Root/
1 | /* |
2 | * Generic hugetlb support. |
3 | * (C) Nadia Yvette Chambers, April 2004 |
4 | */ |
5 | #include <linux/list.h> |
6 | #include <linux/init.h> |
7 | #include <linux/module.h> |
8 | #include <linux/mm.h> |
9 | #include <linux/seq_file.h> |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> |
12 | #include <linux/mmu_notifier.h> |
13 | #include <linux/nodemask.h> |
14 | #include <linux/pagemap.h> |
15 | #include <linux/mempolicy.h> |
16 | #include <linux/cpuset.h> |
17 | #include <linux/mutex.h> |
18 | #include <linux/bootmem.h> |
19 | #include <linux/sysfs.h> |
20 | #include <linux/slab.h> |
21 | #include <linux/rmap.h> |
22 | #include <linux/swap.h> |
23 | #include <linux/swapops.h> |
24 | #include <linux/page-isolation.h> |
25 | |
26 | #include <asm/page.h> |
27 | #include <asm/pgtable.h> |
28 | #include <asm/tlb.h> |
29 | |
30 | #include <linux/io.h> |
31 | #include <linux/hugetlb.h> |
32 | #include <linux/hugetlb_cgroup.h> |
33 | #include <linux/node.h> |
34 | #include "internal.h" |
35 | |
36 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; |
37 | unsigned long hugepages_treat_as_movable; |
38 | |
39 | int hugetlb_max_hstate __read_mostly; |
40 | unsigned int default_hstate_idx; |
41 | struct hstate hstates[HUGE_MAX_HSTATE]; |
42 | |
43 | __initdata LIST_HEAD(huge_boot_pages); |
44 | |
45 | /* for command line parsing */ |
46 | static struct hstate * __initdata parsed_hstate; |
47 | static unsigned long __initdata default_hstate_max_huge_pages; |
48 | static unsigned long __initdata default_hstate_size; |
49 | |
50 | /* |
51 | * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, |
52 | * free_huge_pages, and surplus_huge_pages. |
53 | */ |
54 | DEFINE_SPINLOCK(hugetlb_lock); |
55 | |
56 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) |
57 | { |
58 | bool free = (spool->count == 0) && (spool->used_hpages == 0); |
59 | |
60 | spin_unlock(&spool->lock); |
61 | |
62 | /* If no pages are used, and no other handles to the subpool |
63 | * remain, free the subpool the subpool remain */ |
64 | if (free) |
65 | kfree(spool); |
66 | } |
67 | |
68 | struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) |
69 | { |
70 | struct hugepage_subpool *spool; |
71 | |
72 | spool = kmalloc(sizeof(*spool), GFP_KERNEL); |
73 | if (!spool) |
74 | return NULL; |
75 | |
76 | spin_lock_init(&spool->lock); |
77 | spool->count = 1; |
78 | spool->max_hpages = nr_blocks; |
79 | spool->used_hpages = 0; |
80 | |
81 | return spool; |
82 | } |
83 | |
84 | void hugepage_put_subpool(struct hugepage_subpool *spool) |
85 | { |
86 | spin_lock(&spool->lock); |
87 | BUG_ON(!spool->count); |
88 | spool->count--; |
89 | unlock_or_release_subpool(spool); |
90 | } |
91 | |
92 | static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, |
93 | long delta) |
94 | { |
95 | int ret = 0; |
96 | |
97 | if (!spool) |
98 | return 0; |
99 | |
100 | spin_lock(&spool->lock); |
101 | if ((spool->used_hpages + delta) <= spool->max_hpages) { |
102 | spool->used_hpages += delta; |
103 | } else { |
104 | ret = -ENOMEM; |
105 | } |
106 | spin_unlock(&spool->lock); |
107 | |
108 | return ret; |
109 | } |
110 | |
111 | static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, |
112 | long delta) |
113 | { |
114 | if (!spool) |
115 | return; |
116 | |
117 | spin_lock(&spool->lock); |
118 | spool->used_hpages -= delta; |
119 | /* If hugetlbfs_put_super couldn't free spool due to |
120 | * an outstanding quota reference, free it now. */ |
121 | unlock_or_release_subpool(spool); |
122 | } |
123 | |
124 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) |
125 | { |
126 | return HUGETLBFS_SB(inode->i_sb)->spool; |
127 | } |
128 | |
129 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) |
130 | { |
131 | return subpool_inode(file_inode(vma->vm_file)); |
132 | } |
133 | |
134 | /* |
135 | * Region tracking -- allows tracking of reservations and instantiated pages |
136 | * across the pages in a mapping. |
137 | * |
138 | * The region data structures are protected by a combination of the mmap_sem |
139 | * and the hugetlb_instantiation_mutex. To access or modify a region the caller |
140 | * must either hold the mmap_sem for write, or the mmap_sem for read and |
141 | * the hugetlb_instantiation_mutex: |
142 | * |
143 | * down_write(&mm->mmap_sem); |
144 | * or |
145 | * down_read(&mm->mmap_sem); |
146 | * mutex_lock(&hugetlb_instantiation_mutex); |
147 | */ |
148 | struct file_region { |
149 | struct list_head link; |
150 | long from; |
151 | long to; |
152 | }; |
153 | |
154 | static long region_add(struct list_head *head, long f, long t) |
155 | { |
156 | struct file_region *rg, *nrg, *trg; |
157 | |
158 | /* Locate the region we are either in or before. */ |
159 | list_for_each_entry(rg, head, link) |
160 | if (f <= rg->to) |
161 | break; |
162 | |
163 | /* Round our left edge to the current segment if it encloses us. */ |
164 | if (f > rg->from) |
165 | f = rg->from; |
166 | |
167 | /* Check for and consume any regions we now overlap with. */ |
168 | nrg = rg; |
169 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { |
170 | if (&rg->link == head) |
171 | break; |
172 | if (rg->from > t) |
173 | break; |
174 | |
175 | /* If this area reaches higher then extend our area to |
176 | * include it completely. If this is not the first area |
177 | * which we intend to reuse, free it. */ |
178 | if (rg->to > t) |
179 | t = rg->to; |
180 | if (rg != nrg) { |
181 | list_del(&rg->link); |
182 | kfree(rg); |
183 | } |
184 | } |
185 | nrg->from = f; |
186 | nrg->to = t; |
187 | return 0; |
188 | } |
189 | |
190 | static long region_chg(struct list_head *head, long f, long t) |
191 | { |
192 | struct file_region *rg, *nrg; |
193 | long chg = 0; |
194 | |
195 | /* Locate the region we are before or in. */ |
196 | list_for_each_entry(rg, head, link) |
197 | if (f <= rg->to) |
198 | break; |
199 | |
200 | /* If we are below the current region then a new region is required. |
201 | * Subtle, allocate a new region at the position but make it zero |
202 | * size such that we can guarantee to record the reservation. */ |
203 | if (&rg->link == head || t < rg->from) { |
204 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); |
205 | if (!nrg) |
206 | return -ENOMEM; |
207 | nrg->from = f; |
208 | nrg->to = f; |
209 | INIT_LIST_HEAD(&nrg->link); |
210 | list_add(&nrg->link, rg->link.prev); |
211 | |
212 | return t - f; |
213 | } |
214 | |
215 | /* Round our left edge to the current segment if it encloses us. */ |
216 | if (f > rg->from) |
217 | f = rg->from; |
218 | chg = t - f; |
219 | |
220 | /* Check for and consume any regions we now overlap with. */ |
221 | list_for_each_entry(rg, rg->link.prev, link) { |
222 | if (&rg->link == head) |
223 | break; |
224 | if (rg->from > t) |
225 | return chg; |
226 | |
227 | /* We overlap with this area, if it extends further than |
228 | * us then we must extend ourselves. Account for its |
229 | * existing reservation. */ |
230 | if (rg->to > t) { |
231 | chg += rg->to - t; |
232 | t = rg->to; |
233 | } |
234 | chg -= rg->to - rg->from; |
235 | } |
236 | return chg; |
237 | } |
238 | |
239 | static long region_truncate(struct list_head *head, long end) |
240 | { |
241 | struct file_region *rg, *trg; |
242 | long chg = 0; |
243 | |
244 | /* Locate the region we are either in or before. */ |
245 | list_for_each_entry(rg, head, link) |
246 | if (end <= rg->to) |
247 | break; |
248 | if (&rg->link == head) |
249 | return 0; |
250 | |
251 | /* If we are in the middle of a region then adjust it. */ |
252 | if (end > rg->from) { |
253 | chg = rg->to - end; |
254 | rg->to = end; |
255 | rg = list_entry(rg->link.next, typeof(*rg), link); |
256 | } |
257 | |
258 | /* Drop any remaining regions. */ |
259 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { |
260 | if (&rg->link == head) |
261 | break; |
262 | chg += rg->to - rg->from; |
263 | list_del(&rg->link); |
264 | kfree(rg); |
265 | } |
266 | return chg; |
267 | } |
268 | |
269 | static long region_count(struct list_head *head, long f, long t) |
270 | { |
271 | struct file_region *rg; |
272 | long chg = 0; |
273 | |
274 | /* Locate each segment we overlap with, and count that overlap. */ |
275 | list_for_each_entry(rg, head, link) { |
276 | long seg_from; |
277 | long seg_to; |
278 | |
279 | if (rg->to <= f) |
280 | continue; |
281 | if (rg->from >= t) |
282 | break; |
283 | |
284 | seg_from = max(rg->from, f); |
285 | seg_to = min(rg->to, t); |
286 | |
287 | chg += seg_to - seg_from; |
288 | } |
289 | |
290 | return chg; |
291 | } |
292 | |
293 | /* |
294 | * Convert the address within this vma to the page offset within |
295 | * the mapping, in pagecache page units; huge pages here. |
296 | */ |
297 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
298 | struct vm_area_struct *vma, unsigned long address) |
299 | { |
300 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
301 | (vma->vm_pgoff >> huge_page_order(h)); |
302 | } |
303 | |
304 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
305 | unsigned long address) |
306 | { |
307 | return vma_hugecache_offset(hstate_vma(vma), vma, address); |
308 | } |
309 | |
310 | /* |
311 | * Return the size of the pages allocated when backing a VMA. In the majority |
312 | * cases this will be same size as used by the page table entries. |
313 | */ |
314 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) |
315 | { |
316 | struct hstate *hstate; |
317 | |
318 | if (!is_vm_hugetlb_page(vma)) |
319 | return PAGE_SIZE; |
320 | |
321 | hstate = hstate_vma(vma); |
322 | |
323 | return 1UL << huge_page_shift(hstate); |
324 | } |
325 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
326 | |
327 | /* |
328 | * Return the page size being used by the MMU to back a VMA. In the majority |
329 | * of cases, the page size used by the kernel matches the MMU size. On |
330 | * architectures where it differs, an architecture-specific version of this |
331 | * function is required. |
332 | */ |
333 | #ifndef vma_mmu_pagesize |
334 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) |
335 | { |
336 | return vma_kernel_pagesize(vma); |
337 | } |
338 | #endif |
339 | |
340 | /* |
341 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom |
342 | * bits of the reservation map pointer, which are always clear due to |
343 | * alignment. |
344 | */ |
345 | #define HPAGE_RESV_OWNER (1UL << 0) |
346 | #define HPAGE_RESV_UNMAPPED (1UL << 1) |
347 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
348 | |
349 | /* |
350 | * These helpers are used to track how many pages are reserved for |
351 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() |
352 | * is guaranteed to have their future faults succeed. |
353 | * |
354 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), |
355 | * the reserve counters are updated with the hugetlb_lock held. It is safe |
356 | * to reset the VMA at fork() time as it is not in use yet and there is no |
357 | * chance of the global counters getting corrupted as a result of the values. |
358 | * |
359 | * The private mapping reservation is represented in a subtly different |
360 | * manner to a shared mapping. A shared mapping has a region map associated |
361 | * with the underlying file, this region map represents the backing file |
362 | * pages which have ever had a reservation assigned which this persists even |
363 | * after the page is instantiated. A private mapping has a region map |
364 | * associated with the original mmap which is attached to all VMAs which |
365 | * reference it, this region map represents those offsets which have consumed |
366 | * reservation ie. where pages have been instantiated. |
367 | */ |
368 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
369 | { |
370 | return (unsigned long)vma->vm_private_data; |
371 | } |
372 | |
373 | static void set_vma_private_data(struct vm_area_struct *vma, |
374 | unsigned long value) |
375 | { |
376 | vma->vm_private_data = (void *)value; |
377 | } |
378 | |
379 | struct resv_map { |
380 | struct kref refs; |
381 | struct list_head regions; |
382 | }; |
383 | |
384 | static struct resv_map *resv_map_alloc(void) |
385 | { |
386 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); |
387 | if (!resv_map) |
388 | return NULL; |
389 | |
390 | kref_init(&resv_map->refs); |
391 | INIT_LIST_HEAD(&resv_map->regions); |
392 | |
393 | return resv_map; |
394 | } |
395 | |
396 | static void resv_map_release(struct kref *ref) |
397 | { |
398 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); |
399 | |
400 | /* Clear out any active regions before we release the map. */ |
401 | region_truncate(&resv_map->regions, 0); |
402 | kfree(resv_map); |
403 | } |
404 | |
405 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) |
406 | { |
407 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
408 | if (!(vma->vm_flags & VM_MAYSHARE)) |
409 | return (struct resv_map *)(get_vma_private_data(vma) & |
410 | ~HPAGE_RESV_MASK); |
411 | return NULL; |
412 | } |
413 | |
414 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
415 | { |
416 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
417 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
418 | |
419 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
420 | HPAGE_RESV_MASK) | (unsigned long)map); |
421 | } |
422 | |
423 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) |
424 | { |
425 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
426 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
427 | |
428 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); |
429 | } |
430 | |
431 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) |
432 | { |
433 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
434 | |
435 | return (get_vma_private_data(vma) & flag) != 0; |
436 | } |
437 | |
438 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
439 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
440 | { |
441 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
442 | if (!(vma->vm_flags & VM_MAYSHARE)) |
443 | vma->vm_private_data = (void *)0; |
444 | } |
445 | |
446 | /* Returns true if the VMA has associated reserve pages */ |
447 | static int vma_has_reserves(struct vm_area_struct *vma, long chg) |
448 | { |
449 | if (vma->vm_flags & VM_NORESERVE) { |
450 | /* |
451 | * This address is already reserved by other process(chg == 0), |
452 | * so, we should decrement reserved count. Without decrementing, |
453 | * reserve count remains after releasing inode, because this |
454 | * allocated page will go into page cache and is regarded as |
455 | * coming from reserved pool in releasing step. Currently, we |
456 | * don't have any other solution to deal with this situation |
457 | * properly, so add work-around here. |
