Root/mm/memcontrol.c

1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/mm.h>
32#include <linux/hugetlb.h>
33#include <linux/pagemap.h>
34#include <linux/smp.h>
35#include <linux/page-flags.h>
36#include <linux/backing-dev.h>
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
39#include <linux/limits.h>
40#include <linux/export.h>
41#include <linux/mutex.h>
42#include <linux/rbtree.h>
43#include <linux/slab.h>
44#include <linux/swap.h>
45#include <linux/swapops.h>
46#include <linux/spinlock.h>
47#include <linux/eventfd.h>
48#include <linux/sort.h>
49#include <linux/fs.h>
50#include <linux/seq_file.h>
51#include <linux/vmalloc.h>
52#include <linux/vmpressure.h>
53#include <linux/mm_inline.h>
54#include <linux/page_cgroup.h>
55#include <linux/cpu.h>
56#include <linux/oom.h>
57#include <linux/lockdep.h>
58#include "internal.h"
59#include <net/sock.h>
60#include <net/ip.h>
61#include <net/tcp_memcontrol.h>
62
63#include <asm/uaccess.h>
64
65#include <trace/events/vmscan.h>
66
67struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68EXPORT_SYMBOL(mem_cgroup_subsys);
69
70#define MEM_CGROUP_RECLAIM_RETRIES 5
71static struct mem_cgroup *root_mem_cgroup __read_mostly;
72
73#ifdef CONFIG_MEMCG_SWAP
74/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
75int do_swap_account __read_mostly;
76
77/* for remember boot option*/
78#ifdef CONFIG_MEMCG_SWAP_ENABLED
79static int really_do_swap_account __initdata = 1;
80#else
81static int really_do_swap_account __initdata = 0;
82#endif
83
84#else
85#define do_swap_account 0
86#endif
87
88
89static const char * const mem_cgroup_stat_names[] = {
90    "cache",
91    "rss",
92    "rss_huge",
93    "mapped_file",
94    "writeback",
95    "swap",
96};
97
98enum mem_cgroup_events_index {
99    MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100    MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
101    MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102    MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
103    MEM_CGROUP_EVENTS_NSTATS,
104};
105
106static const char * const mem_cgroup_events_names[] = {
107    "pgpgin",
108    "pgpgout",
109    "pgfault",
110    "pgmajfault",
111};
112
113static const char * const mem_cgroup_lru_names[] = {
114    "inactive_anon",
115    "active_anon",
116    "inactive_file",
117    "active_file",
118    "unevictable",
119};
120
121/*
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
126 */
127enum mem_cgroup_events_target {
128    MEM_CGROUP_TARGET_THRESH,
129    MEM_CGROUP_TARGET_SOFTLIMIT,
130    MEM_CGROUP_TARGET_NUMAINFO,
131    MEM_CGROUP_NTARGETS,
132};
133#define THRESHOLDS_EVENTS_TARGET 128
134#define SOFTLIMIT_EVENTS_TARGET 1024
135#define NUMAINFO_EVENTS_TARGET 1024
136
137struct mem_cgroup_stat_cpu {
138    long count[MEM_CGROUP_STAT_NSTATS];
139    unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
140    unsigned long nr_page_events;
141    unsigned long targets[MEM_CGROUP_NTARGETS];
142};
143
144struct mem_cgroup_reclaim_iter {
145    /*
146     * last scanned hierarchy member. Valid only if last_dead_count
147     * matches memcg->dead_count of the hierarchy root group.
148     */
149    struct mem_cgroup *last_visited;
150    unsigned long last_dead_count;
151
152    /* scan generation, increased every round-trip */
153    unsigned int generation;
154};
155
156/*
157 * per-zone information in memory controller.
158 */
159struct mem_cgroup_per_zone {
160    struct lruvec lruvec;
161    unsigned long lru_size[NR_LRU_LISTS];
162
163    struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164
165    struct rb_node tree_node; /* RB tree node */
166    unsigned long long usage_in_excess;/* Set to the value by which */
167                        /* the soft limit is exceeded*/
168    bool on_tree;
169    struct mem_cgroup *memcg; /* Back pointer, we cannot */
170                        /* use container_of */
171};
172
173struct mem_cgroup_per_node {
174    struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
175};
176
177/*
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
180 */
181
182struct mem_cgroup_tree_per_zone {
183    struct rb_root rb_root;
184    spinlock_t lock;
185};
186
187struct mem_cgroup_tree_per_node {
188    struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
189};
190
191struct mem_cgroup_tree {
192    struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
193};
194
195static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196
197struct mem_cgroup_threshold {
198    struct eventfd_ctx *eventfd;
199    u64 threshold;
200};
201
202/* For threshold */
203struct mem_cgroup_threshold_ary {
204    /* An array index points to threshold just below or equal to usage. */
205    int current_threshold;
206    /* Size of entries[] */
207    unsigned int size;
208    /* Array of thresholds */
209    struct mem_cgroup_threshold entries[0];
210};
211
212struct mem_cgroup_thresholds {
213    /* Primary thresholds array */
214    struct mem_cgroup_threshold_ary *primary;
215    /*
216     * Spare threshold array.
217     * This is needed to make mem_cgroup_unregister_event() "never fail".
218     * It must be able to store at least primary->size - 1 entries.
219     */
220    struct mem_cgroup_threshold_ary *spare;
221};
222
223/* for OOM */
224struct mem_cgroup_eventfd_list {
225    struct list_head list;
226    struct eventfd_ctx *eventfd;
227};
228
229static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
231
232/*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 *
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
242 */
243struct mem_cgroup {
244    struct cgroup_subsys_state css;
245    /*
246     * the counter to account for memory usage
247     */
248    struct res_counter res;
249
250    /* vmpressure notifications */
251    struct vmpressure vmpressure;
252
253    /*
254     * the counter to account for mem+swap usage.
255     */
256    struct res_counter memsw;
257
258    /*
259     * the counter to account for kernel memory usage.
260     */
261    struct res_counter kmem;
262    /*
263     * Should the accounting and control be hierarchical, per subtree?
264     */
265    bool use_hierarchy;
266    unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
267
268    bool oom_lock;
269    atomic_t under_oom;
270    atomic_t oom_wakeups;
271
272    int swappiness;
273    /* OOM-Killer disable */
274    int oom_kill_disable;
275
276    /* set when res.limit == memsw.limit */
277    bool memsw_is_minimum;
278
279    /* protect arrays of thresholds */
280    struct mutex thresholds_lock;
281
282    /* thresholds for memory usage. RCU-protected */
283    struct mem_cgroup_thresholds thresholds;
284
285    /* thresholds for mem+swap usage. RCU-protected */
286    struct mem_cgroup_thresholds memsw_thresholds;
287
288    /* For oom notifier event fd */
289    struct list_head oom_notify;
290
291    /*
292     * Should we move charges of a task when a task is moved into this
293     * mem_cgroup ? And what type of charges should we move ?
294     */
295    unsigned long move_charge_at_immigrate;
296    /*
297     * set > 0 if pages under this cgroup are moving to other cgroup.
298     */
299    atomic_t moving_account;
300    /* taken only while moving_account > 0 */
301    spinlock_t move_lock;
302    /*
303     * percpu counter.
304     */
305    struct mem_cgroup_stat_cpu __percpu *stat;
306    /*
307     * used when a cpu is offlined or other synchronizations
308     * See mem_cgroup_read_stat().
309     */
310    struct mem_cgroup_stat_cpu nocpu_base;
311    spinlock_t pcp_counter_lock;
312
313    atomic_t dead_count;
314#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
315    struct tcp_memcontrol tcp_mem;
316#endif
317#if defined(CONFIG_MEMCG_KMEM)
318    /* analogous to slab_common's slab_caches list. per-memcg */
319    struct list_head memcg_slab_caches;
320    /* Not a spinlock, we can take a lot of time walking the list */
321    struct mutex slab_caches_mutex;
322        /* Index in the kmem_cache->memcg_params->memcg_caches array */
323    int kmemcg_id;
324#endif
325
326    int last_scanned_node;
327#if MAX_NUMNODES > 1
328    nodemask_t scan_nodes;
329    atomic_t numainfo_events;
330    atomic_t numainfo_updating;
331#endif
332
333    struct mem_cgroup_per_node *nodeinfo[0];
334    /* WARNING: nodeinfo must be the last member here */
335};
336
337static size_t memcg_size(void)
338{
339    return sizeof(struct mem_cgroup) +
340        nr_node_ids * sizeof(struct mem_cgroup_per_node);
341}
342
343/* internal only representation about the status of kmem accounting. */
344enum {
345    KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
346    KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
347    KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
348};
349
350/* We account when limit is on, but only after call sites are patched */
351#define KMEM_ACCOUNTED_MASK \
352        ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
353
354#ifdef CONFIG_MEMCG_KMEM
355static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356{
357    set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
358}
359
360static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361{
362    return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363}
364
365static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366{
367    set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
368}
369
370static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371{
372    clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373}
374
375static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
376{
377    /*
378     * Our caller must use css_get() first, because memcg_uncharge_kmem()
379     * will call css_put() if it sees the memcg is dead.
380     */
381    smp_wmb();
382    if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383        set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
384}
385
386static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387{
388    return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389                  &memcg->kmem_account_flags);
390}
391#endif
392
393/* Stuffs for move charges at task migration. */
394/*
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
397 */
398enum move_type {
399    MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
400    MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
401    NR_MOVE_TYPE,
402};
403
404/* "mc" and its members are protected by cgroup_mutex */
405static struct move_charge_struct {
406    spinlock_t lock; /* for from, to */
407    struct mem_cgroup *from;
408    struct mem_cgroup *to;
409    unsigned long immigrate_flags;
410    unsigned long precharge;
411    unsigned long moved_charge;
412    unsigned long moved_swap;
413    struct task_struct *moving_task; /* a task moving charges */
414    wait_queue_head_t waitq; /* a waitq for other context */
415} mc = {
416    .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
417    .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
418};
419
420static bool move_anon(void)
421{
422    return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
423}
424
425static bool move_file(void)
426{
427    return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
428}
429
430/*
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
433 */
434#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
435#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
436
437enum charge_type {
438    MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
439    MEM_CGROUP_CHARGE_TYPE_ANON,
440    MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
441    MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
442    NR_CHARGE_TYPE,
443};
444
445/* for encoding cft->private value on file */
446enum res_type {
447    _MEM,
448    _MEMSWAP,
449    _OOM_TYPE,
450    _KMEM,
451};
452
453#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
455#define MEMFILE_ATTR(val) ((val) & 0xffff)
456/* Used for OOM nofiier */
457#define OOM_CONTROL (0)
458
459/*
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 */
462#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
466
467/*
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
471 */
472static DEFINE_MUTEX(memcg_create_mutex);
473
474struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475{
476    return s ? container_of(s, struct mem_cgroup, css) : NULL;
477}
478
479/* Some nice accessors for the vmpressure. */
480struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481{
482    if (!memcg)
483        memcg = root_mem_cgroup;
484    return &memcg->vmpressure;
485}
486
487struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488{
489    return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
490}
491
492struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493{
494    return &mem_cgroup_from_css(css)->vmpressure;
495}
496
497static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498{
499    return (memcg == root_mem_cgroup);
500}
501
502/* Writing them here to avoid exposing memcg's inner layout */
503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
504
505void sock_update_memcg(struct sock *sk)
506{
507    if (mem_cgroup_sockets_enabled) {
508        struct mem_cgroup *memcg;
509        struct cg_proto *cg_proto;
510
511        BUG_ON(!sk->sk_prot->proto_cgroup);
512
513        /* Socket cloning can throw us here with sk_cgrp already
514         * filled. It won't however, necessarily happen from
515         * process context. So the test for root memcg given
516         * the current task's memcg won't help us in this case.
517         *
518         * Respecting the original socket's memcg is a better
519         * decision in this case.
520         */
521        if (sk->sk_cgrp) {
522            BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
523            css_get(&sk->sk_cgrp->memcg->css);
524            return;
525        }
526
527        rcu_read_lock();
528        memcg = mem_cgroup_from_task(current);
529        cg_proto = sk->sk_prot->proto_cgroup(memcg);
530        if (!mem_cgroup_is_root(memcg) &&
531            memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
532            sk->sk_cgrp = cg_proto;
533        }
534        rcu_read_unlock();
535    }
536}
537EXPORT_SYMBOL(sock_update_memcg);
538
539void sock_release_memcg(struct sock *sk)
540{
541    if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
542        struct mem_cgroup *memcg;
543        WARN_ON(!sk->sk_cgrp->memcg);
544        memcg = sk->sk_cgrp->memcg;
545        css_put(&sk->sk_cgrp->memcg->css);
546    }
547}
548
549struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
550{
551    if (!memcg || mem_cgroup_is_root(memcg))
552        return NULL;
553
554    return &memcg->tcp_mem.cg_proto;
555}
556EXPORT_SYMBOL(tcp_proto_cgroup);
557
558static void disarm_sock_keys(struct mem_cgroup *memcg)
559{
560    if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
561        return;
562    static_key_slow_dec(&memcg_socket_limit_enabled);
563}
564#else
565static void disarm_sock_keys(struct mem_cgroup *memcg)
566{
567}
568#endif
569
570#ifdef CONFIG_MEMCG_KMEM
571/*
572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573 * There are two main reasons for not using the css_id for this:
574 * 1) this works better in sparse environments, where we have a lot of memcgs,
575 * but only a few kmem-limited. Or also, if we have, for instance, 200
576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
577 * 200 entry array for that.
578 *
579 * 2) In order not to violate the cgroup API, we would like to do all memory
580 * allocation in ->create(). At that point, we haven't yet allocated the
581 * css_id. Having a separate index prevents us from messing with the cgroup
582 * core for this
583 *
584 * The current size of the caches array is stored in
585 * memcg_limited_groups_array_size. It will double each time we have to
586 * increase it.
587 */
588static DEFINE_IDA(kmem_limited_groups);
589int memcg_limited_groups_array_size;
590
591/*
592 * MIN_SIZE is different than 1, because we would like to avoid going through
593 * the alloc/free process all the time. In a small machine, 4 kmem-limited
594 * cgroups is a reasonable guess. In the future, it could be a parameter or
595 * tunable, but that is strictly not necessary.
596 *
597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598 * this constant directly from cgroup, but it is understandable that this is
599 * better kept as an internal representation in cgroup.c. In any case, the
600 * css_id space is not getting any smaller, and we don't have to necessarily
601 * increase ours as well if it increases.
602 */
603#define MEMCG_CACHES_MIN_SIZE 4
604#define MEMCG_CACHES_MAX_SIZE 65535
605
606/*
607 * A lot of the calls to the cache allocation functions are expected to be
608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609 * conditional to this static branch, we'll have to allow modules that does
610 * kmem_cache_alloc and the such to see this symbol as well
611 */
612struct static_key memcg_kmem_enabled_key;
613EXPORT_SYMBOL(memcg_kmem_enabled_key);
614
615static void disarm_kmem_keys(struct mem_cgroup *memcg)
616{
617    if (memcg_kmem_is_active(memcg)) {
618        static_key_slow_dec(&memcg_kmem_enabled_key);
619        ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
620    }
621    /*
622     * This check can't live in kmem destruction function,
623     * since the charges will outlive the cgroup
624     */
625    WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
626}
627#else
628static void disarm_kmem_keys(struct mem_cgroup *memcg)
629{
630}
631#endif /* CONFIG_MEMCG_KMEM */
632
633static void disarm_static_keys(struct mem_cgroup *memcg)
634{
635    disarm_sock_keys(memcg);
636    disarm_kmem_keys(memcg);
637}
638
639static void drain_all_stock_async(struct mem_cgroup *memcg);
640
641static struct mem_cgroup_per_zone *
642mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
643{
644    VM_BUG_ON((unsigned)nid >= nr_node_ids);
645    return &memcg->nodeinfo[nid]->zoneinfo[zid];
646}
647
648struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
649{
650    return &memcg->css;
651}
652
653static struct mem_cgroup_per_zone *
654page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
655{
656    int nid = page_to_nid(page);
657    int zid = page_zonenum(page);
658
659    return mem_cgroup_zoneinfo(memcg, nid, zid);
660}
661
662static struct mem_cgroup_tree_per_zone *
663soft_limit_tree_node_zone(int nid, int zid)
664{
665    return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666}
667
668static struct mem_cgroup_tree_per_zone *
669soft_limit_tree_from_page(struct page *page)
670{
671    int nid = page_to_nid(page);
672    int zid = page_zonenum(page);
673
674    return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675}
676
677static void
678__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
679                struct mem_cgroup_per_zone *mz,
680                struct mem_cgroup_tree_per_zone *mctz,
681                unsigned long long new_usage_in_excess)
682{
683    struct rb_node **p = &mctz->rb_root.rb_node;
684    struct rb_node *parent = NULL;
685    struct mem_cgroup_per_zone *mz_node;
686
687    if (mz->on_tree)
688        return;
689
690    mz->usage_in_excess = new_usage_in_excess;
691    if (!mz->usage_in_excess)
692        return;
693    while (*p) {
694        parent = *p;
695        mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
696                    tree_node);
697        if (mz->usage_in_excess < mz_node->usage_in_excess)
698            p = &(*p)->rb_left;
699        /*
700         * We can't avoid mem cgroups that are over their soft
701         * limit by the same amount
702         */
703        else if (mz->usage_in_excess >= mz_node->usage_in_excess)
704            p = &(*p)->rb_right;
705    }
706    rb_link_node(&mz->tree_node, parent, p);
707    rb_insert_color(&mz->tree_node, &mctz->rb_root);
708    mz->on_tree = true;
709}
710
711static void
712__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
713                struct mem_cgroup_per_zone *mz,
714                struct mem_cgroup_tree_per_zone *mctz)
715{
716    if (!mz->on_tree)
717        return;
718    rb_erase(&mz->tree_node, &mctz->rb_root);
719    mz->on_tree = false;
720}
721
722static void
723mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
724                struct mem_cgroup_per_zone *mz,
725                struct mem_cgroup_tree_per_zone *mctz)
726{
727    spin_lock(&mctz->lock);
728    __mem_cgroup_remove_exceeded(memcg, mz, mctz);
729    spin_unlock(&mctz->lock);
730}
731
732
733static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
734{
735    unsigned long long excess;
736    struct mem_cgroup_per_zone *mz;
737    struct mem_cgroup_tree_per_zone *mctz;
738    int nid = page_to_nid(page);
739    int zid = page_zonenum(page);
740    mctz = soft_limit_tree_from_page(page);
741
742    /*
743     * Necessary to update all ancestors when hierarchy is used.
744     * because their event counter is not touched.
745     */
746    for (; memcg; memcg = parent_mem_cgroup(memcg)) {
747        mz = mem_cgroup_zoneinfo(memcg, nid, zid);
748        excess = res_counter_soft_limit_excess(&memcg->res);
749        /*
750         * We have to update the tree if mz is on RB-tree or
751         * mem is over its softlimit.
752         */
753        if (excess || mz->on_tree) {
754            spin_lock(&mctz->lock);
755            /* if on-tree, remove it */
756            if (mz->on_tree)
757                __mem_cgroup_remove_exceeded(memcg, mz, mctz);
758            /*
759             * Insert again. mz->usage_in_excess will be updated.
760             * If excess is 0, no tree ops.
761             */
762            __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
763            spin_unlock(&mctz->lock);
764        }
765    }
766}
767
768static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
769{
770    int node, zone;
771    struct mem_cgroup_per_zone *mz;
772    struct mem_cgroup_tree_per_zone *mctz;
773
774    for_each_node(node) {
775        for (zone = 0; zone < MAX_NR_ZONES; zone++) {
776            mz = mem_cgroup_zoneinfo(memcg, node, zone);
777            mctz = soft_limit_tree_node_zone(node, zone);
778            mem_cgroup_remove_exceeded(memcg, mz, mctz);
779        }
780    }
781}
782
783static struct mem_cgroup_per_zone *
784__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
785{
786    struct rb_node *rightmost = NULL;
787    struct mem_cgroup_per_zone *mz;
788
789retry:
790    mz = NULL;
791    rightmost = rb_last(&mctz->rb_root);
792    if (!rightmost)
793        goto done; /* Nothing to reclaim from */
794
795    mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
796    /*
797     * Remove the node now but someone else can add it back,
798     * we will to add it back at the end of reclaim to its correct
799     * position in the tree.
800     */
801    __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
802    if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
803        !css_tryget(&mz->memcg->css))
804        goto retry;
805done:
806    return mz;
807}
808
809static struct mem_cgroup_per_zone *
810mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811{
812    struct mem_cgroup_per_zone *mz;
813
814    spin_lock(&mctz->lock);
815    mz = __mem_cgroup_largest_soft_limit_node(mctz);
816    spin_unlock(&mctz->lock);
817    return mz;
818}
819
820/*
821 * Implementation Note: reading percpu statistics for memcg.
822 *
823 * Both of vmstat[] and percpu_counter has threshold and do periodic
824 * synchronization to implement "quick" read. There are trade-off between
825 * reading cost and precision of value. Then, we may have a chance to implement
826 * a periodic synchronizion of counter in memcg's counter.
827 *
828 * But this _read() function is used for user interface now. The user accounts
829 * memory usage by memory cgroup and he _always_ requires exact value because
830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831 * have to visit all online cpus and make sum. So, for now, unnecessary
832 * synchronization is not implemented. (just implemented for cpu hotplug)
833 *
834 * If there are kernel internal actions which can make use of some not-exact
835 * value, and reading all cpu value can be performance bottleneck in some
836 * common workload, threashold and synchonization as vmstat[] should be
837 * implemented.
