Root/mm/memblock.c

1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
21#include <linux/memblock.h>
22
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27    .memory.regions = memblock_memory_init_regions,
28    .memory.cnt = 1, /* empty dummy entry */
29    .memory.max = INIT_MEMBLOCK_REGIONS,
30
31    .reserved.regions = memblock_reserved_init_regions,
32    .reserved.cnt = 1, /* empty dummy entry */
33    .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35    .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36};
37
38int memblock_debug __initdata_memblock;
39static int memblock_can_resize __initdata_memblock;
40static int memblock_memory_in_slab __initdata_memblock = 0;
41static int memblock_reserved_in_slab __initdata_memblock = 0;
42
43/* inline so we don't get a warning when pr_debug is compiled out */
44static __init_memblock const char *
45memblock_type_name(struct memblock_type *type)
46{
47    if (type == &memblock.memory)
48        return "memory";
49    else if (type == &memblock.reserved)
50        return "reserved";
51    else
52        return "unknown";
53}
54
55/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
57{
58    return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
59}
60
61/*
62 * Address comparison utilities
63 */
64static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
65                       phys_addr_t base2, phys_addr_t size2)
66{
67    return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
68}
69
70static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71                    phys_addr_t base, phys_addr_t size)
72{
73    unsigned long i;
74
75    for (i = 0; i < type->cnt; i++) {
76        phys_addr_t rgnbase = type->regions[i].base;
77        phys_addr_t rgnsize = type->regions[i].size;
78        if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
79            break;
80    }
81
82    return (i < type->cnt) ? i : -1;
83}
84
85/**
86 * memblock_find_in_range_node - find free area in given range and node
87 * @start: start of candidate range
88 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
89 * @size: size of free area to find
90 * @align: alignment of free area to find
91 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
92 *
93 * Find @size free area aligned to @align in the specified range and node.
94 *
95 * RETURNS:
96 * Found address on success, %0 on failure.
97 */
98phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
99                    phys_addr_t end, phys_addr_t size,
100                    phys_addr_t align, int nid)
101{
102    phys_addr_t this_start, this_end, cand;
103    u64 i;
104
105    /* pump up @end */
106    if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107        end = memblock.current_limit;
108
109    /* avoid allocating the first page */
110    start = max_t(phys_addr_t, start, PAGE_SIZE);
111    end = max(start, end);
112
113    for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114        this_start = clamp(this_start, start, end);
115        this_end = clamp(this_end, start, end);
116
117        if (this_end < size)
118            continue;
119
120        cand = round_down(this_end - size, align);
121        if (cand >= this_start)
122            return cand;
123    }
124    return 0;
125}
126
127/**
128 * memblock_find_in_range - find free area in given range
129 * @start: start of candidate range
130 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
131 * @size: size of free area to find
132 * @align: alignment of free area to find
133 *
134 * Find @size free area aligned to @align in the specified range.
135 *
136 * RETURNS:
137 * Found address on success, %0 on failure.
138 */
139phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
140                    phys_addr_t end, phys_addr_t size,
141                    phys_addr_t align)
142{
143    return memblock_find_in_range_node(start, end, size, align,
144                       MAX_NUMNODES);
145}
146
147static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
148{
149    type->total_size -= type->regions[r].size;
150    memmove(&type->regions[r], &type->regions[r + 1],
151        (type->cnt - (r + 1)) * sizeof(type->regions[r]));
152    type->cnt--;
153
154    /* Special case for empty arrays */
155    if (type->cnt == 0) {
156        WARN_ON(type->total_size != 0);
157        type->cnt = 1;
158        type->regions[0].base = 0;
159        type->regions[0].size = 0;
160        memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
161    }
162}
163
164phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
165                    phys_addr_t *addr)
166{
167    if (memblock.reserved.regions == memblock_reserved_init_regions)
168        return 0;
169
170    *addr = __pa(memblock.reserved.regions);
171
172    return PAGE_ALIGN(sizeof(struct memblock_region) *
173              memblock.reserved.max);
174}
175
176/**
177 * memblock_double_array - double the size of the memblock regions array
178 * @type: memblock type of the regions array being doubled
179 * @new_area_start: starting address of memory range to avoid overlap with
180 * @new_area_size: size of memory range to avoid overlap with
181 *
182 * Double the size of the @type regions array. If memblock is being used to
183 * allocate memory for a new reserved regions array and there is a previously
184 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
185 * waiting to be reserved, ensure the memory used by the new array does
186 * not overlap.
