287
2288    if (!resv)
2289        return;
2290    kref_put(&resv->refs, resv_map_release);
2291}
2292
2293static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2294{
2295    struct hstate *h = hstate_vma(vma);
2296    struct resv_map *resv = vma_resv_map(vma);
2297    struct hugepage_subpool *spool = subpool_vma(vma);
2298    unsigned long reserve;
2299    unsigned long start;
2300    unsigned long end;
2301
2302    if (resv) {
2303        start = vma_hugecache_offset(h, vma, vma->vm_start);
2304        end = vma_hugecache_offset(h, vma, vma->vm_end);
2305
2306        reserve = (end - start) -
2307            region_count(&resv->regions, start, end);
2308
2309        resv_map_put(vma);
2310
2311        if (reserve) {
2312            hugetlb_acct_memory(h, -reserve);
2313            hugepage_subpool_put_pages(spool, reserve);
2314        }
2315    }
2316}
2317
2318/*
2319 * We cannot handle pagefaults against hugetlb pages at all. They cause
2320 * handle_mm_fault() to try to instantiate regular-sized pages in the
2321 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2322 * this far.
2323 */
2324static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2325{
2326    BUG();
2327    return 0;
2328}
2329
2330const struct vm_operations_struct hugetlb_vm_ops = {
2331    .fault = hugetlb_vm_op_fault,
2332    .open = hugetlb_vm_op_open,
2333    .close = hugetlb_vm_op_close,
2334};
2335
2336static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2337                int writable)
2338{
2339    pte_t entry;
2340
2341    if (writable) {
2342        entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2343                     vma->vm_page_prot)));
2344    } else {
2345        entry = huge_pte_wrprotect(mk_huge_pte(page,
2346                       vma->vm_page_prot));
2347    }
2348    entry = pte_mkyoung(entry);
2349    entry = pte_mkhuge(entry);
2350    entry = arch_make_huge_pte(entry, vma, page, writable);
2351
2352    return entry;
2353}
2354
2355static void set_huge_ptep_writable(struct vm_area_struct *vma,
2356                   unsigned long address, pte_t *ptep)
2357{
2358    pte_t entry;
2359
2360    entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2361    if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2362        update_mmu_cache(vma, address, ptep);
2363}
2364
2365
2366int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2367                struct vm_area_struct *vma)
2368{
2369    pte_t *src_pte, *dst_pte, entry;
2370    struct page *ptepage;
2371    unsigned long addr;
2372    int cow;
2373    struct hstate *h = hstate_vma(vma);
2374    unsigned long sz = huge_page_size(h);
2375
2376    cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2377
2378    for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2379        src_pte = huge_pte_offset(src, addr);
2380        if (!src_pte)
2381            continue;
2382        dst_pte = huge_pte_alloc(dst, addr, sz);
2383        if (!dst_pte)
2384            goto nomem;
2385
2386        /* If the pagetables are shared don't copy or take references */
2387        if (dst_pte == src_pte)
2388            continue;
2389
2390        spin_lock(&dst->page_table_lock);
2391        spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2392        if (!huge_pte_none(huge_ptep_get(src_pte))) {
2393            if (cow)
2394                huge_ptep_set_wrprotect(src, addr, src_pte);
2395            entry = huge_ptep_get(src_pte);
2396            ptepage = pte_page(entry);
2397            get_page(ptepage);
2398            page_dup_rmap(ptepage);
2399            set_huge_pte_at(dst, addr, dst_pte, entry);
2400        }
2401        spin_unlock(&src->page_table_lock);
2402        spin_unlock(&dst->page_table_lock);
2403    }
2404    return 0;
2405
2406nomem:
2407    return -ENOMEM;
2408}
2409
2410static int is_hugetlb_entry_migration(pte_t pte)
2411{
2412    swp_entry_t swp;
2413
2414    if (huge_pte_none(pte) || pte_present(pte))
2415        return 0;
2416    swp = pte_to_swp_entry(pte);
2417    if (non_swap_entry(swp) && is_migration_entry(swp))
2418        return 1;
2419    else
2420        return 0;
2421}
2422
2423static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2424{
2425    swp_entry_t swp;
2426
2427    if (huge_pte_none(pte) || pte_present(pte))
2428        return 0;
2429    swp = pte_to_swp_entry(pte);
2430    if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2431        return 1;
2432    else
2433        return 0;
2434}
2435
2436void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2437                unsigned long start, unsigned long end,
2438                struct page *ref_page)
2439{
2440    int force_flush = 0;
2441    struct mm_struct *mm = vma->vm_mm;
2442    unsigned long address;
2443    pte_t *ptep;
2444    pte_t pte;
2445    struct page *page;
2446    struct hstate *h = hstate_vma(vma);
2447    unsigned long sz = huge_page_size(h);
2448    const unsigned long mmun_start = start; /* For mmu_notifiers */
2449    const unsigned long mmun_end = end; /* For mmu_notifiers */
2450
2451    WARN_ON(!is_vm_hugetlb_page(vma));
2452    BUG_ON(start & ~huge_page_mask(h));
2453    BUG_ON(end & ~huge_page_mask(h));
2454
2455    tlb_start_vma(tlb, vma);
2456    mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2457again:
2458    spin_lock(&mm->page_table_lock);
2459    for (address = start; address < end; address += sz) {
2460        ptep = huge_pte_offset(mm, address);
2461        if (!ptep)
2462            continue;
2463
2464        if (huge_pmd_unshare(mm, &address, ptep))
2465            continue;
2466
2467        pte = huge_ptep_get(ptep);
2468        if (huge_pte_none(pte))
2469            continue;
2470
2471        /*
2472         * HWPoisoned hugepage is already unmapped and dropped reference
2473         */
2474        if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2475            huge_pte_clear(mm, address, ptep);
2476            continue;
2477        }
2478
2479        page = pte_page(pte);
2480        /*
2481         * If a reference page is supplied, it is because a specific
2482         * page is being unmapped, not a range. Ensure the page we
2483         * are about to unmap is the actual page of interest.