838 */
839static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
840                 enum mem_cgroup_stat_index idx)
841{
842    long val = 0;
843    int cpu;
844
845    get_online_cpus();
846    for_each_online_cpu(cpu)
847        val += per_cpu(memcg->stat->count[idx], cpu);
848#ifdef CONFIG_HOTPLUG_CPU
849    spin_lock(&memcg->pcp_counter_lock);
850    val += memcg->nocpu_base.count[idx];
851    spin_unlock(&memcg->pcp_counter_lock);
852#endif
853    put_online_cpus();
854    return val;
855}
856
857static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
858                     bool charge)
859{
860    int val = (charge) ? 1 : -1;
861    this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
862}
863
864static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
865                        enum mem_cgroup_events_index idx)
866{
867    unsigned long val = 0;
868    int cpu;
869
870    get_online_cpus();
871    for_each_online_cpu(cpu)
872        val += per_cpu(memcg->stat->events[idx], cpu);
873#ifdef CONFIG_HOTPLUG_CPU
874    spin_lock(&memcg->pcp_counter_lock);
875    val += memcg->nocpu_base.events[idx];
876    spin_unlock(&memcg->pcp_counter_lock);
877#endif
878    put_online_cpus();
879    return val;
880}
881
882static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
883                     struct page *page,
884                     bool anon, int nr_pages)
885{
886    preempt_disable();
887
888    /*
889     * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890     * counted as CACHE even if it's on ANON LRU.
891     */
892    if (anon)
893        __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
894                nr_pages);
895    else
896        __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
897                nr_pages);
898
899    if (PageTransHuge(page))
900        __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
901                nr_pages);
902
903    /* pagein of a big page is an event. So, ignore page size */
904    if (nr_pages > 0)
905        __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
906    else {
907        __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
908        nr_pages = -nr_pages; /* for event */
909    }
910
911    __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
912
913    preempt_enable();
914}
915
916unsigned long
917mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
918{
919    struct mem_cgroup_per_zone *mz;
920
921    mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
922    return mz->lru_size[lru];
923}
924
925static unsigned long
926mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
927            unsigned int lru_mask)
928{
929    struct mem_cgroup_per_zone *mz;
930    enum lru_list lru;
931    unsigned long ret = 0;
932
933    mz = mem_cgroup_zoneinfo(memcg, nid, zid);
934
935    for_each_lru(lru) {
936        if (BIT(lru) & lru_mask)
937            ret += mz->lru_size[lru];
938    }
939    return ret;
940}
941
942static unsigned long
943mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
944            int nid, unsigned int lru_mask)
945{
946    u64 total = 0;
947    int zid;
948
949    for (zid = 0; zid < MAX_NR_ZONES; zid++)
950        total += mem_cgroup_zone_nr_lru_pages(memcg,
951                        nid, zid, lru_mask);
952
953    return total;
954}
955
956static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
957            unsigned int lru_mask)
958{
959    int nid;
960    u64 total = 0;
961
962    for_each_node_state(nid, N_MEMORY)
963        total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
964    return total;
965}
966
967static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
968                       enum mem_cgroup_events_target target)
969{
970    unsigned long val, next;
971
972    val = __this_cpu_read(memcg->stat->nr_page_events);
973    next = __this_cpu_read(memcg->stat->targets[target]);
974    /* from time_after() in jiffies.h */
975    if ((long)next - (long)val < 0) {
976        switch (target) {
977        case MEM_CGROUP_TARGET_THRESH:
978            next = val + THRESHOLDS_EVENTS_TARGET;
979            break;
980        case MEM_CGROUP_TARGET_SOFTLIMIT:
981            next = val + SOFTLIMIT_EVENTS_TARGET;
982            break;
983        case MEM_CGROUP_TARGET_NUMAINFO:
984            next = val + NUMAINFO_EVENTS_TARGET;
985            break;
986        default:
987            break;
988        }
989        __this_cpu_write(memcg->stat->targets[target], next);
990        return true;
991    }
992    return false;
993}
994
995/*
996 * Check events in order.
997 *
998 */
999static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1000{
1001    preempt_disable();
1002    /* threshold event is triggered in finer grain than soft limit */
1003    if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004                        MEM_CGROUP_TARGET_THRESH))) {
1005        bool do_softlimit;
1006        bool do_numainfo __maybe_unused;
1007
1008        do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009                        MEM_CGROUP_TARGET_SOFTLIMIT);
1010#if MAX_NUMNODES > 1
1011        do_numainfo = mem_cgroup_event_ratelimit(memcg,
1012                        MEM_CGROUP_TARGET_NUMAINFO);
1013#endif
1014        preempt_enable();
1015
1016        mem_cgroup_threshold(memcg);
1017        if (unlikely(do_softlimit))
1018            mem_cgroup_update_tree(memcg, page);
1019#if MAX_NUMNODES > 1
1020        if (unlikely(do_numainfo))
1021            atomic_inc(&memcg->numainfo_events);
1022#endif
1023    } else
1024        preempt_enable();
1025}
1026
1027struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1028{
1029    /*
1030     * mm_update_next_owner() may clear mm->owner to NULL
1031     * if it races with swapoff, page migration, etc.
1032     * So this can be called with p == NULL.
1033     */
1034    if (unlikely(!p))
1035        return NULL;
1036
1037    return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1038}
1039
1040struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1041{
1042    struct mem_cgroup *memcg = NULL;
1043
1044    if (!mm)
1045        return NULL;
1046    /*
1047     * Because we have no locks, mm->owner's may be being moved to other
1048     * cgroup. We use css_tryget() here even if this looks
1049     * pessimistic (rather than adding locks here).
1050     */
1051    rcu_read_lock();
1052    do {
1053        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1054        if (unlikely(!memcg))
1055            break;
1056    } while (!css_tryget(&memcg->css));
1057    rcu_read_unlock();
1058    return memcg;
1059}
1060
1061/*
1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063 * ref. count) or NULL if the whole root's subtree has been visited.
1064 *
1065 * helper function to be used by mem_cgroup_iter
1066 */
1067static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1068        struct mem_cgroup *last_visited)
1069{
1070    struct cgroup_subsys_state *prev_css, *next_css;
1071
1072    prev_css = last_visited ? &last_visited->css : NULL;
1073skip_node:
1074    next_css = css_next_descendant_pre(prev_css, &root->css);
1075
1076    /*
1077     * Even if we found a group we have to make sure it is
1078     * alive. css && !memcg means that the groups should be
1079     * skipped and we should continue the tree walk.
1080     * last_visited css is safe to use because it is
1081     * protected by css_get and the tree walk is rcu safe.
1082     */
1083    if (next_css) {
1084        struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1085
1086        if (css_tryget(&mem->css))
1087            return mem;
1088        else {
1089            prev_css = next_css;
1090            goto skip_node;
1091        }
1092    }
1093
1094    return NULL;
1095}
1096
1097static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1098{
1099    /*
1100     * When a group in the hierarchy below root is destroyed, the
1101     * hierarchy iterator can no longer be trusted since it might
1102     * have pointed to the destroyed group. Invalidate it.
1103     */
1104    atomic_inc(&root->dead_count);
1105}
1106
1107static struct mem_cgroup *
1108mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1109             struct mem_cgroup *root,
1110             int *sequence)
1111{
1112    struct mem_cgroup *position = NULL;
1113    /*
1114     * A cgroup destruction happens in two stages: offlining and
1115     * release. They are separated by a RCU grace period.
1116     *
1117     * If the iterator is valid, we may still race with an
1118     * offlining. The RCU lock ensures the object won't be
1119     * released, tryget will fail if we lost the race.
1120     */
1121    *sequence = atomic_read(&root->dead_count);
1122    if (iter->last_dead_count == *sequence) {
1123        smp_rmb();
1124        position = iter->last_visited;
1125        if (position && !css_tryget(&position->css))
1126            position = NULL;
1127    }
1128    return position;
1129}
1130
1131static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1132                   struct mem_cgroup *last_visited,
1133                   struct mem_cgroup *new_position,
1134                   int sequence)
1135{
1136    if (last_visited)
1137        css_put(&last_visited->css);
1138    /*
1139     * We store the sequence count from the time @last_visited was
1140     * loaded successfully instead of rereading it here so that we
1141     * don't lose destruction events in between. We could have
1142     * raced with the destruction of @new_position after all.
1143     */
1144    iter->last_visited = new_position;
1145    smp_wmb();
1146    iter->last_dead_count = sequence;
1147}
1148
1149/**
1150 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1151 * @root: hierarchy root
1152 * @prev: previously returned memcg, NULL on first invocation
1153 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1154 *
1155 * Returns references to children of the hierarchy below @root, or
1156 * @root itself, or %NULL after a full round-trip.
1157 *
1158 * Caller must pass the return value in @prev on subsequent
1159 * invocations for reference counting, or use mem_cgroup_iter_break()
1160 * to cancel a hierarchy walk before the round-trip is complete.
1161 *
1162 * Reclaimers can specify a zone and a priority level in @reclaim to
1163 * divide up the memcgs in the hierarchy among all concurrent
1164 * reclaimers operating on the same zone and priority.
1165 */
1166struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1167                   struct mem_cgroup *prev,
1168                   struct mem_cgroup_reclaim_cookie *reclaim)
1169{
1170    struct mem_cgroup *memcg = NULL;
1171    struct mem_cgroup *last_visited = NULL;
1172
1173    if (mem_cgroup_disabled())
1174        return NULL;
1175
1176    if (!root)
1177        root = root_mem_cgroup;
1178
1179    if (prev && !reclaim)
1180        last_visited = prev;
1181
1182    if (!root->use_hierarchy && root != root_mem_cgroup) {
1183        if (prev)
1184            goto out_css_put;
1185        return root;
1186    }
1187
1188    rcu_read_lock();
1189    while (!memcg) {
1190        struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1191        int uninitialized_var(seq);
1192
1193        if (reclaim) {
1194            int nid = zone_to_nid(reclaim->zone);
1195            int zid = zone_idx(reclaim->zone);
1196            struct mem_cgroup_per_zone *mz;
1197
1198            mz = mem_cgroup_zoneinfo(root, nid, zid);
1199            iter = &mz->reclaim_iter[reclaim->priority];
1200            if (prev && reclaim->generation != iter->generation) {
1201                iter->last_visited = NULL;
1202                goto out_unlock;
1203            }
1204
1205            last_visited = mem_cgroup_iter_load(iter, root, &seq);
1206        }
1207
1208        memcg = __mem_cgroup_iter_next(root, last_visited);
1209
1210        if (reclaim) {
1211            mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1212
1213            if (!memcg)
1214                iter->generation++;
1215            else if (!prev && memcg)
1216                reclaim->generation = iter->generation;
1217        }
1218
1219        if (prev && !memcg)
1220            goto out_unlock;
1221    }
1222out_unlock:
1223    rcu_read_unlock();
1224out_css_put:
1225    if (prev && prev != root)
1226        css_put(&prev->css);
1227
1228    return memcg;
1229}
1230
1231/**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236void mem_cgroup_iter_break(struct mem_cgroup *root,
1237               struct mem_cgroup *prev)
1238{
1239    if (!root)
1240        root = root_mem_cgroup;
1241    if (prev && prev != root)
1242        css_put(&prev->css);
1243}
1244
1245/*
1246 * Iteration constructs for visiting all cgroups (under a tree). If
1247 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1248 * be used for reference counting.
1249 */
1250#define for_each_mem_cgroup_tree(iter, root) \
1251    for (iter = mem_cgroup_iter(root, NULL, NULL); \
1252         iter != NULL; \
1253         iter = mem_cgroup_iter(root, iter, NULL))
1254
1255#define for_each_mem_cgroup(iter) \
1256    for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1257         iter != NULL; \
1258         iter = mem_cgroup_iter(NULL, iter, NULL))
1259
1260void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1261{
1262    struct mem_cgroup *memcg;
1263
1264    rcu_read_lock();
1265    memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1266    if (unlikely(!memcg))
1267        goto out;
1268
1269    switch (idx) {
1270    case PGFAULT:
1271        this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1272        break;
1273    case PGMAJFAULT:
1274        this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1275        break;
1276    default:
1277        BUG();
1278    }
1279out:
1280    rcu_read_unlock();
1281}
1282EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1283
1284/**
1285 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1286 * @zone: zone of the wanted lruvec
1287 * @memcg: memcg of the wanted lruvec
1288 *
1289 * Returns the lru list vector holding pages for the given @zone and
1290 * @mem. This can be the global zone lruvec, if the memory controller
1291 * is disabled.
1292 */
1293struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1294                      struct mem_cgroup *memcg)
1295{
1296    struct mem_cgroup_per_zone *mz;
1297    struct lruvec *lruvec;
1298
1299    if (mem_cgroup_disabled()) {
1300        lruvec = &zone->lruvec;
1301        goto out;
1302    }
1303
1304    mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1305    lruvec = &mz->lruvec;
1306out:
1307    /*
1308     * Since a node can be onlined after the mem_cgroup was created,
1309     * we have to be prepared to initialize lruvec->zone here;
1310     * and if offlined then reonlined, we need to reinitialize it.
1311     */
1312    if (unlikely(lruvec->zone != zone))
1313        lruvec->zone = zone;
1314    return lruvec;
1315}
1316
1317/*
1318 * Following LRU functions are allowed to be used without PCG_LOCK.
1319 * Operations are called by routine of global LRU independently from memcg.
1320 * What we have to take care of here is validness of pc->mem_cgroup.
1321 *
1322 * Changes to pc->mem_cgroup happens when
1323 * 1. charge
1324 * 2. moving account
1325 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1326 * It is added to LRU before charge.
1327 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1328 * When moving account, the page is not on LRU. It's isolated.
1329 */
1330
1331/**
1332 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1333 * @page: the page
1334 * @zone: zone of the page
1335 */
1336struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1337{
1338    struct mem_cgroup_per_zone *mz;
1339    struct mem_cgroup *memcg;
1340    struct page_cgroup *pc;
1341    struct lruvec *lruvec;
1342
1343    if (mem_cgroup_disabled()) {
1344        lruvec = &zone->lruvec;
1345        goto out;
1346    }
1347
1348    pc = lookup_page_cgroup(page);
1349    memcg = pc->mem_cgroup;
1350
1351    /*
1352     * Surreptitiously switch any uncharged offlist page to root:
1353     * an uncharged page off lru does nothing to secure
1354     * its former mem_cgroup from sudden removal.
1355     *
1356     * Our caller holds lru_lock, and PageCgroupUsed is updated
1357     * under page_cgroup lock: between them, they make all uses
1358     * of pc->mem_cgroup safe.
1359     */
1360    if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1361        pc->mem_cgroup = memcg = root_mem_cgroup;
1362
1363    mz = page_cgroup_zoneinfo(memcg, page);
1364    lruvec = &mz->lruvec;
1365out:
1366    /*
1367     * Since a node can be onlined after the mem_cgroup was created,
1368     * we have to be prepared to initialize lruvec->zone here;
1369     * and if offlined then reonlined, we need to reinitialize it.
1370     */
1371    if (unlikely(lruvec->zone != zone))
1372        lruvec->zone = zone;
1373    return lruvec;
1374}
1375
1376/**
1377 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1378 * @lruvec: mem_cgroup per zone lru vector
1379 * @lru: index of lru list the page is sitting on
1380 * @nr_pages: positive when adding or negative when removing
1381 *
1382 * This function must be called when a page is added to or removed from an
1383 * lru list.
1384 */
1385void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1386                int nr_pages)
1387{
1388    struct mem_cgroup_per_zone *mz;
1389    unsigned long *lru_size;
1390
1391    if (mem_cgroup_disabled())
1392        return;
1393
1394    mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1395    lru_size = mz->lru_size + lru;
1396    *lru_size += nr_pages;
1397    VM_BUG_ON((long)(*lru_size) < 0);
1398}
1399
1400/*
1401 * Checks whether given mem is same or in the root_mem_cgroup's
1402 * hierarchy subtree
1403 */
1404bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1405                  struct mem_cgroup *memcg)
1406{
1407    if (root_memcg == memcg)
1408        return true;
1409    if (!root_memcg->use_hierarchy || !memcg)
1410        return false;
1411    return css_is_ancestor(&memcg->css, &root_memcg->css);
1412}
1413
1414static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415                       struct mem_cgroup *memcg)
1416{
1417    bool ret;
1418
1419    rcu_read_lock();
1420    ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1421    rcu_read_unlock();
1422    return ret;
1423}
1424
1425bool task_in_mem_cgroup(struct task_struct *task,
1426            const struct mem_cgroup *memcg)
1427{
1428    struct mem_cgroup *curr = NULL;
1429    struct task_struct *p;
1430    bool ret;
1431
1432    p = find_lock_task_mm(task);
1433    if (p) {
1434        curr = try_get_mem_cgroup_from_mm(p->mm);
1435        task_unlock(p);
1436    } else {
1437        /*
1438         * All threads may have already detached their mm's, but the oom
1439         * killer still needs to detect if they have already been oom
1440         * killed to prevent needlessly killing additional tasks.
1441         */
1442        rcu_read_lock();
1443        curr = mem_cgroup_from_task(task);
1444        if (curr)
1445            css_get(&curr->css);
1446        rcu_read_unlock();
1447    }
1448    if (!curr)
1449        return false;
1450    /*
1451     * We should check use_hierarchy of "memcg" not "curr". Because checking
1452     * use_hierarchy of "curr" here make this function true if hierarchy is
1453     * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1454     * hierarchy(even if use_hierarchy is disabled in "memcg").
1455     */
1456    ret = mem_cgroup_same_or_subtree(memcg, curr);
1457    css_put(&curr->css);
1458    return ret;
1459}
1460
1461int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1462{
1463    unsigned long inactive_ratio;
1464    unsigned long inactive;
1465    unsigned long active;
1466    unsigned long gb;
1467
1468    inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1469    active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1470
1471    gb = (inactive + active) >> (30 - PAGE_SHIFT);
1472    if (gb)
1473        inactive_ratio = int_sqrt(10 * gb);
1474    else
1475        inactive_ratio = 1;
1476
1477    return inactive * inactive_ratio < active;
1478}
1479
1480#define mem_cgroup_from_res_counter(counter, member) \
1481    container_of(counter, struct mem_cgroup, member)
1482
1483/**
1484 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1485 * @memcg: the memory cgroup
1486 *
1487 * Returns the maximum amount of memory @mem can be charged with, in
1488 * pages.
1489 */
1490static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1491{
1492    unsigned long long margin;
1493
1494    margin = res_counter_margin(&memcg->res);
1495    if (do_swap_account)
1496        margin = min(margin, res_counter_margin(&memcg->memsw));
1497    return margin >> PAGE_SHIFT;
1498}
1499
1500int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1501{
1502    /* root ? */
1503    if (!css_parent(&memcg->css))
1504        return vm_swappiness;
1505
1506    return memcg->swappiness;
1507}
1508
1509/*
1510 * memcg->moving_account is used for checking possibility that some thread is
1511 * calling move_account(). When a thread on CPU-A starts moving pages under
1512 * a memcg, other threads should check memcg->moving_account under
1513 * rcu_read_lock(), like this:
1514 *
1515 * CPU-A CPU-B
1516 * rcu_read_lock()
1517 * memcg->moving_account+1 if (memcg->mocing_account)
1518 * take heavy locks.
1519 * synchronize_rcu() update something.
1520 * rcu_read_unlock()
1521 * start move here.
1522 */
1523
1524/* for quick checking without looking up memcg */
1525atomic_t memcg_moving __read_mostly;
1526
1527static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1528{
1529    atomic_inc(&memcg_moving);
1530    atomic_inc(&memcg->moving_account);
1531    synchronize_rcu();
1532}
1533
1534static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1535{
1536    /*
1537     * Now, mem_cgroup_clear_mc() may call this function with NULL.
1538     * We check NULL in callee rather than caller.
1539     */
1540    if (memcg) {
1541        atomic_dec(&memcg_moving);
1542        atomic_dec(&memcg->moving_account);
1543    }
1544}
1545
1546/*
1547 * 2 routines for checking "mem" is under move_account() or not.
1548 *
1549 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1550 * is used for avoiding races in accounting. If true,
1551 * pc->mem_cgroup may be overwritten.
1552 *
1553 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1554 * under hierarchy of moving cgroups. This is for
1555 * waiting at hith-memory prressure caused by "move".
1556 */
1557
1558static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1559{
1560    VM_BUG_ON(!rcu_read_lock_held());
1561    return atomic_read(&memcg->moving_account) > 0;
1562}
1563
1564static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1565{
1566    struct mem_cgroup *from;
1567    struct mem_cgroup *to;
1568    bool ret = false;
1569    /*
1570     * Unlike task_move routines, we access mc.to, mc.from not under
1571     * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572     */
1573    spin_lock(&mc.lock);
1574    from = mc.from;
1575    to = mc.to;
1576    if (!from)
1577        goto unlock;
1578
1579    ret = mem_cgroup_same_or_subtree(memcg, from)
1580        || mem_cgroup_same_or_subtree(memcg, to);
1581unlock:
1582    spin_unlock(&mc.lock);
1583    return ret;
1584}
1585
1586static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1587{
1588    if (mc.moving_task && current != mc.moving_task) {
1589        if (mem_cgroup_under_move(memcg)) {
1590            DEFINE_WAIT(wait);
1591            prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1592            /* moving charge context might have finished. */
1593            if (mc.moving_task)
1594                schedule();
1595            finish_wait(&mc.waitq, &wait);
1596            return true;
1597        }
1598    }
1599    return false;
1600}
1601
1602/*
1603 * Take this lock when
1604 * - a code tries to modify page's memcg while it's USED.
