1 | /* memcontrol.c - Memory Controller |
2 | * |
3 | * Copyright IBM Corporation, 2007 |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> |
5 | * |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> |
8 | * |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation |
11 | * Author: Kirill A. Shutemov |
12 | * |
13 | * Kernel Memory Controller |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. |
15 | * Authors: Glauber Costa and Suleiman Souhlal |
16 | * |
17 | * This program is free software; you can redistribute it and/or modify |
18 | * it under the terms of the GNU General Public License as published by |
19 | * the Free Software Foundation; either version 2 of the License, or |
20 | * (at your option) any later version. |
21 | * |
22 | * This program is distributed in the hope that it will be useful, |
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
25 | * GNU General Public License for more details. |
26 | */ |
27 | |
28 | #include <linux/res_counter.h> |
29 | #include <linux/memcontrol.h> |
30 | #include <linux/cgroup.h> |
31 | #include <linux/mm.h> |
32 | #include <linux/hugetlb.h> |
33 | #include <linux/pagemap.h> |
34 | #include <linux/smp.h> |
35 | #include <linux/page-flags.h> |
36 | #include <linux/backing-dev.h> |
37 | #include <linux/bit_spinlock.h> |
38 | #include <linux/rcupdate.h> |
39 | #include <linux/limits.h> |
40 | #include <linux/export.h> |
41 | #include <linux/mutex.h> |
42 | #include <linux/rbtree.h> |
43 | #include <linux/slab.h> |
44 | #include <linux/swap.h> |
45 | #include <linux/swapops.h> |
46 | #include <linux/spinlock.h> |
47 | #include <linux/eventfd.h> |
48 | #include <linux/sort.h> |
49 | #include <linux/fs.h> |
50 | #include <linux/seq_file.h> |
51 | #include <linux/vmalloc.h> |
52 | #include <linux/vmpressure.h> |
53 | #include <linux/mm_inline.h> |
54 | #include <linux/page_cgroup.h> |
55 | #include <linux/cpu.h> |
56 | #include <linux/oom.h> |
57 | #include <linux/lockdep.h> |
58 | #include "internal.h" |
59 | #include <net/sock.h> |
60 | #include <net/ip.h> |
61 | #include <net/tcp_memcontrol.h> |
62 | |
63 | #include <asm/uaccess.h> |
64 | |
65 | #include <trace/events/vmscan.h> |
66 | |
67 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
68 | EXPORT_SYMBOL(mem_cgroup_subsys); |
69 | |
70 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
71 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
72 | |
73 | #ifdef CONFIG_MEMCG_SWAP |
74 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
75 | int do_swap_account __read_mostly; |
76 | |
77 | /* for remember boot option*/ |
78 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
79 | static int really_do_swap_account __initdata = 1; |
80 | #else |
81 | static int really_do_swap_account __initdata = 0; |
82 | #endif |
83 | |
84 | #else |
85 | #define do_swap_account 0 |
86 | #endif |
87 | |
88 | |
89 | static const char * const mem_cgroup_stat_names[] = { |
90 | "cache", |
91 | "rss", |
92 | "rss_huge", |
93 | "mapped_file", |
94 | "writeback", |
95 | "swap", |
96 | }; |
97 | |
98 | enum mem_cgroup_events_index { |
99 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ |
100 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ |
101 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
102 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ |
103 | MEM_CGROUP_EVENTS_NSTATS, |
104 | }; |
105 | |
106 | static const char * const mem_cgroup_events_names[] = { |
107 | "pgpgin", |
108 | "pgpgout", |
109 | "pgfault", |
110 | "pgmajfault", |
111 | }; |
112 | |
113 | static const char * const mem_cgroup_lru_names[] = { |
114 | "inactive_anon", |
115 | "active_anon", |
116 | "inactive_file", |
117 | "active_file", |
118 | "unevictable", |
119 | }; |
120 | |
121 | /* |
122 | * Per memcg event counter is incremented at every pagein/pageout. With THP, |
123 | * it will be incremated by the number of pages. This counter is used for |
124 | * for trigger some periodic events. This is straightforward and better |
125 | * than using jiffies etc. to handle periodic memcg event. |
126 | */ |
127 | enum mem_cgroup_events_target { |
128 | MEM_CGROUP_TARGET_THRESH, |
129 | MEM_CGROUP_TARGET_SOFTLIMIT, |
130 | MEM_CGROUP_TARGET_NUMAINFO, |
131 | MEM_CGROUP_NTARGETS, |
132 | }; |
133 | #define THRESHOLDS_EVENTS_TARGET 128 |
134 | #define SOFTLIMIT_EVENTS_TARGET 1024 |
135 | #define NUMAINFO_EVENTS_TARGET 1024 |
136 | |
137 | struct mem_cgroup_stat_cpu { |
138 | long count[MEM_CGROUP_STAT_NSTATS]; |
139 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
140 | unsigned long nr_page_events; |
141 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
142 | }; |
143 | |
144 | struct mem_cgroup_reclaim_iter { |
145 | /* |
146 | * last scanned hierarchy member. Valid only if last_dead_count |
147 | * matches memcg->dead_count of the hierarchy root group. |
148 | */ |
149 | struct mem_cgroup *last_visited; |
150 | unsigned long last_dead_count; |
151 | |
152 | /* scan generation, increased every round-trip */ |
153 | unsigned int generation; |
154 | }; |
155 | |
156 | /* |
157 | * per-zone information in memory controller. |
158 | */ |
159 | struct mem_cgroup_per_zone { |
160 | struct lruvec lruvec; |
161 | unsigned long lru_size[NR_LRU_LISTS]; |
162 | |
163 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; |
164 | |
165 | struct rb_node tree_node; /* RB tree node */ |
166 | unsigned long long usage_in_excess;/* Set to the value by which */ |
167 | /* the soft limit is exceeded*/ |
168 | bool on_tree; |