2484         */
2485        if (ref_page) {
2486            if (page != ref_page)
2487                continue;
2488
2489            /*
2490             * Mark the VMA as having unmapped its page so that
2491             * future faults in this VMA will fail rather than
2492             * looking like data was lost
2493             */
2494            set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2495        }
2496
2497        pte = huge_ptep_get_and_clear(mm, address, ptep);
2498        tlb_remove_tlb_entry(tlb, ptep, address);
2499        if (huge_pte_dirty(pte))
2500            set_page_dirty(page);
2501
2502        page_remove_rmap(page);
2503        force_flush = !__tlb_remove_page(tlb, page);
2504        if (force_flush)
2505            break;
2506        /* Bail out after unmapping reference page if supplied */
2507        if (ref_page)
2508            break;
2509    }
2510    spin_unlock(&mm->page_table_lock);
2511    /*
2512     * mmu_gather ran out of room to batch pages, we break out of
2513     * the PTE lock to avoid doing the potential expensive TLB invalidate
2514     * and page-free while holding it.
2515     */
2516    if (force_flush) {
2517        force_flush = 0;
2518        tlb_flush_mmu(tlb);
2519        if (address < end && !ref_page)
2520            goto again;
2521    }
2522    mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2523    tlb_end_vma(tlb, vma);
2524}
2525
2526void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2527              struct vm_area_struct *vma, unsigned long start,
2528              unsigned long end, struct page *ref_page)
2529{
2530    __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2531
2532    /*
2533     * Clear this flag so that x86's huge_pmd_share page_table_shareable
2534     * test will fail on a vma being torn down, and not grab a page table
2535     * on its way out. We're lucky that the flag has such an appropriate
2536     * name, and can in fact be safely cleared here. We could clear it
2537     * before the __unmap_hugepage_range above, but all that's necessary
2538     * is to clear it before releasing the i_mmap_mutex. This works
2539     * because in the context this is called, the VMA is about to be
2540     * destroyed and the i_mmap_mutex is held.
2541     */
2542    vma->vm_flags &= ~VM_MAYSHARE;
2543}
2544
2545void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2546              unsigned long end, struct page *ref_page)
2547{
2548    struct mm_struct *mm;
2549    struct mmu_gather tlb;
2550
2551    mm = vma->vm_mm;
2552
2553    tlb_gather_mmu(&tlb, mm, start, end);
2554    __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2555    tlb_finish_mmu(&tlb, start, end);
2556}
2557
2558/*
2559 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2560 * mappping it owns the reserve page for. The intention is to unmap the page
2561 * from other VMAs and let the children be SIGKILLed if they are faulting the
2562 * same region.
2563 */
2564static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2565                struct page *page, unsigned long address)
2566{
2567    struct hstate *h = hstate_vma(vma);
2568    struct vm_area_struct *iter_vma;
2569    struct address_space *mapping;
2570    pgoff_t pgoff;
2571
2572    /*
2573     * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2574     * from page cache lookup which is in HPAGE_SIZE units.
2575     */
2576    address = address & huge_page_mask(h);
2577    pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2578            vma->vm_pgoff;
2579    mapping = file_inode(vma->vm_file)->i_mapping;
2580
2581    /*
2582     * Take the mapping lock for the duration of the table walk. As
2583     * this mapping should be shared between all the VMAs,
2584     * __unmap_hugepage_range() is called as the lock is already held
2585     */
2586    mutex_lock(&mapping->i_mmap_mutex);
2587    vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2588        /* Do not unmap the current VMA */
2589        if (iter_vma == vma)
2590            continue;
2591
2592        /*
2593         * Unmap the page from other VMAs without their own reserves.
2594         * They get marked to be SIGKILLed if they fault in these
2595         * areas. This is because a future no-page fault on this VMA
2596         * could insert a zeroed page instead of the data existing
2597         * from the time of fork. This would look like data corruption
2598         */
2599        if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2600            unmap_hugepage_range(iter_vma, address,
2601                         address + huge_page_size(h), page);
2602    }
2603    mutex_unlock(&mapping->i_mmap_mutex);
2604
2605    return 1;
2606}
2607
2608/*
2609 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2610 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2611 * cannot race with other handlers or page migration.
2612 * Keep the pte_same checks anyway to make transition from the mutex easier.