187 *
188 * RETURNS:
189 * 0 on success, -1 on failure.
190 */
191static int __init_memblock memblock_double_array(struct memblock_type *type,
192                        phys_addr_t new_area_start,
193                        phys_addr_t new_area_size)
194{
195    struct memblock_region *new_array, *old_array;
196    phys_addr_t old_alloc_size, new_alloc_size;
197    phys_addr_t old_size, new_size, addr;
198    int use_slab = slab_is_available();
199    int *in_slab;
200
201    /* We don't allow resizing until we know about the reserved regions
202     * of memory that aren't suitable for allocation
203     */
204    if (!memblock_can_resize)
205        return -1;
206
207    /* Calculate new doubled size */
208    old_size = type->max * sizeof(struct memblock_region);
209    new_size = old_size << 1;
210    /*
211     * We need to allocated new one align to PAGE_SIZE,
212     * so we can free them completely later.
213     */
214    old_alloc_size = PAGE_ALIGN(old_size);
215    new_alloc_size = PAGE_ALIGN(new_size);
216
217    /* Retrieve the slab flag */
218    if (type == &memblock.memory)
219        in_slab = &memblock_memory_in_slab;
220    else
221        in_slab = &memblock_reserved_in_slab;
222
223    /* Try to find some space for it.
224     *
225     * WARNING: We assume that either slab_is_available() and we use it or
226     * we use MEMBLOCK for allocations. That means that this is unsafe to
227     * use when bootmem is currently active (unless bootmem itself is
228     * implemented on top of MEMBLOCK which isn't the case yet)
229     *
230     * This should however not be an issue for now, as we currently only
231     * call into MEMBLOCK while it's still active, or much later when slab
232     * is active for memory hotplug operations
233     */
234    if (use_slab) {
235        new_array = kmalloc(new_size, GFP_KERNEL);
236        addr = new_array ? __pa(new_array) : 0;
237    } else {
238        /* only exclude range when trying to double reserved.regions */
239        if (type != &memblock.reserved)
240            new_area_start = new_area_size = 0;
241
242        addr = memblock_find_in_range(new_area_start + new_area_size,
243                        memblock.current_limit,
244                        new_alloc_size, PAGE_SIZE);
245        if (!addr && new_area_size)
246            addr = memblock_find_in_range(0,
247                min(new_area_start, memblock.current_limit),
248                new_alloc_size, PAGE_SIZE);
249
250        new_array = addr ? __va(addr) : NULL;
251    }
252    if (!addr) {
253        pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254               memblock_type_name(type), type->max, type->max * 2);
255        return -1;
256    }
257
258    memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259            memblock_type_name(type), type->max * 2, (u64)addr,
260            (u64)addr + new_size - 1);
261
262    /*
263     * Found space, we now need to move the array over before we add the
264     * reserved region since it may be our reserved array itself that is
265     * full.
266     */
267    memcpy(new_array, type->regions, old_size);
268    memset(new_array + type->max, 0, old_size);
269    old_array = type->regions;
270    type->regions = new_array;
271    type->max <<= 1;
272
273    /* Free old array. We needn't free it if the array is the static one */
274    if (*in_slab)
275        kfree(old_array);
276    else if (old_array != memblock_memory_init_regions &&
277         old_array != memblock_reserved_init_regions)
278        memblock_free(__pa(old_array), old_alloc_size);
279
280    /*
281     * Reserve the new array if that comes from the memblock. Otherwise, we
282     * needn't do it
283     */
284    if (!use_slab)
285        BUG_ON(memblock_reserve(addr, new_alloc_size));
286
287    /* Update slab flag */
288    *in_slab = use_slab;
289
290    return 0;
291}
292
293/**
294 * memblock_merge_regions - merge neighboring compatible regions
295 * @type: memblock type to scan
296 *
297 * Scan @type and merge neighboring compatible regions.