458 | */ |
459 | if (vma->vm_flags & VM_MAYSHARE && chg == 0) |
460 | return 1; |
461 | else |
462 | return 0; |
463 | } |
464 | |
465 | /* Shared mappings always use reserves */ |
466 | if (vma->vm_flags & VM_MAYSHARE) |
467 | return 1; |
468 | |
469 | /* |
470 | * Only the process that called mmap() has reserves for |
471 | * private mappings. |
472 | */ |
473 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) |
474 | return 1; |
475 | |
476 | return 0; |
477 | } |
478 | |
479 | static void copy_gigantic_page(struct page *dst, struct page *src) |
480 | { |
481 | int i; |
482 | struct hstate *h = page_hstate(src); |
483 | struct page *dst_base = dst; |
484 | struct page *src_base = src; |
485 | |
486 | for (i = 0; i < pages_per_huge_page(h); ) { |
487 | cond_resched(); |
488 | copy_highpage(dst, src); |
489 | |
490 | i++; |
491 | dst = mem_map_next(dst, dst_base, i); |
492 | src = mem_map_next(src, src_base, i); |
493 | } |
494 | } |
495 | |
496 | void copy_huge_page(struct page *dst, struct page *src) |
497 | { |
498 | int i; |
499 | struct hstate *h = page_hstate(src); |
500 | |
501 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { |
502 | copy_gigantic_page(dst, src); |
503 | return; |
504 | } |
505 | |
506 | might_sleep(); |
507 | for (i = 0; i < pages_per_huge_page(h); i++) { |
508 | cond_resched(); |
509 | copy_highpage(dst + i, src + i); |
510 | } |
511 | } |
512 | |
513 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
514 | { |
515 | int nid = page_to_nid(page); |
516 | list_move(&page->lru, &h->hugepage_freelists[nid]); |
517 | h->free_huge_pages++; |
518 | h->free_huge_pages_node[nid]++; |
519 | } |
520 | |
521 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) |
522 | { |
523 | struct page *page; |
524 | |
525 | list_for_each_entry(page, &h->hugepage_freelists[nid], lru) |
526 | if (!is_migrate_isolate_page(page)) |
527 | break; |
528 | /* |
529 | * if 'non-isolated free hugepage' not found on the list, |
530 | * the allocation fails. |
531 | */ |
532 | if (&h->hugepage_freelists[nid] == &page->lru) |
533 | return NULL; |
534 | list_move(&page->lru, &h->hugepage_activelist); |
535 | set_page_refcounted(page); |
536 | h->free_huge_pages--; |
537 | h->free_huge_pages_node[nid]--; |
538 | return page; |
539 | } |
540 | |
541 | /* Movability of hugepages depends on migration support. */ |
542 | static inline gfp_t htlb_alloc_mask(struct hstate *h) |
543 | { |
544 | if (hugepages_treat_as_movable || hugepage_migration_support(h)) |
545 | return GFP_HIGHUSER_MOVABLE; |
546 | else |
547 | return GFP_HIGHUSER; |
548 | } |
549 | |
550 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
551 | struct vm_area_struct *vma, |
552 | unsigned long address, int avoid_reserve, |
553 | long chg) |
554 | { |
555 | struct page *page = NULL; |
556 | struct mempolicy *mpol; |
557 | nodemask_t *nodemask; |
558 | struct zonelist *zonelist; |
559 | struct zone *zone; |
560 | struct zoneref *z; |
561 | unsigned int cpuset_mems_cookie; |
562 | |
563 | /* |
564 | * A child process with MAP_PRIVATE mappings created by their parent |
565 | * have no page reserves. This check ensures that reservations are |
566 | * not "stolen". The child may still get SIGKILLed |
567 | */ |
568 | if (!vma_has_reserves(vma, chg) && |
569 | h->free_huge_pages - h->resv_huge_pages == 0) |
570 | goto err; |
571 | |
572 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
573 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
574 | goto err; |
575 | |
576 | retry_cpuset: |
577 | cpuset_mems_cookie = get_mems_allowed(); |
578 | zonelist = huge_zonelist(vma, address, |
579 | htlb_alloc_mask(h), &mpol, &nodemask); |
580 | |
581 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
582 | MAX_NR_ZONES - 1, nodemask) { |
583 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { |
584 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); |
585 | if (page) { |
586 | if (avoid_reserve) |
587 | break; |
588 | if (!vma_has_reserves(vma, chg)) |
589 | break; |
590 | |
591 | SetPagePrivate(page); |
592 | h->resv_huge_pages--; |
593 | break; |
594 | } |
595 | } |
596 | } |
597 | |
598 | mpol_cond_put(mpol); |
599 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
600 | goto retry_cpuset; |
601 | return page; |
602 | |
603 | err: |
604 | return NULL; |
605 | } |
606 | |
607 | static void update_and_free_page(struct hstate *h, struct page *page) |
608 | { |
609 | int i; |
610 | |
611 | VM_BUG_ON(h->order >= MAX_ORDER); |
612 | |
613 | h->nr_huge_pages--; |
614 | h->nr_huge_pages_node[page_to_nid(page)]--; |
615 | for (i = 0; i < pages_per_huge_page(h); i++) { |
616 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | |
617 | 1 << PG_referenced | 1 << PG_dirty | |
618 | 1 << PG_active | 1 << PG_reserved | |
619 | 1 << PG_private | 1 << PG_writeback); |
620 | } |
621 | VM_BUG_ON(hugetlb_cgroup_from_page(page)); |
622 | set_compound_page_dtor(page, NULL); |
623 | set_page_refcounted(page); |
624 | arch_release_hugepage(page); |
625 | __free_pages(page, huge_page_order(h)); |
626 | } |
627 | |
628 | struct hstate *size_to_hstate(unsigned long size) |
629 | { |
630 | struct hstate *h; |
631 | |
632 | for_each_hstate(h) { |
633 | if (huge_page_size(h) == size) |
634 | return h; |
635 | } |
636 | return NULL; |
637 | } |
638 | |
639 | static void free_huge_page(struct page *page) |
640 | { |
641 | /* |
642 | * Can't pass hstate in here because it is called from the |
643 | * compound page destructor. |
644 | */ |
645 | struct hstate *h = page_hstate(page); |
646 | int nid = page_to_nid(page); |
647 | struct hugepage_subpool *spool = |
648 | (struct hugepage_subpool *)page_private(page); |
649 | bool restore_reserve; |
650 | |
651 | set_page_private(page, 0); |
652 | page->mapping = NULL; |
653 | BUG_ON(page_count(page)); |
654 | BUG_ON(page_mapcount(page)); |
655 | restore_reserve = PagePrivate(page); |
656 | ClearPagePrivate(page); |
657 | |
658 | spin_lock(&hugetlb_lock); |
659 | hugetlb_cgroup_uncharge_page(hstate_index(h), |
660 | pages_per_huge_page(h), page); |
661 | if (restore_reserve) |
662 | h->resv_huge_pages++; |
663 | |
664 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
665 | /* remove the page from active list */ |
666 | list_del(&page->lru); |
667 | update_and_free_page(h, page); |
668 | h->surplus_huge_pages--; |
669 | h->surplus_huge_pages_node[nid]--; |
670 | } else { |
671 | arch_clear_hugepage_flags(page); |
672 | enqueue_huge_page(h, page); |
673 | } |
674 | spin_unlock(&hugetlb_lock); |
675 | hugepage_subpool_put_pages(spool, 1); |
676 | } |
677 | |
678 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
679 | { |
680 | INIT_LIST_HEAD(&page->lru); |
681 | set_compound_page_dtor(page, free_huge_page); |
682 | spin_lock(&hugetlb_lock); |
683 | set_hugetlb_cgroup(page, NULL); |
684 | h->nr_huge_pages++; |
685 | h->nr_huge_pages_node[nid]++; |
686 | spin_unlock(&hugetlb_lock); |
687 | put_page(page); /* free it into the hugepage allocator */ |
688 | } |
689 | |
690 | static void prep_compound_gigantic_page(struct page *page, unsigned long order) |
691 | { |
692 | int i; |
693 | int nr_pages = 1 << order; |
694 | struct page *p = page + 1; |
695 | |
696 | /* we rely on prep_new_huge_page to set the destructor */ |
697 | set_compound_order(page, order); |
698 | __SetPageHead(page); |
699 | __ClearPageReserved(page); |
700 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { |
701 | __SetPageTail(p); |
702 | /* |
703 | * For gigantic hugepages allocated through bootmem at |
704 | * boot, it's safer to be consistent with the not-gigantic |
705 | * hugepages and clear the PG_reserved bit from all tail pages |
706 | * too. Otherwse drivers using get_user_pages() to access tail |
707 | * pages may get the reference counting wrong if they see |
708 | * PG_reserved set on a tail page (despite the head page not |
709 | * having PG_reserved set). Enforcing this consistency between |
710 | * head and tail pages allows drivers to optimize away a check |
711 | * on the head page when they need know if put_page() is needed |
712 | * after get_user_pages(). |
713 | */ |
714 | __ClearPageReserved(p); |
715 | set_page_count(p, 0); |
716 | p->first_page = page; |
717 | } |
718 | } |
719 | |
720 | /* |
721 | * PageHuge() only returns true for hugetlbfs pages, but not for normal or |
722 | * transparent huge pages. See the PageTransHuge() documentation for more |
723 | * details. |
724 | */ |
725 | int PageHuge(struct page *page) |
726 | { |
727 | compound_page_dtor *dtor; |
728 | |
729 | if (!PageCompound(page)) |
730 | return 0; |
731 | |
732 | page = compound_head(page); |
733 | dtor = get_compound_page_dtor(page); |
734 | |
735 | return dtor == free_huge_page; |
736 | } |
737 | EXPORT_SYMBOL_GPL(PageHuge); |
738 | |
739 | pgoff_t __basepage_index(struct page *page) |
740 | { |
741 | struct page *page_head = compound_head(page); |
742 | pgoff_t index = page_index(page_head); |
743 | unsigned long compound_idx; |
744 | |
745 | if (!PageHuge(page_head)) |
746 | return page_index(page); |
747 | |
748 | if (compound_order(page_head) >= MAX_ORDER) |
749 | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); |
750 | else |
751 | compound_idx = page - page_head; |
752 | |
753 | return (index << compound_order(page_head)) + compound_idx; |
754 | } |
755 | |
756 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
757 | { |
758 | struct page *page; |
759 | |
760 | if (h->order >= MAX_ORDER) |
761 | return NULL; |
762 | |
763 | page = alloc_pages_exact_node(nid, |
764 | htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| |
765 | __GFP_REPEAT|__GFP_NOWARN, |
766 | huge_page_order(h)); |
767 | if (page) { |
768 | if (arch_prepare_hugepage(page)) { |
769 | __free_pages(page, huge_page_order(h)); |
770 | return NULL; |
771 | } |
772 | prep_new_huge_page(h, page, nid); |
773 | } |
774 | |
775 | return page; |
776 | } |
777 | |
778 | /* |
779 | * common helper functions for hstate_next_node_to_{alloc|free}. |
780 | * We may have allocated or freed a huge page based on a different |
781 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might |
782 | * be outside of *nodes_allowed. Ensure that we use an allowed |
783 | * node for alloc or free. |
784 | */ |
785 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) |
786 | { |
787 | nid = next_node(nid, *nodes_allowed); |
788 | if (nid == MAX_NUMNODES) |
789 | nid = first_node(*nodes_allowed); |
790 | VM_BUG_ON(nid >= MAX_NUMNODES); |
791 | |
792 | return nid; |
793 | } |
794 | |
795 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) |
796 | { |
797 | if (!node_isset(nid, *nodes_allowed)) |
798 | nid = next_node_allowed(nid, nodes_allowed); |
799 | return nid; |
800 | } |
801 | |
802 | /* |
803 | * returns the previously saved node ["this node"] from which to |
804 | * allocate a persistent huge page for the pool and advance the |
805 | * next node from which to allocate, handling wrap at end of node |
806 | * mask. |
807 | */ |
808 | static int hstate_next_node_to_alloc(struct hstate *h, |
809 | nodemask_t *nodes_allowed) |
810 | { |
811 | int nid; |
812 | |
813 | VM_BUG_ON(!nodes_allowed); |
814 | |
815 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); |
816 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); |
817 | |
818 | return nid; |
819 | } |
820 | |
821 | /* |
822 | * helper for free_pool_huge_page() - return the previously saved |
823 | * node ["this node"] from which to free a huge page. Advance the |
824 | * next node id whether or not we find a free huge page to free so |
825 | * that the next attempt to free addresses the next node. |
826 | */ |
827 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) |
828 | { |
829 | int nid; |
830 | |
831 | VM_BUG_ON(!nodes_allowed); |
832 | |
833 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); |
834 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); |
835 | |
836 | return nid; |
837 | } |
838 | |
839 | #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ |
840 | for (nr_nodes = nodes_weight(*mask); \ |
841 | nr_nodes > 0 && \ |
842 | ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ |
843 | nr_nodes--) |
844 | |
845 | #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ |
846 | for (nr_nodes = nodes_weight(*mask); \ |
847 | nr_nodes > 0 && \ |
848 | ((node = hstate_next_node_to_free(hs, mask)) || 1); \ |
849 | nr_nodes--) |
850 | |
851 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
852 | { |
853 | struct page *page; |
854 | int nr_nodes, node; |
855 | int ret = 0; |
856 | |
857 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { |
858 | page = alloc_fresh_huge_page_node(h, node); |
859 | if (page) { |
860 | ret = 1; |
861 | break; |
862 | } |
863 | } |
864 | |
865 | if (ret) |
866 | count_vm_event(HTLB_BUDDY_PGALLOC); |
867 | else |
868 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
869 | |
870 | return ret; |
871 | } |
872 | |
873 | /* |
874 | * Free huge page from pool from next node to free. |
875 | * Attempt to keep persistent huge pages more or less |
876 | * balanced over allowed nodes. |
877 | * Called with hugetlb_lock locked. |
878 | */ |
879 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
880 | bool acct_surplus) |
881 | { |
882 | int nr_nodes, node; |
883 | int ret = 0; |
884 | |
885 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
886 | /* |
887 | * If we're returning unused surplus pages, only examine |
888 | * nodes with surplus pages. |
889 | */ |
890 | if ((!acct_surplus || h->surplus_huge_pages_node[node]) && |
891 | !list_empty(&h->hugepage_freelists[node])) { |
892 | struct page *page = |
893 | list_entry(h->hugepage_freelists[node].next, |
894 | struct page, lru); |
895 | list_del(&page->lru); |
896 | h->free_huge_pages--; |
897 | h->free_huge_pages_node[node]--; |
898 | if (acct_surplus) { |
899 | h->surplus_huge_pages--; |
900 | h->surplus_huge_pages_node[node]--; |
901 | } |
902 | update_and_free_page(h, page); |
903 | ret = 1; |
904 | break; |
905 | } |
906 | } |
907 | |
908 | return ret; |
909 | } |
910 | |
911 | /* |
912 | * Dissolve a given free hugepage into free buddy pages. This function does |
913 | * nothing for in-use (including surplus) hugepages. |
914 | */ |
915 | static void dissolve_free_huge_page(struct page *page) |
916 | { |
917 | spin_lock(&hugetlb_lock); |
918 | if (PageHuge(page) && !page_count(page)) { |
919 | struct hstate *h = page_hstate(page); |
920 | int nid = page_to_nid(page); |
921 | list_del(&page->lru); |
922 | h->free_huge_pages--; |
923 | h->free_huge_pages_node[nid]--; |
924 | update_and_free_page(h, page); |
925 | } |
926 | spin_unlock(&hugetlb_lock); |
927 | } |
928 | |
929 | /* |
930 | * Dissolve free hugepages in a given pfn range. Used by memory hotplug to |