2613 */
2614static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2615            unsigned long address, pte_t *ptep, pte_t pte,
2616            struct page *pagecache_page)
2617{
2618    struct hstate *h = hstate_vma(vma);
2619    struct page *old_page, *new_page;
2620    int outside_reserve = 0;
2621    unsigned long mmun_start; /* For mmu_notifiers */
2622    unsigned long mmun_end; /* For mmu_notifiers */
2623
2624    old_page = pte_page(pte);
2625
2626retry_avoidcopy:
2627    /* If no-one else is actually using this page, avoid the copy
2628     * and just make the page writable */
2629    if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2630        page_move_anon_rmap(old_page, vma, address);
2631        set_huge_ptep_writable(vma, address, ptep);
2632        return 0;
2633    }
2634
2635    /*
2636     * If the process that created a MAP_PRIVATE mapping is about to
2637     * perform a COW due to a shared page count, attempt to satisfy
2638     * the allocation without using the existing reserves. The pagecache
2639     * page is used to determine if the reserve at this address was
2640     * consumed or not. If reserves were used, a partial faulted mapping
2641     * at the time of fork() could consume its reserves on COW instead
2642     * of the full address range.
2643     */
2644    if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2645            old_page != pagecache_page)
2646        outside_reserve = 1;
2647
2648    page_cache_get(old_page);
2649
2650    /* Drop page_table_lock as buddy allocator may be called */
2651    spin_unlock(&mm->page_table_lock);
2652    new_page = alloc_huge_page(vma, address, outside_reserve);
2653
2654    if (IS_ERR(new_page)) {
2655        long err = PTR_ERR(new_page);
2656        page_cache_release(old_page);
2657
2658        /*
2659         * If a process owning a MAP_PRIVATE mapping fails to COW,
2660         * it is due to references held by a child and an insufficient
2661         * huge page pool. To guarantee the original mappers
2662         * reliability, unmap the page from child processes. The child
2663         * may get SIGKILLed if it later faults.
2664         */
2665        if (outside_reserve) {
2666            BUG_ON(huge_pte_none(pte));
2667            if (unmap_ref_private(mm, vma, old_page, address)) {
2668                BUG_ON(huge_pte_none(pte));
2669                spin_lock(&mm->page_table_lock);
2670                ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2671                if (likely(pte_same(huge_ptep_get(ptep), pte)))
2672                    goto retry_avoidcopy;
2673                /*
2674                 * race occurs while re-acquiring page_table_lock, and
2675                 * our job is done.
2676                 */
2677                return 0;
2678            }
2679            WARN_ON_ONCE(1);
2680        }
2681
2682        /* Caller expects lock to be held */
2683        spin_lock(&mm->page_table_lock);
2684        if (err == -ENOMEM)
2685            return VM_FAULT_OOM;
2686        else
2687            return VM_FAULT_SIGBUS;
2688    }
2689
2690    /*
2691     * When the original hugepage is shared one, it does not have
2692     * anon_vma prepared.
2693     */
2694    if (unlikely(anon_vma_prepare(vma))) {
2695        page_cache_release(new_page);
2696        page_cache_release(old_page);
2697        /* Caller expects lock to be held */
2698        spin_lock(&mm->page_table_lock);
2699        return VM_FAULT_OOM;
2700    }
2701
2702    copy_user_huge_page(new_page, old_page, address, vma,
2703                pages_per_huge_page(h));
2704    __SetPageUptodate(new_page);
2705
2706    mmun_start = address & huge_page_mask(h);
2707    mmun_end = mmun_start + huge_page_size(h);
2708    mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2709    /*
2710     * Retake the page_table_lock to check for racing updates
2711     * before the page tables are altered
2712     */
2713    spin_lock(&mm->page_table_lock);
2714    ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2715    if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2716        ClearPagePrivate(new_page);
2717
2718        /* Break COW */
2719        huge_ptep_clear_flush(vma, address, ptep);
2720        set_huge_pte_at(mm, address, ptep,
2721                make_huge_pte(vma, new_page, 1));
2722        page_remove_rmap(old_page);
2723        hugepage_add_new_anon_rmap(new_page, vma, address);
2724        /* Make the old page be freed below */
2725        new_page = old_page;
2726    }
2727    spin_unlock(&mm->page_table_lock);
2728    mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2729    page_cache_release(new_page);
2730    page_cache_release(old_page);
2731
2732    /* Caller expects lock to be held */
2733    spin_lock(&mm->page_table_lock);
2734    return 0;
2735}
2736
2737/* Return the pagecache page at a given address within a VMA */
2738static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2739            struct vm_area_struct *vma, unsigned long address)
2740{
2741    struct address_space *mapping;
2742    pgoff_t idx;
2743
2744    mapping = vma->vm_file->f_mapping;
2745    idx = vma_hugecache_offset(h, vma, address);
2746
2747    return find_lock_page(mapping, idx);
2748}
2749
2750/*
2751 * Return whether there is a pagecache page to back given address within VMA.