298 */
299static void __init_memblock memblock_merge_regions(struct memblock_type *type)
300{
301    int i = 0;
302
303    /* cnt never goes below 1 */
304    while (i < type->cnt - 1) {
305        struct memblock_region *this = &type->regions[i];
306        struct memblock_region *next = &type->regions[i + 1];
307
308        if (this->base + this->size != next->base ||
309            memblock_get_region_node(this) !=
310            memblock_get_region_node(next)) {
311            BUG_ON(this->base + this->size > next->base);
312            i++;
313            continue;
314        }
315
316        this->size += next->size;
317        /* move forward from next + 1, index of which is i + 2 */
318        memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
319        type->cnt--;
320    }
321}
322
323/**
324 * memblock_insert_region - insert new memblock region
325 * @type: memblock type to insert into
326 * @idx: index for the insertion point
327 * @base: base address of the new region
328 * @size: size of the new region
329 * @nid: node id of the new region
330 *
331 * Insert new memblock region [@base,@base+@size) into @type at @idx.
332 * @type must already have extra room to accomodate the new region.
333 */
334static void __init_memblock memblock_insert_region(struct memblock_type *type,
335                           int idx, phys_addr_t base,
336                           phys_addr_t size, int nid)
337{
338    struct memblock_region *rgn = &type->regions[idx];
339
340    BUG_ON(type->cnt >= type->max);
341    memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
342    rgn->base = base;
343    rgn->size = size;
344    memblock_set_region_node(rgn, nid);
345    type->cnt++;
346    type->total_size += size;
347}
348
349/**
350 * memblock_add_region - add new memblock region
351 * @type: memblock type to add new region into
352 * @base: base address of the new region
353 * @size: size of the new region
354 * @nid: nid of the new region
355 *
356 * Add new memblock region [@base,@base+@size) into @type. The new region
357 * is allowed to overlap with existing ones - overlaps don't affect already
358 * existing regions. @type is guaranteed to be minimal (all neighbouring
359 * compatible regions are merged) after the addition.
360 *
361 * RETURNS:
362 * 0 on success, -errno on failure.
363 */
364static int __init_memblock memblock_add_region(struct memblock_type *type,
365                phys_addr_t base, phys_addr_t size, int nid)
366{
367    bool insert = false;
368    phys_addr_t obase = base;
369    phys_addr_t end = base + memblock_cap_size(base, &size);
370    int i, nr_new;
371
372    if (!size)
373        return 0;
374
375    /* special case for empty array */
376    if (type->regions[0].size == 0) {
377        WARN_ON(type->cnt != 1 || type->total_size);
378        type->regions[0].base = base;
379        type->regions[0].size = size;
380        memblock_set_region_node(&type->regions[0], nid);
381        type->total_size = size;
382        return 0;
383    }
384repeat:
385    /*
386     * The following is executed twice. Once with %false @insert and
387     * then with %true. The first counts the number of regions needed
388     * to accomodate the new area. The second actually inserts them.
389     */
390    base = obase;
391    nr_new = 0;
392
393    for (i = 0; i < type->cnt; i++) {
394        struct memblock_region *rgn = &type->regions[i];
395        phys_addr_t rbase = rgn->base;
396        phys_addr_t rend = rbase + rgn->size;
397
398        if (rbase >= end)
399            break;
400        if (rend <= base)
401            continue;
402        /*
403         * @rgn overlaps. If it separates the lower part of new
404         * area, insert that portion.
405         */
406        if (rbase > base) {
407            nr_new++;
408            if (insert)
409                memblock_insert_region(type, i++, base,
410                               rbase - base, nid);
411        }
412        /* area below @rend is dealt with, forget about it */
413        base = min(rend, end);
414    }
415
416    /* insert the remaining portion */
417    if (base < end) {
418        nr_new++;
419        if (insert)
420            memblock_insert_region(type, i, base, end - base, nid);
421    }
422
423    /*
424     * If this was the first round, resize array and repeat for actual
425     * insertions; otherwise, merge and return.
426     */
427    if (!insert) {
428        while (type->cnt + nr_new > type->max)
429            if (memblock_double_array(type, obase, size) < 0)
430                return -ENOMEM;
431        insert = true;
432        goto repeat;
433    } else {
434        memblock_merge_regions(type);
435        return 0;
436    }
437}
438
439int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
440                       int nid)
441{
442    return memblock_add_region(&memblock.memory, base, size, nid);
443}
444
445int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
446{
447    return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
448}
449
450/**
451 * memblock_isolate_range - isolate given range into disjoint memblocks
452 * @type: memblock type to isolate range for
453 * @base: base of range to isolate
454 * @size: size of range to isolate
455 * @start_rgn: out parameter for the start of isolated region
456 * @end_rgn: out parameter for the end of isolated region
457 *
458 * Walk @type and ensure that regions don't cross the boundaries defined by
459 * [@base,@base+@size). Crossing regions are split at the boundaries,
460 * which may create at most two more regions. The index of the first
461 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
462 *
463 * RETURNS:
464 * 0 on success, -errno on failure.