1605 * - a code tries to modify page state accounting in a memcg.
1606 * see mem_cgroup_stolen(), too.
1607 */
1608static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1609                  unsigned long *flags)
1610{
1611    spin_lock_irqsave(&memcg->move_lock, *flags);
1612}
1613
1614static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1615                unsigned long *flags)
1616{
1617    spin_unlock_irqrestore(&memcg->move_lock, *flags);
1618}
1619
1620#define K(x) ((x) << (PAGE_SHIFT-10))
1621/**
1622 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1623 * @memcg: The memory cgroup that went over limit
1624 * @p: Task that is going to be killed
1625 *
1626 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627 * enabled
1628 */
1629void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1630{
1631    struct cgroup *task_cgrp;
1632    struct cgroup *mem_cgrp;
1633    /*
1634     * Need a buffer in BSS, can't rely on allocations. The code relies
1635     * on the assumption that OOM is serialized for memory controller.
1636     * If this assumption is broken, revisit this code.
1637     */
1638    static char memcg_name[PATH_MAX];
1639    int ret;
1640    struct mem_cgroup *iter;
1641    unsigned int i;
1642
1643    if (!p)
1644        return;
1645
1646    rcu_read_lock();
1647
1648    mem_cgrp = memcg->css.cgroup;
1649    task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1650
1651    ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1652    if (ret < 0) {
1653        /*
1654         * Unfortunately, we are unable to convert to a useful name
1655         * But we'll still print out the usage information
1656         */
1657        rcu_read_unlock();
1658        goto done;
1659    }
1660    rcu_read_unlock();
1661
1662    pr_info("Task in %s killed", memcg_name);
1663
1664    rcu_read_lock();
1665    ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1666    if (ret < 0) {
1667        rcu_read_unlock();
1668        goto done;
1669    }
1670    rcu_read_unlock();
1671
1672    /*
1673     * Continues from above, so we don't need an KERN_ level
1674     */
1675    pr_cont(" as a result of limit of %s\n", memcg_name);
1676done:
1677
1678    pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1679        res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1680        res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1681        res_counter_read_u64(&memcg->res, RES_FAILCNT));
1682    pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1683        res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1684        res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1685        res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1686    pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1687        res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1688        res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1689        res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1690
1691    for_each_mem_cgroup_tree(iter, memcg) {
1692        pr_info("Memory cgroup stats");
1693
1694        rcu_read_lock();
1695        ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1696        if (!ret)
1697            pr_cont(" for %s", memcg_name);
1698        rcu_read_unlock();
1699        pr_cont(":");
1700
1701        for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1702            if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1703                continue;
1704            pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1705                K(mem_cgroup_read_stat(iter, i)));
1706        }
1707
1708        for (i = 0; i < NR_LRU_LISTS; i++)
1709            pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1710                K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1711
1712        pr_cont("\n");
1713    }
1714}
1715
1716/*
1717 * This function returns the number of memcg under hierarchy tree. Returns
1718 * 1(self count) if no children.
1719 */
1720static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1721{
1722    int num = 0;
1723    struct mem_cgroup *iter;
1724
1725    for_each_mem_cgroup_tree(iter, memcg)
1726        num++;
1727    return num;
1728}
1729
1730/*
1731 * Return the memory (and swap, if configured) limit for a memcg.
1732 */
1733static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1734{
1735    u64 limit;
1736
1737    limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1738
1739    /*
1740     * Do not consider swap space if we cannot swap due to swappiness
1741     */
1742    if (mem_cgroup_swappiness(memcg)) {
1743        u64 memsw;
1744
1745        limit += total_swap_pages << PAGE_SHIFT;
1746        memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1747
1748        /*
1749         * If memsw is finite and limits the amount of swap space
1750         * available to this memcg, return that limit.
1751         */
1752        limit = min(limit, memsw);
1753    }
1754
1755    return limit;
1756}
1757
1758static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1759                     int order)
1760{
1761    struct mem_cgroup *iter;
1762    unsigned long chosen_points = 0;
1763    unsigned long totalpages;
1764    unsigned int points = 0;
1765    struct task_struct *chosen = NULL;
1766
1767    /*
1768     * If current has a pending SIGKILL or is exiting, then automatically
1769     * select it. The goal is to allow it to allocate so that it may
1770     * quickly exit and free its memory.
1771     */
1772    if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1773        set_thread_flag(TIF_MEMDIE);
1774        return;
1775    }
1776
1777    check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1778    totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1779    for_each_mem_cgroup_tree(iter, memcg) {
1780        struct css_task_iter it;
1781        struct task_struct *task;
1782
1783        css_task_iter_start(&iter->css, &it);
1784        while ((task = css_task_iter_next(&it))) {
1785            switch (oom_scan_process_thread(task, totalpages, NULL,
1786                            false)) {
1787            case OOM_SCAN_SELECT:
1788                if (chosen)
1789                    put_task_struct(chosen);
1790                chosen = task;
1791                chosen_points = ULONG_MAX;
1792                get_task_struct(chosen);
1793                /* fall through */
1794            case OOM_SCAN_CONTINUE:
1795                continue;
1796            case OOM_SCAN_ABORT:
1797                css_task_iter_end(&it);
1798                mem_cgroup_iter_break(memcg, iter);
1799                if (chosen)
1800                    put_task_struct(chosen);
1801                return;
1802            case OOM_SCAN_OK:
1803                break;
1804            };
1805            points = oom_badness(task, memcg, NULL, totalpages);
1806            if (points > chosen_points) {
1807                if (chosen)
1808                    put_task_struct(chosen);
1809                chosen = task;
1810                chosen_points = points;
1811                get_task_struct(chosen);
1812            }
1813        }
1814        css_task_iter_end(&it);
1815    }
1816
1817    if (!chosen)
1818        return;
1819    points = chosen_points * 1000 / totalpages;
1820    oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821             NULL, "Memory cgroup out of memory");
1822}
1823
1824static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825                    gfp_t gfp_mask,
1826                    unsigned long flags)
1827{
1828    unsigned long total = 0;
1829    bool noswap = false;
1830    int loop;
1831
1832    if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833        noswap = true;
1834    if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835        noswap = true;
1836
1837    for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838        if (loop)
1839            drain_all_stock_async(memcg);
1840        total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841        /*
1842         * Allow limit shrinkers, which are triggered directly
1843         * by userspace, to catch signals and stop reclaim
1844         * after minimal progress, regardless of the margin.
1845         */
1846        if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847            break;
1848        if (mem_cgroup_margin(memcg))
1849            break;
1850        /*
1851         * If nothing was reclaimed after two attempts, there
1852         * may be no reclaimable pages in this hierarchy.
1853         */
1854        if (loop && !total)
1855            break;
1856    }
1857    return total;
1858}
1859
1860/**
1861 * test_mem_cgroup_node_reclaimable
1862 * @memcg: the target memcg
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
1870static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871        int nid, bool noswap)
1872{
1873    if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874        return true;
1875    if (noswap || !total_swap_pages)
1876        return false;
1877    if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878        return true;
1879    return false;
1880
1881}
1882#if MAX_NUMNODES > 1
1883
1884/*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
1890static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891{
1892    int nid;
1893    /*
1894     * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895     * pagein/pageout changes since the last update.
1896     */
1897    if (!atomic_read(&memcg->numainfo_events))
1898        return;
1899    if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900        return;
1901
1902    /* make a nodemask where this memcg uses memory from */
1903    memcg->scan_nodes = node_states[N_MEMORY];
1904
1905    for_each_node_mask(nid, node_states[N_MEMORY]) {
1906
1907        if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908            node_clear(nid, memcg->scan_nodes);
1909    }
1910
1911    atomic_set(&memcg->numainfo_events, 0);
1912    atomic_set(&memcg->numainfo_updating, 0);
1913}
1914
1915/*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
1927int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928{
1929    int node;
1930
1931    mem_cgroup_may_update_nodemask(memcg);
1932    node = memcg->last_scanned_node;
1933
1934    node = next_node(node, memcg->scan_nodes);
1935    if (node == MAX_NUMNODES)
1936        node = first_node(memcg->scan_nodes);
1937    /*
1938     * We call this when we hit limit, not when pages are added to LRU.
1939     * No LRU may hold pages because all pages are UNEVICTABLE or
1940     * memcg is too small and all pages are not on LRU. In that case,
1941     * we use curret node.
1942     */
1943    if (unlikely(node == MAX_NUMNODES))
1944        node = numa_node_id();
1945
1946    memcg->last_scanned_node = node;
1947    return node;
1948}
1949
1950/*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
1956static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957{
1958    int nid;
1959
1960    /*
1961     * quick check...making use of scan_node.
1962     * We can skip unused nodes.
1963     */
1964    if (!nodes_empty(memcg->scan_nodes)) {
1965        for (nid = first_node(memcg->scan_nodes);
1966             nid < MAX_NUMNODES;
1967             nid = next_node(nid, memcg->scan_nodes)) {
1968
1969            if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970                return true;
1971        }
1972    }
1973    /*
1974     * Check rest of nodes.
1975     */
1976    for_each_node_state(nid, N_MEMORY) {
1977        if (node_isset(nid, memcg->scan_nodes))
1978            continue;
1979        if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980            return true;
1981    }
1982    return false;
1983}
1984
1985#else
1986int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987{
1988    return 0;
1989}
1990
1991static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992{
1993    return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994}
1995#endif
1996
1997static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998                   struct zone *zone,
1999                   gfp_t gfp_mask,
2000                   unsigned long *total_scanned)
2001{
2002    struct mem_cgroup *victim = NULL;
2003    int total = 0;
2004    int loop = 0;
2005    unsigned long excess;
2006    unsigned long nr_scanned;
2007    struct mem_cgroup_reclaim_cookie reclaim = {
2008        .zone = zone,
2009        .priority = 0,
2010    };
2011
2012    excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013
2014    while (1) {
2015        victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016        if (!victim) {
2017            loop++;
2018            if (loop >= 2) {
2019                /*
2020                 * If we have not been able to reclaim
2021                 * anything, it might because there are
2022                 * no reclaimable pages under this hierarchy
2023                 */
2024                if (!total)
2025                    break;
2026                /*
2027                 * We want to do more targeted reclaim.
2028                 * excess >> 2 is not to excessive so as to
2029                 * reclaim too much, nor too less that we keep
2030                 * coming back to reclaim from this cgroup
2031                 */
2032                if (total >= (excess >> 2) ||
2033                    (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034                    break;
2035            }
2036            continue;
2037        }
2038        if (!mem_cgroup_reclaimable(victim, false))
2039            continue;
2040        total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041                             zone, &nr_scanned);
2042        *total_scanned += nr_scanned;
2043        if (!res_counter_soft_limit_excess(&root_memcg->res))
2044            break;
2045    }
2046    mem_cgroup_iter_break(root_memcg, victim);
2047    return total;
2048}
2049
2050#ifdef CONFIG_LOCKDEP
2051static struct lockdep_map memcg_oom_lock_dep_map = {
2052    .name = "memcg_oom_lock",
2053};
2054#endif
2055
2056static DEFINE_SPINLOCK(memcg_oom_lock);
2057
2058/*
2059 * Check OOM-Killer is already running under our hierarchy.
2060 * If someone is running, return false.
2061 */
2062static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2063{
2064    struct mem_cgroup *iter, *failed = NULL;
2065
2066    spin_lock(&memcg_oom_lock);
2067
2068    for_each_mem_cgroup_tree(iter, memcg) {
2069        if (iter->oom_lock) {
2070            /*
2071             * this subtree of our hierarchy is already locked
2072             * so we cannot give a lock.
2073             */
2074            failed = iter;
2075            mem_cgroup_iter_break(memcg, iter);
2076            break;
2077        } else
2078            iter->oom_lock = true;
2079    }
2080
2081    if (failed) {
2082        /*
2083         * OK, we failed to lock the whole subtree so we have
2084         * to clean up what we set up to the failing subtree
2085         */
2086        for_each_mem_cgroup_tree(iter, memcg) {
2087            if (iter == failed) {
2088                mem_cgroup_iter_break(memcg, iter);
2089                break;
2090            }
2091            iter->oom_lock = false;
2092        }
2093    } else
2094        mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2095
2096    spin_unlock(&memcg_oom_lock);
2097
2098    return !failed;
2099}
2100
2101static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2102{
2103    struct mem_cgroup *iter;
2104
2105    spin_lock(&memcg_oom_lock);
2106    mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2107    for_each_mem_cgroup_tree(iter, memcg)
2108        iter->oom_lock = false;
2109    spin_unlock(&memcg_oom_lock);
2110}
2111
2112static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2113{
2114    struct mem_cgroup *iter;
2115
2116    for_each_mem_cgroup_tree(iter, memcg)
2117        atomic_inc(&iter->under_oom);
2118}
2119
2120static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2121{
2122    struct mem_cgroup *iter;
2123
2124    /*
2125     * When a new child is created while the hierarchy is under oom,
2126     * mem_cgroup_oom_lock() may not be called. We have to use
2127     * atomic_add_unless() here.
2128     */
2129    for_each_mem_cgroup_tree(iter, memcg)
2130        atomic_add_unless(&iter->under_oom, -1, 0);
2131}
2132
2133static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134
2135struct oom_wait_info {
2136    struct mem_cgroup *memcg;
2137    wait_queue_t wait;
2138};
2139
2140static int memcg_oom_wake_function(wait_queue_t *wait,
2141    unsigned mode, int sync, void *arg)
2142{
2143    struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144    struct mem_cgroup *oom_wait_memcg;
2145    struct oom_wait_info *oom_wait_info;
2146
2147    oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2148    oom_wait_memcg = oom_wait_info->memcg;
2149
2150    /*
2151     * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2152     * Then we can use css_is_ancestor without taking care of RCU.
2153     */
2154    if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155        && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2156        return 0;
2157    return autoremove_wake_function(wait, mode, sync, arg);
2158}
2159
2160static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2161{
2162    atomic_inc(&memcg->oom_wakeups);
2163    /* for filtering, pass "memcg" as argument. */
2164    __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2165}
2166
2167static void memcg_oom_recover(struct mem_cgroup *memcg)
2168{
2169    if (memcg && atomic_read(&memcg->under_oom))
2170        memcg_wakeup_oom(memcg);
2171}
2172
2173static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2174{
2175    if (!current->memcg_oom.may_oom)
2176        return;
2177    /*
2178     * We are in the middle of the charge context here, so we
2179     * don't want to block when potentially sitting on a callstack
2180     * that holds all kinds of filesystem and mm locks.
2181     *
2182     * Also, the caller may handle a failed allocation gracefully
2183     * (like optional page cache readahead) and so an OOM killer
2184     * invocation might not even be necessary.
2185     *
2186     * That's why we don't do anything here except remember the
2187     * OOM context and then deal with it at the end of the page
2188     * fault when the stack is unwound, the locks are released,
2189     * and when we know whether the fault was overall successful.
2190     */
2191    css_get(&memcg->css);
2192    current->memcg_oom.memcg = memcg;
2193    current->memcg_oom.gfp_mask = mask;
2194    current->memcg_oom.order = order;
2195}
2196
2197/**
2198 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2199 * @handle: actually kill/wait or just clean up the OOM state
2200 *
2201 * This has to be called at the end of a page fault if the memcg OOM
2202 * handler was enabled.
2203 *
2204 * Memcg supports userspace OOM handling where failed allocations must
2205 * sleep on a waitqueue until the userspace task resolves the
2206 * situation. Sleeping directly in the charge context with all kinds
2207 * of locks held is not a good idea, instead we remember an OOM state
2208 * in the task and mem_cgroup_oom_synchronize() has to be called at
2209 * the end of the page fault to complete the OOM handling.
2210 *
2211 * Returns %true if an ongoing memcg OOM situation was detected and
2212 * completed, %false otherwise.
2213 */
2214bool mem_cgroup_oom_synchronize(bool handle)
2215{
2216    struct mem_cgroup *memcg = current->memcg_oom.memcg;
2217    struct oom_wait_info owait;
2218    bool locked;
2219
2220    /* OOM is global, do not handle */
2221    if (!memcg)
2222        return false;
2223
2224    if (!handle)
2225        goto cleanup;
2226
2227    owait.memcg = memcg;
2228    owait.wait.flags = 0;
2229    owait.wait.func = memcg_oom_wake_function;
2230    owait.wait.private = current;
2231    INIT_LIST_HEAD(&owait.wait.task_list);
2232
2233    prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2234    mem_cgroup_mark_under_oom(memcg);
2235
2236    locked = mem_cgroup_oom_trylock(memcg);
2237
2238    if (locked)
2239        mem_cgroup_oom_notify(memcg);
2240
2241    if (locked && !memcg->oom_kill_disable) {
2242        mem_cgroup_unmark_under_oom(memcg);
2243        finish_wait(&memcg_oom_waitq, &owait.wait);
2244        mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2245                     current->memcg_oom.order);
2246    } else {
2247        schedule();
2248        mem_cgroup_unmark_under_oom(memcg);
2249        finish_wait(&memcg_oom_waitq, &owait.wait);
2250    }
2251
2252    if (locked) {
2253        mem_cgroup_oom_unlock(memcg);
2254        /*
2255         * There is no guarantee that an OOM-lock contender
2256         * sees the wakeups triggered by the OOM kill
2257         * uncharges. Wake any sleepers explicitely.
2258         */
2259        memcg_oom_recover(memcg);
2260    }
2261cleanup:
2262    current->memcg_oom.memcg = NULL;
2263    css_put(&memcg->css);
2264    return true;
2265}
2266
2267/*
2268 * Currently used to update mapped file statistics, but the routine can be
2269 * generalized to update other statistics as well.
2270 *
2271 * Notes: Race condition
2272 *
2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274 * it tends to be costly. But considering some conditions, we doesn't need
2275 * to do so _always_.
2276 *
2277 * Considering "charge", lock_page_cgroup() is not required because all
2278 * file-stat operations happen after a page is attached to radix-tree. There
2279 * are no race with "charge".
2280 *
2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283 * if there are race with "uncharge". Statistics itself is properly handled
2284 * by flags.
2285 *
2286 * Considering "move", this is an only case we see a race. To make the race
2287 * small, we check mm->moving_account and detect there are possibility of race
2288 * If there is, we take a lock.
2289 */
2290
2291void __mem_cgroup_begin_update_page_stat(struct page *page,
2292                bool *locked, unsigned long *flags)
2293{
2294    struct mem_cgroup *memcg;
2295    struct page_cgroup *pc;
2296
2297    pc = lookup_page_cgroup(page);
2298again:
2299    memcg = pc->mem_cgroup;
2300    if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301        return;
2302    /*
2303     * If this memory cgroup is not under account moving, we don't
2304     * need to take move_lock_mem_cgroup(). Because we already hold
2305     * rcu_read_lock(), any calls to move_account will be delayed until
2306     * rcu_read_unlock() if mem_cgroup_stolen() == true.
2307     */
2308    if (!mem_cgroup_stolen(memcg))
2309        return;
2310
2311    move_lock_mem_cgroup(memcg, flags);
2312    if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313        move_unlock_mem_cgroup(memcg, flags);
2314        goto again;
2315    }
2316    *locked = true;
2317}
2318
2319void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320{
2321    struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323    /*
2324     * It's guaranteed that pc->mem_cgroup never changes while
2325     * lock is held because a routine modifies pc->mem_cgroup
2326     * should take move_lock_mem_cgroup().
2327     */
2328    move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329}
2330
2331void mem_cgroup_update_page_stat(struct page *page,
2332                 enum mem_cgroup_stat_index idx, int val)
2333{
2334    struct mem_cgroup *memcg;
2335    struct page_cgroup *pc = lookup_page_cgroup(page);
2336    unsigned long uninitialized_var(flags);
2337
2338    if (mem_cgroup_disabled())
2339        return;
2340
2341    VM_BUG_ON(!rcu_read_lock_held());
2342    memcg = pc->mem_cgroup;
2343    if (unlikely(!memcg || !PageCgroupUsed(pc)))
2344        return;
2345
2346    this_cpu_add(memcg->stat->count[idx], val);
2347}
2348
2349/*
2350 * size of first charge trial. "32" comes from vmscan.c's magic value.
2351 * TODO: maybe necessary to use big numbers in big irons.
2352 */
2353#define CHARGE_BATCH 32U
2354struct memcg_stock_pcp {
2355    struct mem_cgroup *cached; /* this never be root cgroup */
2356    unsigned int nr_pages;
2357    struct work_struct work;
2358    unsigned long flags;
2359#define FLUSHING_CACHED_CHARGE 0
2360};
2361static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2362static DEFINE_MUTEX(percpu_charge_mutex);
2363
2364/**
2365 * consume_stock: Try to consume stocked charge on this cpu.
2366 * @memcg: memcg to consume from.
2367 * @nr_pages: how many pages to charge.
2368 *
2369 * The charges will only happen if @memcg matches the current cpu's memcg
2370 * stock, and at least @nr_pages are available in that stock. Failure to
2371 * service an allocation will refill the stock.
2372 *
2373 * returns true if successful, false otherwise.
2374 */
2375static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2376{
2377    struct memcg_stock_pcp *stock;
2378    bool ret = true;
2379
2380    if (nr_pages > CHARGE_BATCH)
2381        return false;
2382
2383    stock = &get_cpu_var(memcg_stock);
2384    if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385        stock->nr_pages -= nr_pages;
2386    else /* need to call res_counter_charge */
2387        ret = false;
2388    put_cpu_var(memcg_stock);
2389    return ret;
2390}
2391
2392/*
2393 * Returns stocks cached in percpu to res_counter and reset cached information.