931 | * make specified memory blocks removable from the system. |
932 | * Note that start_pfn should aligned with (minimum) hugepage size. |
933 | */ |
934 | void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) |
935 | { |
936 | unsigned int order = 8 * sizeof(void *); |
937 | unsigned long pfn; |
938 | struct hstate *h; |
939 | |
940 | /* Set scan step to minimum hugepage size */ |
941 | for_each_hstate(h) |
942 | if (order > huge_page_order(h)) |
943 | order = huge_page_order(h); |
944 | VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); |
945 | for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) |
946 | dissolve_free_huge_page(pfn_to_page(pfn)); |
947 | } |
948 | |
949 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) |
950 | { |
951 | struct page *page; |
952 | unsigned int r_nid; |
953 | |
954 | if (h->order >= MAX_ORDER) |
955 | return NULL; |
956 | |
957 | /* |
958 | * Assume we will successfully allocate the surplus page to |
959 | * prevent racing processes from causing the surplus to exceed |
960 | * overcommit |
961 | * |
962 | * This however introduces a different race, where a process B |
963 | * tries to grow the static hugepage pool while alloc_pages() is |
964 | * called by process A. B will only examine the per-node |
965 | * counters in determining if surplus huge pages can be |
966 | * converted to normal huge pages in adjust_pool_surplus(). A |
967 | * won't be able to increment the per-node counter, until the |
968 | * lock is dropped by B, but B doesn't drop hugetlb_lock until |
969 | * no more huge pages can be converted from surplus to normal |
970 | * state (and doesn't try to convert again). Thus, we have a |
971 | * case where a surplus huge page exists, the pool is grown, and |
972 | * the surplus huge page still exists after, even though it |
973 | * should just have been converted to a normal huge page. This |
974 | * does not leak memory, though, as the hugepage will be freed |
975 | * once it is out of use. It also does not allow the counters to |
976 | * go out of whack in adjust_pool_surplus() as we don't modify |
977 | * the node values until we've gotten the hugepage and only the |
978 | * per-node value is checked there. |
979 | */ |
980 | spin_lock(&hugetlb_lock); |
981 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
982 | spin_unlock(&hugetlb_lock); |
983 | return NULL; |
984 | } else { |
985 | h->nr_huge_pages++; |
986 | h->surplus_huge_pages++; |
987 | } |
988 | spin_unlock(&hugetlb_lock); |
989 | |
990 | if (nid == NUMA_NO_NODE) |
991 | page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| |
992 | __GFP_REPEAT|__GFP_NOWARN, |
993 | huge_page_order(h)); |
994 | else |
995 | page = alloc_pages_exact_node(nid, |
996 | htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| |
997 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); |
998 | |
999 | if (page && arch_prepare_hugepage(page)) { |
1000 | __free_pages(page, huge_page_order(h)); |
1001 | page = NULL; |
1002 | } |
1003 | |
1004 | spin_lock(&hugetlb_lock); |
1005 | if (page) { |
1006 | INIT_LIST_HEAD(&page->lru); |
1007 | r_nid = page_to_nid(page); |
1008 | set_compound_page_dtor(page, free_huge_page); |
1009 | set_hugetlb_cgroup(page, NULL); |
1010 | /* |
1011 | * We incremented the global counters already |
1012 | */ |
1013 | h->nr_huge_pages_node[r_nid]++; |
1014 | h->surplus_huge_pages_node[r_nid]++; |
1015 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
1016 | } else { |
1017 | h->nr_huge_pages--; |
1018 | h->surplus_huge_pages--; |
1019 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
1020 | } |
1021 | spin_unlock(&hugetlb_lock); |
1022 | |
1023 | return page; |
1024 | } |
1025 | |
1026 | /* |
1027 | * This allocation function is useful in the context where vma is irrelevant. |
1028 | * E.g. soft-offlining uses this function because it only cares physical |
1029 | * address of error page. |
1030 | */ |
1031 | struct page *alloc_huge_page_node(struct hstate *h, int nid) |
1032 | { |
1033 | struct page *page = NULL; |
1034 | |
1035 | spin_lock(&hugetlb_lock); |
1036 | if (h->free_huge_pages - h->resv_huge_pages > 0) |
1037 | page = dequeue_huge_page_node(h, nid); |
1038 | spin_unlock(&hugetlb_lock); |
1039 | |
1040 | if (!page) |
1041 | page = alloc_buddy_huge_page(h, nid); |
1042 | |
1043 | return page; |
1044 | } |
1045 | |
1046 | /* |
1047 | * Increase the hugetlb pool such that it can accommodate a reservation |
1048 | * of size 'delta'. |
1049 | */ |
1050 | static int gather_surplus_pages(struct hstate *h, int delta) |
1051 | { |
1052 | struct list_head surplus_list; |
1053 | struct page *page, *tmp; |
1054 | int ret, i; |
1055 | int needed, allocated; |
1056 | bool alloc_ok = true; |
1057 | |
1058 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
1059 | if (needed <= 0) { |
1060 | h->resv_huge_pages += delta; |
1061 | return 0; |
1062 | } |
1063 | |
1064 | allocated = 0; |
1065 | INIT_LIST_HEAD(&surplus_list); |
1066 | |
1067 | ret = -ENOMEM; |
1068 | retry: |
1069 | spin_unlock(&hugetlb_lock); |
1070 | for (i = 0; i < needed; i++) { |
1071 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
1072 | if (!page) { |
1073 | alloc_ok = false; |
1074 | break; |
1075 | } |
1076 | list_add(&page->lru, &surplus_list); |
1077 | } |
1078 | allocated += i; |
1079 | |
1080 | /* |
1081 | * After retaking hugetlb_lock, we need to recalculate 'needed' |
1082 | * because either resv_huge_pages or free_huge_pages may have changed. |
1083 | */ |
1084 | spin_lock(&hugetlb_lock); |
1085 | needed = (h->resv_huge_pages + delta) - |
1086 | (h->free_huge_pages + allocated); |
1087 | if (needed > 0) { |
1088 | if (alloc_ok) |
1089 | goto retry; |
1090 | /* |
1091 | * We were not able to allocate enough pages to |
1092 | * satisfy the entire reservation so we free what |
1093 | * we've allocated so far. |
1094 | */ |
1095 | goto free; |
1096 | } |
1097 | /* |
1098 | * The surplus_list now contains _at_least_ the number of extra pages |
1099 | * needed to accommodate the reservation. Add the appropriate number |
1100 | * of pages to the hugetlb pool and free the extras back to the buddy |
1101 | * allocator. Commit the entire reservation here to prevent another |
1102 | * process from stealing the pages as they are added to the pool but |
1103 | * before they are reserved. |
1104 | */ |
1105 | needed += allocated; |
1106 | h->resv_huge_pages += delta; |
1107 | ret = 0; |
1108 | |
1109 | /* Free the needed pages to the hugetlb pool */ |
1110 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
1111 | if ((--needed) < 0) |
1112 | break; |
1113 | /* |
1114 | * This page is now managed by the hugetlb allocator and has |
1115 | * no users -- drop the buddy allocator's reference. |
1116 | */ |
1117 | put_page_testzero(page); |
1118 | VM_BUG_ON(page_count(page)); |
1119 | enqueue_huge_page(h, page); |
1120 | } |
1121 | free: |
1122 | spin_unlock(&hugetlb_lock); |
1123 | |
1124 | /* Free unnecessary surplus pages to the buddy allocator */ |
1125 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) |
1126 | put_page(page); |
1127 | spin_lock(&hugetlb_lock); |
1128 | |
1129 | return ret; |
1130 | } |
1131 | |
1132 | /* |
1133 | * When releasing a hugetlb pool reservation, any surplus pages that were |
1134 | * allocated to satisfy the reservation must be explicitly freed if they were |
1135 | * never used. |
1136 | * Called with hugetlb_lock held. |
1137 | */ |
1138 | static void return_unused_surplus_pages(struct hstate *h, |
1139 | unsigned long unused_resv_pages) |
1140 | { |
1141 | unsigned long nr_pages; |
1142 | |
1143 | /* Uncommit the reservation */ |
1144 | h->resv_huge_pages -= unused_resv_pages; |
1145 | |
1146 | /* Cannot return gigantic pages currently */ |
1147 | if (h->order >= MAX_ORDER) |
1148 | return; |
1149 | |
1150 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
1151 | |
1152 | /* |
1153 | * We want to release as many surplus pages as possible, spread |
1154 | * evenly across all nodes with memory. Iterate across these nodes |
1155 | * until we can no longer free unreserved surplus pages. This occurs |
1156 | * when the nodes with surplus pages have no free pages. |
1157 | * free_pool_huge_page() will balance the the freed pages across the |
1158 | * on-line nodes with memory and will handle the hstate accounting. |
1159 | */ |
1160 | while (nr_pages--) { |
1161 | if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) |
1162 | break; |
1163 | } |
1164 | } |
1165 | |
1166 | /* |
1167 | * Determine if the huge page at addr within the vma has an associated |
1168 | * reservation. Where it does not we will need to logically increase |
1169 | * reservation and actually increase subpool usage before an allocation |
1170 | * can occur. Where any new reservation would be required the |
1171 | * reservation change is prepared, but not committed. Once the page |
1172 | * has been allocated from the subpool and instantiated the change should |
1173 | * be committed via vma_commit_reservation. No action is required on |
1174 | * failure. |
1175 | */ |
1176 | static long vma_needs_reservation(struct hstate *h, |
1177 | struct vm_area_struct *vma, unsigned long addr) |
1178 | { |
1179 | struct address_space *mapping = vma->vm_file->f_mapping; |
1180 | struct inode *inode = mapping->host; |
1181 | |
1182 | if (vma->vm_flags & VM_MAYSHARE) { |
1183 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
1184 | return region_chg(&inode->i_mapping->private_list, |
1185 | idx, idx + 1); |
1186 | |
1187 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1188 | return 1; |
1189 | |
1190 | } else { |
1191 | long err; |
1192 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
1193 | struct resv_map *resv = vma_resv_map(vma); |
1194 | |
1195 | err = region_chg(&resv->regions, idx, idx + 1); |
1196 | if (err < 0) |
1197 | return err; |
1198 | return 0; |
1199 | } |
1200 | } |
1201 | static void vma_commit_reservation(struct hstate *h, |
1202 | struct vm_area_struct *vma, unsigned long addr) |
1203 | { |
1204 | struct address_space *mapping = vma->vm_file->f_mapping; |
1205 | struct inode *inode = mapping->host; |
1206 | |
1207 | if (vma->vm_flags & VM_MAYSHARE) { |
1208 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
1209 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
1210 | |
1211 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1212 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
1213 | struct resv_map *resv = vma_resv_map(vma); |
1214 | |
1215 | /* Mark this page used in the map. */ |
1216 | region_add(&resv->regions, idx, idx + 1); |
1217 | } |
1218 | } |
1219 | |
1220 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
1221 | unsigned long addr, int avoid_reserve) |
1222 | { |
1223 | struct hugepage_subpool *spool = subpool_vma(vma); |
1224 | struct hstate *h = hstate_vma(vma); |
1225 | struct page *page; |
1226 | long chg; |
1227 | int ret, idx; |
1228 | struct hugetlb_cgroup *h_cg; |
1229 | |
1230 | idx = hstate_index(h); |
1231 | /* |
1232 | * Processes that did not create the mapping will have no |
1233 | * reserves and will not have accounted against subpool |
1234 | * limit. Check that the subpool limit can be made before |
1235 | * satisfying the allocation MAP_NORESERVE mappings may also |
1236 | * need pages and subpool limit allocated allocated if no reserve |
1237 | * mapping overlaps. |
1238 | */ |
1239 | chg = vma_needs_reservation(h, vma, addr); |
1240 | if (chg < 0) |
1241 | return ERR_PTR(-ENOMEM); |
1242 | if (chg || avoid_reserve) |
1243 | if (hugepage_subpool_get_pages(spool, 1)) |
1244 | return ERR_PTR(-ENOSPC); |
1245 | |
1246 | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); |
1247 | if (ret) { |
1248 | if (chg || avoid_reserve) |
1249 | hugepage_subpool_put_pages(spool, 1); |
1250 | return ERR_PTR(-ENOSPC); |
1251 | } |
1252 | spin_lock(&hugetlb_lock); |
1253 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); |
1254 | if (!page) { |
1255 | spin_unlock(&hugetlb_lock); |
1256 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
1257 | if (!page) { |
1258 | hugetlb_cgroup_uncharge_cgroup(idx, |
1259 | pages_per_huge_page(h), |
1260 | h_cg); |
1261 | if (chg || avoid_reserve) |
1262 | hugepage_subpool_put_pages(spool, 1); |
1263 | return ERR_PTR(-ENOSPC); |
1264 | } |
1265 | spin_lock(&hugetlb_lock); |
1266 | list_move(&page->lru, &h->hugepage_activelist); |
1267 | /* Fall through */ |
1268 | } |
1269 | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); |
1270 | spin_unlock(&hugetlb_lock); |
1271 | |
1272 | set_page_private(page, (unsigned long)spool); |
1273 | |
1274 | vma_commit_reservation(h, vma, addr); |
1275 | return page; |
1276 | } |
1277 | |
1278 | /* |
1279 | * alloc_huge_page()'s wrapper which simply returns the page if allocation |
1280 | * succeeds, otherwise NULL. This function is called from new_vma_page(), |
1281 | * where no ERR_VALUE is expected to be returned. |
1282 | */ |
1283 | struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, |
1284 | unsigned long addr, int avoid_reserve) |
1285 | { |
1286 | struct page *page = alloc_huge_page(vma, addr, avoid_reserve); |
1287 | if (IS_ERR(page)) |
1288 | page = NULL; |
1289 | return page; |
1290 | } |
1291 | |
1292 | int __weak alloc_bootmem_huge_page(struct hstate *h) |
1293 | { |
1294 | struct huge_bootmem_page *m; |
1295 | int nr_nodes, node; |
1296 | |
1297 | for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { |
1298 | void *addr; |
1299 | |
1300 | addr = __alloc_bootmem_node_nopanic(NODE_DATA(node), |
1301 | huge_page_size(h), huge_page_size(h), 0); |
1302 | |
1303 | if (addr) { |
1304 | /* |
1305 | * Use the beginning of the huge page to store the |
1306 | * huge_bootmem_page struct (until gather_bootmem |
1307 | * puts them into the mem_map). |
1308 | */ |
1309 | m = addr; |
1310 | goto found; |
1311 | } |
1312 | } |
1313 | return 0; |
1314 | |
1315 | found: |
1316 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); |
1317 | /* Put them into a private list first because mem_map is not up yet */ |
1318 | list_add(&m->list, &huge_boot_pages); |
1319 | m->hstate = h; |
1320 | return 1; |
1321 | } |
1322 | |
1323 | static void prep_compound_huge_page(struct page *page, int order) |
1324 | { |
1325 | if (unlikely(order > (MAX_ORDER - 1))) |
1326 | prep_compound_gigantic_page(page, order); |
1327 | else |
1328 | prep_compound_page(page, order); |
1329 | } |
1330 | |
1331 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
1332 | static void __init gather_bootmem_prealloc(void) |
1333 | { |
1334 | struct huge_bootmem_page *m; |
1335 | |
1336 | list_for_each_entry(m, &huge_boot_pages, list) { |
1337 | struct hstate *h = m->hstate; |
1338 | struct page *page; |
1339 | |