465 */
466static int __init_memblock memblock_isolate_range(struct memblock_type *type,
467                    phys_addr_t base, phys_addr_t size,
468                    int *start_rgn, int *end_rgn)
469{
470    phys_addr_t end = base + memblock_cap_size(base, &size);
471    int i;
472
473    *start_rgn = *end_rgn = 0;
474
475    if (!size)
476        return 0;
477
478    /* we'll create at most two more regions */
479    while (type->cnt + 2 > type->max)
480        if (memblock_double_array(type, base, size) < 0)
481            return -ENOMEM;
482
483    for (i = 0; i < type->cnt; i++) {
484        struct memblock_region *rgn = &type->regions[i];
485        phys_addr_t rbase = rgn->base;
486        phys_addr_t rend = rbase + rgn->size;
487
488        if (rbase >= end)
489            break;
490        if (rend <= base)
491            continue;
492
493        if (rbase < base) {
494            /*
495             * @rgn intersects from below. Split and continue
496             * to process the next region - the new top half.
497             */
498            rgn->base = base;
499            rgn->size -= base - rbase;
500            type->total_size -= base - rbase;
501            memblock_insert_region(type, i, rbase, base - rbase,
502                           memblock_get_region_node(rgn));
503        } else if (rend > end) {
504            /*
505             * @rgn intersects from above. Split and redo the
506             * current region - the new bottom half.
507             */
508            rgn->base = end;
509            rgn->size -= end - rbase;
510            type->total_size -= end - rbase;
511            memblock_insert_region(type, i--, rbase, end - rbase,
512                           memblock_get_region_node(rgn));
513        } else {
514            /* @rgn is fully contained, record it */
515            if (!*end_rgn)
516                *start_rgn = i;
517            *end_rgn = i + 1;
518        }
519    }
520
521    return 0;
522}
523
524static int __init_memblock __memblock_remove(struct memblock_type *type,
525                         phys_addr_t base, phys_addr_t size)
526{
527    int start_rgn, end_rgn;
528    int i, ret;
529
530    ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
531    if (ret)
532        return ret;
533
534    for (i = end_rgn - 1; i >= start_rgn; i--)
535        memblock_remove_region(type, i);
536    return 0;
537}
538
539int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
540{
541    return __memblock_remove(&memblock.memory, base, size);
542}
543
544int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
545{
546    memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
547             (unsigned long long)base,
548             (unsigned long long)base + size,
549             (void *)_RET_IP_);
550
551    return __memblock_remove(&memblock.reserved, base, size);
552}
553
554int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
555{
556    struct memblock_type *_rgn = &memblock.reserved;
557
558    memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
559             (unsigned long long)base,
560             (unsigned long long)base + size,
561             (void *)_RET_IP_);
562
563    return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
564}
565
566/**
567 * __next_free_mem_range - next function for for_each_free_mem_range()
568 * @idx: pointer to u64 loop variable
569 * @nid: node selector, %MAX_NUMNODES for all nodes
570 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
571 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
572 * @out_nid: ptr to int for nid of the range, can be %NULL
573 *
574 * Find the first free area from *@idx which matches @nid, fill the out
575 * parameters, and update *@idx for the next iteration. The lower 32bit of
576 * *@idx contains index into memory region and the upper 32bit indexes the
577 * areas before each reserved region. For example, if reserved regions
578 * look like the following,
579 *
580 * 0:[0-16), 1:[32-48), 2:[128-130)
581 *
582 * The upper 32bit indexes the following regions.
583 *
584 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
585 *
586 * As both region arrays are sorted, the function advances the two indices
587 * in lockstep and returns each intersection.