2752 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2753 */
2754static bool hugetlbfs_pagecache_present(struct hstate *h,
2755            struct vm_area_struct *vma, unsigned long address)
2756{
2757    struct address_space *mapping;
2758    pgoff_t idx;
2759    struct page *page;
2760
2761    mapping = vma->vm_file->f_mapping;
2762    idx = vma_hugecache_offset(h, vma, address);
2763
2764    page = find_get_page(mapping, idx);
2765    if (page)
2766        put_page(page);
2767    return page != NULL;
2768}
2769
2770static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2771            unsigned long address, pte_t *ptep, unsigned int flags)
2772{
2773    struct hstate *h = hstate_vma(vma);
2774    int ret = VM_FAULT_SIGBUS;
2775    int anon_rmap = 0;
2776    pgoff_t idx;
2777    unsigned long size;
2778    struct page *page;
2779    struct address_space *mapping;
2780    pte_t new_pte;
2781
2782    /*
2783     * Currently, we are forced to kill the process in the event the
2784     * original mapper has unmapped pages from the child due to a failed
2785     * COW. Warn that such a situation has occurred as it may not be obvious
2786     */
2787    if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2788        pr_warning("PID %d killed due to inadequate hugepage pool\n",
2789               current->pid);
2790        return ret;
2791    }
2792
2793    mapping = vma->vm_file->f_mapping;
2794    idx = vma_hugecache_offset(h, vma, address);
2795
2796    /*
2797     * Use page lock to guard against racing truncation
2798     * before we get page_table_lock.
2799     */
2800retry:
2801    page = find_lock_page(mapping, idx);
2802    if (!page) {
2803        size = i_size_read(mapping->host) >> huge_page_shift(h);
2804        if (idx >= size)
2805            goto out;
2806        page = alloc_huge_page(vma, address, 0);
2807        if (IS_ERR(page)) {
2808            ret = PTR_ERR(page);
2809            if (ret == -ENOMEM)
2810                ret = VM_FAULT_OOM;
2811            else
2812                ret = VM_FAULT_SIGBUS;
2813            goto out;
2814        }
2815        clear_huge_page(page, address, pages_per_huge_page(h));
2816        __SetPageUptodate(page);
2817
2818        if (vma->vm_flags & VM_MAYSHARE) {
2819            int err;
2820            struct inode *inode = mapping->host;
2821
2822            err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2823            if (err) {
2824                put_page(page);
2825                if (err == -EEXIST)
2826                    goto retry;
2827                goto out;
2828            }
2829            ClearPagePrivate(page);
2830
2831            spin_lock(&inode->i_lock);
2832            inode->i_blocks += blocks_per_huge_page(h);
2833            spin_unlock(&inode->i_lock);
2834        } else {
2835            lock_page(page);
2836            if (unlikely(anon_vma_prepare(vma))) {
2837                ret = VM_FAULT_OOM;
2838                goto backout_unlocked;
2839            }
2840            anon_rmap = 1;
2841        }
2842    } else {
2843        /*
2844         * If memory error occurs between mmap() and fault, some process
2845         * don't have hwpoisoned swap entry for errored virtual address.
2846         * So we need to block hugepage fault by PG_hwpoison bit check.
2847         */
2848        if (unlikely(PageHWPoison(page))) {
2849            ret = VM_FAULT_HWPOISON |
2850                VM_FAULT_SET_HINDEX(hstate_index(h));
2851            goto backout_unlocked;
2852        }
2853    }
2854
2855    /*
2856     * If we are going to COW a private mapping later, we examine the
2857     * pending reservations for this page now. This will ensure that
2858     * any allocations necessary to record that reservation occur outside
2859     * the spinlock.
2860     */
2861    if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2862        if (vma_needs_reservation(h, vma, address) < 0) {
2863            ret = VM_FAULT_OOM;
2864            goto backout_unlocked;
2865        }
2866
2867    spin_lock(&mm->page_table_lock);
2868    size = i_size_read(mapping->host) >> huge_page_shift(h);
2869    if (idx >= size)
2870        goto backout;
2871
2872    ret = 0;
2873    if (!huge_pte_none(huge_ptep_get(ptep)))
2874        goto backout;
2875
2876    if (anon_rmap) {
2877        ClearPagePrivate(page);
2878        hugepage_add_new_anon_rmap(page, vma, address);
2879    }
2880    else
2881        page_dup_rmap(page);
2882    new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2883                && (vma->vm_flags & VM_SHARED)));
2884    set_huge_pte_at(mm, address, ptep, new_pte);
2885
2886    if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2887        /* Optimization, do the COW without a second fault */
2888        ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2889    }
2890
2891    spin_unlock(&mm->page_table_lock);
2892    unlock_page(page);
2893out:
2894    return ret;
2895
2896backout:
2897    spin_unlock(&mm->page_table_lock);
2898backout_unlocked:
2899    unlock_page(page);
2900    put_page(page);
2901    goto out;
2902}
2903
2904int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2905            unsigned long address, unsigned int flags)
2906{
2907    pte_t *ptep;
2908    pte_t entry;
2909    int ret;
2910    struct page *page = NULL;
2911    struct page *pagecache_page = NULL;
2912    static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2913    struct hstate *h = hstate_vma(vma);
2914
2915    address &= huge_page_mask(h);
2916
2917    ptep = huge_pte_offset(mm, address);
2918    if (ptep) {
2919        entry = huge_ptep_get(ptep);
2920        if (unlikely(is_hugetlb_entry_migration(entry))) {
2921            migration_entry_wait_huge(mm, ptep);
2922            return 0;
2923        } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2924            return VM_FAULT_HWPOISON_LARGE |
2925                VM_FAULT_SET_HINDEX(hstate_index(h));
2926    }
2927
2928    ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2929    if (!ptep)
2930        return VM_FAULT_OOM;
2931
2932    /*
2933     * Serialize hugepage allocation and instantiation, so that we don't
2934     * get spurious allocation failures if two CPUs race to instantiate
2935     * the same page in the page cache.