169 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
170 | /* use container_of */ |
171 | }; |
172 | |
173 | struct mem_cgroup_per_node { |
174 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; |
175 | }; |
176 | |
177 | /* |
178 | * Cgroups above their limits are maintained in a RB-Tree, independent of |
179 | * their hierarchy representation |
180 | */ |
181 | |
182 | struct mem_cgroup_tree_per_zone { |
183 | struct rb_root rb_root; |
184 | spinlock_t lock; |
185 | }; |
186 | |
187 | struct mem_cgroup_tree_per_node { |
188 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; |
189 | }; |
190 | |
191 | struct mem_cgroup_tree { |
192 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; |
193 | }; |
194 | |
195 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; |
196 | |
197 | struct mem_cgroup_threshold { |
198 | struct eventfd_ctx *eventfd; |
199 | u64 threshold; |
200 | }; |
201 | |
202 | /* For threshold */ |
203 | struct mem_cgroup_threshold_ary { |
204 | /* An array index points to threshold just below or equal to usage. */ |
205 | int current_threshold; |
206 | /* Size of entries[] */ |
207 | unsigned int size; |
208 | /* Array of thresholds */ |
209 | struct mem_cgroup_threshold entries[0]; |
210 | }; |
211 | |
212 | struct mem_cgroup_thresholds { |
213 | /* Primary thresholds array */ |
214 | struct mem_cgroup_threshold_ary *primary; |
215 | /* |
216 | * Spare threshold array. |
217 | * This is needed to make mem_cgroup_unregister_event() "never fail". |
218 | * It must be able to store at least primary->size - 1 entries. |
219 | */ |
220 | struct mem_cgroup_threshold_ary *spare; |
221 | }; |
222 | |
223 | /* for OOM */ |
224 | struct mem_cgroup_eventfd_list { |
225 | struct list_head list; |
226 | struct eventfd_ctx *eventfd; |
227 | }; |
228 | |
229 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
230 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); |
231 | |
232 | /* |
233 | * The memory controller data structure. The memory controller controls both |
234 | * page cache and RSS per cgroup. We would eventually like to provide |
235 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, |
236 | * to help the administrator determine what knobs to tune. |
237 | * |
238 | * TODO: Add a water mark for the memory controller. Reclaim will begin when |
239 | * we hit the water mark. May be even add a low water mark, such that |
240 | * no reclaim occurs from a cgroup at it's low water mark, this is |
241 | * a feature that will be implemented much later in the future. |
242 | */ |
243 | struct mem_cgroup { |
244 | struct cgroup_subsys_state css; |
245 | /* |
246 | * the counter to account for memory usage |
247 | */ |
248 | struct res_counter res; |
249 | |
250 | /* vmpressure notifications */ |
251 | struct vmpressure vmpressure; |
252 | |
253 | /* |
254 | * the counter to account for mem+swap usage. |
255 | */ |
256 | struct res_counter memsw; |
257 | |
258 | /* |
259 | * the counter to account for kernel memory usage. |
260 | */ |
261 | struct res_counter kmem; |
262 | /* |
263 | * Should the accounting and control be hierarchical, per subtree? |
264 | */ |
265 | bool use_hierarchy; |
266 | unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ |
267 | |
268 | bool oom_lock; |
269 | atomic_t under_oom; |
270 | atomic_t oom_wakeups; |
271 | |
272 | int swappiness; |
273 | /* OOM-Killer disable */ |
274 | int oom_kill_disable; |
275 | |
276 | /* set when res.limit == memsw.limit */ |
277 | bool memsw_is_minimum; |
278 | |
279 | /* protect arrays of thresholds */ |
280 | struct mutex thresholds_lock; |
281 | |
282 | /* thresholds for memory usage. RCU-protected */ |
283 | struct mem_cgroup_thresholds thresholds; |
284 | |
285 | /* thresholds for mem+swap usage. RCU-protected */ |
286 | struct mem_cgroup_thresholds memsw_thresholds; |
287 | |
288 | /* For oom notifier event fd */ |
289 | struct list_head oom_notify; |
290 | |
291 | /* |
292 | * Should we move charges of a task when a task is moved into this |
293 | * mem_cgroup ? And what type of charges should we move ? |
294 | */ |
295 | unsigned long move_charge_at_immigrate; |
296 | /* |
297 | * set > 0 if pages under this cgroup are moving to other cgroup. |
298 | */ |
299 | atomic_t moving_account; |
300 | /* taken only while moving_account > 0 */ |
301 | spinlock_t move_lock; |
302 | /* |
303 | * percpu counter. |
304 | */ |
305 | struct mem_cgroup_stat_cpu __percpu *stat; |
306 | /* |
307 | * used when a cpu is offlined or other synchronizations |
308 | * See mem_cgroup_read_stat(). |
309 | */ |
310 | struct mem_cgroup_stat_cpu nocpu_base; |
311 | spinlock_t pcp_counter_lock; |
312 | |
313 | atomic_t dead_count; |
314 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) |
315 | struct tcp_memcontrol tcp_mem; |
316 | #endif |
317 | #if defined(CONFIG_MEMCG_KMEM) |
318 | /* analogous to slab_common's slab_caches list. per-memcg */ |
319 | struct list_head memcg_slab_caches; |
320 | /* Not a spinlock, we can take a lot of time walking the list */ |
321 | struct mutex slab_caches_mutex; |
322 | /* Index in the kmem_cache->memcg_params->memcg_caches array */ |
323 | int kmemcg_id; |
324 | #endif |
325 | |
326 | int last_scanned_node; |
327 | #if MAX_NUMNODES > 1 |
328 | nodemask_t scan_nodes; |
329 | atomic_t numainfo_events; |
330 | atomic_t numainfo_updating; |
331 | #endif |
332 | |
333 | struct mem_cgroup_per_node *nodeinfo[0]; |
334 | /* WARNING: nodeinfo must be the last member here */ |
335 | }; |
336 | |
337 | static size_t memcg_size(void) |