588 */
589void __init_memblock __next_free_mem_range(u64 *idx, int nid,
590                       phys_addr_t *out_start,
591                       phys_addr_t *out_end, int *out_nid)
592{
593    struct memblock_type *mem = &memblock.memory;
594    struct memblock_type *rsv = &memblock.reserved;
595    int mi = *idx & 0xffffffff;
596    int ri = *idx >> 32;
597
598    for ( ; mi < mem->cnt; mi++) {
599        struct memblock_region *m = &mem->regions[mi];
600        phys_addr_t m_start = m->base;
601        phys_addr_t m_end = m->base + m->size;
602
603        /* only memory regions are associated with nodes, check it */
604        if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
605            continue;
606
607        /* scan areas before each reservation for intersection */
608        for ( ; ri < rsv->cnt + 1; ri++) {
609            struct memblock_region *r = &rsv->regions[ri];
610            phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
611            phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
612
613            /* if ri advanced past mi, break out to advance mi */
614            if (r_start >= m_end)
615                break;
616            /* if the two regions intersect, we're done */
617            if (m_start < r_end) {
618                if (out_start)
619                    *out_start = max(m_start, r_start);
620                if (out_end)
621                    *out_end = min(m_end, r_end);
622                if (out_nid)
623                    *out_nid = memblock_get_region_node(m);
624                /*
625                 * The region which ends first is advanced
626                 * for the next iteration.
627                 */
628                if (m_end <= r_end)
629                    mi++;
630                else
631                    ri++;
632                *idx = (u32)mi | (u64)ri << 32;
633                return;
634            }
635        }
636    }
637
638    /* signal end of iteration */
639    *idx = ULLONG_MAX;
640}
641
642/**
643 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
644 * @idx: pointer to u64 loop variable
645 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
646 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
647 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
648 * @out_nid: ptr to int for nid of the range, can be %NULL
649 *
650 * Reverse of __next_free_mem_range().
651 */
652void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
653                       phys_addr_t *out_start,
654                       phys_addr_t *out_end, int *out_nid)
655{
656    struct memblock_type *mem = &memblock.memory;
657    struct memblock_type *rsv = &memblock.reserved;
658    int mi = *idx & 0xffffffff;
659    int ri = *idx >> 32;
660
661    if (*idx == (u64)ULLONG_MAX) {
662        mi = mem->cnt - 1;
663        ri = rsv->cnt;
664    }
665
666    for ( ; mi >= 0; mi--) {
667        struct memblock_region *m = &mem->regions[mi];
668        phys_addr_t m_start = m->base;
669        phys_addr_t m_end = m->base + m->size;
670
671        /* only memory regions are associated with nodes, check it */
672        if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
673            continue;
674
675        /* scan areas before each reservation for intersection */
676        for ( ; ri >= 0; ri--) {
677            struct memblock_region *r = &rsv->regions[ri];
678            phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
679            phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
680
681            /* if ri advanced past mi, break out to advance mi */
682            if (r_end <= m_start)
683                break;
684            /* if the two regions intersect, we're done */
685            if (m_end > r_start) {
686                if (out_start)
687                    *out_start = max(m_start, r_start);
688                if (out_end)
689                    *out_end = min(m_end, r_end);
690                if (out_nid)
691                    *out_nid = memblock_get_region_node(m);
692
693                if (m_start >= r_start)
694                    mi--;
695                else
696                    ri--;
697                *idx = (u32)mi | (u64)ri << 32;
698                return;
699            }
700        }
701    }
702
703    *idx = ULLONG_MAX;
704}
705
706#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
707/*
708 * Common iterator interface used to define for_each_mem_range().
709 */
710void __init_memblock __next_mem_pfn_range(int *idx, int nid,
711                unsigned long *out_start_pfn,
712                unsigned long *out_end_pfn, int *out_nid)
713{
714    struct memblock_type *type = &memblock.memory;
715    struct memblock_region *r;
716
717    while (++*idx < type->cnt) {
718        r = &type->regions[*idx];
719
720        if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
721            continue;
722        if (nid == MAX_NUMNODES || nid == r->nid)
723            break;
724    }
725    if (*idx >= type->cnt) {
726        *idx = -1;
727        return;
728    }
729
730    if (out_start_pfn)
731        *out_start_pfn = PFN_UP(r->base);
732    if (out_end_pfn)
733        *out_end_pfn = PFN_DOWN(r->base + r->size);
734    if (out_nid)
735        *out_nid = r->nid;
736}
737
738/**
739 * memblock_set_node - set node ID on memblock regions
740 * @base: base of area to set node ID for
741 * @size: size of area to set node ID for
742 * @nid: node ID to set
743 *
744 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
745 * Regions which cross the area boundaries are split as necessary.
746 *
747 * RETURNS:
748 * 0 on success, -errno on failure.