2936     */
2937    mutex_lock(&hugetlb_instantiation_mutex);
2938    entry = huge_ptep_get(ptep);
2939    if (huge_pte_none(entry)) {
2940        ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2941        goto out_mutex;
2942    }
2943
2944    ret = 0;
2945
2946    /*
2947     * If we are going to COW the mapping later, we examine the pending
2948     * reservations for this page now. This will ensure that any
2949     * allocations necessary to record that reservation occur outside the
2950     * spinlock. For private mappings, we also lookup the pagecache
2951     * page now as it is used to determine if a reservation has been
2952     * consumed.
2953     */
2954    if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2955        if (vma_needs_reservation(h, vma, address) < 0) {
2956            ret = VM_FAULT_OOM;
2957            goto out_mutex;
2958        }
2959
2960        if (!(vma->vm_flags & VM_MAYSHARE))
2961            pagecache_page = hugetlbfs_pagecache_page(h,
2962                                vma, address);
2963    }
2964
2965    /*
2966     * hugetlb_cow() requires page locks of pte_page(entry) and
2967     * pagecache_page, so here we need take the former one
2968     * when page != pagecache_page or !pagecache_page.
2969     * Note that locking order is always pagecache_page -> page,
2970     * so no worry about deadlock.
2971     */
2972    page = pte_page(entry);
2973    get_page(page);
2974    if (page != pagecache_page)
2975        lock_page(page);
2976
2977    spin_lock(&mm->page_table_lock);
2978    /* Check for a racing update before calling hugetlb_cow */
2979    if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2980        goto out_page_table_lock;
2981
2982
2983    if (flags & FAULT_FLAG_WRITE) {
2984        if (!huge_pte_write(entry)) {
2985            ret = hugetlb_cow(mm, vma, address, ptep, entry,
2986                            pagecache_page);
2987            goto out_page_table_lock;
2988        }
2989        entry = huge_pte_mkdirty(entry);
2990    }
2991    entry = pte_mkyoung(entry);
2992    if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2993                        flags & FAULT_FLAG_WRITE))
2994        update_mmu_cache(vma, address, ptep);
2995
2996out_page_table_lock:
2997    spin_unlock(&mm->page_table_lock);
2998
2999    if (pagecache_page) {
3000        unlock_page(pagecache_page);
3001        put_page(pagecache_page);
3002    }
3003    if (page != pagecache_page)
3004        unlock_page(page);
3005    put_page(page);
3006
3007out_mutex:
3008    mutex_unlock(&hugetlb_instantiation_mutex);
3009
3010    return ret;
3011}
3012
3013long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3014             struct page **pages, struct vm_area_struct **vmas,
3015             unsigned long *position, unsigned long *nr_pages,
3016             long i, unsigned int flags)
3017{
3018    unsigned long pfn_offset;
3019    unsigned long vaddr = *position;
3020    unsigned long remainder = *nr_pages;
3021    struct hstate *h = hstate_vma(vma);
3022
3023    spin_lock(&mm->page_table_lock);
3024    while (vaddr < vma->vm_end && remainder) {
3025        pte_t *pte;
3026        int absent;
3027        struct page *page;
3028
3029        /*
3030         * Some archs (sparc64, sh*) have multiple pte_ts to
3031         * each hugepage. We have to make sure we get the
3032         * first, for the page indexing below to work.
3033         */
3034        pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3035        absent = !pte || huge_pte_none(huge_ptep_get(pte));
3036
3037        /*
3038         * When coredumping, it suits get_dump_page if we just return
3039         * an error where there's an empty slot with no huge pagecache
3040         * to back it. This way, we avoid allocating a hugepage, and
3041         * the sparse dumpfile avoids allocating disk blocks, but its
3042         * huge holes still show up with zeroes where they need to be.
3043         */
3044        if (absent && (flags & FOLL_DUMP) &&
3045            !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3046            remainder = 0;
3047            break;
3048        }
3049
3050        /*
3051         * We need call hugetlb_fault for both hugepages under migration
3052         * (in which case hugetlb_fault waits for the migration,) and
3053         * hwpoisoned hugepages (in which case we need to prevent the
3054         * caller from accessing to them.) In order to do this, we use
3055         * here is_swap_pte instead of is_hugetlb_entry_migration and
3056         * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3057         * both cases, and because we can't follow correct pages
3058         * directly from any kind of swap entries.