2394 */
2395static void drain_stock(struct memcg_stock_pcp *stock)
2396{
2397    struct mem_cgroup *old = stock->cached;
2398
2399    if (stock->nr_pages) {
2400        unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401
2402        res_counter_uncharge(&old->res, bytes);
2403        if (do_swap_account)
2404            res_counter_uncharge(&old->memsw, bytes);
2405        stock->nr_pages = 0;
2406    }
2407    stock->cached = NULL;
2408}
2409
2410/*
2411 * This must be called under preempt disabled or must be called by
2412 * a thread which is pinned to local cpu.
2413 */
2414static void drain_local_stock(struct work_struct *dummy)
2415{
2416    struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2417    drain_stock(stock);
2418    clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2419}
2420
2421static void __init memcg_stock_init(void)
2422{
2423    int cpu;
2424
2425    for_each_possible_cpu(cpu) {
2426        struct memcg_stock_pcp *stock =
2427                    &per_cpu(memcg_stock, cpu);
2428        INIT_WORK(&stock->work, drain_local_stock);
2429    }
2430}
2431
2432/*
2433 * Cache charges(val) which is from res_counter, to local per_cpu area.
2434 * This will be consumed by consume_stock() function, later.
2435 */
2436static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2437{
2438    struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439
2440    if (stock->cached != memcg) { /* reset if necessary */
2441        drain_stock(stock);
2442        stock->cached = memcg;
2443    }
2444    stock->nr_pages += nr_pages;
2445    put_cpu_var(memcg_stock);
2446}
2447
2448/*
2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2450 * of the hierarchy under it. sync flag says whether we should block
2451 * until the work is done.
2452 */
2453static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2454{
2455    int cpu, curcpu;
2456
2457    /* Notify other cpus that system-wide "drain" is running */
2458    get_online_cpus();
2459    curcpu = get_cpu();
2460    for_each_online_cpu(cpu) {
2461        struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2462        struct mem_cgroup *memcg;
2463
2464        memcg = stock->cached;
2465        if (!memcg || !stock->nr_pages)
2466            continue;
2467        if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2468            continue;
2469        if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470            if (cpu == curcpu)
2471                drain_local_stock(&stock->work);
2472            else
2473                schedule_work_on(cpu, &stock->work);
2474        }
2475    }
2476    put_cpu();
2477
2478    if (!sync)
2479        goto out;
2480
2481    for_each_online_cpu(cpu) {
2482        struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2483        if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2484            flush_work(&stock->work);
2485    }
2486out:
2487    put_online_cpus();
2488}
2489
2490/*
2491 * Tries to drain stocked charges in other cpus. This function is asynchronous
2492 * and just put a work per cpu for draining localy on each cpu. Caller can
2493 * expects some charges will be back to res_counter later but cannot wait for
2494 * it.
2495 */
2496static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2497{
2498    /*
2499     * If someone calls draining, avoid adding more kworker runs.
2500     */
2501    if (!mutex_trylock(&percpu_charge_mutex))
2502        return;
2503    drain_all_stock(root_memcg, false);
2504    mutex_unlock(&percpu_charge_mutex);
2505}
2506
2507/* This is a synchronous drain interface. */
2508static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2509{
2510    /* called when force_empty is called */
2511    mutex_lock(&percpu_charge_mutex);
2512    drain_all_stock(root_memcg, true);
2513    mutex_unlock(&percpu_charge_mutex);
2514}
2515
2516/*
2517 * This function drains percpu counter value from DEAD cpu and
2518 * move it to local cpu. Note that this function can be preempted.
2519 */
2520static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2521{
2522    int i;
2523
2524    spin_lock(&memcg->pcp_counter_lock);
2525    for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2526        long x = per_cpu(memcg->stat->count[i], cpu);
2527
2528        per_cpu(memcg->stat->count[i], cpu) = 0;
2529        memcg->nocpu_base.count[i] += x;
2530    }
2531    for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2532        unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2533
2534        per_cpu(memcg->stat->events[i], cpu) = 0;
2535        memcg->nocpu_base.events[i] += x;
2536    }
2537    spin_unlock(&memcg->pcp_counter_lock);
2538}
2539
2540static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2541                    unsigned long action,
2542                    void *hcpu)
2543{
2544    int cpu = (unsigned long)hcpu;
2545    struct memcg_stock_pcp *stock;
2546    struct mem_cgroup *iter;
2547
2548    if (action == CPU_ONLINE)
2549        return NOTIFY_OK;
2550
2551    if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2552        return NOTIFY_OK;
2553
2554    for_each_mem_cgroup(iter)
2555        mem_cgroup_drain_pcp_counter(iter, cpu);
2556
2557    stock = &per_cpu(memcg_stock, cpu);
2558    drain_stock(stock);
2559    return NOTIFY_OK;
2560}
2561
2562
2563/* See __mem_cgroup_try_charge() for details */
2564enum {
2565    CHARGE_OK, /* success */
2566    CHARGE_RETRY, /* need to retry but retry is not bad */
2567    CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2568    CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2569};
2570
2571static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2572                unsigned int nr_pages, unsigned int min_pages,
2573                bool invoke_oom)
2574{
2575    unsigned long csize = nr_pages * PAGE_SIZE;
2576    struct mem_cgroup *mem_over_limit;
2577    struct res_counter *fail_res;
2578    unsigned long flags = 0;
2579    int ret;
2580
2581    ret = res_counter_charge(&memcg->res, csize, &fail_res);
2582
2583    if (likely(!ret)) {
2584        if (!do_swap_account)
2585            return CHARGE_OK;
2586        ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2587        if (likely(!ret))
2588            return CHARGE_OK;
2589
2590        res_counter_uncharge(&memcg->res, csize);
2591        mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592        flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593    } else
2594        mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2595    /*
2596     * Never reclaim on behalf of optional batching, retry with a
2597     * single page instead.
2598     */
2599    if (nr_pages > min_pages)
2600        return CHARGE_RETRY;
2601
2602    if (!(gfp_mask & __GFP_WAIT))
2603        return CHARGE_WOULDBLOCK;
2604
2605    if (gfp_mask & __GFP_NORETRY)
2606        return CHARGE_NOMEM;
2607
2608    ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2609    if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2610        return CHARGE_RETRY;
2611    /*
2612     * Even though the limit is exceeded at this point, reclaim
2613     * may have been able to free some pages. Retry the charge
2614     * before killing the task.
2615     *
2616     * Only for regular pages, though: huge pages are rather
2617     * unlikely to succeed so close to the limit, and we fall back
2618     * to regular pages anyway in case of failure.
2619     */
2620    if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2621        return CHARGE_RETRY;
2622
2623    /*
2624     * At task move, charge accounts can be doubly counted. So, it's
2625     * better to wait until the end of task_move if something is going on.
2626     */
2627    if (mem_cgroup_wait_acct_move(mem_over_limit))
2628        return CHARGE_RETRY;
2629
2630    if (invoke_oom)
2631        mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2632
2633    return CHARGE_NOMEM;
2634}
2635
2636/*
2637 * __mem_cgroup_try_charge() does
2638 * 1. detect memcg to be charged against from passed *mm and *ptr,
2639 * 2. update res_counter
2640 * 3. call memory reclaim if necessary.
2641 *
2642 * In some special case, if the task is fatal, fatal_signal_pending() or
2643 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2644 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2645 * as possible without any hazards. 2: all pages should have a valid
2646 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2647 * pointer, that is treated as a charge to root_mem_cgroup.
2648 *
2649 * So __mem_cgroup_try_charge() will return
2650 * 0 ... on success, filling *ptr with a valid memcg pointer.
2651 * -ENOMEM ... charge failure because of resource limits.
2652 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2653 *
2654 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2655 * the oom-killer can be invoked.
2656 */
2657static int __mem_cgroup_try_charge(struct mm_struct *mm,
2658                   gfp_t gfp_mask,
2659                   unsigned int nr_pages,
2660                   struct mem_cgroup **ptr,
2661                   bool oom)
2662{
2663    unsigned int batch = max(CHARGE_BATCH, nr_pages);
2664    int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2665    struct mem_cgroup *memcg = NULL;
2666    int ret;
2667
2668    /*
2669     * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2670     * in system level. So, allow to go ahead dying process in addition to
2671     * MEMDIE process.
2672     */
2673    if (unlikely(test_thread_flag(TIF_MEMDIE)
2674             || fatal_signal_pending(current)))
2675        goto bypass;
2676
2677    if (unlikely(task_in_memcg_oom(current)))
2678        goto bypass;
2679
2680    /*
2681     * We always charge the cgroup the mm_struct belongs to.
2682     * The mm_struct's mem_cgroup changes on task migration if the
2683     * thread group leader migrates. It's possible that mm is not
2684     * set, if so charge the root memcg (happens for pagecache usage).
2685     */
2686    if (!*ptr && !mm)
2687        *ptr = root_mem_cgroup;
2688again:
2689    if (*ptr) { /* css should be a valid one */
2690        memcg = *ptr;
2691        if (mem_cgroup_is_root(memcg))
2692            goto done;
2693        if (consume_stock(memcg, nr_pages))
2694            goto done;
2695        css_get(&memcg->css);
2696    } else {
2697        struct task_struct *p;
2698
2699        rcu_read_lock();
2700        p = rcu_dereference(mm->owner);
2701        /*
2702         * Because we don't have task_lock(), "p" can exit.
2703         * In that case, "memcg" can point to root or p can be NULL with
2704         * race with swapoff. Then, we have small risk of mis-accouning.
2705         * But such kind of mis-account by race always happens because
2706         * we don't have cgroup_mutex(). It's overkill and we allo that
2707         * small race, here.
2708         * (*) swapoff at el will charge against mm-struct not against
2709         * task-struct. So, mm->owner can be NULL.
2710         */
2711        memcg = mem_cgroup_from_task(p);
2712        if (!memcg)
2713            memcg = root_mem_cgroup;
2714        if (mem_cgroup_is_root(memcg)) {
2715            rcu_read_unlock();
2716            goto done;
2717        }
2718        if (consume_stock(memcg, nr_pages)) {
2719            /*
2720             * It seems dagerous to access memcg without css_get().
2721             * But considering how consume_stok works, it's not
2722             * necessary. If consume_stock success, some charges
2723             * from this memcg are cached on this cpu. So, we
2724             * don't need to call css_get()/css_tryget() before
2725             * calling consume_stock().
2726             */
2727            rcu_read_unlock();
2728            goto done;
2729        }
2730        /* after here, we may be blocked. we need to get refcnt */
2731        if (!css_tryget(&memcg->css)) {
2732            rcu_read_unlock();
2733            goto again;
2734        }
2735        rcu_read_unlock();
2736    }
2737
2738    do {
2739        bool invoke_oom = oom && !nr_oom_retries;
2740
2741        /* If killed, bypass charge */
2742        if (fatal_signal_pending(current)) {
2743            css_put(&memcg->css);
2744            goto bypass;
2745        }
2746
2747        ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2748                       nr_pages, invoke_oom);
2749        switch (ret) {
2750        case CHARGE_OK:
2751            break;
2752        case CHARGE_RETRY: /* not in OOM situation but retry */
2753            batch = nr_pages;
2754            css_put(&memcg->css);
2755            memcg = NULL;
2756            goto again;
2757        case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2758            css_put(&memcg->css);
2759            goto nomem;
2760        case CHARGE_NOMEM: /* OOM routine works */
2761            if (!oom || invoke_oom) {
2762                css_put(&memcg->css);
2763                goto nomem;
2764            }
2765            nr_oom_retries--;
2766            break;
2767        }
2768    } while (ret != CHARGE_OK);
2769
2770    if (batch > nr_pages)
2771        refill_stock(memcg, batch - nr_pages);
2772    css_put(&memcg->css);
2773done:
2774    *ptr = memcg;
2775    return 0;
2776nomem:
2777    if (!(gfp_mask & __GFP_NOFAIL)) {
2778        *ptr = NULL;
2779        return -ENOMEM;
2780    }
2781bypass:
2782    *ptr = root_mem_cgroup;
2783    return -EINTR;
2784}
2785
2786/*
2787 * Somemtimes we have to undo a charge we got by try_charge().
2788 * This function is for that and do uncharge, put css's refcnt.
2789 * gotten by try_charge().
2790 */
2791static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2792                       unsigned int nr_pages)
2793{
2794    if (!mem_cgroup_is_root(memcg)) {
2795        unsigned long bytes = nr_pages * PAGE_SIZE;
2796
2797        res_counter_uncharge(&memcg->res, bytes);
2798        if (do_swap_account)
2799            res_counter_uncharge(&memcg->memsw, bytes);
2800    }
2801}
2802
2803/*
2804 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2805 * This is useful when moving usage to parent cgroup.
2806 */
2807static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2808                    unsigned int nr_pages)
2809{
2810    unsigned long bytes = nr_pages * PAGE_SIZE;
2811
2812    if (mem_cgroup_is_root(memcg))
2813        return;
2814
2815    res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2816    if (do_swap_account)
2817        res_counter_uncharge_until(&memcg->memsw,
2818                        memcg->memsw.parent, bytes);
2819}
2820
2821/*
2822 * A helper function to get mem_cgroup from ID. must be called under
2823 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2824 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2825 * called against removed memcg.)
2826 */
2827static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2828{
2829    struct cgroup_subsys_state *css;
2830
2831    /* ID 0 is unused ID */
2832    if (!id)
2833        return NULL;
2834    css = css_lookup(&mem_cgroup_subsys, id);
2835    if (!css)
2836        return NULL;
2837    return mem_cgroup_from_css(css);
2838}
2839
2840struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2841{
2842    struct mem_cgroup *memcg = NULL;
2843    struct page_cgroup *pc;
2844    unsigned short id;
2845    swp_entry_t ent;
2846
2847    VM_BUG_ON(!PageLocked(page));
2848
2849    pc = lookup_page_cgroup(page);
2850    lock_page_cgroup(pc);
2851    if (PageCgroupUsed(pc)) {
2852        memcg = pc->mem_cgroup;
2853        if (memcg && !css_tryget(&memcg->css))
2854            memcg = NULL;
2855    } else if (PageSwapCache(page)) {
2856        ent.val = page_private(page);
2857        id = lookup_swap_cgroup_id(ent);
2858        rcu_read_lock();
2859        memcg = mem_cgroup_lookup(id);
2860        if (memcg && !css_tryget(&memcg->css))
2861            memcg = NULL;
2862        rcu_read_unlock();
2863    }
2864    unlock_page_cgroup(pc);
2865    return memcg;
2866}
2867
2868static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2869                       struct page *page,
2870                       unsigned int nr_pages,
2871                       enum charge_type ctype,
2872                       bool lrucare)
2873{
2874    struct page_cgroup *pc = lookup_page_cgroup(page);
2875    struct zone *uninitialized_var(zone);
2876    struct lruvec *lruvec;
2877    bool was_on_lru = false;
2878    bool anon;
2879
2880    lock_page_cgroup(pc);
2881    VM_BUG_ON(PageCgroupUsed(pc));
2882    /*
2883     * we don't need page_cgroup_lock about tail pages, becase they are not
2884     * accessed by any other context at this point.
2885     */
2886
2887    /*
2888     * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2889     * may already be on some other mem_cgroup's LRU. Take care of it.
2890     */
2891    if (lrucare) {
2892        zone = page_zone(page);
2893        spin_lock_irq(&zone->lru_lock);
2894        if (PageLRU(page)) {
2895            lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2896            ClearPageLRU(page);
2897            del_page_from_lru_list(page, lruvec, page_lru(page));
2898            was_on_lru = true;
2899        }
2900    }
2901
2902    pc->mem_cgroup = memcg;
2903    /*
2904     * We access a page_cgroup asynchronously without lock_page_cgroup().
2905     * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2906     * is accessed after testing USED bit. To make pc->mem_cgroup visible
2907     * before USED bit, we need memory barrier here.
2908     * See mem_cgroup_add_lru_list(), etc.
2909     */
2910    smp_wmb();
2911    SetPageCgroupUsed(pc);
2912
2913    if (lrucare) {
2914        if (was_on_lru) {
2915            lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2916            VM_BUG_ON(PageLRU(page));
2917            SetPageLRU(page);
2918            add_page_to_lru_list(page, lruvec, page_lru(page));
2919        }
2920        spin_unlock_irq(&zone->lru_lock);
2921    }
2922
2923    if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2924        anon = true;
2925    else
2926        anon = false;
2927
2928    mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2929    unlock_page_cgroup(pc);
2930
2931    /*
2932     * "charge_statistics" updated event counter. Then, check it.
2933     * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2934     * if they exceeds softlimit.
2935     */
2936    memcg_check_events(memcg, page);
2937}
2938
2939static DEFINE_MUTEX(set_limit_mutex);
2940
2941#ifdef CONFIG_MEMCG_KMEM
2942static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2943{
2944    return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2945        (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2946}
2947
2948/*
2949 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2950 * in the memcg_cache_params struct.
2951 */
2952static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2953{
2954    struct kmem_cache *cachep;
2955
2956    VM_BUG_ON(p->is_root_cache);
2957    cachep = p->root_cache;
2958    return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2959}
2960
2961#ifdef CONFIG_SLABINFO
2962static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2963                    struct cftype *cft, struct seq_file *m)
2964{
2965    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2966    struct memcg_cache_params *params;
2967
2968    if (!memcg_can_account_kmem(memcg))
2969        return -EIO;
2970
2971    print_slabinfo_header(m);
2972
2973    mutex_lock(&memcg->slab_caches_mutex);
2974    list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2975        cache_show(memcg_params_to_cache(params), m);
2976    mutex_unlock(&memcg->slab_caches_mutex);
2977
2978    return 0;
2979}
2980#endif
2981
2982static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2983{
2984    struct res_counter *fail_res;
2985    struct mem_cgroup *_memcg;
2986    int ret = 0;
2987    bool may_oom;
2988
2989    ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2990    if (ret)
2991        return ret;
2992
2993    /*
2994     * Conditions under which we can wait for the oom_killer. Those are
2995     * the same conditions tested by the core page allocator
2996     */
2997    may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2998
2999    _memcg = memcg;
3000    ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3001                      &_memcg, may_oom);
3002
3003    if (ret == -EINTR) {
3004        /*
3005         * __mem_cgroup_try_charge() chosed to bypass to root due to
3006         * OOM kill or fatal signal. Since our only options are to
3007         * either fail the allocation or charge it to this cgroup, do
3008         * it as a temporary condition. But we can't fail. From a
3009         * kmem/slab perspective, the cache has already been selected,
3010         * by mem_cgroup_kmem_get_cache(), so it is too late to change
3011         * our minds.
3012         *
3013         * This condition will only trigger if the task entered
3014         * memcg_charge_kmem in a sane state, but was OOM-killed during
3015         * __mem_cgroup_try_charge() above. Tasks that were already
3016         * dying when the allocation triggers should have been already
3017         * directed to the root cgroup in memcontrol.h
3018         */
3019        res_counter_charge_nofail(&memcg->res, size, &fail_res);
3020        if (do_swap_account)
3021            res_counter_charge_nofail(&memcg->memsw, size,
3022                          &fail_res);
3023        ret = 0;
3024    } else if (ret)
3025        res_counter_uncharge(&memcg->kmem, size);
3026
3027    return ret;
3028}
3029
3030static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3031{
3032    res_counter_uncharge(&memcg->res, size);
3033    if (do_swap_account)
3034        res_counter_uncharge(&memcg->memsw, size);
3035
3036    /* Not down to 0 */
3037    if (res_counter_uncharge(&memcg->kmem, size))
3038        return;
3039
3040    /*
3041     * Releases a reference taken in kmem_cgroup_css_offline in case
3042     * this last uncharge is racing with the offlining code or it is
3043     * outliving the memcg existence.
3044     *
3045     * The memory barrier imposed by test&clear is paired with the
3046     * explicit one in memcg_kmem_mark_dead().
3047     */
3048    if (memcg_kmem_test_and_clear_dead(memcg))
3049        css_put(&memcg->css);
3050}
3051
3052void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3053{
3054    if (!memcg)
3055        return;
3056
3057    mutex_lock(&memcg->slab_caches_mutex);
3058    list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3059    mutex_unlock(&memcg->slab_caches_mutex);
3060}
3061
3062/*
3063 * helper for acessing a memcg's index. It will be used as an index in the
3064 * child cache array in kmem_cache, and also to derive its name. This function
3065 * will return -1 when this is not a kmem-limited memcg.
3066 */
3067int memcg_cache_id(struct mem_cgroup *memcg)
3068{
3069    return memcg ? memcg->kmemcg_id : -1;
3070}
3071
3072/*
3073 * This ends up being protected by the set_limit mutex, during normal
3074 * operation, because that is its main call site.
3075 *
3076 * But when we create a new cache, we can call this as well if its parent
3077 * is kmem-limited. That will have to hold set_limit_mutex as well.
3078 */
3079int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3080{
3081    int num, ret;
3082
3083    num = ida_simple_get(&kmem_limited_groups,
3084                0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3085    if (num < 0)
3086        return num;
3087    /*
3088     * After this point, kmem_accounted (that we test atomically in
3089     * the beginning of this conditional), is no longer 0. This
3090     * guarantees only one process will set the following boolean
3091     * to true. We don't need test_and_set because we're protected
3092     * by the set_limit_mutex anyway.