1340 | #ifdef CONFIG_HIGHMEM |
1341 | page = pfn_to_page(m->phys >> PAGE_SHIFT); |
1342 | free_bootmem_late((unsigned long)m, |
1343 | sizeof(struct huge_bootmem_page)); |
1344 | #else |
1345 | page = virt_to_page(m); |
1346 | #endif |
1347 | WARN_ON(page_count(page) != 1); |
1348 | prep_compound_huge_page(page, h->order); |
1349 | WARN_ON(PageReserved(page)); |
1350 | prep_new_huge_page(h, page, page_to_nid(page)); |
1351 | /* |
1352 | * If we had gigantic hugepages allocated at boot time, we need |
1353 | * to restore the 'stolen' pages to totalram_pages in order to |
1354 | * fix confusing memory reports from free(1) and another |
1355 | * side-effects, like CommitLimit going negative. |
1356 | */ |
1357 | if (h->order > (MAX_ORDER - 1)) |
1358 | adjust_managed_page_count(page, 1 << h->order); |
1359 | } |
1360 | } |
1361 | |
1362 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1363 | { |
1364 | unsigned long i; |
1365 | |
1366 | for (i = 0; i < h->max_huge_pages; ++i) { |
1367 | if (h->order >= MAX_ORDER) { |
1368 | if (!alloc_bootmem_huge_page(h)) |
1369 | break; |
1370 | } else if (!alloc_fresh_huge_page(h, |
1371 | &node_states[N_MEMORY])) |
1372 | break; |
1373 | } |
1374 | h->max_huge_pages = i; |
1375 | } |
1376 | |
1377 | static void __init hugetlb_init_hstates(void) |
1378 | { |
1379 | struct hstate *h; |
1380 | |
1381 | for_each_hstate(h) { |
1382 | /* oversize hugepages were init'ed in early boot */ |
1383 | if (h->order < MAX_ORDER) |
1384 | hugetlb_hstate_alloc_pages(h); |
1385 | } |
1386 | } |
1387 | |
1388 | static char * __init memfmt(char *buf, unsigned long n) |
1389 | { |
1390 | if (n >= (1UL << 30)) |
1391 | sprintf(buf, "%lu GB", n >> 30); |
1392 | else if (n >= (1UL << 20)) |
1393 | sprintf(buf, "%lu MB", n >> 20); |
1394 | else |
1395 | sprintf(buf, "%lu KB", n >> 10); |
1396 | return buf; |
1397 | } |
1398 | |
1399 | static void __init report_hugepages(void) |
1400 | { |
1401 | struct hstate *h; |
1402 | |
1403 | for_each_hstate(h) { |
1404 | char buf[32]; |
1405 | pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", |
1406 | memfmt(buf, huge_page_size(h)), |
1407 | h->free_huge_pages); |
1408 | } |
1409 | } |
1410 | |
1411 | #ifdef CONFIG_HIGHMEM |
1412 | static void try_to_free_low(struct hstate *h, unsigned long count, |
1413 | nodemask_t *nodes_allowed) |
1414 | { |
1415 | int i; |
1416 | |
1417 | if (h->order >= MAX_ORDER) |
1418 | return; |
1419 | |
1420 | for_each_node_mask(i, *nodes_allowed) { |
1421 | struct page *page, *next; |
1422 | struct list_head *freel = &h->hugepage_freelists[i]; |
1423 | list_for_each_entry_safe(page, next, freel, lru) { |
1424 | if (count >= h->nr_huge_pages) |
1425 | return; |
1426 | if (PageHighMem(page)) |
1427 | continue; |
1428 | list_del(&page->lru); |
1429 | update_and_free_page(h, page); |
1430 | h->free_huge_pages--; |
1431 | h->free_huge_pages_node[page_to_nid(page)]--; |
1432 | } |
1433 | } |
1434 | } |
1435 | #else |
1436 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
1437 | nodemask_t *nodes_allowed) |
1438 | { |
1439 | } |
1440 | #endif |
1441 | |
1442 | /* |
1443 | * Increment or decrement surplus_huge_pages. Keep node-specific counters |
1444 | * balanced by operating on them in a round-robin fashion. |
1445 | * Returns 1 if an adjustment was made. |
1446 | */ |
1447 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
1448 | int delta) |
1449 | { |
1450 | int nr_nodes, node; |
1451 | |
1452 | VM_BUG_ON(delta != -1 && delta != 1); |
1453 | |
1454 | if (delta < 0) { |
1455 | for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { |
1456 | if (h->surplus_huge_pages_node[node]) |
1457 | goto found; |
1458 | } |
1459 | } else { |
1460 | for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { |
1461 | if (h->surplus_huge_pages_node[node] < |
1462 | h->nr_huge_pages_node[node]) |
1463 | goto found; |
1464 | } |
1465 | } |
1466 | return 0; |
1467 | |
1468 | found: |
1469 | h->surplus_huge_pages += delta; |
1470 | h->surplus_huge_pages_node[node] += delta; |
1471 | return 1; |
1472 | } |
1473 | |
1474 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
1475 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, |
1476 | nodemask_t *nodes_allowed) |
1477 | { |
1478 | unsigned long min_count, ret; |
1479 | |
1480 | if (h->order >= MAX_ORDER) |
1481 | return h->max_huge_pages; |
1482 | |
1483 | /* |
1484 | * Increase the pool size |
1485 | * First take pages out of surplus state. Then make up the |
1486 | * remaining difference by allocating fresh huge pages. |
1487 | * |
1488 | * We might race with alloc_buddy_huge_page() here and be unable |
1489 | * to convert a surplus huge page to a normal huge page. That is |
1490 | * not critical, though, it just means the overall size of the |
1491 | * pool might be one hugepage larger than it needs to be, but |
1492 | * within all the constraints specified by the sysctls. |
1493 | */ |
1494 | spin_lock(&hugetlb_lock); |
1495 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
1496 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
1497 | break; |
1498 | } |
1499 | |
1500 | while (count > persistent_huge_pages(h)) { |
1501 | /* |
1502 | * If this allocation races such that we no longer need the |
1503 | * page, free_huge_page will handle it by freeing the page |
1504 | * and reducing the surplus. |
1505 | */ |
1506 | spin_unlock(&hugetlb_lock); |
1507 | ret = alloc_fresh_huge_page(h, nodes_allowed); |
1508 | spin_lock(&hugetlb_lock); |
1509 | if (!ret) |
1510 | goto out; |
1511 | |
1512 | /* Bail for signals. Probably ctrl-c from user */ |
1513 | if (signal_pending(current)) |
1514 | goto out; |
1515 | } |
1516 | |
1517 | /* |
1518 | * Decrease the pool size |
1519 | * First return free pages to the buddy allocator (being careful |
1520 | * to keep enough around to satisfy reservations). Then place |
1521 | * pages into surplus state as needed so the pool will shrink |
1522 | * to the desired size as pages become free. |
1523 | * |
1524 | * By placing pages into the surplus state independent of the |
1525 | * overcommit value, we are allowing the surplus pool size to |
1526 | * exceed overcommit. There are few sane options here. Since |
1527 | * alloc_buddy_huge_page() is checking the global counter, |
1528 | * though, we'll note that we're not allowed to exceed surplus |
1529 | * and won't grow the pool anywhere else. Not until one of the |
1530 | * sysctls are changed, or the surplus pages go out of use. |
1531 | */ |
1532 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
1533 | min_count = max(count, min_count); |
1534 | try_to_free_low(h, min_count, nodes_allowed); |
1535 | while (min_count < persistent_huge_pages(h)) { |
1536 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
1537 | break; |
1538 | } |
1539 | while (count < persistent_huge_pages(h)) { |
1540 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
1541 | break; |
1542 | } |
1543 | out: |
1544 | ret = persistent_huge_pages(h); |
1545 | spin_unlock(&hugetlb_lock); |
1546 | return ret; |
1547 | } |
1548 | |
1549 | #define HSTATE_ATTR_RO(_name) \ |
1550 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) |
1551 | |
1552 | #define HSTATE_ATTR(_name) \ |
1553 | static struct kobj_attribute _name##_attr = \ |
1554 | __ATTR(_name, 0644, _name##_show, _name##_store) |
1555 | |
1556 | static struct kobject *hugepages_kobj; |
1557 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; |
1558 | |
1559 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
1560 | |
1561 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) |
1562 | { |
1563 | int i; |
1564 | |
1565 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
1566 | if (hstate_kobjs[i] == kobj) { |
1567 | if (nidp) |
1568 | *nidp = NUMA_NO_NODE; |
1569 | return &hstates[i]; |
1570 | } |
1571 | |
1572 | return kobj_to_node_hstate(kobj, nidp); |
1573 | } |
1574 | |
1575 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
1576 | struct kobj_attribute *attr, char *buf) |
1577 | { |
1578 | struct hstate *h; |
1579 | unsigned long nr_huge_pages; |
1580 | int nid; |
1581 | |
1582 | h = kobj_to_hstate(kobj, &nid); |
1583 | if (nid == NUMA_NO_NODE) |
1584 | nr_huge_pages = h->nr_huge_pages; |
1585 | else |
1586 | nr_huge_pages = h->nr_huge_pages_node[nid]; |
1587 | |
1588 | return sprintf(buf, "%lu\n", nr_huge_pages); |
1589 | } |
1590 | |
1591 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
1592 | struct kobject *kobj, struct kobj_attribute *attr, |
1593 | const char *buf, size_t len) |
1594 | { |
1595 | int err; |
1596 | int nid; |
1597 | unsigned long count; |
1598 | struct hstate *h; |
1599 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); |
1600 | |
1601 | err = kstrtoul(buf, 10, &count); |
1602 | if (err) |
1603 | goto out; |
1604 | |
1605 | h = kobj_to_hstate(kobj, &nid); |
1606 | if (h->order >= MAX_ORDER) { |
1607 | err = -EINVAL; |
1608 | goto out; |
1609 | } |
1610 | |
1611 | if (nid == NUMA_NO_NODE) { |
1612 | /* |
1613 | * global hstate attribute |
1614 | */ |
1615 | if (!(obey_mempolicy && |
1616 | init_nodemask_of_mempolicy(nodes_allowed))) { |
1617 | NODEMASK_FREE(nodes_allowed); |
1618 | nodes_allowed = &node_states[N_MEMORY]; |
1619 | } |
1620 | } else if (nodes_allowed) { |
1621 | /* |
1622 | * per node hstate attribute: adjust count to global, |
1623 | * but restrict alloc/free to the specified node. |
1624 | */ |
1625 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; |
1626 | init_nodemask_of_node(nodes_allowed, nid); |
1627 | } else |
1628 | nodes_allowed = &node_states[N_MEMORY]; |
1629 | |
1630 | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); |
1631 | |
1632 | if (nodes_allowed != &node_states[N_MEMORY]) |
1633 | NODEMASK_FREE(nodes_allowed); |
1634 | |
1635 | return len; |
1636 | out: |
1637 | NODEMASK_FREE(nodes_allowed); |
1638 | return err; |
1639 | } |
1640 | |
1641 | static ssize_t nr_hugepages_show(struct kobject *kobj, |
1642 | struct kobj_attribute *attr, char *buf) |
1643 | { |
1644 | return nr_hugepages_show_common(kobj, attr, buf); |
1645 | } |
1646 | |
1647 | static ssize_t nr_hugepages_store(struct kobject *kobj, |
1648 | struct kobj_attribute *attr, const char *buf, size_t len) |
1649 | { |
1650 | return nr_hugepages_store_common(false, kobj, attr, buf, len); |
1651 | } |
1652 | HSTATE_ATTR(nr_hugepages); |
1653 | |
1654 | #ifdef CONFIG_NUMA |
1655 | |
1656 | /* |
1657 | * hstate attribute for optionally mempolicy-based constraint on persistent |
1658 | * huge page alloc/free. |
1659 | */ |
1660 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, |
1661 | struct kobj_attribute *attr, char *buf) |
1662 | { |
1663 | return nr_hugepages_show_common(kobj, attr, buf); |
1664 | } |
1665 | |
1666 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, |
1667 | struct kobj_attribute *attr, const char *buf, size_t len) |
1668 | { |
1669 | return nr_hugepages_store_common(true, kobj, attr, buf, len); |
1670 | } |
1671 | HSTATE_ATTR(nr_hugepages_mempolicy); |
1672 | #endif |
1673 | |
1674 | |
1675 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
1676 | struct kobj_attribute *attr, char *buf) |
1677 | { |
1678 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
1679 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
1680 | } |
1681 | |
1682 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, |
1683 | struct kobj_attribute *attr, const char *buf, size_t count) |
1684 | { |
1685 | int err; |
1686 | unsigned long input; |
1687 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
1688 | |
1689 | if (h->order >= MAX_ORDER) |
1690 | return -EINVAL; |
1691 | |
1692 | err = kstrtoul(buf, 10, &input); |
1693 | if (err) |
1694 | return err; |
1695 | |
1696 | spin_lock(&hugetlb_lock); |
1697 | h->nr_overcommit_huge_pages = input; |
1698 | spin_unlock(&hugetlb_lock); |
1699 | |
1700 | return count; |
1701 | } |
1702 | HSTATE_ATTR(nr_overcommit_hugepages); |
1703 | |
1704 | static ssize_t free_hugepages_show(struct kobject *kobj, |
1705 | struct kobj_attribute *attr, char *buf) |
1706 | { |
1707 | struct hstate *h; |
1708 | unsigned long free_huge_pages; |
1709 | int nid; |
1710 | |
1711 | h = kobj_to_hstate(kobj, &nid); |
1712 | if (nid == NUMA_NO_NODE) |
1713 | free_huge_pages = h->free_huge_pages; |
1714 | else |
1715 | free_huge_pages = h->free_huge_pages_node[nid]; |
1716 | |
1717 | return sprintf(buf, "%lu\n", free_huge_pages); |
1718 | } |
1719 | HSTATE_ATTR_RO(free_hugepages); |
1720 | |
1721 | static ssize_t resv_hugepages_show(struct kobject *kobj, |
1722 | struct kobj_attribute *attr, char *buf) |
1723 | { |
1724 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
1725 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
1726 | } |
1727 | HSTATE_ATTR_RO(resv_hugepages); |
1728 | |
1729 | static ssize_t surplus_hugepages_show(struct kobject *kobj, |
1730 | struct kobj_attribute *attr, char *buf) |
1731 | { |
1732 | struct hstate *h; |
1733 | unsigned long surplus_huge_pages; |
1734 | int nid; |
1735 | |
1736 | h = kobj_to_hstate(kobj, &nid); |
1737 | if (nid == NUMA_NO_NODE) |
1738 | surplus_huge_pages = h->surplus_huge_pages; |
1739 | else |
1740 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; |
1741 | |
1742 | return sprintf(buf, "%lu\n", surplus_huge_pages); |
1743 | } |
1744 | HSTATE_ATTR_RO(surplus_hugepages); |
1745 | |
1746 | static struct attribute *hstate_attrs[] = { |
1747 | &nr_hugepages_attr.attr, |
1748 | &nr_overcommit_hugepages_attr.attr, |
1749 | &free_hugepages_attr.attr, |
1750 | &resv_hugepages_attr.attr, |
1751 | &surplus_hugepages_attr.attr, |
1752 | #ifdef CONFIG_NUMA |
1753 | &nr_hugepages_mempolicy_attr.attr, |
1754 | #endif |
1755 | NULL, |
1756 | }; |
1757 | |
1758 | static struct attribute_group hstate_attr_group = { |
1759 | .attrs = hstate_attrs, |
1760 | }; |
1761 | |
1762 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
1763 | struct kobject **hstate_kobjs, |
1764 | struct attribute_group *hstate_attr_group) |
1765 | { |
1766 | int retval; |
1767 | int hi = hstate_index(h); |
1768 | |
1769 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
1770 | if (!hstate_kobjs[hi]) |
1771 | return -ENOMEM; |
1772 | |
1773 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
1774 | if (retval) |
1775 | kobject_put(hstate_kobjs[hi]); |
1776 | |
1777 | return retval; |
1778 | } |
1779 | |
1780 | static void __init hugetlb_sysfs_init(void) |
1781 | { |
1782 | struct hstate *h; |
1783 | int err; |
1784 | |
1785 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); |
1786 | if (!hugepages_kobj) |
1787 | return; |
1788 | |
1789 | for_each_hstate(h) { |
1790 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
1791 | hstate_kobjs, &hstate_attr_group); |
1792 | if (err) |
1793 | pr_err("Hugetlb: Unable to add hstate %s", h->name); |