338 | { |
339 | return sizeof(struct mem_cgroup) + |
340 | nr_node_ids * sizeof(struct mem_cgroup_per_node); |
341 | } |
342 | |
343 | /* internal only representation about the status of kmem accounting. */ |
344 | enum { |
345 | KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ |
346 | KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ |
347 | KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ |
348 | }; |
349 | |
350 | /* We account when limit is on, but only after call sites are patched */ |
351 | #define KMEM_ACCOUNTED_MASK \ |
352 | ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) |
353 | |
354 | #ifdef CONFIG_MEMCG_KMEM |
355 | static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) |
356 | { |
357 | set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); |
358 | } |
359 | |
360 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) |
361 | { |
362 | return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); |
363 | } |
364 | |
365 | static void memcg_kmem_set_activated(struct mem_cgroup *memcg) |
366 | { |
367 | set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); |
368 | } |
369 | |
370 | static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) |
371 | { |
372 | clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); |
373 | } |
374 | |
375 | static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) |
376 | { |
377 | /* |
378 | * Our caller must use css_get() first, because memcg_uncharge_kmem() |
379 | * will call css_put() if it sees the memcg is dead. |
380 | */ |
381 | smp_wmb(); |
382 | if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) |
383 | set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); |
384 | } |
385 | |
386 | static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) |
387 | { |
388 | return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, |
389 | &memcg->kmem_account_flags); |
390 | } |
391 | #endif |
392 | |
393 | /* Stuffs for move charges at task migration. */ |
394 | /* |
395 | * Types of charges to be moved. "move_charge_at_immitgrate" and |
396 | * "immigrate_flags" are treated as a left-shifted bitmap of these types. |
397 | */ |
398 | enum move_type { |
399 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
400 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
401 | NR_MOVE_TYPE, |
402 | }; |
403 | |
404 | /* "mc" and its members are protected by cgroup_mutex */ |
405 | static struct move_charge_struct { |
406 | spinlock_t lock; /* for from, to */ |
407 | struct mem_cgroup *from; |
408 | struct mem_cgroup *to; |
409 | unsigned long immigrate_flags; |
410 | unsigned long precharge; |
411 | unsigned long moved_charge; |
412 | unsigned long moved_swap; |
413 | struct task_struct *moving_task; /* a task moving charges */ |
414 | wait_queue_head_t waitq; /* a waitq for other context */ |
415 | } mc = { |
416 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
417 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
418 | }; |
419 | |
420 | static bool move_anon(void) |
421 | { |
422 | return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); |
423 | } |
424 | |
425 | static bool move_file(void) |
426 | { |
427 | return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); |
428 | } |
429 | |
430 | /* |
431 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft |
432 | * limit reclaim to prevent infinite loops, if they ever occur. |
433 | */ |
434 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
435 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
436 | |
437 | enum charge_type { |
438 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, |
439 | MEM_CGROUP_CHARGE_TYPE_ANON, |
440 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
441 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
442 | NR_CHARGE_TYPE, |
443 | }; |
444 | |
445 | /* for encoding cft->private value on file */ |
446 | enum res_type { |
447 | _MEM, |
448 | _MEMSWAP, |
449 | _OOM_TYPE, |
450 | _KMEM, |
451 | }; |
452 | |
453 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
454 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) |
455 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
456 | /* Used for OOM nofiier */ |
457 | #define OOM_CONTROL (0) |
458 | |
459 | /* |
460 | * Reclaim flags for mem_cgroup_hierarchical_reclaim |
461 | */ |
462 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 |
463 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) |
464 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 |
465 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) |
466 | |
467 | /* |
468 | * The memcg_create_mutex will be held whenever a new cgroup is created. |
469 | * As a consequence, any change that needs to protect against new child cgroups |
470 | * appearing has to hold it as well. |
471 | */ |
472 | static DEFINE_MUTEX(memcg_create_mutex); |
473 | |
474 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) |
475 | { |
476 | return s ? container_of(s, struct mem_cgroup, css) : NULL; |
477 | } |
478 | |
479 | /* Some nice accessors for the vmpressure. */ |
480 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) |
481 | { |
482 | if (!memcg) |
483 | memcg = root_mem_cgroup; |
484 | return &memcg->vmpressure; |
485 | } |
486 | |
487 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) |
488 | { |
489 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; |
490 | } |
491 | |
492 | struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) |
493 | { |
494 | return &mem_cgroup_from_css(css)->vmpressure; |