3093     */
3094    memcg_kmem_set_activated(memcg);
3095
3096    ret = memcg_update_all_caches(num+1);
3097    if (ret) {
3098        ida_simple_remove(&kmem_limited_groups, num);
3099        memcg_kmem_clear_activated(memcg);
3100        return ret;
3101    }
3102
3103    memcg->kmemcg_id = num;
3104    INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3105    mutex_init(&memcg->slab_caches_mutex);
3106    return 0;
3107}
3108
3109static size_t memcg_caches_array_size(int num_groups)
3110{
3111    ssize_t size;
3112    if (num_groups <= 0)
3113        return 0;
3114
3115    size = 2 * num_groups;
3116    if (size < MEMCG_CACHES_MIN_SIZE)
3117        size = MEMCG_CACHES_MIN_SIZE;
3118    else if (size > MEMCG_CACHES_MAX_SIZE)
3119        size = MEMCG_CACHES_MAX_SIZE;
3120
3121    return size;
3122}
3123
3124/*
3125 * We should update the current array size iff all caches updates succeed. This
3126 * can only be done from the slab side. The slab mutex needs to be held when
3127 * calling this.
3128 */
3129void memcg_update_array_size(int num)
3130{
3131    if (num > memcg_limited_groups_array_size)
3132        memcg_limited_groups_array_size = memcg_caches_array_size(num);
3133}
3134
3135static void kmem_cache_destroy_work_func(struct work_struct *w);
3136
3137int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3138{
3139    struct memcg_cache_params *cur_params = s->memcg_params;
3140
3141    VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3142
3143    if (num_groups > memcg_limited_groups_array_size) {
3144        int i;
3145        ssize_t size = memcg_caches_array_size(num_groups);
3146
3147        size *= sizeof(void *);
3148        size += offsetof(struct memcg_cache_params, memcg_caches);
3149
3150        s->memcg_params = kzalloc(size, GFP_KERNEL);
3151        if (!s->memcg_params) {
3152            s->memcg_params = cur_params;
3153            return -ENOMEM;
3154        }
3155
3156        s->memcg_params->is_root_cache = true;
3157
3158        /*
3159         * There is the chance it will be bigger than
3160         * memcg_limited_groups_array_size, if we failed an allocation
3161         * in a cache, in which case all caches updated before it, will
3162         * have a bigger array.
3163         *
3164         * But if that is the case, the data after
3165         * memcg_limited_groups_array_size is certainly unused
3166         */
3167        for (i = 0; i < memcg_limited_groups_array_size; i++) {
3168            if (!cur_params->memcg_caches[i])
3169                continue;
3170            s->memcg_params->memcg_caches[i] =
3171                        cur_params->memcg_caches[i];
3172        }
3173
3174        /*
3175         * Ideally, we would wait until all caches succeed, and only
3176         * then free the old one. But this is not worth the extra
3177         * pointer per-cache we'd have to have for this.
3178         *
3179         * It is not a big deal if some caches are left with a size
3180         * bigger than the others. And all updates will reset this
3181         * anyway.
3182         */
3183        kfree(cur_params);
3184    }
3185    return 0;
3186}
3187
3188int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3189             struct kmem_cache *root_cache)
3190{
3191    size_t size;
3192
3193    if (!memcg_kmem_enabled())
3194        return 0;
3195
3196    if (!memcg) {
3197        size = offsetof(struct memcg_cache_params, memcg_caches);
3198        size += memcg_limited_groups_array_size * sizeof(void *);
3199    } else
3200        size = sizeof(struct memcg_cache_params);
3201
3202    s->memcg_params = kzalloc(size, GFP_KERNEL);
3203    if (!s->memcg_params)
3204        return -ENOMEM;
3205
3206    if (memcg) {
3207        s->memcg_params->memcg = memcg;
3208        s->memcg_params->root_cache = root_cache;
3209        INIT_WORK(&s->memcg_params->destroy,
3210                kmem_cache_destroy_work_func);
3211    } else
3212        s->memcg_params->is_root_cache = true;
3213
3214    return 0;
3215}
3216
3217void memcg_release_cache(struct kmem_cache *s)
3218{
3219    struct kmem_cache *root;
3220    struct mem_cgroup *memcg;
3221    int id;
3222
3223    /*
3224     * This happens, for instance, when a root cache goes away before we
3225     * add any memcg.
3226     */
3227    if (!s->memcg_params)
3228        return;
3229
3230    if (s->memcg_params->is_root_cache)
3231        goto out;
3232
3233    memcg = s->memcg_params->memcg;
3234    id = memcg_cache_id(memcg);
3235
3236    root = s->memcg_params->root_cache;
3237    root->memcg_params->memcg_caches[id] = NULL;
3238
3239    mutex_lock(&memcg->slab_caches_mutex);
3240    list_del(&s->memcg_params->list);
3241    mutex_unlock(&memcg->slab_caches_mutex);
3242
3243    css_put(&memcg->css);
3244out:
3245    kfree(s->memcg_params);
3246}
3247
3248/*
3249 * During the creation a new cache, we need to disable our accounting mechanism
3250 * altogether. This is true even if we are not creating, but rather just
3251 * enqueing new caches to be created.
3252 *
3253 * This is because that process will trigger allocations; some visible, like
3254 * explicit kmallocs to auxiliary data structures, name strings and internal
3255 * cache structures; some well concealed, like INIT_WORK() that can allocate
3256 * objects during debug.
3257 *
3258 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3259 * to it. This may not be a bounded recursion: since the first cache creation
3260 * failed to complete (waiting on the allocation), we'll just try to create the
3261 * cache again, failing at the same point.
3262 *
3263 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3264 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3265 * inside the following two functions.
3266 */
3267static inline void memcg_stop_kmem_account(void)
3268{
3269    VM_BUG_ON(!current->mm);
3270    current->memcg_kmem_skip_account++;
3271}
3272
3273static inline void memcg_resume_kmem_account(void)
3274{
3275    VM_BUG_ON(!current->mm);
3276    current->memcg_kmem_skip_account--;
3277}
3278
3279static void kmem_cache_destroy_work_func(struct work_struct *w)
3280{
3281    struct kmem_cache *cachep;
3282    struct memcg_cache_params *p;
3283
3284    p = container_of(w, struct memcg_cache_params, destroy);
3285
3286    cachep = memcg_params_to_cache(p);
3287
3288    /*
3289     * If we get down to 0 after shrink, we could delete right away.
3290     * However, memcg_release_pages() already puts us back in the workqueue
3291     * in that case. If we proceed deleting, we'll get a dangling
3292     * reference, and removing the object from the workqueue in that case
3293     * is unnecessary complication. We are not a fast path.
3294     *
3295     * Note that this case is fundamentally different from racing with
3296     * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3297     * kmem_cache_shrink, not only we would be reinserting a dead cache
3298     * into the queue, but doing so from inside the worker racing to
3299     * destroy it.
3300     *
3301     * So if we aren't down to zero, we'll just schedule a worker and try
3302     * again
3303     */
3304    if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3305        kmem_cache_shrink(cachep);
3306        if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3307            return;
3308    } else
3309        kmem_cache_destroy(cachep);
3310}
3311
3312void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3313{
3314    if (!cachep->memcg_params->dead)
3315        return;
3316
3317    /*
3318     * There are many ways in which we can get here.
3319     *
3320     * We can get to a memory-pressure situation while the delayed work is
3321     * still pending to run. The vmscan shrinkers can then release all
3322     * cache memory and get us to destruction. If this is the case, we'll
3323     * be executed twice, which is a bug (the second time will execute over
3324     * bogus data). In this case, cancelling the work should be fine.
3325     *
3326     * But we can also get here from the worker itself, if
3327     * kmem_cache_shrink is enough to shake all the remaining objects and
3328     * get the page count to 0. In this case, we'll deadlock if we try to
3329     * cancel the work (the worker runs with an internal lock held, which
3330     * is the same lock we would hold for cancel_work_sync().)
3331     *
3332     * Since we can't possibly know who got us here, just refrain from
3333     * running if there is already work pending
3334     */
3335    if (work_pending(&cachep->memcg_params->destroy))
3336        return;
3337    /*
3338     * We have to defer the actual destroying to a workqueue, because
3339     * we might currently be in a context that cannot sleep.
3340     */
3341    schedule_work(&cachep->memcg_params->destroy);
3342}
3343
3344/*
3345 * This lock protects updaters, not readers. We want readers to be as fast as
3346 * they can, and they will either see NULL or a valid cache value. Our model
3347 * allow them to see NULL, in which case the root memcg will be selected.
3348 *
3349 * We need this lock because multiple allocations to the same cache from a non
3350 * will span more than one worker. Only one of them can create the cache.
3351 */
3352static DEFINE_MUTEX(memcg_cache_mutex);
3353
3354/*
3355 * Called with memcg_cache_mutex held
3356 */
3357static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3358                     struct kmem_cache *s)
3359{
3360    struct kmem_cache *new;
3361    static char *tmp_name = NULL;
3362
3363    lockdep_assert_held(&memcg_cache_mutex);
3364
3365    /*
3366     * kmem_cache_create_memcg duplicates the given name and
3367     * cgroup_name for this name requires RCU context.
3368     * This static temporary buffer is used to prevent from
3369     * pointless shortliving allocation.
3370     */
3371    if (!tmp_name) {
3372        tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3373        if (!tmp_name)
3374            return NULL;
3375    }
3376
3377    rcu_read_lock();
3378    snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3379             memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3380    rcu_read_unlock();
3381
3382    new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3383                      (s->flags & ~SLAB_PANIC), s->ctor, s);
3384
3385    if (new)
3386        new->allocflags |= __GFP_KMEMCG;
3387
3388    return new;
3389}
3390
3391static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3392                          struct kmem_cache *cachep)
3393{
3394    struct kmem_cache *new_cachep;
3395    int idx;
3396
3397    BUG_ON(!memcg_can_account_kmem(memcg));
3398
3399    idx = memcg_cache_id(memcg);
3400
3401    mutex_lock(&memcg_cache_mutex);
3402    new_cachep = cachep->memcg_params->memcg_caches[idx];
3403    if (new_cachep) {
3404        css_put(&memcg->css);
3405        goto out;
3406    }
3407
3408    new_cachep = kmem_cache_dup(memcg, cachep);
3409    if (new_cachep == NULL) {
3410        new_cachep = cachep;
3411        css_put(&memcg->css);
3412        goto out;
3413    }
3414
3415    atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3416
3417    cachep->memcg_params->memcg_caches[idx] = new_cachep;
3418    /*
3419     * the readers won't lock, make sure everybody sees the updated value,
3420     * so they won't put stuff in the queue again for no reason
3421     */
3422    wmb();
3423out:
3424    mutex_unlock(&memcg_cache_mutex);
3425    return new_cachep;
3426}
3427
3428void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3429{
3430    struct kmem_cache *c;
3431    int i;
3432
3433    if (!s->memcg_params)
3434        return;
3435    if (!s->memcg_params->is_root_cache)
3436        return;
3437
3438    /*
3439     * If the cache is being destroyed, we trust that there is no one else
3440     * requesting objects from it. Even if there are, the sanity checks in
3441     * kmem_cache_destroy should caught this ill-case.
3442     *
3443     * Still, we don't want anyone else freeing memcg_caches under our
3444     * noses, which can happen if a new memcg comes to life. As usual,
3445     * we'll take the set_limit_mutex to protect ourselves against this.
3446     */
3447    mutex_lock(&set_limit_mutex);
3448    for (i = 0; i < memcg_limited_groups_array_size; i++) {
3449        c = s->memcg_params->memcg_caches[i];
3450        if (!c)
3451            continue;
3452
3453        /*
3454         * We will now manually delete the caches, so to avoid races
3455         * we need to cancel all pending destruction workers and
3456         * proceed with destruction ourselves.
3457         *
3458         * kmem_cache_destroy() will call kmem_cache_shrink internally,
3459         * and that could spawn the workers again: it is likely that
3460         * the cache still have active pages until this very moment.
3461         * This would lead us back to mem_cgroup_destroy_cache.
3462         *
3463         * But that will not execute at all if the "dead" flag is not
3464         * set, so flip it down to guarantee we are in control.
3465         */
3466        c->memcg_params->dead = false;
3467        cancel_work_sync(&c->memcg_params->destroy);
3468        kmem_cache_destroy(c);
3469    }
3470    mutex_unlock(&set_limit_mutex);
3471}
3472
3473struct create_work {
3474    struct mem_cgroup *memcg;
3475    struct kmem_cache *cachep;
3476    struct work_struct work;
3477};
3478
3479static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3480{
3481    struct kmem_cache *cachep;
3482    struct memcg_cache_params *params;
3483
3484    if (!memcg_kmem_is_active(memcg))
3485        return;
3486
3487    mutex_lock(&memcg->slab_caches_mutex);
3488    list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3489        cachep = memcg_params_to_cache(params);
3490        cachep->memcg_params->dead = true;
3491        schedule_work(&cachep->memcg_params->destroy);
3492    }
3493    mutex_unlock(&memcg->slab_caches_mutex);
3494}
3495
3496static void memcg_create_cache_work_func(struct work_struct *w)
3497{
3498    struct create_work *cw;
3499
3500    cw = container_of(w, struct create_work, work);
3501    memcg_create_kmem_cache(cw->memcg, cw->cachep);
3502    kfree(cw);
3503}
3504
3505/*
3506 * Enqueue the creation of a per-memcg kmem_cache.
3507 */
3508static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3509                     struct kmem_cache *cachep)
3510{
3511    struct create_work *cw;
3512
3513    cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3514    if (cw == NULL) {
3515        css_put(&memcg->css);
3516        return;
3517    }
3518
3519    cw->memcg = memcg;
3520    cw->cachep = cachep;
3521
3522    INIT_WORK(&cw->work, memcg_create_cache_work_func);
3523    schedule_work(&cw->work);
3524}
3525
3526static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3527                       struct kmem_cache *cachep)
3528{
3529    /*
3530     * We need to stop accounting when we kmalloc, because if the
3531     * corresponding kmalloc cache is not yet created, the first allocation
3532     * in __memcg_create_cache_enqueue will recurse.
3533     *
3534     * However, it is better to enclose the whole function. Depending on
3535     * the debugging options enabled, INIT_WORK(), for instance, can
3536     * trigger an allocation. This too, will make us recurse. Because at
3537     * this point we can't allow ourselves back into memcg_kmem_get_cache,
3538     * the safest choice is to do it like this, wrapping the whole function.
3539     */
3540    memcg_stop_kmem_account();
3541    __memcg_create_cache_enqueue(memcg, cachep);
3542    memcg_resume_kmem_account();
3543}
3544/*
3545 * Return the kmem_cache we're supposed to use for a slab allocation.
3546 * We try to use the current memcg's version of the cache.
3547 *
3548 * If the cache does not exist yet, if we are the first user of it,
3549 * we either create it immediately, if possible, or create it asynchronously
3550 * in a workqueue.
3551 * In the latter case, we will let the current allocation go through with
3552 * the original cache.
3553 *
3554 * Can't be called in interrupt context or from kernel threads.
3555 * This function needs to be called with rcu_read_lock() held.
3556 */
3557struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3558                      gfp_t gfp)
3559{
3560    struct mem_cgroup *memcg;
3561    int idx;
3562
3563    VM_BUG_ON(!cachep->memcg_params);
3564    VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3565
3566    if (!current->mm || current->memcg_kmem_skip_account)
3567        return cachep;
3568
3569    rcu_read_lock();
3570    memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3571
3572    if (!memcg_can_account_kmem(memcg))
3573        goto out;
3574
3575    idx = memcg_cache_id(memcg);
3576
3577    /*
3578     * barrier to mare sure we're always seeing the up to date value. The
3579     * code updating memcg_caches will issue a write barrier to match this.
3580     */
3581    read_barrier_depends();
3582    if (likely(cachep->memcg_params->memcg_caches[idx])) {
3583        cachep = cachep->memcg_params->memcg_caches[idx];
3584        goto out;
3585    }
3586
3587    /* The corresponding put will be done in the workqueue. */
3588    if (!css_tryget(&memcg->css))
3589        goto out;
3590    rcu_read_unlock();
3591
3592    /*
3593     * If we are in a safe context (can wait, and not in interrupt
3594     * context), we could be be predictable and return right away.
3595     * This would guarantee that the allocation being performed
3596     * already belongs in the new cache.
3597     *
3598     * However, there are some clashes that can arrive from locking.
3599     * For instance, because we acquire the slab_mutex while doing
3600     * kmem_cache_dup, this means no further allocation could happen
3601     * with the slab_mutex held.
3602     *
3603     * Also, because cache creation issue get_online_cpus(), this
3604     * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3605     * that ends up reversed during cpu hotplug. (cpuset allocates
3606     * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3607     * better to defer everything.
3608     */
3609    memcg_create_cache_enqueue(memcg, cachep);
3610    return cachep;
3611out:
3612    rcu_read_unlock();
3613    return cachep;
3614}
3615EXPORT_SYMBOL(__memcg_kmem_get_cache);
3616
3617/*
3618 * We need to verify if the allocation against current->mm->owner's memcg is
3619 * possible for the given order. But the page is not allocated yet, so we'll
3620 * need a further commit step to do the final arrangements.
3621 *
3622 * It is possible for the task to switch cgroups in this mean time, so at
3623 * commit time, we can't rely on task conversion any longer. We'll then use
3624 * the handle argument to return to the caller which cgroup we should commit
3625 * against. We could also return the memcg directly and avoid the pointer
3626 * passing, but a boolean return value gives better semantics considering
3627 * the compiled-out case as well.
3628 *
3629 * Returning true means the allocation is possible.
3630 */
3631bool
3632__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3633{
3634    struct mem_cgroup *memcg;
3635    int ret;
3636
3637    *_memcg = NULL;
3638
3639    /*
3640     * Disabling accounting is only relevant for some specific memcg
3641     * internal allocations. Therefore we would initially not have such
3642     * check here, since direct calls to the page allocator that are marked
3643     * with GFP_KMEMCG only happen outside memcg core. We are mostly
3644     * concerned with cache allocations, and by having this test at
3645     * memcg_kmem_get_cache, we are already able to relay the allocation to
3646     * the root cache and bypass the memcg cache altogether.
3647     *
3648     * There is one exception, though: the SLUB allocator does not create
3649     * large order caches, but rather service large kmallocs directly from
3650     * the page allocator. Therefore, the following sequence when backed by
3651     * the SLUB allocator:
3652     *
3653     * memcg_stop_kmem_account();
3654     * kmalloc(<large_number>)
3655     * memcg_resume_kmem_account();
3656     *
3657     * would effectively ignore the fact that we should skip accounting,
3658     * since it will drive us directly to this function without passing
3659     * through the cache selector memcg_kmem_get_cache. Such large
3660     * allocations are extremely rare but can happen, for instance, for the
3661     * cache arrays. We bring this test here.
3662     */
3663    if (!current->mm || current->memcg_kmem_skip_account)
3664        return true;
3665
3666    memcg = try_get_mem_cgroup_from_mm(current->mm);
3667
3668    /*
3669     * very rare case described in mem_cgroup_from_task. Unfortunately there
3670     * isn't much we can do without complicating this too much, and it would
3671     * be gfp-dependent anyway. Just let it go
3672     */
3673    if (unlikely(!memcg))
3674        return true;
3675
3676    if (!memcg_can_account_kmem(memcg)) {
3677        css_put(&memcg->css);
3678        return true;
3679    }
3680
3681    ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3682    if (!ret)
3683        *_memcg = memcg;
3684
3685    css_put(&memcg->css);
3686    return (ret == 0);
3687}
3688
3689void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3690                  int order)
3691{
3692    struct page_cgroup *pc;
3693
3694    VM_BUG_ON(mem_cgroup_is_root(memcg));
3695
3696    /* The page allocation failed. Revert */
3697    if (!page) {
3698        memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3699        return;
3700    }
3701
3702    pc = lookup_page_cgroup(page);
3703    lock_page_cgroup(pc);
3704    pc->mem_cgroup = memcg;
3705    SetPageCgroupUsed(pc);
3706    unlock_page_cgroup(pc);
3707}
3708
3709void __memcg_kmem_uncharge_pages(struct page *page, int order)
3710{
3711    struct mem_cgroup *memcg = NULL;
3712    struct page_cgroup *pc;
3713
3714
3715    pc = lookup_page_cgroup(page);
3716    /*
3717     * Fast unlocked return. Theoretically might have changed, have to
3718     * check again after locking.
3719     */
3720    if (!PageCgroupUsed(pc))
3721        return;
3722
3723    lock_page_cgroup(pc);
3724    if (PageCgroupUsed(pc)) {
3725        memcg = pc->mem_cgroup;
3726        ClearPageCgroupUsed(pc);
3727    }
3728    unlock_page_cgroup(pc);
3729
3730    /*
3731     * We trust that only if there is a memcg associated with the page, it
3732     * is a valid allocation
3733     */
3734    if (!memcg)
3735        return;
3736
3737    VM_BUG_ON(mem_cgroup_is_root(memcg));
3738    memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3739}
3740#else
3741static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3742{
3743}
3744#endif /* CONFIG_MEMCG_KMEM */
3745
3746#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3747
3748#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3749/*
3750 * Because tail pages are not marked as "used", set it. We're under
3751 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3752 * charge/uncharge will be never happen and move_account() is done under
3753 * compound_lock(), so we don't have to take care of races.