749 */
750int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
751                      int nid)
752{
753    struct memblock_type *type = &memblock.memory;
754    int start_rgn, end_rgn;
755    int i, ret;
756
757    ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
758    if (ret)
759        return ret;
760
761    for (i = start_rgn; i < end_rgn; i++)
762        memblock_set_region_node(&type->regions[i], nid);
763
764    memblock_merge_regions(type);
765    return 0;
766}
767#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
768
769static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
770                    phys_addr_t align, phys_addr_t max_addr,
771                    int nid)
772{
773    phys_addr_t found;
774
775    if (WARN_ON(!align))
776        align = __alignof__(long long);
777
778    /* align @size to avoid excessive fragmentation on reserved array */
779    size = round_up(size, align);
780
781    found = memblock_find_in_range_node(0, max_addr, size, align, nid);
782    if (found && !memblock_reserve(found, size))
783        return found;
784
785    return 0;
786}
787
788phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
789{
790    return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
791}
792
793phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
794{
795    return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
796}
797
798phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
799{
800    phys_addr_t alloc;
801
802    alloc = __memblock_alloc_base(size, align, max_addr);
803
804    if (alloc == 0)
805        panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
806              (unsigned long long) size, (unsigned long long) max_addr);
807
808    return alloc;
809}
810
811phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
812{
813    return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
814}
815
816phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
817{
818    phys_addr_t res = memblock_alloc_nid(size, align, nid);
819
820    if (res)
821        return res;
822    return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
823}
824
825
826/*
827 * Remaining API functions
828 */
829
830phys_addr_t __init memblock_phys_mem_size(void)
831{
832    return memblock.memory.total_size;
833}
834
835phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
836{
837    unsigned long pages = 0;
838    struct memblock_region *r;
839    unsigned long start_pfn, end_pfn;
840
841    for_each_memblock(memory, r) {
842        start_pfn = memblock_region_memory_base_pfn(r);
843        end_pfn = memblock_region_memory_end_pfn(r);
844        start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
845        end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
846        pages += end_pfn - start_pfn;
847    }
848
849    return (phys_addr_t)pages << PAGE_SHIFT;
850}
851
852/* lowest address */
853phys_addr_t __init_memblock memblock_start_of_DRAM(void)
854{
855    return memblock.memory.regions[0].base;
856}
857
858phys_addr_t __init_memblock memblock_end_of_DRAM(void)
859{
860    int idx = memblock.memory.cnt - 1;
861
862    return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
863}
864
865void __init memblock_enforce_memory_limit(phys_addr_t limit)
866{
867    unsigned long i;
868    phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
869
870    if (!limit)
871        return;
872
873    /* find out max address */
874    for (i = 0; i < memblock.memory.cnt; i++) {
875        struct memblock_region *r = &memblock.memory.regions[i];
876
877        if (limit <= r->size) {
878            max_addr = r->base + limit;
879            break;
880        }
881        limit -= r->size;
882    }
883
884    /* truncate both memory and reserved regions */
885    __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
886    __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
887}
888
889static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
890{
891    unsigned int left = 0, right = type->cnt;
892
893    do {
894        unsigned int mid = (right + left) / 2;
895
896        if (addr < type->regions[mid].base)
897            right = mid;
898        else if (addr >= (type->regions[mid].base +
899                  type->regions[mid].size))
900            left = mid + 1;
901        else
902            return mid;
903    } while (left < right);
904    return -1;
905}
906
907int __init memblock_is_reserved(phys_addr_t addr)
908{
909    return memblock_search(&memblock.reserved, addr) != -1;
910}
911
912int __init_memblock memblock_is_memory(phys_addr_t addr)
913{
914    return memblock_search(&memblock.memory, addr) != -1;
915}
916
917#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
918int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
919             unsigned long *start_pfn, unsigned long *end_pfn)
920{
921    struct memblock_type *type = &memblock.memory;
922    int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
923
924    if (mid == -1)
925        return -1;
926
927    *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
928    *end_pfn = (type->regions[mid].base + type->regions[mid].size)
929            >> PAGE_SHIFT;
930
931    return type->regions[mid].nid;
932}
933#endif
934
935/**
936 * memblock_is_region_memory - check if a region is a subset of memory
937 * @base: base of region to check
938 * @size: size of region to check
939 *
940 * Check if the region [@base, @base+@size) is a subset of a memory block.