495 | } |
496 | |
497 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
498 | { |
499 | return (memcg == root_mem_cgroup); |
500 | } |
501 | |
502 | /* Writing them here to avoid exposing memcg's inner layout */ |
503 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
504 | |
505 | void sock_update_memcg(struct sock *sk) |
506 | { |
507 | if (mem_cgroup_sockets_enabled) { |
508 | struct mem_cgroup *memcg; |
509 | struct cg_proto *cg_proto; |
510 | |
511 | BUG_ON(!sk->sk_prot->proto_cgroup); |
512 | |
513 | /* Socket cloning can throw us here with sk_cgrp already |
514 | * filled. It won't however, necessarily happen from |
515 | * process context. So the test for root memcg given |
516 | * the current task's memcg won't help us in this case. |
517 | * |
518 | * Respecting the original socket's memcg is a better |
519 | * decision in this case. |
520 | */ |
521 | if (sk->sk_cgrp) { |
522 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); |
523 | css_get(&sk->sk_cgrp->memcg->css); |
524 | return; |
525 | } |
526 | |
527 | rcu_read_lock(); |
528 | memcg = mem_cgroup_from_task(current); |
529 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
530 | if (!mem_cgroup_is_root(memcg) && |
531 | memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { |
532 | sk->sk_cgrp = cg_proto; |
533 | } |
534 | rcu_read_unlock(); |
535 | } |
536 | } |
537 | EXPORT_SYMBOL(sock_update_memcg); |
538 | |
539 | void sock_release_memcg(struct sock *sk) |
540 | { |
541 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
542 | struct mem_cgroup *memcg; |
543 | WARN_ON(!sk->sk_cgrp->memcg); |
544 | memcg = sk->sk_cgrp->memcg; |
545 | css_put(&sk->sk_cgrp->memcg->css); |
546 | } |
547 | } |
548 | |
549 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) |
550 | { |
551 | if (!memcg || mem_cgroup_is_root(memcg)) |
552 | return NULL; |
553 | |
554 | return &memcg->tcp_mem.cg_proto; |
555 | } |
556 | EXPORT_SYMBOL(tcp_proto_cgroup); |
557 | |
558 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
559 | { |
560 | if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) |
561 | return; |
562 | static_key_slow_dec(&memcg_socket_limit_enabled); |
563 | } |
564 | #else |
565 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
566 | { |
567 | } |
568 | #endif |
569 | |
570 | #ifdef CONFIG_MEMCG_KMEM |
571 | /* |
572 | * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. |
573 | * There are two main reasons for not using the css_id for this: |
574 | * 1) this works better in sparse environments, where we have a lot of memcgs, |
575 | * but only a few kmem-limited. Or also, if we have, for instance, 200 |
576 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a |
577 | * 200 entry array for that. |
578 | * |
579 | * 2) In order not to violate the cgroup API, we would like to do all memory |
580 | * allocation in ->create(). At that point, we haven't yet allocated the |
581 | * css_id. Having a separate index prevents us from messing with the cgroup |
582 | * core for this |
583 | * |
584 | * The current size of the caches array is stored in |
585 | * memcg_limited_groups_array_size. It will double each time we have to |
586 | * increase it. |
587 | */ |
588 | static DEFINE_IDA(kmem_limited_groups); |
589 | int memcg_limited_groups_array_size; |
590 | |
591 | /* |
592 | * MIN_SIZE is different than 1, because we would like to avoid going through |
593 | * the alloc/free process all the time. In a small machine, 4 kmem-limited |
594 | * cgroups is a reasonable guess. In the future, it could be a parameter or |
595 | * tunable, but that is strictly not necessary. |
596 | * |
597 | * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get |
598 | * this constant directly from cgroup, but it is understandable that this is |
599 | * better kept as an internal representation in cgroup.c. In any case, the |
600 | * css_id space is not getting any smaller, and we don't have to necessarily |
601 | * increase ours as well if it increases. |
602 | */ |
603 | #define MEMCG_CACHES_MIN_SIZE 4 |
604 | #define MEMCG_CACHES_MAX_SIZE 65535 |
605 | |
606 | /* |
607 | * A lot of the calls to the cache allocation functions are expected to be |
608 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are |
609 | * conditional to this static branch, we'll have to allow modules that does |
610 | * kmem_cache_alloc and the such to see this symbol as well |
611 | */ |
612 | struct static_key memcg_kmem_enabled_key; |
613 | EXPORT_SYMBOL(memcg_kmem_enabled_key); |
614 | |
615 | static void disarm_kmem_keys(struct mem_cgroup *memcg) |
616 | { |
617 | if (memcg_kmem_is_active(memcg)) { |
618 | static_key_slow_dec(&memcg_kmem_enabled_key); |
619 | ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); |
620 | } |
621 | /* |
622 | * This check can't live in kmem destruction function, |
623 | * since the charges will outlive the cgroup |
624 | */ |
625 | WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); |
626 | } |
627 | #else |
628 | static void disarm_kmem_keys(struct mem_cgroup *memcg) |
629 | { |
630 | } |
631 | #endif /* CONFIG_MEMCG_KMEM */ |
632 | |
633 | static void disarm_static_keys(struct mem_cgroup *memcg) |
634 | { |
635 | disarm_sock_keys(memcg); |
636 | disarm_kmem_keys(memcg); |
637 | } |
638 | |
639 | static void drain_all_stock_async(struct mem_cgroup *memcg); |
640 | |
641 | static struct mem_cgroup_per_zone * |
642 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) |
643 | { |
644 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