1794 | } |
1795 | } |
1796 | |
1797 | #ifdef CONFIG_NUMA |
1798 | |
1799 | /* |
1800 | * node_hstate/s - associate per node hstate attributes, via their kobjects, |
1801 | * with node devices in node_devices[] using a parallel array. The array |
1802 | * index of a node device or _hstate == node id. |
1803 | * This is here to avoid any static dependency of the node device driver, in |
1804 | * the base kernel, on the hugetlb module. |
1805 | */ |
1806 | struct node_hstate { |
1807 | struct kobject *hugepages_kobj; |
1808 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; |
1809 | }; |
1810 | struct node_hstate node_hstates[MAX_NUMNODES]; |
1811 | |
1812 | /* |
1813 | * A subset of global hstate attributes for node devices |
1814 | */ |
1815 | static struct attribute *per_node_hstate_attrs[] = { |
1816 | &nr_hugepages_attr.attr, |
1817 | &free_hugepages_attr.attr, |
1818 | &surplus_hugepages_attr.attr, |
1819 | NULL, |
1820 | }; |
1821 | |
1822 | static struct attribute_group per_node_hstate_attr_group = { |
1823 | .attrs = per_node_hstate_attrs, |
1824 | }; |
1825 | |
1826 | /* |
1827 | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. |
1828 | * Returns node id via non-NULL nidp. |
1829 | */ |
1830 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) |
1831 | { |
1832 | int nid; |
1833 | |
1834 | for (nid = 0; nid < nr_node_ids; nid++) { |
1835 | struct node_hstate *nhs = &node_hstates[nid]; |
1836 | int i; |
1837 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
1838 | if (nhs->hstate_kobjs[i] == kobj) { |
1839 | if (nidp) |
1840 | *nidp = nid; |
1841 | return &hstates[i]; |
1842 | } |
1843 | } |
1844 | |
1845 | BUG(); |
1846 | return NULL; |
1847 | } |
1848 | |
1849 | /* |
1850 | * Unregister hstate attributes from a single node device. |
1851 | * No-op if no hstate attributes attached. |
1852 | */ |
1853 | static void hugetlb_unregister_node(struct node *node) |
1854 | { |
1855 | struct hstate *h; |
1856 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
1857 | |
1858 | if (!nhs->hugepages_kobj) |
1859 | return; /* no hstate attributes */ |
1860 | |
1861 | for_each_hstate(h) { |
1862 | int idx = hstate_index(h); |
1863 | if (nhs->hstate_kobjs[idx]) { |
1864 | kobject_put(nhs->hstate_kobjs[idx]); |
1865 | nhs->hstate_kobjs[idx] = NULL; |
1866 | } |
1867 | } |
1868 | |
1869 | kobject_put(nhs->hugepages_kobj); |
1870 | nhs->hugepages_kobj = NULL; |
1871 | } |
1872 | |
1873 | /* |
1874 | * hugetlb module exit: unregister hstate attributes from node devices |
1875 | * that have them. |
1876 | */ |
1877 | static void hugetlb_unregister_all_nodes(void) |
1878 | { |
1879 | int nid; |
1880 | |
1881 | /* |
1882 | * disable node device registrations. |
1883 | */ |
1884 | register_hugetlbfs_with_node(NULL, NULL); |
1885 | |
1886 | /* |
1887 | * remove hstate attributes from any nodes that have them. |
1888 | */ |
1889 | for (nid = 0; nid < nr_node_ids; nid++) |
1890 | hugetlb_unregister_node(node_devices[nid]); |
1891 | } |
1892 | |
1893 | /* |
1894 | * Register hstate attributes for a single node device. |
1895 | * No-op if attributes already registered. |
1896 | */ |
1897 | static void hugetlb_register_node(struct node *node) |
1898 | { |
1899 | struct hstate *h; |
1900 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
1901 | int err; |
1902 | |
1903 | if (nhs->hugepages_kobj) |
1904 | return; /* already allocated */ |
1905 | |
1906 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", |
1907 | &node->dev.kobj); |
1908 | if (!nhs->hugepages_kobj) |
1909 | return; |
1910 | |
1911 | for_each_hstate(h) { |
1912 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, |
1913 | nhs->hstate_kobjs, |
1914 | &per_node_hstate_attr_group); |
1915 | if (err) { |
1916 | pr_err("Hugetlb: Unable to add hstate %s for node %d\n", |
1917 | h->name, node->dev.id); |
1918 | hugetlb_unregister_node(node); |
1919 | break; |
1920 | } |
1921 | } |
1922 | } |
1923 | |
1924 | /* |
1925 | * hugetlb init time: register hstate attributes for all registered node |
1926 | * devices of nodes that have memory. All on-line nodes should have |
1927 | * registered their associated device by this time. |
1928 | */ |
1929 | static void hugetlb_register_all_nodes(void) |
1930 | { |
1931 | int nid; |
1932 | |
1933 | for_each_node_state(nid, N_MEMORY) { |
1934 | struct node *node = node_devices[nid]; |
1935 | if (node->dev.id == nid) |
1936 | hugetlb_register_node(node); |
1937 | } |
1938 | |
1939 | /* |
1940 | * Let the node device driver know we're here so it can |
1941 | * [un]register hstate attributes on node hotplug. |
1942 | */ |
1943 | register_hugetlbfs_with_node(hugetlb_register_node, |
1944 | hugetlb_unregister_node); |
1945 | } |
1946 | #else /* !CONFIG_NUMA */ |
1947 | |
1948 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) |
1949 | { |
1950 | BUG(); |
1951 | if (nidp) |
1952 | *nidp = -1; |
1953 | return NULL; |
1954 | } |
1955 | |
1956 | static void hugetlb_unregister_all_nodes(void) { } |
1957 | |
1958 | static void hugetlb_register_all_nodes(void) { } |
1959 | |
1960 | #endif |
1961 | |
1962 | static void __exit hugetlb_exit(void) |
1963 | { |
1964 | struct hstate *h; |
1965 | |
1966 | hugetlb_unregister_all_nodes(); |
1967 | |
1968 | for_each_hstate(h) { |
1969 | kobject_put(hstate_kobjs[hstate_index(h)]); |
1970 | } |
1971 | |
1972 | kobject_put(hugepages_kobj); |
1973 | } |
1974 | module_exit(hugetlb_exit); |
1975 | |
1976 | static int __init hugetlb_init(void) |
1977 | { |
1978 | /* Some platform decide whether they support huge pages at boot |
1979 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when |
1980 | * there is no such support |
1981 | */ |
1982 | if (HPAGE_SHIFT == 0) |
1983 | return 0; |
1984 | |
1985 | if (!size_to_hstate(default_hstate_size)) { |
1986 | default_hstate_size = HPAGE_SIZE; |
1987 | if (!size_to_hstate(default_hstate_size)) |
1988 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); |
1989 | } |
1990 | default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); |
1991 | if (default_hstate_max_huge_pages) |
1992 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; |
1993 | |
1994 | hugetlb_init_hstates(); |
1995 | gather_bootmem_prealloc(); |
1996 | report_hugepages(); |
1997 | |
1998 | hugetlb_sysfs_init(); |
1999 | hugetlb_register_all_nodes(); |
2000 | hugetlb_cgroup_file_init(); |
2001 | |
2002 | return 0; |
2003 | } |
2004 | module_init(hugetlb_init); |
2005 | |
2006 | /* Should be called on processing a hugepagesz=... option */ |
2007 | void __init hugetlb_add_hstate(unsigned order) |
2008 | { |
2009 | struct hstate *h; |
2010 | unsigned long i; |
2011 | |
2012 | if (size_to_hstate(PAGE_SIZE << order)) { |
2013 | pr_warning("hugepagesz= specified twice, ignoring\n"); |
2014 | return; |
2015 | } |
2016 | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); |
2017 | BUG_ON(order == 0); |
2018 | h = &hstates[hugetlb_max_hstate++]; |
2019 | h->order = order; |
2020 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); |
2021 | h->nr_huge_pages = 0; |
2022 | h->free_huge_pages = 0; |
2023 | for (i = 0; i < MAX_NUMNODES; ++i) |
2024 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); |
2025 | INIT_LIST_HEAD(&h->hugepage_activelist); |
2026 | h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); |
2027 | h->next_nid_to_free = first_node(node_states[N_MEMORY]); |
2028 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
2029 | huge_page_size(h)/1024); |
2030 | |
2031 | parsed_hstate = h; |
2032 | } |
2033 | |
2034 | static int __init hugetlb_nrpages_setup(char *s) |
2035 | { |
2036 | unsigned long *mhp; |
2037 | static unsigned long *last_mhp; |
2038 | |
2039 | /* |
2040 | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, |
2041 | * so this hugepages= parameter goes to the "default hstate". |
2042 | */ |
2043 | if (!hugetlb_max_hstate) |
2044 | mhp = &default_hstate_max_huge_pages; |
2045 | else |
2046 | mhp = &parsed_hstate->max_huge_pages; |
2047 | |
2048 | if (mhp == last_mhp) { |
2049 | pr_warning("hugepages= specified twice without " |
2050 | "interleaving hugepagesz=, ignoring\n"); |
2051 | return 1; |
2052 | } |
2053 | |
2054 | if (sscanf(s, "%lu", mhp) <= 0) |
2055 | *mhp = 0; |
2056 | |
2057 | /* |
2058 | * Global state is always initialized later in hugetlb_init. |
2059 | * But we need to allocate >= MAX_ORDER hstates here early to still |
2060 | * use the bootmem allocator. |
2061 | */ |
2062 | if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) |
2063 | hugetlb_hstate_alloc_pages(parsed_hstate); |
2064 | |
2065 | last_mhp = mhp; |
2066 | |
2067 | return 1; |
2068 | } |
2069 | __setup("hugepages=", hugetlb_nrpages_setup); |
2070 | |
2071 | static int __init hugetlb_default_setup(char *s) |
2072 | { |
2073 | default_hstate_size = memparse(s, &s); |
2074 | return 1; |
2075 | } |
2076 | __setup("default_hugepagesz=", hugetlb_default_setup); |
2077 | |
2078 | static unsigned int cpuset_mems_nr(unsigned int *array) |
2079 | { |
2080 | int node; |
2081 | unsigned int nr = 0; |
2082 | |
2083 | for_each_node_mask(node, cpuset_current_mems_allowed) |
2084 | nr += array[node]; |
2085 | |
2086 | return nr; |
2087 | } |
2088 | |
2089 | #ifdef CONFIG_SYSCTL |
2090 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
2091 | struct ctl_table *table, int write, |
2092 | void __user *buffer, size_t *length, loff_t *ppos) |
2093 | { |
2094 | struct hstate *h = &default_hstate; |
2095 | unsigned long tmp; |
2096 | int ret; |
2097 | |
2098 | tmp = h->max_huge_pages; |
2099 | |
2100 | if (write && h->order >= MAX_ORDER) |
2101 | return -EINVAL; |
2102 | |
2103 | table->data = &tmp; |
2104 | table->maxlen = sizeof(unsigned long); |
2105 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2106 | if (ret) |
2107 | goto out; |
2108 | |
2109 | if (write) { |
2110 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, |
2111 | GFP_KERNEL | __GFP_NORETRY); |
2112 | if (!(obey_mempolicy && |
2113 | init_nodemask_of_mempolicy(nodes_allowed))) { |
2114 | NODEMASK_FREE(nodes_allowed); |
2115 | nodes_allowed = &node_states[N_MEMORY]; |
2116 | } |
2117 | h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); |
2118 | |
2119 | if (nodes_allowed != &node_states[N_MEMORY]) |
2120 | NODEMASK_FREE(nodes_allowed); |
2121 | } |
2122 | out: |
2123 | return ret; |
2124 | } |
2125 | |
2126 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
2127 | void __user *buffer, size_t *length, loff_t *ppos) |
2128 | { |
2129 | |
2130 | return hugetlb_sysctl_handler_common(false, table, write, |
2131 | buffer, length, ppos); |
2132 | } |
2133 | |
2134 | #ifdef CONFIG_NUMA |
2135 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, |
2136 | void __user *buffer, size_t *length, loff_t *ppos) |
2137 | { |
2138 | return hugetlb_sysctl_handler_common(true, table, write, |
2139 | buffer, length, ppos); |
2140 | } |
2141 | #endif /* CONFIG_NUMA */ |
2142 | |
2143 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
2144 | void __user *buffer, |
2145 | size_t *length, loff_t *ppos) |
2146 | { |
2147 | struct hstate *h = &default_hstate; |
2148 | unsigned long tmp; |
2149 | int ret; |
2150 | |
2151 | tmp = h->nr_overcommit_huge_pages; |
2152 | |
2153 | if (write && h->order >= MAX_ORDER) |
2154 | return -EINVAL; |
2155 | |
2156 | table->data = &tmp; |
2157 | table->maxlen = sizeof(unsigned long); |
2158 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2159 | if (ret) |
2160 | goto out; |
2161 | |
2162 | if (write) { |
2163 | spin_lock(&hugetlb_lock); |
2164 | h->nr_overcommit_huge_pages = tmp; |
2165 | spin_unlock(&hugetlb_lock); |
2166 | } |
2167 | out: |
2168 | return ret; |
2169 | } |
2170 | |
2171 | #endif /* CONFIG_SYSCTL */ |
2172 | |
2173 | void hugetlb_report_meminfo(struct seq_file *m) |
2174 | { |
2175 | struct hstate *h = &default_hstate; |
2176 | seq_printf(m, |
2177 | "HugePages_Total: %5lu\n" |
2178 | "HugePages_Free: %5lu\n" |
2179 | "HugePages_Rsvd: %5lu\n" |
2180 | "HugePages_Surp: %5lu\n" |
2181 | "Hugepagesize: %8lu kB\n", |
2182 | h->nr_huge_pages, |
2183 | h->free_huge_pages, |
2184 | h->resv_huge_pages, |
2185 | h->surplus_huge_pages, |
2186 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
2187 | } |
2188 | |
2189 | int hugetlb_report_node_meminfo(int nid, char *buf) |
2190 | { |
2191 | struct hstate *h = &default_hstate; |
2192 | return sprintf(buf, |
2193 | "Node %d HugePages_Total: %5u\n" |
2194 | "Node %d HugePages_Free: %5u\n" |
2195 | "Node %d HugePages_Surp: %5u\n", |
2196 | nid, h->nr_huge_pages_node[nid], |
2197 | nid, h->free_huge_pages_node[nid], |
2198 | nid, h->surplus_huge_pages_node[nid]); |
2199 | } |
2200 | |
2201 | void hugetlb_show_meminfo(void) |
2202 | { |
2203 | struct hstate *h; |
2204 | int nid; |
2205 | |
2206 | for_each_node_state(nid, N_MEMORY) |
2207 | for_each_hstate(h) |
2208 | pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", |
2209 | nid, |
2210 | h->nr_huge_pages_node[nid], |
2211 | h->free_huge_pages_node[nid], |
2212 | h->surplus_huge_pages_node[nid], |
2213 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); |
2214 | } |
2215 | |
2216 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
2217 | unsigned long hugetlb_total_pages(void) |
2218 | { |
2219 | struct hstate *h; |
2220 | unsigned long nr_total_pages = 0; |
2221 | |
2222 | for_each_hstate(h) |
2223 | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); |
2224 | return nr_total_pages; |
2225 | } |
2226 | |
2227 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
2228 | { |
2229 | int ret = -ENOMEM; |
2230 | |
2231 | spin_lock(&hugetlb_lock); |
2232 | /* |
2233 | * When cpuset is configured, it breaks the strict hugetlb page |
2234 | * reservation as the accounting is done on a global variable. Such |
2235 | * reservation is completely rubbish in the presence of cpuset because |
2236 | * the reservation is not checked against page availability for the |
2237 | * current cpuset. Application can still potentially OOM'ed by kernel |
2238 | * with lack of free htlb page in cpuset that the task is in. |
2239 | * Attempt to enforce strict accounting with cpuset is almost |
2240 | * impossible (or too ugly) because cpuset is too fluid that |
2241 | * task or memory node can be dynamically moved between cpusets. |
2242 | * |
2243 | * The change of semantics for shared hugetlb mapping with cpuset is |
2244 | * undesirable. However, in order to preserve some of the semantics, |
2245 | * we fall back to check against current free page availability as |
2246 | * a best attempt and hopefully to minimize the impact of changing |
2247 | * semantics that cpuset has. |
2248 | */ |
2249 | if (delta > 0) { |
2250 | if (gather_surplus_pages(h, delta) < 0) |
2251 | goto out; |
2252 | |
2253 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