3059         */
3060        if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3061            ((flags & FOLL_WRITE) &&
3062              !huge_pte_write(huge_ptep_get(pte)))) {
3063            int ret;
3064
3065            spin_unlock(&mm->page_table_lock);
3066            ret = hugetlb_fault(mm, vma, vaddr,
3067                (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3068            spin_lock(&mm->page_table_lock);
3069            if (!(ret & VM_FAULT_ERROR))
3070                continue;
3071
3072            remainder = 0;
3073            break;
3074        }
3075
3076        pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3077        page = pte_page(huge_ptep_get(pte));
3078same_page:
3079        if (pages) {
3080            pages[i] = mem_map_offset(page, pfn_offset);
3081            get_page(pages[i]);
3082        }
3083
3084        if (vmas)
3085            vmas[i] = vma;
3086
3087        vaddr += PAGE_SIZE;
3088        ++pfn_offset;
3089        --remainder;
3090        ++i;
3091        if (vaddr < vma->vm_end && remainder &&
3092                pfn_offset < pages_per_huge_page(h)) {
3093            /*
3094             * We use pfn_offset to avoid touching the pageframes
3095             * of this compound page.
3096             */
3097            goto same_page;
3098        }
3099    }
3100    spin_unlock(&mm->page_table_lock);
3101    *nr_pages = remainder;
3102    *position = vaddr;
3103
3104    return i ? i : -EFAULT;
3105}
3106
3107unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3108        unsigned long address, unsigned long end, pgprot_t newprot)
3109{
3110    struct mm_struct *mm = vma->vm_mm;
3111    unsigned long start = address;
3112    pte_t *ptep;
3113    pte_t pte;
3114    struct hstate *h = hstate_vma(vma);
3115    unsigned long pages = 0;
3116
3117    BUG_ON(address >= end);
3118    flush_cache_range(vma, address, end);
3119
3120    mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3121    spin_lock(&mm->page_table_lock);
3122    for (; address < end; address += huge_page_size(h)) {
3123        ptep = huge_pte_offset(mm, address);
3124        if (!ptep)
3125            continue;
3126        if (huge_pmd_unshare(mm, &address, ptep)) {
3127            pages++;
3128            continue;
3129        }
3130        if (!huge_pte_none(huge_ptep_get(ptep))) {
3131            pte = huge_ptep_get_and_clear(mm, address, ptep);
3132            pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3133            pte = arch_make_huge_pte(pte, vma, NULL, 0);
3134            set_huge_pte_at(mm, address, ptep, pte);
3135            pages++;
3136        }
3137    }
3138    spin_unlock(&mm->page_table_lock);
3139    /*
3140     * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3141     * may have cleared our pud entry and done put_page on the page table:
3142     * once we release i_mmap_mutex, another task can do the final put_page
3143     * and that page table be reused and filled with junk.
3144     */
3145    flush_tlb_range(vma, start, end);
3146    mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3147
3148    return pages << h->order;
3149}
3150
3151int hugetlb_reserve_pages(struct inode *inode,
3152                    long from, long to,
3153                    struct vm_area_struct *vma,
3154                    vm_flags_t vm_flags)
3155{
3156    long ret, chg;
3157    struct hstate *h = hstate_inode(inode);
3158    struct hugepage_subpool *spool = subpool_inode(inode);
3159
3160    /*
3161     * Only apply hugepage reservation if asked. At fault time, an
3162     * attempt will be made for VM_NORESERVE to allocate a page
3163     * without using reserves
3164     */
3165    if (vm_flags & VM_NORESERVE)
3166        return 0;
3167
3168    /*
3169     * Shared mappings base their reservation on the number of pages that
3170     * are already allocated on behalf of the file. Private mappings need
3171     * to reserve the full area even if read-only as mprotect() may be
3172     * called to make the mapping read-write. Assume !vma is a shm mapping
3173     */
3174    if (!vma || vma->vm_flags & VM_MAYSHARE)
3175        chg = region_chg(&inode->i_mapping->private_list, from, to);
3176    else {
3177        struct resv_map *resv_map = resv_map_alloc();
3178        if (!resv_map)
3179            return -ENOMEM;
3180
3181        chg = to - from;
3182
3183        set_vma_resv_map(vma, resv_map);
3184        set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3185    }
3186
3187    if (chg < 0) {
3188        ret = chg;
3189        goto out_err;
3190    }
3191
3192    /* There must be enough pages in the subpool for the mapping */
3193    if (hugepage_subpool_get_pages(spool, chg)) {
3194        ret = -ENOSPC;
3195        goto out_err;
3196    }
3197
3198    /*
3199     * Check enough hugepages are available for the reservation.
3200     * Hand the pages back to the subpool if there are not
3201     */
3202    ret = hugetlb_acct_memory(h, chg);
3203    if (ret < 0) {
3204        hugepage_subpool_put_pages(spool, chg);
3205        goto out_err;
3206    }
3207
3208    /*
3209     * Account for the reservations made. Shared mappings record regions
3210     * that have reservations as they are shared by multiple VMAs.