645 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; |
646 | } |
647 | |
648 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
649 | { |
650 | return &memcg->css; |
651 | } |
652 | |
653 | static struct mem_cgroup_per_zone * |
654 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
655 | { |
656 | int nid = page_to_nid(page); |
657 | int zid = page_zonenum(page); |
658 | |
659 | return mem_cgroup_zoneinfo(memcg, nid, zid); |
660 | } |
661 | |
662 | static struct mem_cgroup_tree_per_zone * |
663 | soft_limit_tree_node_zone(int nid, int zid) |
664 | { |
665 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; |
666 | } |
667 | |
668 | static struct mem_cgroup_tree_per_zone * |
669 | soft_limit_tree_from_page(struct page *page) |
670 | { |
671 | int nid = page_to_nid(page); |
672 | int zid = page_zonenum(page); |
673 | |
674 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; |
675 | } |
676 | |
677 | static void |
678 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, |
679 | struct mem_cgroup_per_zone *mz, |
680 | struct mem_cgroup_tree_per_zone *mctz, |
681 | unsigned long long new_usage_in_excess) |
682 | { |
683 | struct rb_node **p = &mctz->rb_root.rb_node; |
684 | struct rb_node *parent = NULL; |
685 | struct mem_cgroup_per_zone *mz_node; |
686 | |
687 | if (mz->on_tree) |
688 | return; |
689 | |
690 | mz->usage_in_excess = new_usage_in_excess; |
691 | if (!mz->usage_in_excess) |
692 | return; |
693 | while (*p) { |
694 | parent = *p; |
695 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, |
696 | tree_node); |
697 | if (mz->usage_in_excess < mz_node->usage_in_excess) |
698 | p = &(*p)->rb_left; |
699 | /* |
700 | * We can't avoid mem cgroups that are over their soft |
701 | * limit by the same amount |
702 | */ |
703 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) |
704 | p = &(*p)->rb_right; |
705 | } |
706 | rb_link_node(&mz->tree_node, parent, p); |
707 | rb_insert_color(&mz->tree_node, &mctz->rb_root); |
708 | mz->on_tree = true; |
709 | } |
710 | |
711 | static void |
712 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
713 | struct mem_cgroup_per_zone *mz, |
714 | struct mem_cgroup_tree_per_zone *mctz) |
715 | { |
716 | if (!mz->on_tree) |
717 | return; |
718 | rb_erase(&mz->tree_node, &mctz->rb_root); |
719 | mz->on_tree = false; |
720 | } |
721 | |
722 | static void |
723 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
724 | struct mem_cgroup_per_zone *mz, |
725 | struct mem_cgroup_tree_per_zone *mctz) |
726 | { |
727 | spin_lock(&mctz->lock); |
728 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
729 | spin_unlock(&mctz->lock); |
730 | } |
731 | |
732 | |
733 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) |
734 | { |
735 | unsigned long long excess; |
736 | struct mem_cgroup_per_zone *mz; |
737 | struct mem_cgroup_tree_per_zone *mctz; |
738 | int nid = page_to_nid(page); |
739 | int zid = page_zonenum(page); |
740 | mctz = soft_limit_tree_from_page(page); |
741 | |
742 | /* |
743 | * Necessary to update all ancestors when hierarchy is used. |
744 | * because their event counter is not touched. |
745 | */ |
746 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
747 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
748 | excess = res_counter_soft_limit_excess(&memcg->res); |
749 | /* |
750 | * We have to update the tree if mz is on RB-tree or |
751 | * mem is over its softlimit. |
752 | */ |
753 | if (excess || mz->on_tree) { |
754 | spin_lock(&mctz->lock); |
755 | /* if on-tree, remove it */ |
756 | if (mz->on_tree) |
757 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
758 | /* |
759 | * Insert again. mz->usage_in_excess will be updated. |
760 | * If excess is 0, no tree ops. |
761 | */ |
762 | __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); |
763 | spin_unlock(&mctz->lock); |
764 | } |
765 | } |
766 | } |
767 | |
768 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) |
769 | { |
770 | int node, zone; |
771 | struct mem_cgroup_per_zone *mz; |
772 | struct mem_cgroup_tree_per_zone *mctz; |
773 | |
774 | for_each_node(node) { |
775 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
776 | mz = mem_cgroup_zoneinfo(memcg, node, zone); |
777 | mctz = soft_limit_tree_node_zone(node, zone); |
778 | mem_cgroup_remove_exceeded(memcg, mz, mctz); |
779 | } |
780 | } |
781 | } |
782 | |
783 | static struct mem_cgroup_per_zone * |
784 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) |
785 | { |
786 | struct rb_node *rightmost = NULL; |
787 | struct mem_cgroup_per_zone *mz; |
788 | |
789 | retry: |
790 | mz = NULL; |
791 | rightmost = rb_last(&mctz->rb_root); |
792 | if (!rightmost) |
793 | goto done; /* Nothing to reclaim from */ |
794 | |
795 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); |
796 | /* |
797 | * Remove the node now but someone else can add it back, |
798 | * we will to add it back at the end of reclaim to its correct |
799 | * position in the tree. |
800 | */ |
801 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
802 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || |
803 | !css_tryget(&mz->memcg->css)) |
804 | goto retry; |
805 | done: |
806 | return mz; |
807 | } |
808 | |
809 | static struct mem_cgroup_per_zone * |
810 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) |
811 | { |
812 | struct mem_cgroup_per_zone *mz; |
813 | |
814 | spin_lock(&mctz->lock); |
815 | mz = __mem_cgroup_largest_soft_limit_node(mctz); |
816 | spin_unlock(&mctz->lock); |
817 | return mz; |