2254 | return_unused_surplus_pages(h, delta); |
2255 | goto out; |
2256 | } |
2257 | } |
2258 | |
2259 | ret = 0; |
2260 | if (delta < 0) |
2261 | return_unused_surplus_pages(h, (unsigned long) -delta); |
2262 | |
2263 | out: |
2264 | spin_unlock(&hugetlb_lock); |
2265 | return ret; |
2266 | } |
2267 | |
2268 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
2269 | { |
2270 | struct resv_map *resv = vma_resv_map(vma); |
2271 | |
2272 | /* |
2273 | * This new VMA should share its siblings reservation map if present. |
2274 | * The VMA will only ever have a valid reservation map pointer where |
2275 | * it is being copied for another still existing VMA. As that VMA |
2276 | * has a reference to the reservation map it cannot disappear until |
2277 | * after this open call completes. It is therefore safe to take a |
2278 | * new reference here without additional locking. |
2279 | */ |
2280 | if (resv) |
2281 | kref_get(&resv->refs); |
2282 | } |
2283 | |
2284 | static void resv_map_put(struct vm_area_struct *vma) |
2285 | { |
2286 | struct resv_map *resv = vma_resv_map(vma); |
2287 | |
2288 | if (!resv) |
2289 | return; |
2290 | kref_put(&resv->refs, resv_map_release); |
2291 | } |
2292 | |
2293 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
2294 | { |
2295 | struct hstate *h = hstate_vma(vma); |
2296 | struct resv_map *resv = vma_resv_map(vma); |
2297 | struct hugepage_subpool *spool = subpool_vma(vma); |
2298 | unsigned long reserve; |
2299 | unsigned long start; |
2300 | unsigned long end; |
2301 | |
2302 | if (resv) { |
2303 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
2304 | end = vma_hugecache_offset(h, vma, vma->vm_end); |
2305 | |
2306 | reserve = (end - start) - |
2307 | region_count(&resv->regions, start, end); |
2308 | |
2309 | resv_map_put(vma); |
2310 | |
2311 | if (reserve) { |
2312 | hugetlb_acct_memory(h, -reserve); |
2313 | hugepage_subpool_put_pages(spool, reserve); |
2314 | } |
2315 | } |
2316 | } |
2317 | |
2318 | /* |
2319 | * We cannot handle pagefaults against hugetlb pages at all. They cause |
2320 | * handle_mm_fault() to try to instantiate regular-sized pages in the |
2321 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get |
2322 | * this far. |
2323 | */ |
2324 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
2325 | { |
2326 | BUG(); |
2327 | return 0; |
2328 | } |
2329 | |
2330 | const struct vm_operations_struct hugetlb_vm_ops = { |
2331 | .fault = hugetlb_vm_op_fault, |
2332 | .open = hugetlb_vm_op_open, |
2333 | .close = hugetlb_vm_op_close, |
2334 | }; |
2335 | |
2336 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
2337 | int writable) |
2338 | { |
2339 | pte_t entry; |
2340 | |
2341 | if (writable) { |
2342 | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, |
2343 | vma->vm_page_prot))); |
2344 | } else { |
2345 | entry = huge_pte_wrprotect(mk_huge_pte(page, |
2346 | vma->vm_page_prot)); |
2347 | } |
2348 | entry = pte_mkyoung(entry); |
2349 | entry = pte_mkhuge(entry); |
2350 | entry = arch_make_huge_pte(entry, vma, page, writable); |
2351 | |
2352 | return entry; |
2353 | } |
2354 | |
2355 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
2356 | unsigned long address, pte_t *ptep) |
2357 | { |
2358 | pte_t entry; |
2359 | |
2360 | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); |
2361 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) |
2362 | update_mmu_cache(vma, address, ptep); |
2363 | } |
2364 | |
2365 | |
2366 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
2367 | struct vm_area_struct *vma) |
2368 | { |
2369 | pte_t *src_pte, *dst_pte, entry; |
2370 | struct page *ptepage; |
2371 | unsigned long addr; |
2372 | int cow; |
2373 | struct hstate *h = hstate_vma(vma); |
2374 | unsigned long sz = huge_page_size(h); |
2375 | |
2376 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
2377 | |
2378 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
2379 | src_pte = huge_pte_offset(src, addr); |
2380 | if (!src_pte) |
2381 | continue; |
2382 | dst_pte = huge_pte_alloc(dst, addr, sz); |
2383 | if (!dst_pte) |
2384 | goto nomem; |
2385 | |
2386 | /* If the pagetables are shared don't copy or take references */ |
2387 | if (dst_pte == src_pte) |
2388 | continue; |
2389 | |
2390 | spin_lock(&dst->page_table_lock); |
2391 | spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); |
2392 | if (!huge_pte_none(huge_ptep_get(src_pte))) { |
2393 | if (cow) |
2394 | huge_ptep_set_wrprotect(src, addr, src_pte); |
2395 | entry = huge_ptep_get(src_pte); |
2396 | ptepage = pte_page(entry); |
2397 | get_page(ptepage); |
2398 | page_dup_rmap(ptepage); |
2399 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2400 | } |
2401 | spin_unlock(&src->page_table_lock); |
2402 | spin_unlock(&dst->page_table_lock); |
2403 | } |
2404 | return 0; |
2405 | |
2406 | nomem: |
2407 | return -ENOMEM; |
2408 | } |
2409 | |
2410 | static int is_hugetlb_entry_migration(pte_t pte) |
2411 | { |
2412 | swp_entry_t swp; |
2413 | |
2414 | if (huge_pte_none(pte) || pte_present(pte)) |
2415 | return 0; |
2416 | swp = pte_to_swp_entry(pte); |
2417 | if (non_swap_entry(swp) && is_migration_entry(swp)) |
2418 | return 1; |
2419 | else |
2420 | return 0; |
2421 | } |
2422 | |
2423 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) |
2424 | { |
2425 | swp_entry_t swp; |
2426 | |
2427 | if (huge_pte_none(pte) || pte_present(pte)) |
2428 | return 0; |
2429 | swp = pte_to_swp_entry(pte); |
2430 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) |
2431 | return 1; |
2432 | else |
2433 | return 0; |
2434 | } |
2435 | |
2436 | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
2437 | unsigned long start, unsigned long end, |
2438 | struct page *ref_page) |
2439 | { |
2440 | int force_flush = 0; |
2441 | struct mm_struct *mm = vma->vm_mm; |
2442 | unsigned long address; |
2443 | pte_t *ptep; |
2444 | pte_t pte; |
2445 | struct page *page; |
2446 | struct hstate *h = hstate_vma(vma); |
2447 | unsigned long sz = huge_page_size(h); |
2448 | const unsigned long mmun_start = start; /* For mmu_notifiers */ |
2449 | const unsigned long mmun_end = end; /* For mmu_notifiers */ |
2450 | |
2451 | WARN_ON(!is_vm_hugetlb_page(vma)); |
2452 | BUG_ON(start & ~huge_page_mask(h)); |
2453 | BUG_ON(end & ~huge_page_mask(h)); |
2454 | |
2455 | tlb_start_vma(tlb, vma); |
2456 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
2457 | again: |
2458 | spin_lock(&mm->page_table_lock); |
2459 | for (address = start; address < end; address += sz) { |
2460 | ptep = huge_pte_offset(mm, address); |
2461 | if (!ptep) |
2462 | continue; |
2463 | |
2464 | if (huge_pmd_unshare(mm, &address, ptep)) |
2465 | continue; |
2466 | |
2467 | pte = huge_ptep_get(ptep); |
2468 | if (huge_pte_none(pte)) |
2469 | continue; |
2470 | |
2471 | /* |
2472 | * HWPoisoned hugepage is already unmapped and dropped reference |
2473 | */ |
2474 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { |
2475 | huge_pte_clear(mm, address, ptep); |
2476 | continue; |
2477 | } |
2478 | |
2479 | page = pte_page(pte); |
2480 | /* |
2481 | * If a reference page is supplied, it is because a specific |
2482 | * page is being unmapped, not a range. Ensure the page we |
2483 | * are about to unmap is the actual page of interest. |
2484 | */ |
2485 | if (ref_page) { |
2486 | if (page != ref_page) |
2487 | continue; |
2488 | |
2489 | /* |
2490 | * Mark the VMA as having unmapped its page so that |
2491 | * future faults in this VMA will fail rather than |
2492 | * looking like data was lost |
2493 | */ |
2494 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); |
2495 | } |
2496 | |
2497 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
2498 | tlb_remove_tlb_entry(tlb, ptep, address); |
2499 | if (huge_pte_dirty(pte)) |
2500 | set_page_dirty(page); |
2501 | |
2502 | page_remove_rmap(page); |
2503 | force_flush = !__tlb_remove_page(tlb, page); |
2504 | if (force_flush) |
2505 | break; |
2506 | /* Bail out after unmapping reference page if supplied */ |
2507 | if (ref_page) |
2508 | break; |
2509 | } |
2510 | spin_unlock(&mm->page_table_lock); |
2511 | /* |
2512 | * mmu_gather ran out of room to batch pages, we break out of |
2513 | * the PTE lock to avoid doing the potential expensive TLB invalidate |
2514 | * and page-free while holding it. |
2515 | */ |
2516 | if (force_flush) { |
2517 | force_flush = 0; |
2518 | tlb_flush_mmu(tlb); |
2519 | if (address < end && !ref_page) |
2520 | goto again; |
2521 | } |
2522 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
2523 | tlb_end_vma(tlb, vma); |
2524 | } |
2525 | |
2526 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, |
2527 | struct vm_area_struct *vma, unsigned long start, |
2528 | unsigned long end, struct page *ref_page) |
2529 | { |
2530 | __unmap_hugepage_range(tlb, vma, start, end, ref_page); |
2531 | |
2532 | /* |
2533 | * Clear this flag so that x86's huge_pmd_share page_table_shareable |
2534 | * test will fail on a vma being torn down, and not grab a page table |
2535 | * on its way out. We're lucky that the flag has such an appropriate |
2536 | * name, and can in fact be safely cleared here. We could clear it |
2537 | * before the __unmap_hugepage_range above, but all that's necessary |
2538 | * is to clear it before releasing the i_mmap_mutex. This works |
2539 | * because in the context this is called, the VMA is about to be |
2540 | * destroyed and the i_mmap_mutex is held. |
2541 | */ |
2542 | vma->vm_flags &= ~VM_MAYSHARE; |
2543 | } |
2544 | |
2545 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
2546 | unsigned long end, struct page *ref_page) |
2547 | { |
2548 | struct mm_struct *mm; |
2549 | struct mmu_gather tlb; |
2550 | |
2551 | mm = vma->vm_mm; |
2552 | |
2553 | tlb_gather_mmu(&tlb, mm, start, end); |
2554 | __unmap_hugepage_range(&tlb, vma, start, end, ref_page); |
2555 | tlb_finish_mmu(&tlb, start, end); |
2556 | } |
2557 | |
2558 | /* |
2559 | * This is called when the original mapper is failing to COW a MAP_PRIVATE |
2560 | * mappping it owns the reserve page for. The intention is to unmap the page |
2561 | * from other VMAs and let the children be SIGKILLed if they are faulting the |
2562 | * same region. |
2563 | */ |
2564 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
2565 | struct page *page, unsigned long address) |
2566 | { |
2567 | struct hstate *h = hstate_vma(vma); |
2568 | struct vm_area_struct *iter_vma; |
2569 | struct address_space *mapping; |
2570 | pgoff_t pgoff; |
2571 | |
2572 | /* |
2573 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation |
2574 | * from page cache lookup which is in HPAGE_SIZE units. |
2575 | */ |
2576 | address = address & huge_page_mask(h); |
2577 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + |
2578 | vma->vm_pgoff; |
2579 | mapping = file_inode(vma->vm_file)->i_mapping; |
2580 | |
2581 | /* |
2582 | * Take the mapping lock for the duration of the table walk. As |
2583 | * this mapping should be shared between all the VMAs, |
2584 | * __unmap_hugepage_range() is called as the lock is already held |
2585 | */ |
2586 | mutex_lock(&mapping->i_mmap_mutex); |
2587 | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { |
2588 | /* Do not unmap the current VMA */ |
2589 | if (iter_vma == vma) |
2590 | continue; |
2591 | |
2592 | /* |
2593 | * Unmap the page from other VMAs without their own reserves. |
2594 | * They get marked to be SIGKILLed if they fault in these |
2595 | * areas. This is because a future no-page fault on this VMA |
2596 | * could insert a zeroed page instead of the data existing |
2597 | * from the time of fork. This would look like data corruption |
2598 | */ |
2599 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) |
2600 | unmap_hugepage_range(iter_vma, address, |
2601 | address + huge_page_size(h), page); |
2602 | } |
2603 | mutex_unlock(&mapping->i_mmap_mutex); |
2604 | |
2605 | return 1; |
2606 | } |
2607 | |
2608 | /* |
2609 | * Hugetlb_cow() should be called with page lock of the original hugepage held. |
2610 | * Called with hugetlb_instantiation_mutex held and pte_page locked so we |
2611 | * cannot race with other handlers or page migration. |
2612 | * Keep the pte_same checks anyway to make transition from the mutex easier. |
2613 | */ |
2614 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
2615 | unsigned long address, pte_t *ptep, pte_t pte, |
2616 | struct page *pagecache_page) |
2617 | { |
2618 | struct hstate *h = hstate_vma(vma); |
2619 | struct page *old_page, *new_page; |
2620 | int outside_reserve = 0; |
2621 | unsigned long mmun_start; /* For mmu_notifiers */ |
2622 | unsigned long mmun_end; /* For mmu_notifiers */ |
2623 | |
2624 | old_page = pte_page(pte); |
2625 | |
2626 | retry_avoidcopy: |
2627 | /* If no-one else is actually using this page, avoid the copy |
2628 | * and just make the page writable */ |
2629 | if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { |
2630 | page_move_anon_rmap(old_page, vma, address); |
2631 | set_huge_ptep_writable(vma, address, ptep); |
2632 | return 0; |
2633 | } |
2634 | |
2635 | /* |
2636 | * If the process that created a MAP_PRIVATE mapping is about to |
2637 | * perform a COW due to a shared page count, attempt to satisfy |
2638 | * the allocation without using the existing reserves. The pagecache |
2639 | * page is used to determine if the reserve at this address was |
2640 | * consumed or not. If reserves were used, a partial faulted mapping |
2641 | * at the time of fork() could consume its reserves on COW instead |
2642 | * of the full address range. |
2643 | */ |
2644 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
2645 | old_page != pagecache_page) |
2646 | outside_reserve = 1; |
2647 | |
2648 | page_cache_get(old_page); |
2649 | |
2650 | /* Drop page_table_lock as buddy allocator may be called */ |
2651 | spin_unlock(&mm->page_table_lock); |
2652 | new_page = alloc_huge_page(vma, address, outside_reserve); |
2653 | |
2654 | if (IS_ERR(new_page)) { |
2655 | long err = PTR_ERR(new_page); |
2656 | page_cache_release(old_page); |
2657 | |
2658 | /* |
2659 | * If a process owning a MAP_PRIVATE mapping fails to COW, |
2660 | * it is due to references held by a child and an insufficient |
2661 | * huge page pool. To guarantee the original mappers |
2662 | * reliability, unmap the page from child processes. The child |
2663 | * may get SIGKILLed if it later faults. |
2664 | */ |
2665 | if (outside_reserve) { |
2666 | BUG_ON(huge_pte_none(pte)); |
2667 | if (unmap_ref_private(mm, vma, old_page, address)) { |
2668 | BUG_ON(huge_pte_none(pte)); |
2669 | spin_lock(&mm->page_table_lock); |
2670 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
2671 | if (likely(pte_same(huge_ptep_get(ptep), pte))) |
2672 | goto retry_avoidcopy; |