3754 */
3755void mem_cgroup_split_huge_fixup(struct page *head)
3756{
3757    struct page_cgroup *head_pc = lookup_page_cgroup(head);
3758    struct page_cgroup *pc;
3759    struct mem_cgroup *memcg;
3760    int i;
3761
3762    if (mem_cgroup_disabled())
3763        return;
3764
3765    memcg = head_pc->mem_cgroup;
3766    for (i = 1; i < HPAGE_PMD_NR; i++) {
3767        pc = head_pc + i;
3768        pc->mem_cgroup = memcg;
3769        smp_wmb();/* see __commit_charge() */
3770        pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3771    }
3772    __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3773               HPAGE_PMD_NR);
3774}
3775#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3776
3777static inline
3778void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3779                    struct mem_cgroup *to,
3780                    unsigned int nr_pages,
3781                    enum mem_cgroup_stat_index idx)
3782{
3783    /* Update stat data for mem_cgroup */
3784    preempt_disable();
3785    __this_cpu_sub(from->stat->count[idx], nr_pages);
3786    __this_cpu_add(to->stat->count[idx], nr_pages);
3787    preempt_enable();
3788}
3789
3790/**
3791 * mem_cgroup_move_account - move account of the page
3792 * @page: the page
3793 * @nr_pages: number of regular pages (>1 for huge pages)
3794 * @pc: page_cgroup of the page.
3795 * @from: mem_cgroup which the page is moved from.
3796 * @to: mem_cgroup which the page is moved to. @from != @to.
3797 *
3798 * The caller must confirm following.
3799 * - page is not on LRU (isolate_page() is useful.)
3800 * - compound_lock is held when nr_pages > 1
3801 *
3802 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3803 * from old cgroup.
3804 */
3805static int mem_cgroup_move_account(struct page *page,
3806                   unsigned int nr_pages,
3807                   struct page_cgroup *pc,
3808                   struct mem_cgroup *from,
3809                   struct mem_cgroup *to)
3810{
3811    unsigned long flags;
3812    int ret;
3813    bool anon = PageAnon(page);
3814
3815    VM_BUG_ON(from == to);
3816    VM_BUG_ON(PageLRU(page));
3817    /*
3818     * The page is isolated from LRU. So, collapse function
3819     * will not handle this page. But page splitting can happen.
3820     * Do this check under compound_page_lock(). The caller should
3821     * hold it.
3822     */
3823    ret = -EBUSY;
3824    if (nr_pages > 1 && !PageTransHuge(page))
3825        goto out;
3826
3827    lock_page_cgroup(pc);
3828
3829    ret = -EINVAL;
3830    if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3831        goto unlock;
3832
3833    move_lock_mem_cgroup(from, &flags);
3834
3835    if (!anon && page_mapped(page))
3836        mem_cgroup_move_account_page_stat(from, to, nr_pages,
3837            MEM_CGROUP_STAT_FILE_MAPPED);
3838
3839    if (PageWriteback(page))
3840        mem_cgroup_move_account_page_stat(from, to, nr_pages,
3841            MEM_CGROUP_STAT_WRITEBACK);
3842
3843    mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3844
3845    /* caller should have done css_get */
3846    pc->mem_cgroup = to;
3847    mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3848    move_unlock_mem_cgroup(from, &flags);
3849    ret = 0;
3850unlock:
3851    unlock_page_cgroup(pc);
3852    /*
3853     * check events
3854     */
3855    memcg_check_events(to, page);
3856    memcg_check_events(from, page);
3857out:
3858    return ret;
3859}
3860
3861/**
3862 * mem_cgroup_move_parent - moves page to the parent group
3863 * @page: the page to move
3864 * @pc: page_cgroup of the page
3865 * @child: page's cgroup
3866 *
3867 * move charges to its parent or the root cgroup if the group has no
3868 * parent (aka use_hierarchy==0).
3869 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3870 * mem_cgroup_move_account fails) the failure is always temporary and
3871 * it signals a race with a page removal/uncharge or migration. In the
3872 * first case the page is on the way out and it will vanish from the LRU
3873 * on the next attempt and the call should be retried later.
3874 * Isolation from the LRU fails only if page has been isolated from
3875 * the LRU since we looked at it and that usually means either global
3876 * reclaim or migration going on. The page will either get back to the
3877 * LRU or vanish.
3878 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3879 * (!PageCgroupUsed) or moved to a different group. The page will
3880 * disappear in the next attempt.
3881 */
3882static int mem_cgroup_move_parent(struct page *page,
3883                  struct page_cgroup *pc,
3884                  struct mem_cgroup *child)
3885{
3886    struct mem_cgroup *parent;
3887    unsigned int nr_pages;
3888    unsigned long uninitialized_var(flags);
3889    int ret;
3890
3891    VM_BUG_ON(mem_cgroup_is_root(child));
3892
3893    ret = -EBUSY;
3894    if (!get_page_unless_zero(page))
3895        goto out;
3896    if (isolate_lru_page(page))
3897        goto put;
3898
3899    nr_pages = hpage_nr_pages(page);
3900
3901    parent = parent_mem_cgroup(child);
3902    /*
3903     * If no parent, move charges to root cgroup.
3904     */
3905    if (!parent)
3906        parent = root_mem_cgroup;
3907
3908    if (nr_pages > 1) {
3909        VM_BUG_ON(!PageTransHuge(page));
3910        flags = compound_lock_irqsave(page);
3911    }
3912
3913    ret = mem_cgroup_move_account(page, nr_pages,
3914                pc, child, parent);
3915    if (!ret)
3916        __mem_cgroup_cancel_local_charge(child, nr_pages);
3917
3918    if (nr_pages > 1)
3919        compound_unlock_irqrestore(page, flags);
3920    putback_lru_page(page);
3921put:
3922    put_page(page);
3923out:
3924    return ret;
3925}
3926
3927/*
3928 * Charge the memory controller for page usage.
3929 * Return
3930 * 0 if the charge was successful
3931 * < 0 if the cgroup is over its limit
3932 */
3933static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3934                gfp_t gfp_mask, enum charge_type ctype)
3935{
3936    struct mem_cgroup *memcg = NULL;
3937    unsigned int nr_pages = 1;
3938    bool oom = true;
3939    int ret;
3940
3941    if (PageTransHuge(page)) {
3942        nr_pages <<= compound_order(page);
3943        VM_BUG_ON(!PageTransHuge(page));
3944        /*
3945         * Never OOM-kill a process for a huge page. The
3946         * fault handler will fall back to regular pages.
3947         */
3948        oom = false;
3949    }
3950
3951    ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3952    if (ret == -ENOMEM)
3953        return ret;
3954    __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3955    return 0;
3956}
3957
3958int mem_cgroup_newpage_charge(struct page *page,
3959                  struct mm_struct *mm, gfp_t gfp_mask)
3960{
3961    if (mem_cgroup_disabled())
3962        return 0;
3963    VM_BUG_ON(page_mapped(page));
3964    VM_BUG_ON(page->mapping && !PageAnon(page));
3965    VM_BUG_ON(!mm);
3966    return mem_cgroup_charge_common(page, mm, gfp_mask,
3967                    MEM_CGROUP_CHARGE_TYPE_ANON);
3968}
3969
3970/*
3971 * While swap-in, try_charge -> commit or cancel, the page is locked.
3972 * And when try_charge() successfully returns, one refcnt to memcg without
3973 * struct page_cgroup is acquired. This refcnt will be consumed by
3974 * "commit()" or removed by "cancel()"
3975 */
3976static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3977                      struct page *page,
3978                      gfp_t mask,
3979                      struct mem_cgroup **memcgp)
3980{
3981    struct mem_cgroup *memcg;
3982    struct page_cgroup *pc;
3983    int ret;
3984
3985    pc = lookup_page_cgroup(page);
3986    /*
3987     * Every swap fault against a single page tries to charge the
3988     * page, bail as early as possible. shmem_unuse() encounters
3989     * already charged pages, too. The USED bit is protected by
3990     * the page lock, which serializes swap cache removal, which
3991     * in turn serializes uncharging.
3992     */
3993    if (PageCgroupUsed(pc))
3994        return 0;
3995    if (!do_swap_account)
3996        goto charge_cur_mm;
3997    memcg = try_get_mem_cgroup_from_page(page);
3998    if (!memcg)
3999        goto charge_cur_mm;
4000    *memcgp = memcg;
4001    ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4002    css_put(&memcg->css);
4003    if (ret == -EINTR)
4004        ret = 0;
4005    return ret;
4006charge_cur_mm:
4007    ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4008    if (ret == -EINTR)
4009        ret = 0;
4010    return ret;
4011}
4012
4013int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4014                 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4015{
4016    *memcgp = NULL;
4017    if (mem_cgroup_disabled())
4018        return 0;
4019    /*
4020     * A racing thread's fault, or swapoff, may have already
4021     * updated the pte, and even removed page from swap cache: in
4022     * those cases unuse_pte()'s pte_same() test will fail; but
4023     * there's also a KSM case which does need to charge the page.
4024     */
4025    if (!PageSwapCache(page)) {
4026        int ret;
4027
4028        ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4029        if (ret == -EINTR)
4030            ret = 0;
4031        return ret;
4032    }
4033    return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4034}
4035
4036void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4037{
4038    if (mem_cgroup_disabled())
4039        return;
4040    if (!memcg)
4041        return;
4042    __mem_cgroup_cancel_charge(memcg, 1);
4043}
4044
4045static void
4046__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4047                    enum charge_type ctype)
4048{
4049    if (mem_cgroup_disabled())
4050        return;
4051    if (!memcg)
4052        return;
4053
4054    __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4055    /*
4056     * Now swap is on-memory. This means this page may be
4057     * counted both as mem and swap....double count.
4058     * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4059     * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4060     * may call delete_from_swap_cache() before reach here.
4061     */
4062    if (do_swap_account && PageSwapCache(page)) {
4063        swp_entry_t ent = {.val = page_private(page)};
4064        mem_cgroup_uncharge_swap(ent);
4065    }
4066}
4067
4068void mem_cgroup_commit_charge_swapin(struct page *page,
4069                     struct mem_cgroup *memcg)
4070{
4071    __mem_cgroup_commit_charge_swapin(page, memcg,
4072                      MEM_CGROUP_CHARGE_TYPE_ANON);
4073}
4074
4075int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4076                gfp_t gfp_mask)
4077{
4078    struct mem_cgroup *memcg = NULL;
4079    enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4080    int ret;
4081
4082    if (mem_cgroup_disabled())
4083        return 0;
4084    if (PageCompound(page))
4085        return 0;
4086
4087    if (!PageSwapCache(page))
4088        ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4089    else { /* page is swapcache/shmem */
4090        ret = __mem_cgroup_try_charge_swapin(mm, page,
4091                             gfp_mask, &memcg);
4092        if (!ret)
4093            __mem_cgroup_commit_charge_swapin(page, memcg, type);
4094    }
4095    return ret;
4096}
4097
4098static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4099                   unsigned int nr_pages,
4100                   const enum charge_type ctype)
4101{
4102    struct memcg_batch_info *batch = NULL;
4103    bool uncharge_memsw = true;
4104
4105    /* If swapout, usage of swap doesn't decrease */
4106    if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4107        uncharge_memsw = false;
4108
4109    batch = &current->memcg_batch;
4110    /*
4111     * In usual, we do css_get() when we remember memcg pointer.
4112     * But in this case, we keep res->usage until end of a series of
4113     * uncharges. Then, it's ok to ignore memcg's refcnt.
4114     */
4115    if (!batch->memcg)
4116        batch->memcg = memcg;
4117    /*
4118     * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4119     * In those cases, all pages freed continuously can be expected to be in
4120     * the same cgroup and we have chance to coalesce uncharges.
4121     * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4122     * because we want to do uncharge as soon as possible.
4123     */
4124
4125    if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4126        goto direct_uncharge;
4127
4128    if (nr_pages > 1)
4129        goto direct_uncharge;
4130
4131    /*
4132     * In typical case, batch->memcg == mem. This means we can
4133     * merge a series of uncharges to an uncharge of res_counter.
4134     * If not, we uncharge res_counter ony by one.
4135     */
4136    if (batch->memcg != memcg)
4137        goto direct_uncharge;
4138    /* remember freed charge and uncharge it later */
4139    batch->nr_pages++;
4140    if (uncharge_memsw)
4141        batch->memsw_nr_pages++;
4142    return;
4143direct_uncharge:
4144    res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4145    if (uncharge_memsw)
4146        res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4147    if (unlikely(batch->memcg != memcg))
4148        memcg_oom_recover(memcg);
4149}
4150
4151/*
4152 * uncharge if !page_mapped(page)
4153 */
4154static struct mem_cgroup *
4155__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4156                 bool end_migration)
4157{
4158    struct mem_cgroup *memcg = NULL;
4159    unsigned int nr_pages = 1;
4160    struct page_cgroup *pc;
4161    bool anon;
4162
4163    if (mem_cgroup_disabled())
4164        return NULL;
4165
4166    if (PageTransHuge(page)) {
4167        nr_pages <<= compound_order(page);
4168        VM_BUG_ON(!PageTransHuge(page));
4169    }
4170    /*
4171     * Check if our page_cgroup is valid
4172     */
4173    pc = lookup_page_cgroup(page);
4174    if (unlikely(!PageCgroupUsed(pc)))
4175        return NULL;
4176
4177    lock_page_cgroup(pc);
4178
4179    memcg = pc->mem_cgroup;
4180
4181    if (!PageCgroupUsed(pc))
4182        goto unlock_out;
4183
4184    anon = PageAnon(page);
4185
4186    switch (ctype) {
4187    case MEM_CGROUP_CHARGE_TYPE_ANON:
4188        /*
4189         * Generally PageAnon tells if it's the anon statistics to be
4190         * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4191         * used before page reached the stage of being marked PageAnon.
4192         */
4193        anon = true;
4194        /* fallthrough */
4195    case MEM_CGROUP_CHARGE_TYPE_DROP:
4196        /* See mem_cgroup_prepare_migration() */
4197        if (page_mapped(page))
4198            goto unlock_out;
4199        /*
4200         * Pages under migration may not be uncharged. But
4201         * end_migration() /must/ be the one uncharging the
4202         * unused post-migration page and so it has to call
4203         * here with the migration bit still set. See the
4204         * res_counter handling below.
4205         */
4206        if (!end_migration && PageCgroupMigration(pc))
4207            goto unlock_out;
4208        break;
4209    case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4210        if (!PageAnon(page)) { /* Shared memory */
4211            if (page->mapping && !page_is_file_cache(page))
4212                goto unlock_out;
4213        } else if (page_mapped(page)) /* Anon */
4214                goto unlock_out;
4215        break;
4216    default:
4217        break;
4218    }
4219
4220    mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4221
4222    ClearPageCgroupUsed(pc);
4223    /*
4224     * pc->mem_cgroup is not cleared here. It will be accessed when it's
4225     * freed from LRU. This is safe because uncharged page is expected not
4226     * to be reused (freed soon). Exception is SwapCache, it's handled by
4227     * special functions.
4228     */
4229
4230    unlock_page_cgroup(pc);
4231    /*
4232     * even after unlock, we have memcg->res.usage here and this memcg
4233     * will never be freed, so it's safe to call css_get().
4234     */
4235    memcg_check_events(memcg, page);
4236    if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4237        mem_cgroup_swap_statistics(memcg, true);
4238        css_get(&memcg->css);
4239    }
4240    /*
4241     * Migration does not charge the res_counter for the
4242     * replacement page, so leave it alone when phasing out the
4243     * page that is unused after the migration.
4244     */
4245    if (!end_migration && !mem_cgroup_is_root(memcg))
4246        mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4247
4248    return memcg;
4249
4250unlock_out:
4251    unlock_page_cgroup(pc);
4252    return NULL;
4253}
4254
4255void mem_cgroup_uncharge_page(struct page *page)
4256{
4257    /* early check. */
4258    if (page_mapped(page))
4259        return;
4260    VM_BUG_ON(page->mapping && !PageAnon(page));
4261    /*
4262     * If the page is in swap cache, uncharge should be deferred
4263     * to the swap path, which also properly accounts swap usage
4264     * and handles memcg lifetime.
4265     *
4266     * Note that this check is not stable and reclaim may add the
4267     * page to swap cache at any time after this. However, if the
4268     * page is not in swap cache by the time page->mapcount hits
4269     * 0, there won't be any page table references to the swap
4270     * slot, and reclaim will free it and not actually write the
4271     * page to disk.
4272     */
4273    if (PageSwapCache(page))
4274        return;
4275    __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4276}
4277
4278void mem_cgroup_uncharge_cache_page(struct page *page)
4279{
4280    VM_BUG_ON(page_mapped(page));
4281    VM_BUG_ON(page->mapping);
4282    __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4283}
4284
4285/*
4286 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4287 * In that cases, pages are freed continuously and we can expect pages
4288 * are in the same memcg. All these calls itself limits the number of
4289 * pages freed at once, then uncharge_start/end() is called properly.
4290 * This may be called prural(2) times in a context,
4291 */
4292
4293void mem_cgroup_uncharge_start(void)
4294{
4295    current->memcg_batch.do_batch++;
4296    /* We can do nest. */
4297    if (current->memcg_batch.do_batch == 1) {
4298        current->memcg_batch.memcg = NULL;
4299        current->memcg_batch.nr_pages = 0;
4300        current->memcg_batch.memsw_nr_pages = 0;
4301    }
4302}
4303
4304void mem_cgroup_uncharge_end(void)
4305{
4306    struct memcg_batch_info *batch = &current->memcg_batch;
4307
4308    if (!batch->do_batch)
4309        return;
4310
4311    batch->do_batch--;
4312    if (batch->do_batch) /* If stacked, do nothing. */
4313        return;
4314
4315    if (!batch->memcg)
4316        return;
4317    /*
4318     * This "batch->memcg" is valid without any css_get/put etc...
4319     * bacause we hide charges behind us.
4320     */
4321    if (batch->nr_pages)
4322        res_counter_uncharge(&batch->memcg->res,
4323                     batch->nr_pages * PAGE_SIZE);
4324    if (batch->memsw_nr_pages)
4325        res_counter_uncharge(&batch->memcg->memsw,
4326                     batch->memsw_nr_pages * PAGE_SIZE);
4327    memcg_oom_recover(batch->memcg);
4328    /* forget this pointer (for sanity check) */
4329    batch->memcg = NULL;
4330}
4331
4332#ifdef CONFIG_SWAP
4333/*
4334 * called after __delete_from_swap_cache() and drop "page" account.
4335 * memcg information is recorded to swap_cgroup of "ent"
4336 */
4337void
4338mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4339{
4340    struct mem_cgroup *memcg;
4341    int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4342
4343    if (!swapout) /* this was a swap cache but the swap is unused ! */
4344        ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4345
4346    memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4347
4348    /*
4349     * record memcg information, if swapout && memcg != NULL,
4350     * css_get() was called in uncharge().
4351     */
4352    if (do_swap_account && swapout && memcg)
4353        swap_cgroup_record(ent, css_id(&memcg->css));
4354}
4355#endif
4356
4357#ifdef CONFIG_MEMCG_SWAP
4358/*
4359 * called from swap_entry_free(). remove record in swap_cgroup and
4360 * uncharge "memsw" account.
4361 */
4362void mem_cgroup_uncharge_swap(swp_entry_t ent)
4363{
4364    struct mem_cgroup *memcg;
4365    unsigned short id;
4366
4367    if (!do_swap_account)
4368        return;
4369
4370    id = swap_cgroup_record(ent, 0);
4371    rcu_read_lock();
4372    memcg = mem_cgroup_lookup(id);
4373    if (memcg) {
4374        /*
4375         * We uncharge this because swap is freed.
4376         * This memcg can be obsolete one. We avoid calling css_tryget
4377         */
4378        if (!mem_cgroup_is_root(memcg))
4379            res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4380        mem_cgroup_swap_statistics(memcg, false);
4381        css_put(&memcg->css);
4382    }
4383    rcu_read_unlock();
4384}
4385
4386/**
4387 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4388 * @entry: swap entry to be moved
4389 * @from: mem_cgroup which the entry is moved from
4390 * @to: mem_cgroup which the entry is moved to
4391 *
4392 * It succeeds only when the swap_cgroup's record for this entry is the same
4393 * as the mem_cgroup's id of @from.
4394 *
4395 * Returns 0 on success, -EINVAL on failure.
4396 *
4397 * The caller must have charged to @to, IOW, called res_counter_charge() about
4398 * both res and memsw, and called css_get().
4399 */
4400static int mem_cgroup_move_swap_account(swp_entry_t entry,
4401                struct mem_cgroup *from, struct mem_cgroup *to)
4402{
4403    unsigned short old_id, new_id;
4404
4405    old_id = css_id(&from->css);
4406    new_id = css_id(&to->css);
4407
4408    if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4409        mem_cgroup_swap_statistics(from, false);
4410        mem_cgroup_swap_statistics(to, true);
4411        /*
4412         * This function is only called from task migration context now.
4413         * It postpones res_counter and refcount handling till the end
4414         * of task migration(mem_cgroup_clear_mc()) for performance
4415         * improvement. But we cannot postpone css_get(to) because if
4416         * the process that has been moved to @to does swap-in, the
4417         * refcount of @to might be decreased to 0.
4418         *
4419         * We are in attach() phase, so the cgroup is guaranteed to be
4420         * alive, so we can just call css_get().
4421         */
4422        css_get(&to->css);
4423        return 0;
4424    }
4425    return -EINVAL;
4426}
4427#else
4428static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4429                struct mem_cgroup *from, struct mem_cgroup *to)
4430{
4431    return -EINVAL;
4432}
4433#endif
4434
4435/*
4436 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4437 * page belongs to.