818 | } |
819 | |
820 | /* |
821 | * Implementation Note: reading percpu statistics for memcg. |
822 | * |
823 | * Both of vmstat[] and percpu_counter has threshold and do periodic |
824 | * synchronization to implement "quick" read. There are trade-off between |
825 | * reading cost and precision of value. Then, we may have a chance to implement |
826 | * a periodic synchronizion of counter in memcg's counter. |
827 | * |
828 | * But this _read() function is used for user interface now. The user accounts |
829 | * memory usage by memory cgroup and he _always_ requires exact value because |
830 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always |
831 | * have to visit all online cpus and make sum. So, for now, unnecessary |
832 | * synchronization is not implemented. (just implemented for cpu hotplug) |
833 | * |
834 | * If there are kernel internal actions which can make use of some not-exact |
835 | * value, and reading all cpu value can be performance bottleneck in some |
836 | * common workload, threashold and synchonization as vmstat[] should be |
837 | * implemented. |
838 | */ |
839 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
840 | enum mem_cgroup_stat_index idx) |
841 | { |
842 | long val = 0; |
843 | int cpu; |
844 | |
845 | get_online_cpus(); |
846 | for_each_online_cpu(cpu) |
847 | val += per_cpu(memcg->stat->count[idx], cpu); |
848 | #ifdef CONFIG_HOTPLUG_CPU |
849 | spin_lock(&memcg->pcp_counter_lock); |
850 | val += memcg->nocpu_base.count[idx]; |
851 | spin_unlock(&memcg->pcp_counter_lock); |
852 | #endif |
853 | put_online_cpus(); |
854 | return val; |
855 | } |
856 | |
857 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
858 | bool charge) |
859 | { |
860 | int val = (charge) ? 1 : -1; |
861 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); |
862 | } |
863 | |
864 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
865 | enum mem_cgroup_events_index idx) |
866 | { |
867 | unsigned long val = 0; |
868 | int cpu; |
869 | |
870 | get_online_cpus(); |
871 | for_each_online_cpu(cpu) |
872 | val += per_cpu(memcg->stat->events[idx], cpu); |
873 | #ifdef CONFIG_HOTPLUG_CPU |
874 | spin_lock(&memcg->pcp_counter_lock); |
875 | val += memcg->nocpu_base.events[idx]; |
876 | spin_unlock(&memcg->pcp_counter_lock); |
877 | #endif |
878 | put_online_cpus(); |
879 | return val; |
880 | } |
881 | |
882 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
883 | struct page *page, |
884 | bool anon, int nr_pages) |
885 | { |
886 | preempt_disable(); |
887 | |
888 | /* |
889 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is |
890 | * counted as CACHE even if it's on ANON LRU. |
891 | */ |
892 | if (anon) |
893 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], |
894 | nr_pages); |
895 | else |
896 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
897 | nr_pages); |
898 | |
899 | if (PageTransHuge(page)) |
900 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
901 | nr_pages); |
902 | |
903 | /* pagein of a big page is an event. So, ignore page size */ |
904 | if (nr_pages > 0) |
905 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
906 | else { |
907 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
908 | nr_pages = -nr_pages; /* for event */ |
909 | } |
910 | |
911 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
912 | |
913 | preempt_enable(); |
914 | } |
915 | |
916 | unsigned long |
917 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
918 | { |
919 | struct mem_cgroup_per_zone *mz; |
920 | |
921 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
922 | return mz->lru_size[lru]; |
923 | } |
924 | |
925 | static unsigned long |
926 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, |
927 | unsigned int lru_mask) |
928 | { |
929 | struct mem_cgroup_per_zone *mz; |
930 | enum lru_list lru; |
931 | unsigned long ret = 0; |
932 | |
933 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
934 | |
935 | for_each_lru(lru) { |
936 | if (BIT(lru) & lru_mask) |
937 | ret += mz->lru_size[lru]; |
938 | } |
939 | return ret; |
940 | } |
941 | |
942 | static unsigned long |
943 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
944 | int nid, unsigned int lru_mask) |
945 | { |
946 | u64 total = 0; |
947 | int zid; |
948 | |
949 | for (zid = 0; zid < MAX_NR_ZONES; zid++) |
950 | total += mem_cgroup_zone_nr_lru_pages(memcg, |
951 | nid, zid, lru_mask); |
952 | |
953 | return total; |
954 | } |
955 | |
956 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
957 | unsigned int lru_mask) |
958 | { |
959 | int nid; |
960 | u64 total = 0; |
961 | |
962 | for_each_node_state(nid, N_MEMORY) |
963 | total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
964 | return total; |
965 | } |
966 | |
967 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
968 | enum mem_cgroup_events_target target) |
969 | { |
970 | unsigned long val, next; |
971 | |
972 | val = __this_cpu_read(memcg->stat->nr_page_events); |
973 | next = __this_cpu_read(memcg->stat->targets[target]); |
974 | /* from time_after() in jiffies.h */ |
975 | if ((long)next - (long)val < 0) { |
976 | switch (target) { |
977 | case MEM_CGROUP_TARGET_THRESH: |
978 | next = val + THRESHOLDS_EVENTS_TARGET; |
979 | break; |
980 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
981 | next = val + SOFTLIMIT_EVENTS_TARGET; |
982 | break; |
983 | case MEM_CGROUP_TARGET_NUMAINFO: |
984 | next = val + NUMAINFO_EVENTS_TARGET; |
985 | break; |
986 | default: |
987 | break; |
988 | } |