2673 | /* |
2674 | * race occurs while re-acquiring page_table_lock, and |
2675 | * our job is done. |
2676 | */ |
2677 | return 0; |
2678 | } |
2679 | WARN_ON_ONCE(1); |
2680 | } |
2681 | |
2682 | /* Caller expects lock to be held */ |
2683 | spin_lock(&mm->page_table_lock); |
2684 | if (err == -ENOMEM) |
2685 | return VM_FAULT_OOM; |
2686 | else |
2687 | return VM_FAULT_SIGBUS; |
2688 | } |
2689 | |
2690 | /* |
2691 | * When the original hugepage is shared one, it does not have |
2692 | * anon_vma prepared. |
2693 | */ |
2694 | if (unlikely(anon_vma_prepare(vma))) { |
2695 | page_cache_release(new_page); |
2696 | page_cache_release(old_page); |
2697 | /* Caller expects lock to be held */ |
2698 | spin_lock(&mm->page_table_lock); |
2699 | return VM_FAULT_OOM; |
2700 | } |
2701 | |
2702 | copy_user_huge_page(new_page, old_page, address, vma, |
2703 | pages_per_huge_page(h)); |
2704 | __SetPageUptodate(new_page); |
2705 | |
2706 | mmun_start = address & huge_page_mask(h); |
2707 | mmun_end = mmun_start + huge_page_size(h); |
2708 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
2709 | /* |
2710 | * Retake the page_table_lock to check for racing updates |
2711 | * before the page tables are altered |
2712 | */ |
2713 | spin_lock(&mm->page_table_lock); |
2714 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
2715 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
2716 | ClearPagePrivate(new_page); |
2717 | |
2718 | /* Break COW */ |
2719 | huge_ptep_clear_flush(vma, address, ptep); |
2720 | set_huge_pte_at(mm, address, ptep, |
2721 | make_huge_pte(vma, new_page, 1)); |
2722 | page_remove_rmap(old_page); |
2723 | hugepage_add_new_anon_rmap(new_page, vma, address); |
2724 | /* Make the old page be freed below */ |
2725 | new_page = old_page; |
2726 | } |
2727 | spin_unlock(&mm->page_table_lock); |
2728 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
2729 | page_cache_release(new_page); |
2730 | page_cache_release(old_page); |
2731 | |
2732 | /* Caller expects lock to be held */ |
2733 | spin_lock(&mm->page_table_lock); |
2734 | return 0; |
2735 | } |
2736 | |
2737 | /* Return the pagecache page at a given address within a VMA */ |
2738 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
2739 | struct vm_area_struct *vma, unsigned long address) |
2740 | { |
2741 | struct address_space *mapping; |
2742 | pgoff_t idx; |
2743 | |
2744 | mapping = vma->vm_file->f_mapping; |
2745 | idx = vma_hugecache_offset(h, vma, address); |
2746 | |
2747 | return find_lock_page(mapping, idx); |
2748 | } |
2749 | |
2750 | /* |
2751 | * Return whether there is a pagecache page to back given address within VMA. |
2752 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. |
2753 | */ |
2754 | static bool hugetlbfs_pagecache_present(struct hstate *h, |
2755 | struct vm_area_struct *vma, unsigned long address) |
2756 | { |
2757 | struct address_space *mapping; |
2758 | pgoff_t idx; |
2759 | struct page *page; |
2760 | |
2761 | mapping = vma->vm_file->f_mapping; |
2762 | idx = vma_hugecache_offset(h, vma, address); |
2763 | |
2764 | page = find_get_page(mapping, idx); |
2765 | if (page) |
2766 | put_page(page); |
2767 | return page != NULL; |
2768 | } |
2769 | |
2770 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2771 | unsigned long address, pte_t *ptep, unsigned int flags) |
2772 | { |
2773 | struct hstate *h = hstate_vma(vma); |
2774 | int ret = VM_FAULT_SIGBUS; |
2775 | int anon_rmap = 0; |
2776 | pgoff_t idx; |
2777 | unsigned long size; |
2778 | struct page *page; |
2779 | struct address_space *mapping; |
2780 | pte_t new_pte; |
2781 | |
2782 | /* |
2783 | * Currently, we are forced to kill the process in the event the |
2784 | * original mapper has unmapped pages from the child due to a failed |
2785 | * COW. Warn that such a situation has occurred as it may not be obvious |
2786 | */ |
2787 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { |
2788 | pr_warning("PID %d killed due to inadequate hugepage pool\n", |
2789 | current->pid); |
2790 | return ret; |
2791 | } |
2792 | |
2793 | mapping = vma->vm_file->f_mapping; |
2794 | idx = vma_hugecache_offset(h, vma, address); |
2795 | |
2796 | /* |
2797 | * Use page lock to guard against racing truncation |
2798 | * before we get page_table_lock. |
2799 | */ |
2800 | retry: |
2801 | page = find_lock_page(mapping, idx); |
2802 | if (!page) { |
2803 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
2804 | if (idx >= size) |
2805 | goto out; |
2806 | page = alloc_huge_page(vma, address, 0); |
2807 | if (IS_ERR(page)) { |
2808 | ret = PTR_ERR(page); |
2809 | if (ret == -ENOMEM) |
2810 | ret = VM_FAULT_OOM; |
2811 | else |
2812 | ret = VM_FAULT_SIGBUS; |
2813 | goto out; |
2814 | } |
2815 | clear_huge_page(page, address, pages_per_huge_page(h)); |
2816 | __SetPageUptodate(page); |
2817 | |
2818 | if (vma->vm_flags & VM_MAYSHARE) { |
2819 | int err; |
2820 | struct inode *inode = mapping->host; |
2821 | |
2822 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); |
2823 | if (err) { |
2824 | put_page(page); |
2825 | if (err == -EEXIST) |
2826 | goto retry; |
2827 | goto out; |
2828 | } |
2829 | ClearPagePrivate(page); |
2830 | |
2831 | spin_lock(&inode->i_lock); |
2832 | inode->i_blocks += blocks_per_huge_page(h); |
2833 | spin_unlock(&inode->i_lock); |
2834 | } else { |
2835 | lock_page(page); |
2836 | if (unlikely(anon_vma_prepare(vma))) { |
2837 | ret = VM_FAULT_OOM; |
2838 | goto backout_unlocked; |
2839 | } |
2840 | anon_rmap = 1; |
2841 | } |
2842 | } else { |
2843 | /* |
2844 | * If memory error occurs between mmap() and fault, some process |
2845 | * don't have hwpoisoned swap entry for errored virtual address. |
2846 | * So we need to block hugepage fault by PG_hwpoison bit check. |
2847 | */ |
2848 | if (unlikely(PageHWPoison(page))) { |
2849 | ret = VM_FAULT_HWPOISON | |
2850 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
2851 | goto backout_unlocked; |
2852 | } |
2853 | } |
2854 | |
2855 | /* |
2856 | * If we are going to COW a private mapping later, we examine the |
2857 | * pending reservations for this page now. This will ensure that |
2858 | * any allocations necessary to record that reservation occur outside |
2859 | * the spinlock. |
2860 | */ |
2861 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
2862 | if (vma_needs_reservation(h, vma, address) < 0) { |
2863 | ret = VM_FAULT_OOM; |
2864 | goto backout_unlocked; |
2865 | } |
2866 | |
2867 | spin_lock(&mm->page_table_lock); |
2868 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
2869 | if (idx >= size) |
2870 | goto backout; |
2871 | |
2872 | ret = 0; |
2873 | if (!huge_pte_none(huge_ptep_get(ptep))) |
2874 | goto backout; |
2875 | |
2876 | if (anon_rmap) { |
2877 | ClearPagePrivate(page); |
2878 | hugepage_add_new_anon_rmap(page, vma, address); |
2879 | } |
2880 | else |
2881 | page_dup_rmap(page); |
2882 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
2883 | && (vma->vm_flags & VM_SHARED))); |
2884 | set_huge_pte_at(mm, address, ptep, new_pte); |
2885 | |
2886 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
2887 | /* Optimization, do the COW without a second fault */ |
2888 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
2889 | } |
2890 | |
2891 | spin_unlock(&mm->page_table_lock); |
2892 | unlock_page(page); |
2893 | out: |
2894 | return ret; |
2895 | |
2896 | backout: |
2897 | spin_unlock(&mm->page_table_lock); |
2898 | backout_unlocked: |
2899 | unlock_page(page); |
2900 | put_page(page); |
2901 | goto out; |
2902 | } |
2903 | |
2904 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2905 | unsigned long address, unsigned int flags) |
2906 | { |
2907 | pte_t *ptep; |
2908 | pte_t entry; |
2909 | int ret; |
2910 | struct page *page = NULL; |
2911 | struct page *pagecache_page = NULL; |
2912 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
2913 | struct hstate *h = hstate_vma(vma); |
2914 | |
2915 | address &= huge_page_mask(h); |
2916 | |
2917 | ptep = huge_pte_offset(mm, address); |
2918 | if (ptep) { |
2919 | entry = huge_ptep_get(ptep); |
2920 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
2921 | migration_entry_wait_huge(mm, ptep); |
2922 | return 0; |
2923 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) |
2924 | return VM_FAULT_HWPOISON_LARGE | |
2925 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
2926 | } |
2927 | |
2928 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
2929 | if (!ptep) |
2930 | return VM_FAULT_OOM; |
2931 | |
2932 | /* |
2933 | * Serialize hugepage allocation and instantiation, so that we don't |
2934 | * get spurious allocation failures if two CPUs race to instantiate |
2935 | * the same page in the page cache. |
2936 | */ |
2937 | mutex_lock(&hugetlb_instantiation_mutex); |
2938 | entry = huge_ptep_get(ptep); |
2939 | if (huge_pte_none(entry)) { |
2940 | ret = hugetlb_no_page(mm, vma, address, ptep, flags); |
2941 | goto out_mutex; |
2942 | } |
2943 | |
2944 | ret = 0; |
2945 | |
2946 | /* |
2947 | * If we are going to COW the mapping later, we examine the pending |
2948 | * reservations for this page now. This will ensure that any |
2949 | * allocations necessary to record that reservation occur outside the |
2950 | * spinlock. For private mappings, we also lookup the pagecache |
2951 | * page now as it is used to determine if a reservation has been |
2952 | * consumed. |
2953 | */ |
2954 | if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { |
2955 | if (vma_needs_reservation(h, vma, address) < 0) { |
2956 | ret = VM_FAULT_OOM; |
2957 | goto out_mutex; |
2958 | } |
2959 | |
2960 | if (!(vma->vm_flags & VM_MAYSHARE)) |
2961 | pagecache_page = hugetlbfs_pagecache_page(h, |
2962 | vma, address); |
2963 | } |
2964 | |
2965 | /* |
2966 | * hugetlb_cow() requires page locks of pte_page(entry) and |
2967 | * pagecache_page, so here we need take the former one |
2968 | * when page != pagecache_page or !pagecache_page. |
2969 | * Note that locking order is always pagecache_page -> page, |
2970 | * so no worry about deadlock. |
2971 | */ |
2972 | page = pte_page(entry); |
2973 | get_page(page); |
2974 | if (page != pagecache_page) |
2975 | lock_page(page); |
2976 | |
2977 | spin_lock(&mm->page_table_lock); |
2978 | /* Check for a racing update before calling hugetlb_cow */ |
2979 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
2980 | goto out_page_table_lock; |
2981 | |
2982 | |
2983 | if (flags & FAULT_FLAG_WRITE) { |
2984 | if (!huge_pte_write(entry)) { |
2985 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2986 | pagecache_page); |
2987 | goto out_page_table_lock; |
2988 | } |
2989 | entry = huge_pte_mkdirty(entry); |
2990 | } |
2991 | entry = pte_mkyoung(entry); |
2992 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, |
2993 | flags & FAULT_FLAG_WRITE)) |
2994 | update_mmu_cache(vma, address, ptep); |
2995 | |
2996 | out_page_table_lock: |
2997 | spin_unlock(&mm->page_table_lock); |
2998 | |
2999 | if (pagecache_page) { |
3000 | unlock_page(pagecache_page); |
3001 | put_page(pagecache_page); |
3002 | } |
3003 | if (page != pagecache_page) |
3004 | unlock_page(page); |
3005 | put_page(page); |
3006 | |
3007 | out_mutex: |
3008 | mutex_unlock(&hugetlb_instantiation_mutex); |
3009 | |
3010 | return ret; |
3011 | } |
3012 | |
3013 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
3014 | struct page **pages, struct vm_area_struct **vmas, |
3015 | unsigned long *position, unsigned long *nr_pages, |
3016 | long i, unsigned int flags) |
3017 | { |
3018 | unsigned long pfn_offset; |
3019 | unsigned long vaddr = *position; |
3020 | unsigned long remainder = *nr_pages; |
3021 | struct hstate *h = hstate_vma(vma); |
3022 | |
3023 | spin_lock(&mm->page_table_lock); |
3024 | while (vaddr < vma->vm_end && remainder) { |
3025 | pte_t *pte; |
3026 | int absent; |
3027 | struct page *page; |
3028 | |
3029 | /* |
3030 | * Some archs (sparc64, sh*) have multiple pte_ts to |
3031 | * each hugepage. We have to make sure we get the |
3032 | * first, for the page indexing below to work. |
3033 | */ |
3034 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
3035 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
3036 | |
3037 | /* |
3038 | * When coredumping, it suits get_dump_page if we just return |
3039 | * an error where there's an empty slot with no huge pagecache |
3040 | * to back it. This way, we avoid allocating a hugepage, and |
3041 | * the sparse dumpfile avoids allocating disk blocks, but its |
3042 | * huge holes still show up with zeroes where they need to be. |
3043 | */ |
3044 | if (absent && (flags & FOLL_DUMP) && |
3045 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { |
3046 | remainder = 0; |
3047 | break; |
3048 | } |
3049 | |
3050 | /* |
3051 | * We need call hugetlb_fault for both hugepages under migration |
3052 | * (in which case hugetlb_fault waits for the migration,) and |
3053 | * hwpoisoned hugepages (in which case we need to prevent the |
3054 | * caller from accessing to them.) In order to do this, we use |
3055 | * here is_swap_pte instead of is_hugetlb_entry_migration and |
3056 | * is_hugetlb_entry_hwpoisoned. This is because it simply covers |
3057 | * both cases, and because we can't follow correct pages |
3058 | * directly from any kind of swap entries. |
3059 | */ |
3060 | if (absent || is_swap_pte(huge_ptep_get(pte)) || |
3061 | ((flags & FOLL_WRITE) && |
3062 | !huge_pte_write(huge_ptep_get(pte)))) { |
3063 | int ret; |
3064 | |
3065 | spin_unlock(&mm->page_table_lock); |
3066 | ret = hugetlb_fault(mm, vma, vaddr, |
3067 | (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); |
3068 | spin_lock(&mm->page_table_lock); |
3069 | if (!(ret & VM_FAULT_ERROR)) |
3070 | continue; |
3071 | |
3072 | remainder = 0; |
3073 | break; |
3074 | } |
3075 | |
3076 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
3077 | page = pte_page(huge_ptep_get(pte)); |
3078 | same_page: |
3079 | if (pages) { |
3080 | pages[i] = mem_map_offset(page, pfn_offset); |
3081 | get_page(pages[i]); |
3082 | } |
3083 | |
3084 | if (vmas) |
3085 | vmas[i] = vma; |
3086 | |
3087 | vaddr += PAGE_SIZE; |
3088 | ++pfn_offset; |
3089 | --remainder; |
3090 | ++i; |
3091 | if (vaddr < vma->vm_end && remainder && |
3092 | pfn_offset < pages_per_huge_page(h)) { |
3093 | /* |
3094 | * We use pfn_offset to avoid touching the pageframes |
3095 | * of this compound page. |
3096 | */ |
3097 | goto same_page; |
3098 | } |
3099 | } |
3100 | spin_unlock(&mm->page_table_lock); |
3101 | *nr_pages = remainder; |
3102 | *position = vaddr; |
3103 | |
3104 | return i ? i : -EFAULT; |
3105 | } |
3106 | |
3107 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, |
3108 | unsigned long address, unsigned long end, pgprot_t newprot) |
3109 | { |