4438 */
4439void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4440                  struct mem_cgroup **memcgp)
4441{
4442    struct mem_cgroup *memcg = NULL;
4443    unsigned int nr_pages = 1;
4444    struct page_cgroup *pc;
4445    enum charge_type ctype;
4446
4447    *memcgp = NULL;
4448
4449    if (mem_cgroup_disabled())
4450        return;
4451
4452    if (PageTransHuge(page))
4453        nr_pages <<= compound_order(page);
4454
4455    pc = lookup_page_cgroup(page);
4456    lock_page_cgroup(pc);
4457    if (PageCgroupUsed(pc)) {
4458        memcg = pc->mem_cgroup;
4459        css_get(&memcg->css);
4460        /*
4461         * At migrating an anonymous page, its mapcount goes down
4462         * to 0 and uncharge() will be called. But, even if it's fully
4463         * unmapped, migration may fail and this page has to be
4464         * charged again. We set MIGRATION flag here and delay uncharge
4465         * until end_migration() is called
4466         *
4467         * Corner Case Thinking
4468         * A)
4469         * When the old page was mapped as Anon and it's unmap-and-freed
4470         * while migration was ongoing.
4471         * If unmap finds the old page, uncharge() of it will be delayed
4472         * until end_migration(). If unmap finds a new page, it's
4473         * uncharged when it make mapcount to be 1->0. If unmap code
4474         * finds swap_migration_entry, the new page will not be mapped
4475         * and end_migration() will find it(mapcount==0).
4476         *
4477         * B)
4478         * When the old page was mapped but migraion fails, the kernel
4479         * remaps it. A charge for it is kept by MIGRATION flag even
4480         * if mapcount goes down to 0. We can do remap successfully
4481         * without charging it again.
4482         *
4483         * C)
4484         * The "old" page is under lock_page() until the end of
4485         * migration, so, the old page itself will not be swapped-out.
4486         * If the new page is swapped out before end_migraton, our
4487         * hook to usual swap-out path will catch the event.
4488         */
4489        if (PageAnon(page))
4490            SetPageCgroupMigration(pc);
4491    }
4492    unlock_page_cgroup(pc);
4493    /*
4494     * If the page is not charged at this point,
4495     * we return here.
4496     */
4497    if (!memcg)
4498        return;
4499
4500    *memcgp = memcg;
4501    /*
4502     * We charge new page before it's used/mapped. So, even if unlock_page()
4503     * is called before end_migration, we can catch all events on this new
4504     * page. In the case new page is migrated but not remapped, new page's
4505     * mapcount will be finally 0 and we call uncharge in end_migration().
4506     */
4507    if (PageAnon(page))
4508        ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4509    else
4510        ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4511    /*
4512     * The page is committed to the memcg, but it's not actually
4513     * charged to the res_counter since we plan on replacing the
4514     * old one and only one page is going to be left afterwards.
4515     */
4516    __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4517}
4518
4519/* remove redundant charge if migration failed*/
4520void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4521    struct page *oldpage, struct page *newpage, bool migration_ok)
4522{
4523    struct page *used, *unused;
4524    struct page_cgroup *pc;
4525    bool anon;
4526
4527    if (!memcg)
4528        return;
4529
4530    if (!migration_ok) {
4531        used = oldpage;
4532        unused = newpage;
4533    } else {
4534        used = newpage;
4535        unused = oldpage;
4536    }
4537    anon = PageAnon(used);
4538    __mem_cgroup_uncharge_common(unused,
4539                     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4540                     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4541                     true);
4542    css_put(&memcg->css);
4543    /*
4544     * We disallowed uncharge of pages under migration because mapcount
4545     * of the page goes down to zero, temporarly.
4546     * Clear the flag and check the page should be charged.
4547     */
4548    pc = lookup_page_cgroup(oldpage);
4549    lock_page_cgroup(pc);
4550    ClearPageCgroupMigration(pc);
4551    unlock_page_cgroup(pc);
4552
4553    /*
4554     * If a page is a file cache, radix-tree replacement is very atomic
4555     * and we can skip this check. When it was an Anon page, its mapcount
4556     * goes down to 0. But because we added MIGRATION flage, it's not
4557     * uncharged yet. There are several case but page->mapcount check
4558     * and USED bit check in mem_cgroup_uncharge_page() will do enough
4559     * check. (see prepare_charge() also)
4560     */
4561    if (anon)
4562        mem_cgroup_uncharge_page(used);
4563}
4564
4565/*
4566 * At replace page cache, newpage is not under any memcg but it's on
4567 * LRU. So, this function doesn't touch res_counter but handles LRU
4568 * in correct way. Both pages are locked so we cannot race with uncharge.
4569 */
4570void mem_cgroup_replace_page_cache(struct page *oldpage,
4571                  struct page *newpage)
4572{
4573    struct mem_cgroup *memcg = NULL;
4574    struct page_cgroup *pc;
4575    enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4576
4577    if (mem_cgroup_disabled())
4578        return;
4579
4580    pc = lookup_page_cgroup(oldpage);
4581    /* fix accounting on old pages */
4582    lock_page_cgroup(pc);
4583    if (PageCgroupUsed(pc)) {
4584        memcg = pc->mem_cgroup;
4585        mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4586        ClearPageCgroupUsed(pc);
4587    }
4588    unlock_page_cgroup(pc);
4589
4590    /*
4591     * When called from shmem_replace_page(), in some cases the
4592     * oldpage has already been charged, and in some cases not.
4593     */
4594    if (!memcg)
4595        return;
4596    /*
4597     * Even if newpage->mapping was NULL before starting replacement,
4598     * the newpage may be on LRU(or pagevec for LRU) already. We lock
4599     * LRU while we overwrite pc->mem_cgroup.
4600     */
4601    __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4602}
4603
4604#ifdef CONFIG_DEBUG_VM
4605static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4606{
4607    struct page_cgroup *pc;
4608
4609    pc = lookup_page_cgroup(page);
4610    /*
4611     * Can be NULL while feeding pages into the page allocator for
4612     * the first time, i.e. during boot or memory hotplug;
4613     * or when mem_cgroup_disabled().
4614     */
4615    if (likely(pc) && PageCgroupUsed(pc))
4616        return pc;
4617    return NULL;
4618}
4619
4620bool mem_cgroup_bad_page_check(struct page *page)
4621{
4622    if (mem_cgroup_disabled())
4623        return false;
4624
4625    return lookup_page_cgroup_used(page) != NULL;
4626}
4627
4628void mem_cgroup_print_bad_page(struct page *page)
4629{
4630    struct page_cgroup *pc;
4631
4632    pc = lookup_page_cgroup_used(page);
4633    if (pc) {
4634        pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4635             pc, pc->flags, pc->mem_cgroup);
4636    }
4637}
4638#endif
4639
4640static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4641                unsigned long long val)
4642{
4643    int retry_count;
4644    u64 memswlimit, memlimit;
4645    int ret = 0;
4646    int children = mem_cgroup_count_children(memcg);
4647    u64 curusage, oldusage;
4648    int enlarge;
4649
4650    /*
4651     * For keeping hierarchical_reclaim simple, how long we should retry
4652     * is depends on callers. We set our retry-count to be function
4653     * of # of children which we should visit in this loop.
4654     */
4655    retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4656
4657    oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4658
4659    enlarge = 0;
4660    while (retry_count) {
4661        if (signal_pending(current)) {
4662            ret = -EINTR;
4663            break;
4664        }
4665        /*
4666         * Rather than hide all in some function, I do this in
4667         * open coded manner. You see what this really does.
4668         * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4669         */
4670        mutex_lock(&set_limit_mutex);
4671        memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4672        if (memswlimit < val) {
4673            ret = -EINVAL;
4674            mutex_unlock(&set_limit_mutex);
4675            break;
4676        }
4677
4678        memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4679        if (memlimit < val)
4680            enlarge = 1;
4681
4682        ret = res_counter_set_limit(&memcg->res, val);
4683        if (!ret) {
4684            if (memswlimit == val)
4685                memcg->memsw_is_minimum = true;
4686            else
4687                memcg->memsw_is_minimum = false;
4688        }
4689        mutex_unlock(&set_limit_mutex);
4690
4691        if (!ret)
4692            break;
4693
4694        mem_cgroup_reclaim(memcg, GFP_KERNEL,
4695                   MEM_CGROUP_RECLAIM_SHRINK);
4696        curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4697        /* Usage is reduced ? */
4698        if (curusage >= oldusage)
4699            retry_count--;
4700        else
4701            oldusage = curusage;
4702    }
4703    if (!ret && enlarge)
4704        memcg_oom_recover(memcg);
4705
4706    return ret;
4707}
4708
4709static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4710                    unsigned long long val)
4711{
4712    int retry_count;
4713    u64 memlimit, memswlimit, oldusage, curusage;
4714    int children = mem_cgroup_count_children(memcg);
4715    int ret = -EBUSY;
4716    int enlarge = 0;
4717
4718    /* see mem_cgroup_resize_res_limit */
4719    retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4720    oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4721    while (retry_count) {
4722        if (signal_pending(current)) {
4723            ret = -EINTR;
4724            break;
4725        }
4726        /*
4727         * Rather than hide all in some function, I do this in
4728         * open coded manner. You see what this really does.
4729         * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4730         */
4731        mutex_lock(&set_limit_mutex);
4732        memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4733        if (memlimit > val) {
4734            ret = -EINVAL;
4735            mutex_unlock(&set_limit_mutex);
4736            break;
4737        }
4738        memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4739        if (memswlimit < val)
4740            enlarge = 1;
4741        ret = res_counter_set_limit(&memcg->memsw, val);
4742        if (!ret) {
4743            if (memlimit == val)
4744                memcg->memsw_is_minimum = true;
4745            else
4746                memcg->memsw_is_minimum = false;
4747        }
4748        mutex_unlock(&set_limit_mutex);
4749
4750        if (!ret)
4751            break;
4752
4753        mem_cgroup_reclaim(memcg, GFP_KERNEL,
4754                   MEM_CGROUP_RECLAIM_NOSWAP |
4755                   MEM_CGROUP_RECLAIM_SHRINK);
4756        curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4757        /* Usage is reduced ? */
4758        if (curusage >= oldusage)
4759            retry_count--;
4760        else
4761            oldusage = curusage;
4762    }
4763    if (!ret && enlarge)
4764        memcg_oom_recover(memcg);
4765    return ret;
4766}
4767
4768unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4769                        gfp_t gfp_mask,
4770                        unsigned long *total_scanned)
4771{
4772    unsigned long nr_reclaimed = 0;
4773    struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4774    unsigned long reclaimed;
4775    int loop = 0;
4776    struct mem_cgroup_tree_per_zone *mctz;
4777    unsigned long long excess;
4778    unsigned long nr_scanned;
4779
4780    if (order > 0)
4781        return 0;
4782
4783    mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4784    /*
4785     * This loop can run a while, specially if mem_cgroup's continuously
4786     * keep exceeding their soft limit and putting the system under
4787     * pressure
4788     */
4789    do {
4790        if (next_mz)
4791            mz = next_mz;
4792        else
4793            mz = mem_cgroup_largest_soft_limit_node(mctz);
4794        if (!mz)
4795            break;
4796
4797        nr_scanned = 0;
4798        reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4799                            gfp_mask, &nr_scanned);
4800        nr_reclaimed += reclaimed;
4801        *total_scanned += nr_scanned;
4802        spin_lock(&mctz->lock);
4803
4804        /*
4805         * If we failed to reclaim anything from this memory cgroup
4806         * it is time to move on to the next cgroup
4807         */
4808        next_mz = NULL;
4809        if (!reclaimed) {
4810            do {
4811                /*
4812                 * Loop until we find yet another one.
4813                 *
4814                 * By the time we get the soft_limit lock
4815                 * again, someone might have aded the
4816                 * group back on the RB tree. Iterate to
4817                 * make sure we get a different mem.
4818                 * mem_cgroup_largest_soft_limit_node returns
4819                 * NULL if no other cgroup is present on
4820                 * the tree
4821                 */
4822                next_mz =
4823                __mem_cgroup_largest_soft_limit_node(mctz);
4824                if (next_mz == mz)
4825                    css_put(&next_mz->memcg->css);
4826                else /* next_mz == NULL or other memcg */
4827                    break;
4828            } while (1);
4829        }
4830        __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4831        excess = res_counter_soft_limit_excess(&mz->memcg->res);
4832        /*
4833         * One school of thought says that we should not add
4834         * back the node to the tree if reclaim returns 0.
4835         * But our reclaim could return 0, simply because due
4836         * to priority we are exposing a smaller subset of
4837         * memory to reclaim from. Consider this as a longer
4838         * term TODO.
4839         */
4840        /* If excess == 0, no tree ops */
4841        __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4842        spin_unlock(&mctz->lock);
4843        css_put(&mz->memcg->css);
4844        loop++;
4845        /*
4846         * Could not reclaim anything and there are no more
4847         * mem cgroups to try or we seem to be looping without
4848         * reclaiming anything.
4849         */
4850        if (!nr_reclaimed &&
4851            (next_mz == NULL ||
4852            loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4853            break;
4854    } while (!nr_reclaimed);
4855    if (next_mz)
4856        css_put(&next_mz->memcg->css);
4857    return nr_reclaimed;
4858}
4859
4860/**
4861 * mem_cgroup_force_empty_list - clears LRU of a group
4862 * @memcg: group to clear
4863 * @node: NUMA node
4864 * @zid: zone id
4865 * @lru: lru to to clear
4866 *
4867 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4868 * reclaim the pages page themselves - pages are moved to the parent (or root)
4869 * group.
4870 */
4871static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4872                int node, int zid, enum lru_list lru)
4873{
4874    struct lruvec *lruvec;
4875    unsigned long flags;
4876    struct list_head *list;
4877    struct page *busy;
4878    struct zone *zone;
4879
4880    zone = &NODE_DATA(node)->node_zones[zid];
4881    lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4882    list = &lruvec->lists[lru];
4883
4884    busy = NULL;
4885    do {
4886        struct page_cgroup *pc;
4887        struct page *page;
4888
4889        spin_lock_irqsave(&zone->lru_lock, flags);
4890        if (list_empty(list)) {
4891            spin_unlock_irqrestore(&zone->lru_lock, flags);
4892            break;
4893        }
4894        page = list_entry(list->prev, struct page, lru);
4895        if (busy == page) {
4896            list_move(&page->lru, list);
4897            busy = NULL;
4898            spin_unlock_irqrestore(&zone->lru_lock, flags);
4899            continue;
4900        }
4901        spin_unlock_irqrestore(&zone->lru_lock, flags);
4902
4903        pc = lookup_page_cgroup(page);
4904
4905        if (mem_cgroup_move_parent(page, pc, memcg)) {
4906            /* found lock contention or "pc" is obsolete. */
4907            busy = page;
4908            cond_resched();
4909        } else
4910            busy = NULL;
4911    } while (!list_empty(list));
4912}
4913
4914/*
4915 * make mem_cgroup's charge to be 0 if there is no task by moving
4916 * all the charges and pages to the parent.
4917 * This enables deleting this mem_cgroup.
4918 *
4919 * Caller is responsible for holding css reference on the memcg.
4920 */
4921static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4922{
4923    int node, zid;
4924    u64 usage;
4925
4926    do {
4927        /* This is for making all *used* pages to be on LRU. */
4928        lru_add_drain_all();
4929        drain_all_stock_sync(memcg);
4930        mem_cgroup_start_move(memcg);
4931        for_each_node_state(node, N_MEMORY) {
4932            for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4933                enum lru_list lru;
4934                for_each_lru(lru) {
4935                    mem_cgroup_force_empty_list(memcg,
4936                            node, zid, lru);
4937                }
4938            }
4939        }
4940        mem_cgroup_end_move(memcg);
4941        memcg_oom_recover(memcg);
4942        cond_resched();
4943
4944        /*
4945         * Kernel memory may not necessarily be trackable to a specific
4946         * process. So they are not migrated, and therefore we can't
4947         * expect their value to drop to 0 here.
4948         * Having res filled up with kmem only is enough.
4949         *
4950         * This is a safety check because mem_cgroup_force_empty_list
4951         * could have raced with mem_cgroup_replace_page_cache callers
4952         * so the lru seemed empty but the page could have been added
4953         * right after the check. RES_USAGE should be safe as we always
4954         * charge before adding to the LRU.
4955         */
4956        usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4957            res_counter_read_u64(&memcg->kmem, RES_USAGE);
4958    } while (usage > 0);
4959}
4960
4961static inline bool memcg_has_children(struct mem_cgroup *memcg)
4962{
4963    lockdep_assert_held(&memcg_create_mutex);
4964    /*
4965     * The lock does not prevent addition or deletion to the list
4966     * of children, but it prevents a new child from being
4967     * initialized based on this parent in css_online(), so it's
4968     * enough to decide whether hierarchically inherited
4969     * attributes can still be changed or not.
4970     */
4971    return memcg->use_hierarchy &&
4972        !list_empty(&memcg->css.cgroup->children);
4973}
4974
4975/*
4976 * Reclaims as many pages from the given memcg as possible and moves
4977 * the rest to the parent.
4978 *
4979 * Caller is responsible for holding css reference for memcg.
4980 */
4981static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4982{
4983    int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4984    struct cgroup *cgrp = memcg->css.cgroup;
4985
4986    /* returns EBUSY if there is a task or if we come here twice. */
4987    if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4988        return -EBUSY;
4989
4990    /* we call try-to-free pages for make this cgroup empty */
4991    lru_add_drain_all();
4992    /* try to free all pages in this cgroup */
4993    while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4994        int progress;
4995
4996        if (signal_pending(current))
4997            return -EINTR;
4998
4999        progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5000                        false);
5001        if (!progress) {
5002            nr_retries--;
5003            /* maybe some writeback is necessary */
5004            congestion_wait(BLK_RW_ASYNC, HZ/10);
5005        }
5006
5007    }
5008    lru_add_drain();
5009    mem_cgroup_reparent_charges(memcg);
5010
5011    return 0;
5012}
5013
5014static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5015                    unsigned int event)
5016{
5017    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5018
5019    if (mem_cgroup_is_root(memcg))
5020        return -EINVAL;
5021    return mem_cgroup_force_empty(memcg);
5022}
5023
5024static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5025                     struct cftype *cft)
5026{
5027    return mem_cgroup_from_css(css)->use_hierarchy;
5028}
5029
5030static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5031                      struct cftype *cft, u64 val)
5032{
5033    int retval = 0;
5034    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5035    struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5036
5037    mutex_lock(&memcg_create_mutex);
5038
5039    if (memcg->use_hierarchy == val)
5040        goto out;
5041
5042    /*
5043     * If parent's use_hierarchy is set, we can't make any modifications
5044     * in the child subtrees. If it is unset, then the change can
5045     * occur, provided the current cgroup has no children.
5046     *
5047     * For the root cgroup, parent_mem is NULL, we allow value to be
5048     * set if there are no children.
5049     */
5050    if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5051                (val == 1 || val == 0)) {
5052        if (list_empty(&memcg->css.cgroup->children))
5053            memcg->use_hierarchy = val;
5054        else
5055            retval = -EBUSY;
5056    } else
5057        retval = -EINVAL;
5058
5059out:
5060    mutex_unlock(&memcg_create_mutex);
5061
5062    return retval;
5063}
5064
5065
5066static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5067                           enum mem_cgroup_stat_index idx)
5068{
5069    struct mem_cgroup *iter;
5070    long val = 0;
5071
5072    /* Per-cpu values can be negative, use a signed accumulator */
5073    for_each_mem_cgroup_tree(iter, memcg)
5074        val += mem_cgroup_read_stat(iter, idx);
5075
5076    if (val < 0) /* race ? */
5077        val = 0;
5078    return val;
5079}
5080
5081static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5082{
5083    u64 val;
5084
5085    if (!mem_cgroup_is_root(memcg)) {
5086        if (!swap)
5087            return res_counter_read_u64(&memcg->res, RES_USAGE);
5088        else
5089            return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5090    }
5091
5092    /*
5093     * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5094     * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5095     */
5096    val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5097    val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5098
5099    if (swap)
5100        val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5101
5102    return val << PAGE_SHIFT;
5103}
5104
5105static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5106                   struct cftype *cft, struct file *file,
5107                   char __user *buf, size_t nbytes, loff_t *ppos)
5108{
5109    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5110    char str[64];
5111    u64 val;
5112    int name, len;
5113    enum res_type type;
5114
5115    type = MEMFILE_TYPE(cft->private);
5116    name = MEMFILE_ATTR(cft->private);
5117
5118    switch (type) {
5119    case _MEM:
5120        if (name == RES_USAGE)
5121            val = mem_cgroup_usage(memcg, false);
5122        else
5123            val = res_counter_read_u64(&memcg->res, name);
5124        break;
5125    case _MEMSWAP:
5126        if (name == RES_USAGE)
5127            val = mem_cgroup_usage(memcg, true);
5128        else
5129            val = res_counter_read_u64(&memcg->memsw, name);
5130        break;
5131    case _KMEM:
5132        val = res_counter_read_u64(&memcg->kmem, name);
5133        break;
5134    default:
5135        BUG();
5136    }
5137
5138    len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5139    return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5140}
5141
5142static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5143{
5144    int ret = -EINVAL;
5145#ifdef CONFIG_MEMCG_KMEM
5146    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5147    /*
5148     * For simplicity, we won't allow this to be disabled. It also can't
5149     * be changed if the cgroup has children already, or if tasks had
5150     * already joined.
5151     *
5152     * If tasks join before we set the limit, a person looking at
5153     * kmem.usage_in_bytes will have no way to determine when it took
5154     * place, which makes the value quite meaningless.
5155     *
5156     * After it first became limited, changes in the value of the limit are
5157     * of course permitted.