989 | __this_cpu_write(memcg->stat->targets[target], next); |
990 | return true; |
991 | } |
992 | return false; |
993 | } |
994 | |
995 | /* |
996 | * Check events in order. |
997 | * |
998 | */ |
999 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
1000 | { |
1001 | preempt_disable(); |
1002 | /* threshold event is triggered in finer grain than soft limit */ |
1003 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
1004 | MEM_CGROUP_TARGET_THRESH))) { |
1005 | bool do_softlimit; |
1006 | bool do_numainfo __maybe_unused; |
1007 | |
1008 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
1009 | MEM_CGROUP_TARGET_SOFTLIMIT); |
1010 | #if MAX_NUMNODES > 1 |
1011 | do_numainfo = mem_cgroup_event_ratelimit(memcg, |
1012 | MEM_CGROUP_TARGET_NUMAINFO); |
1013 | #endif |
1014 | preempt_enable(); |
1015 | |
1016 | mem_cgroup_threshold(memcg); |
1017 | if (unlikely(do_softlimit)) |
1018 | mem_cgroup_update_tree(memcg, page); |
1019 | #if MAX_NUMNODES > 1 |
1020 | if (unlikely(do_numainfo)) |
1021 | atomic_inc(&memcg->numainfo_events); |
1022 | #endif |
1023 | } else |
1024 | preempt_enable(); |
1025 | } |
1026 | |
1027 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
1028 | { |
1029 | /* |
1030 | * mm_update_next_owner() may clear mm->owner to NULL |
1031 | * if it races with swapoff, page migration, etc. |
1032 | * So this can be called with p == NULL. |
1033 | */ |
1034 | if (unlikely(!p)) |
1035 | return NULL; |
1036 | |
1037 | return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); |
1038 | } |
1039 | |
1040 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
1041 | { |
1042 | struct mem_cgroup *memcg = NULL; |
1043 | |
1044 | if (!mm) |
1045 | return NULL; |
1046 | /* |
1047 | * Because we have no locks, mm->owner's may be being moved to other |
1048 | * cgroup. We use css_tryget() here even if this looks |
1049 | * pessimistic (rather than adding locks here). |
1050 | */ |
1051 | rcu_read_lock(); |
1052 | do { |
1053 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1054 | if (unlikely(!memcg)) |
1055 | break; |
1056 | } while (!css_tryget(&memcg->css)); |
1057 | rcu_read_unlock(); |
1058 | return memcg; |
1059 | } |
1060 | |
1061 | /* |
1062 | * Returns a next (in a pre-order walk) alive memcg (with elevated css |
1063 | * ref. count) or NULL if the whole root's subtree has been visited. |
1064 | * |
1065 | * helper function to be used by mem_cgroup_iter |
1066 | */ |
1067 | static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, |
1068 | struct mem_cgroup *last_visited) |
1069 | { |
1070 | struct cgroup_subsys_state *prev_css, *next_css; |
1071 | |
1072 | prev_css = last_visited ? &last_visited->css : NULL; |
1073 | skip_node: |
1074 | next_css = css_next_descendant_pre(prev_css, &root->css); |
1075 | |
1076 | /* |
1077 | * Even if we found a group we have to make sure it is |
1078 | * alive. css && !memcg means that the groups should be |
1079 | * skipped and we should continue the tree walk. |
1080 | * last_visited css is safe to use because it is |
1081 | * protected by css_get and the tree walk is rcu safe. |
1082 | */ |
1083 | if (next_css) { |
1084 | struct mem_cgroup *mem = mem_cgroup_from_css(next_css); |
1085 | |
1086 | if (css_tryget(&mem->css)) |
1087 | return mem; |
1088 | else { |
1089 | prev_css = next_css; |
1090 | goto skip_node; |
1091 | } |
1092 | } |
1093 | |
1094 | return NULL; |
1095 | } |
1096 | |
1097 | static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) |
1098 | { |
1099 | /* |
1100 | * When a group in the hierarchy below root is destroyed, the |
1101 | * hierarchy iterator can no longer be trusted since it might |
1102 | * have pointed to the destroyed group. Invalidate it. |
1103 | */ |
1104 | atomic_inc(&root->dead_count); |
1105 | } |
1106 | |
1107 | static struct mem_cgroup * |
1108 | mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, |
1109 | struct mem_cgroup *root, |
1110 | int *sequence) |
1111 | { |
1112 | struct mem_cgroup *position = NULL; |
1113 | /* |
1114 | * A cgroup destruction happens in two stages: offlining and |
1115 | * release. They are separated by a RCU grace period. |
1116 | * |
1117 | * If the iterator is valid, we may still race with an |
1118 | * offlining. The RCU lock ensures the object won't be |
1119 | * released, tryget will fail if we lost the race. |
1120 | */ |
1121 | *sequence = atomic_read(&root->dead_count); |
1122 | if (iter->last_dead_count == *sequence) { |
1123 | smp_rmb(); |
1124 | position = iter->last_visited; |
1125 | if (position && !css_tryget(&position->css)) |
1126 | position = NULL; |
1127 | } |
1128 | return position; |
1129 | } |
1130 | |
1131 | static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, |
1132 | struct mem_cgroup *last_visited, |
1133 | struct mem_cgroup *new_position, |
1134 | int sequence) |
1135 | { |
1136 | if (last_visited) |
1137 | css_put(&last_visited->css); |
1138 | /* |
1139 | * We store the sequence count from the time @last_visited was |
1140 | * loaded successfully instead of rereading it here so that we |
1141 | * don't lose destruction events in between. We could have |
1142 | * raced with the destruction of @new_position after all. |
1143 | */ |
1144 | iter->last_visited = new_position; |
1145 | smp_wmb(); |
1146 | iter->last_dead_count = sequence; |
1147 | } |
1148 | |
1149 | /** |
1150 | * mem_cgroup_iter - iterate over memory cgroup hierarchy |
1151 | * @root: hierarchy root |
1152 | * @prev: previously returned memcg, NULL on first invocation |
1153 | * @reclaim: cookie for shared reclaim walks, NULL for full walks |