3110 | struct mm_struct *mm = vma->vm_mm; |
3111 | unsigned long start = address; |
3112 | pte_t *ptep; |
3113 | pte_t pte; |
3114 | struct hstate *h = hstate_vma(vma); |
3115 | unsigned long pages = 0; |
3116 | |
3117 | BUG_ON(address >= end); |
3118 | flush_cache_range(vma, address, end); |
3119 | |
3120 | mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); |
3121 | spin_lock(&mm->page_table_lock); |
3122 | for (; address < end; address += huge_page_size(h)) { |
3123 | ptep = huge_pte_offset(mm, address); |
3124 | if (!ptep) |
3125 | continue; |
3126 | if (huge_pmd_unshare(mm, &address, ptep)) { |
3127 | pages++; |
3128 | continue; |
3129 | } |
3130 | if (!huge_pte_none(huge_ptep_get(ptep))) { |
3131 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
3132 | pte = pte_mkhuge(huge_pte_modify(pte, newprot)); |
3133 | pte = arch_make_huge_pte(pte, vma, NULL, 0); |
3134 | set_huge_pte_at(mm, address, ptep, pte); |
3135 | pages++; |
3136 | } |
3137 | } |
3138 | spin_unlock(&mm->page_table_lock); |
3139 | /* |
3140 | * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare |
3141 | * may have cleared our pud entry and done put_page on the page table: |
3142 | * once we release i_mmap_mutex, another task can do the final put_page |
3143 | * and that page table be reused and filled with junk. |
3144 | */ |
3145 | flush_tlb_range(vma, start, end); |
3146 | mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); |
3147 | |
3148 | return pages << h->order; |
3149 | } |
3150 | |
3151 | int hugetlb_reserve_pages(struct inode *inode, |
3152 | long from, long to, |
3153 | struct vm_area_struct *vma, |
3154 | vm_flags_t vm_flags) |
3155 | { |
3156 | long ret, chg; |
3157 | struct hstate *h = hstate_inode(inode); |
3158 | struct hugepage_subpool *spool = subpool_inode(inode); |
3159 | |
3160 | /* |
3161 | * Only apply hugepage reservation if asked. At fault time, an |
3162 | * attempt will be made for VM_NORESERVE to allocate a page |
3163 | * without using reserves |
3164 | */ |
3165 | if (vm_flags & VM_NORESERVE) |
3166 | return 0; |
3167 | |
3168 | /* |
3169 | * Shared mappings base their reservation on the number of pages that |
3170 | * are already allocated on behalf of the file. Private mappings need |
3171 | * to reserve the full area even if read-only as mprotect() may be |
3172 | * called to make the mapping read-write. Assume !vma is a shm mapping |
3173 | */ |
3174 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
3175 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
3176 | else { |
3177 | struct resv_map *resv_map = resv_map_alloc(); |
3178 | if (!resv_map) |
3179 | return -ENOMEM; |
3180 | |
3181 | chg = to - from; |
3182 | |
3183 | set_vma_resv_map(vma, resv_map); |
3184 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
3185 | } |
3186 | |
3187 | if (chg < 0) { |
3188 | ret = chg; |
3189 | goto out_err; |
3190 | } |
3191 | |
3192 | /* There must be enough pages in the subpool for the mapping */ |
3193 | if (hugepage_subpool_get_pages(spool, chg)) { |
3194 | ret = -ENOSPC; |
3195 | goto out_err; |
3196 | } |
3197 | |
3198 | /* |
3199 | * Check enough hugepages are available for the reservation. |
3200 | * Hand the pages back to the subpool if there are not |
3201 | */ |
3202 | ret = hugetlb_acct_memory(h, chg); |
3203 | if (ret < 0) { |
3204 | hugepage_subpool_put_pages(spool, chg); |
3205 | goto out_err; |
3206 | } |
3207 | |
3208 | /* |
3209 | * Account for the reservations made. Shared mappings record regions |
3210 | * that have reservations as they are shared by multiple VMAs. |
3211 | * When the last VMA disappears, the region map says how much |
3212 | * the reservation was and the page cache tells how much of |
3213 | * the reservation was consumed. Private mappings are per-VMA and |
3214 | * only the consumed reservations are tracked. When the VMA |
3215 | * disappears, the original reservation is the VMA size and the |
3216 | * consumed reservations are stored in the map. Hence, nothing |
3217 | * else has to be done for private mappings here |
3218 | */ |
3219 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
3220 | region_add(&inode->i_mapping->private_list, from, to); |
3221 | return 0; |
3222 | out_err: |
3223 | if (vma) |
3224 | resv_map_put(vma); |
3225 | return ret; |
3226 | } |
3227 | |
3228 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) |
3229 | { |
3230 | struct hstate *h = hstate_inode(inode); |
3231 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
3232 | struct hugepage_subpool *spool = subpool_inode(inode); |
3233 | |
3234 | spin_lock(&inode->i_lock); |
3235 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
3236 | spin_unlock(&inode->i_lock); |
3237 | |
3238 | hugepage_subpool_put_pages(spool, (chg - freed)); |
3239 | hugetlb_acct_memory(h, -(chg - freed)); |
3240 | } |
3241 | |
3242 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
3243 | static unsigned long page_table_shareable(struct vm_area_struct *svma, |
3244 | struct vm_area_struct *vma, |
3245 | unsigned long addr, pgoff_t idx) |
3246 | { |
3247 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + |
3248 | svma->vm_start; |
3249 | unsigned long sbase = saddr & PUD_MASK; |
3250 | unsigned long s_end = sbase + PUD_SIZE; |
3251 | |
3252 | /* Allow segments to share if only one is marked locked */ |
3253 | unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; |
3254 | unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; |
3255 | |
3256 | /* |
3257 | * match the virtual addresses, permission and the alignment of the |
3258 | * page table page. |
3259 | */ |
3260 | if (pmd_index(addr) != pmd_index(saddr) || |
3261 | vm_flags != svm_flags || |
3262 | sbase < svma->vm_start || svma->vm_end < s_end) |
3263 | return 0; |
3264 | |
3265 | return saddr; |
3266 | } |
3267 | |
3268 | static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) |
3269 | { |
3270 | unsigned long base = addr & PUD_MASK; |
3271 | unsigned long end = base + PUD_SIZE; |
3272 | |
3273 | /* |
3274 | * check on proper vm_flags and page table alignment |
3275 | */ |
3276 | if (vma->vm_flags & VM_MAYSHARE && |
3277 | vma->vm_start <= base && end <= vma->vm_end) |
3278 | return 1; |
3279 | return 0; |
3280 | } |
3281 | |
3282 | /* |
3283 | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() |
3284 | * and returns the corresponding pte. While this is not necessary for the |
3285 | * !shared pmd case because we can allocate the pmd later as well, it makes the |
3286 | * code much cleaner. pmd allocation is essential for the shared case because |
3287 | * pud has to be populated inside the same i_mmap_mutex section - otherwise |
3288 | * racing tasks could either miss the sharing (see huge_pte_offset) or select a |
3289 | * bad pmd for sharing. |
3290 | */ |
3291 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) |
3292 | { |
3293 | struct vm_area_struct *vma = find_vma(mm, addr); |
3294 | struct address_space *mapping = vma->vm_file->f_mapping; |
3295 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + |
3296 | vma->vm_pgoff; |
3297 | struct vm_area_struct *svma; |
3298 | unsigned long saddr; |
3299 | pte_t *spte = NULL; |
3300 | pte_t *pte; |
3301 | |
3302 | if (!vma_shareable(vma, addr)) |
3303 | return (pte_t *)pmd_alloc(mm, pud, addr); |
3304 | |
3305 | mutex_lock(&mapping->i_mmap_mutex); |
3306 | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { |
3307 | if (svma == vma) |
3308 | continue; |
3309 | |
3310 | saddr = page_table_shareable(svma, vma, addr, idx); |
3311 | if (saddr) { |
3312 | spte = huge_pte_offset(svma->vm_mm, saddr); |
3313 | if (spte) { |
3314 | get_page(virt_to_page(spte)); |
3315 | break; |
3316 | } |
3317 | } |
3318 | } |
3319 | |
3320 | if (!spte) |
3321 | goto out; |
3322 | |
3323 | spin_lock(&mm->page_table_lock); |
3324 | if (pud_none(*pud)) |
3325 | pud_populate(mm, pud, |
3326 | (pmd_t *)((unsigned long)spte & PAGE_MASK)); |
3327 | else |
3328 | put_page(virt_to_page(spte)); |
3329 | spin_unlock(&mm->page_table_lock); |
3330 | out: |
3331 | pte = (pte_t *)pmd_alloc(mm, pud, addr); |
3332 | mutex_unlock(&mapping->i_mmap_mutex); |
3333 | return pte; |
3334 | } |
3335 | |
3336 | /* |
3337 | * unmap huge page backed by shared pte. |
3338 | * |
3339 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared |
3340 | * indicated by page_count > 1, unmap is achieved by clearing pud and |
3341 | * decrementing the ref count. If count == 1, the pte page is not shared. |
3342 | * |
3343 | * called with vma->vm_mm->page_table_lock held. |
3344 | * |
3345 | * returns: 1 successfully unmapped a shared pte page |
3346 | * 0 the underlying pte page is not shared, or it is the last user |
3347 | */ |
3348 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) |
3349 | { |
3350 | pgd_t *pgd = pgd_offset(mm, *addr); |
3351 | pud_t *pud = pud_offset(pgd, *addr); |
3352 | |
3353 | BUG_ON(page_count(virt_to_page(ptep)) == 0); |
3354 | if (page_count(virt_to_page(ptep)) == 1) |
3355 | return 0; |
3356 | |
3357 | pud_clear(pud); |
3358 | put_page(virt_to_page(ptep)); |
3359 | *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; |
3360 | return 1; |
3361 | } |
3362 | #define want_pmd_share() (1) |
3363 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
3364 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) |
3365 | { |
3366 | return NULL; |
3367 | } |
3368 | #define want_pmd_share() (0) |
3369 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
3370 | |
3371 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB |
3372 | pte_t *huge_pte_alloc(struct mm_struct *mm, |
3373 | unsigned long addr, unsigned long sz) |
3374 | { |
3375 | pgd_t *pgd; |
3376 | pud_t *pud; |
3377 | pte_t *pte = NULL; |
3378 | |
3379 | pgd = pgd_offset(mm, addr); |
3380 | pud = pud_alloc(mm, pgd, addr); |
3381 | if (pud) { |
3382 | if (sz == PUD_SIZE) { |
3383 | pte = (pte_t *)pud; |
3384 | } else { |
3385 | BUG_ON(sz != PMD_SIZE); |
3386 | if (want_pmd_share() && pud_none(*pud)) |
3387 | pte = huge_pmd_share(mm, addr, pud); |
3388 | else |
3389 | pte = (pte_t *)pmd_alloc(mm, pud, addr); |
3390 | } |
3391 | } |
3392 | BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); |
3393 | |
3394 | return pte; |
3395 | } |
3396 | |
3397 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) |
3398 | { |
3399 | pgd_t *pgd; |
3400 | pud_t *pud; |
3401 | pmd_t *pmd = NULL; |
3402 | |
3403 | pgd = pgd_offset(mm, addr); |
3404 | if (pgd_present(*pgd)) { |
3405 | pud = pud_offset(pgd, addr); |
3406 | if (pud_present(*pud)) { |
3407 | if (pud_huge(*pud)) |
3408 | return (pte_t *)pud; |
3409 | pmd = pmd_offset(pud, addr); |
3410 | } |
3411 | } |
3412 | return (pte_t *) pmd; |
3413 | } |
3414 | |
3415 | struct page * |
3416 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, |
3417 | pmd_t *pmd, int write) |
3418 | { |
3419 | struct page *page; |
3420 | |
3421 | page = pte_page(*(pte_t *)pmd); |
3422 | if (page) |
3423 | page += ((address & ~PMD_MASK) >> PAGE_SHIFT); |
3424 | return page; |
3425 | } |
3426 | |
3427 | struct page * |
3428 | follow_huge_pud(struct mm_struct *mm, unsigned long address, |
3429 | pud_t *pud, int write) |
3430 | { |
3431 | struct page *page; |
3432 | |
3433 | page = pte_page(*(pte_t *)pud); |
3434 | if (page) |
3435 | page += ((address & ~PUD_MASK) >> PAGE_SHIFT); |
3436 | return page; |
3437 | } |
3438 | |
3439 | #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ |
3440 | |
3441 | /* Can be overriden by architectures */ |
3442 | __attribute__((weak)) struct page * |
3443 | follow_huge_pud(struct mm_struct *mm, unsigned long address, |
3444 | pud_t *pud, int write) |
3445 | { |
3446 | BUG(); |
3447 | return NULL; |
3448 | } |
3449 | |
3450 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ |
3451 | |
3452 | #ifdef CONFIG_MEMORY_FAILURE |
3453 | |
3454 | /* Should be called in hugetlb_lock */ |
3455 | static int is_hugepage_on_freelist(struct page *hpage) |
3456 | { |
3457 | struct page *page; |
3458 | struct page *tmp; |
3459 | struct hstate *h = page_hstate(hpage); |
3460 | int nid = page_to_nid(hpage); |
3461 | |
3462 | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) |
3463 | if (page == hpage) |
3464 | return 1; |
3465 | return 0; |
3466 | } |
3467 | |
3468 | /* |
3469 | * This function is called from memory failure code. |
3470 | * Assume the caller holds page lock of the head page. |
3471 | */ |
3472 | int dequeue_hwpoisoned_huge_page(struct page *hpage) |
3473 | { |
3474 | struct hstate *h = page_hstate(hpage); |
3475 | int nid = page_to_nid(hpage); |
3476 | int ret = -EBUSY; |
3477 | |
3478 | spin_lock(&hugetlb_lock); |
3479 | if (is_hugepage_on_freelist(hpage)) { |
3480 | /* |
3481 | * Hwpoisoned hugepage isn't linked to activelist or freelist, |
3482 | * but dangling hpage->lru can trigger list-debug warnings |
3483 | * (this happens when we call unpoison_memory() on it), |
3484 | * so let it point to itself with list_del_init(). |
3485 | */ |
3486 | list_del_init(&hpage->lru); |
3487 | set_page_refcounted(hpage); |
3488 | h->free_huge_pages--; |
3489 | h->free_huge_pages_node[nid]--; |
3490 | ret = 0; |
3491 | } |
3492 | spin_unlock(&hugetlb_lock); |
3493 | return ret; |
3494 | } |
3495 | #endif |
3496 | |
3497 | bool isolate_huge_page(struct page *page, struct list_head *list) |
3498 | { |
3499 | VM_BUG_ON(!PageHead(page)); |
3500 | if (!get_page_unless_zero(page)) |
3501 | return false; |
3502 | spin_lock(&hugetlb_lock); |
3503 | list_move_tail(&page->lru, list); |
3504 | spin_unlock(&hugetlb_lock); |
3505 | return true; |
3506 | } |
3507 | |
3508 | void putback_active_hugepage(struct page *page) |
3509 | { |
3510 | VM_BUG_ON(!PageHead(page)); |
3511 | spin_lock(&hugetlb_lock); |
3512 | list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); |
3513 | spin_unlock(&hugetlb_lock); |
3514 | put_page(page); |
3515 | } |
3516 | |
3517 | bool is_hugepage_active(struct page *page) |
3518 | { |
3519 | VM_BUG_ON(!PageHuge(page)); |
3520 | /* |
3521 | * This function can be called for a tail page because the caller, |
3522 | * scan_movable_pages, scans through a given pfn-range which typically |
3523 | * covers one memory block. In systems using gigantic hugepage (1GB |
3524 | * for x86_64,) a hugepage is larger than a memory block, and we don't |
3525 | * support migrating such large hugepages for now, so return false |
3526 | * when called for tail pages. |
3527 | */ |
3528 | if (PageTail(page)) |
3529 | return false; |
3530 | /* |
3531 | * Refcount of a hwpoisoned hugepages is 1, but they are not active, |
3532 | * so we should return false for them. |
3533 | */ |
3534 | if (unlikely(PageHWPoison(page))) |
3535 | return false; |
3536 | return page_count(page) > 0; |
3537 | } |
3538 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9