3211     * When the last VMA disappears, the region map says how much
3212     * the reservation was and the page cache tells how much of
3213     * the reservation was consumed. Private mappings are per-VMA and
3214     * only the consumed reservations are tracked. When the VMA
3215     * disappears, the original reservation is the VMA size and the
3216     * consumed reservations are stored in the map. Hence, nothing
3217     * else has to be done for private mappings here
3218     */
3219    if (!vma || vma->vm_flags & VM_MAYSHARE)
3220        region_add(&inode->i_mapping->private_list, from, to);
3221    return 0;
3222out_err:
3223    if (vma)
3224        resv_map_put(vma);
3225    return ret;
3226}
3227
3228void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3229{
3230    struct hstate *h = hstate_inode(inode);
3231    long chg = region_truncate(&inode->i_mapping->private_list, offset);
3232    struct hugepage_subpool *spool = subpool_inode(inode);
3233
3234    spin_lock(&inode->i_lock);
3235    inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3236    spin_unlock(&inode->i_lock);
3237
3238    hugepage_subpool_put_pages(spool, (chg - freed));
3239    hugetlb_acct_memory(h, -(chg - freed));
3240}
3241
3242#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3243static unsigned long page_table_shareable(struct vm_area_struct *svma,
3244                struct vm_area_struct *vma,
3245                unsigned long addr, pgoff_t idx)
3246{
3247    unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3248                svma->vm_start;
3249    unsigned long sbase = saddr & PUD_MASK;
3250    unsigned long s_end = sbase + PUD_SIZE;
3251
3252    /* Allow segments to share if only one is marked locked */
3253    unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3254    unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3255
3256    /*
3257     * match the virtual addresses, permission and the alignment of the
3258     * page table page.
3259     */
3260    if (pmd_index(addr) != pmd_index(saddr) ||
3261        vm_flags != svm_flags ||
3262        sbase < svma->vm_start || svma->vm_end < s_end)
3263        return 0;
3264
3265    return saddr;
3266}
3267
3268static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3269{
3270    unsigned long base = addr & PUD_MASK;
3271    unsigned long end = base + PUD_SIZE;
3272
3273    /*
3274     * check on proper vm_flags and page table alignment
3275     */
3276    if (vma->vm_flags & VM_MAYSHARE &&
3277        vma->vm_start <= base && end <= vma->vm_end)
3278        return 1;
3279    return 0;
3280}
3281
3282/*
3283 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3284 * and returns the corresponding pte. While this is not necessary for the
3285 * !shared pmd case because we can allocate the pmd later as well, it makes the
3286 * code much cleaner. pmd allocation is essential for the shared case because
3287 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3288 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3289 * bad pmd for sharing.
3290 */
3291pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3292{
3293    struct vm_area_struct *vma = find_vma(mm, addr);
3294    struct address_space *mapping = vma->vm_file->f_mapping;
3295    pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3296            vma->vm_pgoff;
3297    struct vm_area_struct *svma;
3298    unsigned long saddr;
3299    pte_t *spte = NULL;
3300    pte_t *pte;
3301
3302    if (!vma_shareable(vma, addr))
3303        return (pte_t *)pmd_alloc(mm, pud, addr);
3304
3305    mutex_lock(&mapping->i_mmap_mutex);
3306    vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3307        if (svma == vma)
3308            continue;
3309
3310        saddr = page_table_shareable(svma, vma, addr, idx);
3311        if (saddr) {
3312            spte = huge_pte_offset(svma->vm_mm, saddr);
3313            if (spte) {
3314                get_page(virt_to_page(spte));
3315                break;
3316            }
3317        }
3318    }
3319
3320    if (!spte)
3321        goto out;
3322
3323    spin_lock(&mm->page_table_lock);
3324    if (pud_none(*pud))
3325        pud_populate(mm, pud,
3326                (pmd_t *)((unsigned long)spte & PAGE_MASK));
3327    else
3328        put_page(virt_to_page(spte));
3329    spin_unlock(&mm->page_table_lock);
3330out:
3331    pte = (pte_t *)pmd_alloc(mm, pud, addr);
3332    mutex_unlock(&mapping->i_mmap_mutex);
3333    return pte;
3334}
3335
3336/*
3337 * unmap huge page backed by shared pte.
3338 *
3339 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3340 * indicated by page_count > 1, unmap is achieved by clearing pud and
3341 * decrementing the ref count. If count == 1, the pte page is not shared.
3342 *
3343 * called with vma->vm_mm->page_table_lock held.