941 *
942 * RETURNS:
943 * 0 if false, non-zero if true
944 */
945int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
946{
947    int idx = memblock_search(&memblock.memory, base);
948    phys_addr_t end = base + memblock_cap_size(base, &size);
949
950    if (idx == -1)
951        return 0;
952    return memblock.memory.regions[idx].base <= base &&
953        (memblock.memory.regions[idx].base +
954         memblock.memory.regions[idx].size) >= end;
955}
956
957/**
958 * memblock_is_region_reserved - check if a region intersects reserved memory
959 * @base: base of region to check
960 * @size: size of region to check
961 *
962 * Check if the region [@base, @base+@size) intersects a reserved memory block.
963 *
964 * RETURNS:
965 * 0 if false, non-zero if true
966 */
967int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
968{
969    memblock_cap_size(base, &size);
970    return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
971}
972
973void __init_memblock memblock_trim_memory(phys_addr_t align)
974{
975    int i;
976    phys_addr_t start, end, orig_start, orig_end;
977    struct memblock_type *mem = &memblock.memory;
978
979    for (i = 0; i < mem->cnt; i++) {
980        orig_start = mem->regions[i].base;
981        orig_end = mem->regions[i].base + mem->regions[i].size;
982        start = round_up(orig_start, align);
983        end = round_down(orig_end, align);
984
985        if (start == orig_start && end == orig_end)
986            continue;
987
988        if (start < end) {
989            mem->regions[i].base = start;
990            mem->regions[i].size = end - start;
991        } else {
992            memblock_remove_region(mem, i);
993            i--;
994        }
995    }
996}
997
998void __init_memblock memblock_set_current_limit(phys_addr_t limit)
999{
1000    memblock.current_limit = limit;
1001}
1002
1003static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1004{
1005    unsigned long long base, size;
1006    int i;
1007
1008    pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1009
1010    for (i = 0; i < type->cnt; i++) {
1011        struct memblock_region *rgn = &type->regions[i];
1012        char nid_buf[32] = "";
1013
1014        base = rgn->base;
1015        size = rgn->size;
1016#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1017        if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1018            snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1019                 memblock_get_region_node(rgn));
1020#endif
1021        pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
1022            name, i, base, base + size - 1, size, nid_buf);
1023    }
1024}
1025
1026void __init_memblock __memblock_dump_all(void)
1027{
1028    pr_info("MEMBLOCK configuration:\n");
1029    pr_info(" memory size = %#llx reserved size = %#llx\n",
1030        (unsigned long long)memblock.memory.total_size,
1031        (unsigned long long)memblock.reserved.total_size);
1032
1033    memblock_dump(&memblock.memory, "memory");
1034    memblock_dump(&memblock.reserved, "reserved");
1035}
1036
1037void __init memblock_allow_resize(void)
1038{
1039    memblock_can_resize = 1;
1040}
1041
1042static int __init early_memblock(char *p)
1043{
1044    if (p && strstr(p, "debug"))
1045        memblock_debug = 1;
1046    return 0;
1047}
1048early_param("memblock", early_memblock);
1049
1050#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1051
1052static int memblock_debug_show(struct seq_file *m, void *private)
1053{
1054    struct memblock_type *type = m->private;
1055    struct memblock_region *reg;
1056    int i;
1057
1058    for (i = 0; i < type->cnt; i++) {
1059        reg = &type->regions[i];
1060        seq_printf(m, "%4d: ", i);
1061        if (sizeof(phys_addr_t) == 4)
1062            seq_printf(m, "0x%08lx..0x%08lx\n",
1063                   (unsigned long)reg->base,
1064                   (unsigned long)(reg->base + reg->size - 1));
1065        else
1066            seq_printf(m, "0x%016llx..0x%016llx\n",
1067                   (unsigned long long)reg->base,
1068                   (unsigned long long)(reg->base + reg->size - 1));
1069
1070    }
1071    return 0;
1072}
1073
1074static int memblock_debug_open(struct inode *inode, struct file *file)
1075{
1076    return single_open(file, memblock_debug_show, inode->i_private);
1077}
1078
1079static const struct file_operations memblock_debug_fops = {
1080    .open = memblock_debug_open,
1081    .read = seq_read,
1082    .llseek = seq_lseek,
1083    .release = single_release,
1084};
1085
1086static int __init memblock_init_debugfs(void)
1087{
1088    struct dentry *root = debugfs_create_dir("memblock", NULL);
1089    if (!root)
1090        return -ENXIO;
1091    debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1092    debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1093
1094    return 0;
1095}
1096__initcall(memblock_init_debugfs);
1097
1098#endif /* CONFIG_DEBUG_FS */
1099

Archive Download this file



interactive