5158     */
5159    mutex_lock(&memcg_create_mutex);
5160    mutex_lock(&set_limit_mutex);
5161    if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5162        if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5163            ret = -EBUSY;
5164            goto out;
5165        }
5166        ret = res_counter_set_limit(&memcg->kmem, val);
5167        VM_BUG_ON(ret);
5168
5169        ret = memcg_update_cache_sizes(memcg);
5170        if (ret) {
5171            res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5172            goto out;
5173        }
5174        static_key_slow_inc(&memcg_kmem_enabled_key);
5175        /*
5176         * setting the active bit after the inc will guarantee no one
5177         * starts accounting before all call sites are patched
5178         */
5179        memcg_kmem_set_active(memcg);
5180    } else
5181        ret = res_counter_set_limit(&memcg->kmem, val);
5182out:
5183    mutex_unlock(&set_limit_mutex);
5184    mutex_unlock(&memcg_create_mutex);
5185#endif
5186    return ret;
5187}
5188
5189#ifdef CONFIG_MEMCG_KMEM
5190static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5191{
5192    int ret = 0;
5193    struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5194    if (!parent)
5195        goto out;
5196
5197    memcg->kmem_account_flags = parent->kmem_account_flags;
5198    /*
5199     * When that happen, we need to disable the static branch only on those
5200     * memcgs that enabled it. To achieve this, we would be forced to
5201     * complicate the code by keeping track of which memcgs were the ones
5202     * that actually enabled limits, and which ones got it from its
5203     * parents.
5204     *
5205     * It is a lot simpler just to do static_key_slow_inc() on every child
5206     * that is accounted.
5207     */
5208    if (!memcg_kmem_is_active(memcg))
5209        goto out;
5210
5211    /*
5212     * __mem_cgroup_free() will issue static_key_slow_dec() because this
5213     * memcg is active already. If the later initialization fails then the
5214     * cgroup core triggers the cleanup so we do not have to do it here.
5215     */
5216    static_key_slow_inc(&memcg_kmem_enabled_key);
5217
5218    mutex_lock(&set_limit_mutex);
5219    memcg_stop_kmem_account();
5220    ret = memcg_update_cache_sizes(memcg);
5221    memcg_resume_kmem_account();
5222    mutex_unlock(&set_limit_mutex);
5223out:
5224    return ret;
5225}
5226#endif /* CONFIG_MEMCG_KMEM */
5227
5228/*
5229 * The user of this function is...
5230 * RES_LIMIT.
5231 */
5232static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5233                const char *buffer)
5234{
5235    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5236    enum res_type type;
5237    int name;
5238    unsigned long long val;
5239    int ret;
5240
5241    type = MEMFILE_TYPE(cft->private);
5242    name = MEMFILE_ATTR(cft->private);
5243
5244    switch (name) {
5245    case RES_LIMIT:
5246        if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5247            ret = -EINVAL;
5248            break;
5249        }
5250        /* This function does all necessary parse...reuse it */
5251        ret = res_counter_memparse_write_strategy(buffer, &val);
5252        if (ret)
5253            break;
5254        if (type == _MEM)
5255            ret = mem_cgroup_resize_limit(memcg, val);
5256        else if (type == _MEMSWAP)
5257            ret = mem_cgroup_resize_memsw_limit(memcg, val);
5258        else if (type == _KMEM)
5259            ret = memcg_update_kmem_limit(css, val);
5260        else
5261            return -EINVAL;
5262        break;
5263    case RES_SOFT_LIMIT:
5264        ret = res_counter_memparse_write_strategy(buffer, &val);
5265        if (ret)
5266            break;
5267        /*
5268         * For memsw, soft limits are hard to implement in terms
5269         * of semantics, for now, we support soft limits for
5270         * control without swap
5271         */
5272        if (type == _MEM)
5273            ret = res_counter_set_soft_limit(&memcg->res, val);
5274        else
5275            ret = -EINVAL;
5276        break;
5277    default:
5278        ret = -EINVAL; /* should be BUG() ? */
5279        break;
5280    }
5281    return ret;
5282}
5283
5284static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5285        unsigned long long *mem_limit, unsigned long long *memsw_limit)
5286{
5287    unsigned long long min_limit, min_memsw_limit, tmp;
5288
5289    min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290    min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291    if (!memcg->use_hierarchy)
5292        goto out;
5293
5294    while (css_parent(&memcg->css)) {
5295        memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5296        if (!memcg->use_hierarchy)
5297            break;
5298        tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5299        min_limit = min(min_limit, tmp);
5300        tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5301        min_memsw_limit = min(min_memsw_limit, tmp);
5302    }
5303out:
5304    *mem_limit = min_limit;
5305    *memsw_limit = min_memsw_limit;
5306}
5307
5308static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5309{
5310    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5311    int name;
5312    enum res_type type;
5313
5314    type = MEMFILE_TYPE(event);
5315    name = MEMFILE_ATTR(event);
5316
5317    switch (name) {
5318    case RES_MAX_USAGE:
5319        if (type == _MEM)
5320            res_counter_reset_max(&memcg->res);
5321        else if (type == _MEMSWAP)
5322            res_counter_reset_max(&memcg->memsw);
5323        else if (type == _KMEM)
5324            res_counter_reset_max(&memcg->kmem);
5325        else
5326            return -EINVAL;
5327        break;
5328    case RES_FAILCNT:
5329        if (type == _MEM)
5330            res_counter_reset_failcnt(&memcg->res);
5331        else if (type == _MEMSWAP)
5332            res_counter_reset_failcnt(&memcg->memsw);
5333        else if (type == _KMEM)
5334            res_counter_reset_failcnt(&memcg->kmem);
5335        else
5336            return -EINVAL;
5337        break;
5338    }
5339
5340    return 0;
5341}
5342
5343static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5344                    struct cftype *cft)
5345{
5346    return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5347}
5348
5349#ifdef CONFIG_MMU
5350static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5351                    struct cftype *cft, u64 val)
5352{
5353    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354
5355    if (val >= (1 << NR_MOVE_TYPE))
5356        return -EINVAL;
5357
5358    /*
5359     * No kind of locking is needed in here, because ->can_attach() will
5360     * check this value once in the beginning of the process, and then carry
5361     * on with stale data. This means that changes to this value will only
5362     * affect task migrations starting after the change.
5363     */
5364    memcg->move_charge_at_immigrate = val;
5365    return 0;
5366}
5367#else
5368static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5369                    struct cftype *cft, u64 val)
5370{
5371    return -ENOSYS;
5372}
5373#endif
5374
5375#ifdef CONFIG_NUMA
5376static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5377                struct cftype *cft, struct seq_file *m)
5378{
5379    int nid;
5380    unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5381    unsigned long node_nr;
5382    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383
5384    total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5385    seq_printf(m, "total=%lu", total_nr);
5386    for_each_node_state(nid, N_MEMORY) {
5387        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5388        seq_printf(m, " N%d=%lu", nid, node_nr);
5389    }
5390    seq_putc(m, '\n');
5391
5392    file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5393    seq_printf(m, "file=%lu", file_nr);
5394    for_each_node_state(nid, N_MEMORY) {
5395        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5396                LRU_ALL_FILE);
5397        seq_printf(m, " N%d=%lu", nid, node_nr);
5398    }
5399    seq_putc(m, '\n');
5400
5401    anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5402    seq_printf(m, "anon=%lu", anon_nr);
5403    for_each_node_state(nid, N_MEMORY) {
5404        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5405                LRU_ALL_ANON);
5406        seq_printf(m, " N%d=%lu", nid, node_nr);
5407    }
5408    seq_putc(m, '\n');
5409
5410    unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5411    seq_printf(m, "unevictable=%lu", unevictable_nr);
5412    for_each_node_state(nid, N_MEMORY) {
5413        node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5414                BIT(LRU_UNEVICTABLE));
5415        seq_printf(m, " N%d=%lu", nid, node_nr);
5416    }
5417    seq_putc(m, '\n');
5418    return 0;
5419}
5420#endif /* CONFIG_NUMA */
5421
5422static inline void mem_cgroup_lru_names_not_uptodate(void)
5423{
5424    BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5425}
5426
5427static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5428                 struct seq_file *m)
5429{
5430    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5431    struct mem_cgroup *mi;
5432    unsigned int i;
5433
5434    for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5435        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5436            continue;
5437        seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5438               mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5439    }
5440
5441    for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5442        seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5443               mem_cgroup_read_events(memcg, i));
5444
5445    for (i = 0; i < NR_LRU_LISTS; i++)
5446        seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5447               mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5448
5449    /* Hierarchical information */
5450    {
5451        unsigned long long limit, memsw_limit;
5452        memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5453        seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5454        if (do_swap_account)
5455            seq_printf(m, "hierarchical_memsw_limit %llu\n",
5456                   memsw_limit);
5457    }
5458
5459    for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5460        long long val = 0;
5461
5462        if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5463            continue;
5464        for_each_mem_cgroup_tree(mi, memcg)
5465            val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5466        seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5467    }
5468
5469    for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5470        unsigned long long val = 0;
5471
5472        for_each_mem_cgroup_tree(mi, memcg)
5473            val += mem_cgroup_read_events(mi, i);
5474        seq_printf(m, "total_%s %llu\n",
5475               mem_cgroup_events_names[i], val);
5476    }
5477
5478    for (i = 0; i < NR_LRU_LISTS; i++) {
5479        unsigned long long val = 0;
5480
5481        for_each_mem_cgroup_tree(mi, memcg)
5482            val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5483        seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5484    }
5485
5486#ifdef CONFIG_DEBUG_VM
5487    {
5488        int nid, zid;
5489        struct mem_cgroup_per_zone *mz;
5490        struct zone_reclaim_stat *rstat;
5491        unsigned long recent_rotated[2] = {0, 0};
5492        unsigned long recent_scanned[2] = {0, 0};
5493
5494        for_each_online_node(nid)
5495            for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5496                mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5497                rstat = &mz->lruvec.reclaim_stat;
5498
5499                recent_rotated[0] += rstat->recent_rotated[0];
5500                recent_rotated[1] += rstat->recent_rotated[1];
5501                recent_scanned[0] += rstat->recent_scanned[0];
5502                recent_scanned[1] += rstat->recent_scanned[1];
5503            }
5504        seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5505        seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5506        seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5507        seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5508    }
5509#endif
5510
5511    return 0;
5512}
5513
5514static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5515                      struct cftype *cft)
5516{
5517    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5518
5519    return mem_cgroup_swappiness(memcg);
5520}
5521
5522static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5523                       struct cftype *cft, u64 val)
5524{
5525    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5526    struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5527
5528    if (val > 100 || !parent)
5529        return -EINVAL;
5530
5531    mutex_lock(&memcg_create_mutex);
5532
5533    /* If under hierarchy, only empty-root can set this value */
5534    if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5535        mutex_unlock(&memcg_create_mutex);
5536        return -EINVAL;
5537    }
5538
5539    memcg->swappiness = val;
5540
5541    mutex_unlock(&memcg_create_mutex);
5542
5543    return 0;
5544}
5545
5546static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5547{
5548    struct mem_cgroup_threshold_ary *t;
5549    u64 usage;
5550    int i;
5551
5552    rcu_read_lock();
5553    if (!swap)
5554        t = rcu_dereference(memcg->thresholds.primary);
5555    else
5556        t = rcu_dereference(memcg->memsw_thresholds.primary);
5557
5558    if (!t)
5559        goto unlock;
5560
5561    usage = mem_cgroup_usage(memcg, swap);
5562
5563    /*
5564     * current_threshold points to threshold just below or equal to usage.
5565     * If it's not true, a threshold was crossed after last
5566     * call of __mem_cgroup_threshold().
5567     */
5568    i = t->current_threshold;
5569
5570    /*
5571     * Iterate backward over array of thresholds starting from
5572     * current_threshold and check if a threshold is crossed.
5573     * If none of thresholds below usage is crossed, we read
5574     * only one element of the array here.
5575     */
5576    for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5577        eventfd_signal(t->entries[i].eventfd, 1);
5578
5579    /* i = current_threshold + 1 */
5580    i++;
5581
5582    /*
5583     * Iterate forward over array of thresholds starting from
5584     * current_threshold+1 and check if a threshold is crossed.
5585     * If none of thresholds above usage is crossed, we read
5586     * only one element of the array here.
5587     */
5588    for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5589        eventfd_signal(t->entries[i].eventfd, 1);
5590
5591    /* Update current_threshold */
5592    t->current_threshold = i - 1;
5593unlock:
5594    rcu_read_unlock();
5595}
5596
5597static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5598{
5599    while (memcg) {
5600        __mem_cgroup_threshold(memcg, false);
5601        if (do_swap_account)
5602            __mem_cgroup_threshold(memcg, true);
5603
5604        memcg = parent_mem_cgroup(memcg);
5605    }
5606}
5607
5608static int compare_thresholds(const void *a, const void *b)
5609{
5610    const struct mem_cgroup_threshold *_a = a;
5611    const struct mem_cgroup_threshold *_b = b;
5612
5613    if (_a->threshold > _b->threshold)
5614        return 1;
5615
5616    if (_a->threshold < _b->threshold)
5617        return -1;
5618
5619    return 0;
5620}
5621
5622static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5623{
5624    struct mem_cgroup_eventfd_list *ev;
5625
5626    list_for_each_entry(ev, &memcg->oom_notify, list)
5627        eventfd_signal(ev->eventfd, 1);
5628    return 0;
5629}
5630
5631static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5632{
5633    struct mem_cgroup *iter;
5634
5635    for_each_mem_cgroup_tree(iter, memcg)
5636        mem_cgroup_oom_notify_cb(iter);
5637}
5638
5639static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5640    struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5641{
5642    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5643    struct mem_cgroup_thresholds *thresholds;
5644    struct mem_cgroup_threshold_ary *new;
5645    enum res_type type = MEMFILE_TYPE(cft->private);
5646    u64 threshold, usage;
5647    int i, size, ret;
5648
5649    ret = res_counter_memparse_write_strategy(args, &threshold);
5650    if (ret)
5651        return ret;
5652
5653    mutex_lock(&memcg->thresholds_lock);
5654
5655    if (type == _MEM)
5656        thresholds = &memcg->thresholds;
5657    else if (type == _MEMSWAP)
5658        thresholds = &memcg->memsw_thresholds;
5659    else
5660        BUG();
5661
5662    usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5663
5664    /* Check if a threshold crossed before adding a new one */
5665    if (thresholds->primary)
5666        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5667
5668    size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5669
5670    /* Allocate memory for new array of thresholds */
5671    new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5672            GFP_KERNEL);
5673    if (!new) {
5674        ret = -ENOMEM;
5675        goto unlock;
5676    }
5677    new->size = size;
5678
5679    /* Copy thresholds (if any) to new array */
5680    if (thresholds->primary) {
5681        memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5682                sizeof(struct mem_cgroup_threshold));
5683    }
5684
5685    /* Add new threshold */
5686    new->entries[size - 1].eventfd = eventfd;
5687    new->entries[size - 1].threshold = threshold;
5688
5689    /* Sort thresholds. Registering of new threshold isn't time-critical */
5690    sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5691            compare_thresholds, NULL);
5692
5693    /* Find current threshold */
5694    new->current_threshold = -1;
5695    for (i = 0; i < size; i++) {
5696        if (new->entries[i].threshold <= usage) {
5697            /*
5698             * new->current_threshold will not be used until
5699             * rcu_assign_pointer(), so it's safe to increment
5700             * it here.
5701             */
5702            ++new->current_threshold;
5703        } else
5704            break;
5705    }
5706
5707    /* Free old spare buffer and save old primary buffer as spare */
5708    kfree(thresholds->spare);
5709    thresholds->spare = thresholds->primary;
5710
5711    rcu_assign_pointer(thresholds->primary, new);
5712
5713    /* To be sure that nobody uses thresholds */
5714    synchronize_rcu();
5715
5716unlock:
5717    mutex_unlock(&memcg->thresholds_lock);
5718
5719    return ret;
5720}
5721
5722static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5723    struct cftype *cft, struct eventfd_ctx *eventfd)
5724{
5725    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5726    struct mem_cgroup_thresholds *thresholds;
5727    struct mem_cgroup_threshold_ary *new;
5728    enum res_type type = MEMFILE_TYPE(cft->private);
5729    u64 usage;
5730    int i, j, size;
5731
5732    mutex_lock(&memcg->thresholds_lock);
5733    if (type == _MEM)
5734        thresholds = &memcg->thresholds;
5735    else if (type == _MEMSWAP)
5736        thresholds = &memcg->memsw_thresholds;
5737    else
5738        BUG();
5739
5740    if (!thresholds->primary)
5741        goto unlock;
5742
5743    usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5744
5745    /* Check if a threshold crossed before removing */
5746    __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5747
5748    /* Calculate new number of threshold */
5749    size = 0;
5750    for (i = 0; i < thresholds->primary->size; i++) {
5751        if (thresholds->primary->entries[i].eventfd != eventfd)
5752            size++;
5753    }
5754
5755    new = thresholds->spare;
5756
5757    /* Set thresholds array to NULL if we don't have thresholds */
5758    if (!size) {
5759        kfree(new);
5760        new = NULL;
5761        goto swap_buffers;
5762    }
5763
5764    new->size = size;
5765
5766    /* Copy thresholds and find current threshold */
5767    new->current_threshold = -1;
5768    for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5769        if (thresholds->primary->entries[i].eventfd == eventfd)
5770            continue;
5771
5772        new->entries[j] = thresholds->primary->entries[i];
5773        if (new->entries[j].threshold <= usage) {
5774            /*
5775             * new->current_threshold will not be used
5776             * until rcu_assign_pointer(), so it's safe to increment
5777             * it here.
5778             */
5779            ++new->current_threshold;
5780        }
5781        j++;
5782    }
5783
5784swap_buffers:
5785    /* Swap primary and spare array */
5786    thresholds->spare = thresholds->primary;
5787    /* If all events are unregistered, free the spare array */
5788    if (!new) {
5789        kfree(thresholds->spare);
5790        thresholds->spare = NULL;
5791    }
5792
5793    rcu_assign_pointer(thresholds->primary, new);
5794
5795    /* To be sure that nobody uses thresholds */
5796    synchronize_rcu();
5797unlock:
5798    mutex_unlock(&memcg->thresholds_lock);
5799}
5800
5801static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5802    struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5803{
5804    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5805    struct mem_cgroup_eventfd_list *event;
5806    enum res_type type = MEMFILE_TYPE(cft->private);
5807
5808    BUG_ON(type != _OOM_TYPE);
5809    event = kmalloc(sizeof(*event), GFP_KERNEL);
5810    if (!event)
5811        return -ENOMEM;
5812
5813    spin_lock(&memcg_oom_lock);
5814
5815    event->eventfd = eventfd;
5816    list_add(&event->list, &memcg->oom_notify);
5817
5818    /* already in OOM ? */
5819    if (atomic_read(&memcg->under_oom))
5820        eventfd_signal(eventfd, 1);
5821    spin_unlock(&memcg_oom_lock);
5822
5823    return 0;
5824}
5825
5826static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5827    struct cftype *cft, struct eventfd_ctx *eventfd)
5828{
5829    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5830    struct mem_cgroup_eventfd_list *ev, *tmp;
5831    enum res_type type = MEMFILE_TYPE(cft->private);
5832
5833    BUG_ON(type != _OOM_TYPE);
5834
5835    spin_lock(&memcg_oom_lock);
5836
5837    list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5838        if (ev->eventfd == eventfd) {
5839            list_del(&ev->list);
5840            kfree(ev);
5841        }
5842    }
5843
5844    spin_unlock(&memcg_oom_lock);
5845}
5846
5847static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5848    struct cftype *cft, struct cgroup_map_cb *cb)
5849{
5850    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5851
5852    cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5853
5854    if (atomic_read(&memcg->under_oom))
5855        cb->fill(cb, "under_oom", 1);
5856    else
5857        cb->fill(cb, "under_oom", 0);
5858    return 0;
5859}
5860
5861static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5862    struct cftype *cft, u64 val)
5863{
5864    struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5865    struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5866
5867    /* cannot set to root cgroup and only 0 and 1 are allowed */
5868    if (!parent || !((val == 0) || (val == 1)))
5869        return -EINVAL;
5870
5871    mutex_lock(&memcg_create_mutex);
5872    /* oom-kill-disable is a flag for subhierarchy. */
5873    if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5874        mutex_unlock(&memcg_create_mutex);
5875        return -EINVAL;
5876    }
5877    memcg->oom_kill_disable = val;
5878    if (!val)
5879        memcg_oom_recover(memcg);
5880    mutex_unlock(&memcg_create_mutex);
5881    return 0;
5882}
5883
5884#ifdef CONFIG_MEMCG_KMEM
5885static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5886{
5887    int ret;
5888
5889    memcg->kmemcg_id = -1;
5890    ret = memcg_propagate_kmem(memcg);
5891    if (ret)
5892        return ret;
5893
5894    return mem_cgroup_sockets_init(memcg, ss);
5895}
5896
5897static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5898{
5899    mem_cgroup_sockets_destroy(memcg);
5900}
5901
5902static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5903{
5904    if (!memcg_kmem_is_active(memcg))
5905        return;
5906
5907    /*
5908     * kmem charges can outlive the cgroup. In the case of slab
5909     * pages, for instance, a page contain objects from various
5910     * processes. As we prevent from taking a reference for every
5911     * such allocation we have to be careful when doing uncharge
5912     * (see memcg_uncharge_kmem) and here during offlining.
5913     *
5914     * The idea is that that only the _last_ uncharge which sees
5915     * the dead memcg will drop the last reference. An additional
5916     * reference is taken here before the group is marked dead
5917     * which is then paired with css_put during uncharge resp. here.
5918     *
5919     * Although this might sound strange as this path is called from
5920     * css_offline() when the referencemight have dropped down to 0
5921     * and shouldn't be incremented anymore (css_tryget would fail)
5922     * we do not have other options because of the kmem allocations
5923     * lifetime.
5924     */
5925    css_get(&memcg->css);