3344 *
3345 * returns: 1 successfully unmapped a shared pte page
3346 * 0 the underlying pte page is not shared, or it is the last user
3347 */
3348int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3349{
3350    pgd_t *pgd = pgd_offset(mm, *addr);
3351    pud_t *pud = pud_offset(pgd, *addr);
3352
3353    BUG_ON(page_count(virt_to_page(ptep)) == 0);
3354    if (page_count(virt_to_page(ptep)) == 1)
3355        return 0;
3356
3357    pud_clear(pud);
3358    put_page(virt_to_page(ptep));
3359    *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3360    return 1;
3361}
3362#define want_pmd_share() (1)
3363#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3364pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3365{
3366    return NULL;
3367}
3368#define want_pmd_share() (0)
3369#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3370
3371#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3372pte_t *huge_pte_alloc(struct mm_struct *mm,
3373            unsigned long addr, unsigned long sz)
3374{
3375    pgd_t *pgd;
3376    pud_t *pud;
3377    pte_t *pte = NULL;
3378
3379    pgd = pgd_offset(mm, addr);
3380    pud = pud_alloc(mm, pgd, addr);
3381    if (pud) {
3382        if (sz == PUD_SIZE) {
3383            pte = (pte_t *)pud;
3384        } else {
3385            BUG_ON(sz != PMD_SIZE);
3386            if (want_pmd_share() && pud_none(*pud))
3387                pte = huge_pmd_share(mm, addr, pud);
3388            else
3389                pte = (pte_t *)pmd_alloc(mm, pud, addr);
3390        }
3391    }
3392    BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3393
3394    return pte;
3395}
3396
3397pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3398{
3399    pgd_t *pgd;
3400    pud_t *pud;
3401    pmd_t *pmd = NULL;
3402
3403    pgd = pgd_offset(mm, addr);
3404    if (pgd_present(*pgd)) {
3405        pud = pud_offset(pgd, addr);
3406        if (pud_present(*pud)) {
3407            if (pud_huge(*pud))
3408                return (pte_t *)pud;
3409            pmd = pmd_offset(pud, addr);
3410        }
3411    }
3412    return (pte_t *) pmd;
3413}
3414
3415struct page *
3416follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3417        pmd_t *pmd, int write)
3418{
3419    struct page *page;
3420
3421    page = pte_page(*(pte_t *)pmd);
3422    if (page)
3423        page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3424    return page;
3425}
3426
3427struct page *
3428follow_huge_pud(struct mm_struct *mm, unsigned long address,
3429        pud_t *pud, int write)
3430{
3431    struct page *page;
3432
3433    page = pte_page(*(pte_t *)pud);
3434    if (page)
3435        page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3436    return page;
3437}
3438
3439#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3440
3441/* Can be overriden by architectures */
3442__attribute__((weak)) struct page *
3443follow_huge_pud(struct mm_struct *mm, unsigned long address,
3444           pud_t *pud, int write)
3445{
3446    BUG();
3447    return NULL;
3448}
3449
3450#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3451
3452#ifdef CONFIG_MEMORY_FAILURE
3453
3454/* Should be called in hugetlb_lock */
3455static int is_hugepage_on_freelist(struct page *hpage)
3456{
3457    struct page *page;
3458    struct page *tmp;
3459    struct hstate *h = page_hstate(hpage);
3460    int nid = page_to_nid(hpage);
3461
3462    list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3463        if (page == hpage)
3464            return 1;
3465    return 0;
3466}
3467
3468/*
3469 * This function is called from memory failure code.
3470 * Assume the caller holds page lock of the head page.
3471 */
3472int dequeue_hwpoisoned_huge_page(struct page *hpage)
3473{
3474    struct hstate *h = page_hstate(hpage);
3475    int nid = page_to_nid(hpage);
3476    int ret = -EBUSY;
3477
3478    spin_lock(&hugetlb_lock);
3479    if (is_hugepage_on_freelist(hpage)) {
3480        /*
3481         * Hwpoisoned hugepage isn't linked to activelist or freelist,
3482         * but dangling hpage->lru can trigger list-debug warnings
3483         * (this happens when we call unpoison_memory() on it),
3484         * so let it point to itself with list_del_init().
3485         */
3486        list_del_init(&hpage->lru);
3487        set_page_refcounted(hpage);
3488        h->free_huge_pages--;
3489        h->free_huge_pages_node[nid]--;
3490        ret = 0;
3491    }
3492    spin_unlock(&hugetlb_lock);
3493    return ret;
3494}
3495#endif
3496
3497bool isolate_huge_page(struct page *page, struct list_head *list)
3498{
3499    VM_BUG_ON(!PageHead(page));
3500    if (!get_page_unless_zero(page))
3501        return false;
3502    spin_lock(&hugetlb_lock);
3503    list_move_tail(&page->lru, list);
3504    spin_unlock(&hugetlb_lock);
3505    return true;
3506}
3507
3508void putback_active_hugepage(struct page *page)
3509{
3510    VM_BUG_ON(!PageHead(page));
3511    spin_lock(&hugetlb_lock);
3512    list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3513    spin_unlock(&hugetlb_lock);
3514    put_page(page);
3515}
3516
3517bool is_hugepage_active(struct page *page)
3518{
3519    VM_BUG_ON(!PageHuge(page));
3520    /*
3521     * This function can be called for a tail page because the caller,
3522     * scan_movable_pages, scans through a given pfn-range which typically
3523     * covers one memory block. In systems using gigantic hugepage (1GB
3524     * for x86_64,) a hugepage is larger than a memory block, and we don't
3525     * support migrating such large hugepages for now, so return false
3526     * when called for tail pages.
3527     */
3528    if (PageTail(page))
3529        return false;
3530    /*
3531     * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3532     * so we should return false for them.
3533     */
3534    if (unlikely(PageHWPoison(page)))
3535        return false;
3536    return page_count(page) > 0;
3537}
3538

Archive Download this file



interactive