1154 | * |
1155 | * Returns references to children of the hierarchy below @root, or |
1156 | * @root itself, or %NULL after a full round-trip. |
1157 | * |
1158 | * Caller must pass the return value in @prev on subsequent |
1159 | * invocations for reference counting, or use mem_cgroup_iter_break() |
1160 | * to cancel a hierarchy walk before the round-trip is complete. |
1161 | * |
1162 | * Reclaimers can specify a zone and a priority level in @reclaim to |
1163 | * divide up the memcgs in the hierarchy among all concurrent |
1164 | * reclaimers operating on the same zone and priority. |
1165 | */ |
1166 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
1167 | struct mem_cgroup *prev, |
1168 | struct mem_cgroup_reclaim_cookie *reclaim) |
1169 | { |
1170 | struct mem_cgroup *memcg = NULL; |
1171 | struct mem_cgroup *last_visited = NULL; |
1172 | |
1173 | if (mem_cgroup_disabled()) |
1174 | return NULL; |
1175 | |
1176 | if (!root) |
1177 | root = root_mem_cgroup; |
1178 | |
1179 | if (prev && !reclaim) |
1180 | last_visited = prev; |
1181 | |
1182 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
1183 | if (prev) |
1184 | goto out_css_put; |
1185 | return root; |
1186 | } |
1187 | |
1188 | rcu_read_lock(); |
1189 | while (!memcg) { |
1190 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
1191 | int uninitialized_var(seq); |
1192 | |
1193 | if (reclaim) { |
1194 | int nid = zone_to_nid(reclaim->zone); |
1195 | int zid = zone_idx(reclaim->zone); |
1196 | struct mem_cgroup_per_zone *mz; |
1197 | |
1198 | mz = mem_cgroup_zoneinfo(root, nid, zid); |
1199 | iter = &mz->reclaim_iter[reclaim->priority]; |
1200 | if (prev && reclaim->generation != iter->generation) { |
1201 | iter->last_visited = NULL; |
1202 | goto out_unlock; |
1203 | } |
1204 | |
1205 | last_visited = mem_cgroup_iter_load(iter, root, &seq); |
1206 | } |
1207 | |
1208 | memcg = __mem_cgroup_iter_next(root, last_visited); |
1209 | |
1210 | if (reclaim) { |
1211 | mem_cgroup_iter_update(iter, last_visited, memcg, seq); |
1212 | |
1213 | if (!memcg) |
1214 | iter->generation++; |
1215 | else if (!prev && memcg) |
1216 | reclaim->generation = iter->generation; |
1217 | } |
1218 | |
1219 | if (prev && !memcg) |
1220 | goto out_unlock; |
1221 | } |
1222 | out_unlock: |
1223 | rcu_read_unlock(); |
1224 | out_css_put: |
1225 | if (prev && prev != root) |
1226 | css_put(&prev->css); |
1227 | |
1228 | return memcg; |
1229 | } |
1230 | |
1231 | /** |
1232 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely |
1233 | * @root: hierarchy root |
1234 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() |
1235 | */ |
1236 | void mem_cgroup_iter_break(struct mem_cgroup *root, |
1237 | struct mem_cgroup *prev) |
1238 | { |
1239 | if (!root) |
1240 | root = root_mem_cgroup; |
1241 | if (prev && prev != root) |
1242 | css_put(&prev->css); |
1243 | } |
1244 | |
1245 | /* |
1246 | * Iteration constructs for visiting all cgroups (under a tree). If |
1247 | * loops are exited prematurely (break), mem_cgroup_iter_break() must |
1248 | * be used for reference counting. |
1249 | */ |
1250 | #define for_each_mem_cgroup_tree(iter, root) \ |
1251 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
1252 | iter != NULL; \ |
1253 | iter = mem_cgroup_iter(root, iter, NULL)) |
1254 | |
1255 | #define for_each_mem_cgroup(iter) \ |
1256 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
1257 | iter != NULL; \ |
1258 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
1259 | |
1260 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
1261 | { |
1262 | struct mem_cgroup *memcg; |
1263 | |
1264 | rcu_read_lock(); |
1265 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1266 | if (unlikely(!memcg)) |
1267 | goto out; |
1268 | |
1269 | switch (idx) { |
1270 | case PGFAULT: |
1271 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1272 | break; |
1273 | case PGMAJFAULT: |
1274 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); |
1275 | break; |
1276 | default: |
1277 | BUG(); |
1278 | } |
1279 | out: |
1280 | rcu_read_unlock(); |
1281 | } |
1282 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); |
1283 | |
1284 | /** |
1285 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg |
1286 | * @zone: zone of the wanted lruvec |
1287 | * @memcg: memcg of the wanted lruvec |
1288 | * |
1289 | * Returns the lru list vector holding pages for the given @zone and |
1290 | * @mem. This can be the global zone lruvec, if the memory controller |
1291 | * is disabled. |
1292 | */ |
1293 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, |
1294 | struct mem_cgroup *memcg) |
1295 | { |
1296 | struct mem_cgroup_per_zone *mz; |
1297 | struct lruvec *lruvec; |
1298 | |
1299 | if (mem_cgroup_disabled()) { |
1300 | lruvec = &zone->lruvec; |
1301 | goto out; |
1302 | } |
1303 | |
1304 | mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); |
1305 | lruvec = &mz->lruvec; |
1306 | out: |
1307 | /* |
1308 | * Since a node can be onlined after the mem_cgroup was created, |
1309 | * we have to be prepared to initialize lruvec->zone here; |
1310 | * and if offlined then reonlined, we need to reinitialize it. |
1311 | */ |
1312 | if (unlikely(lruvec->zone != zone)) |
1313 | lruvec->zone = zone; |
1314 | return lruvec; |
1315 | } |
1316 | |
1317 | /* |
1318 | * Following LRU functions are allowed to be used without PCG_LOCK. |
1319 | * Operations are called by routine of global LRU independently from memcg. |
1320 | * What we have to take care of here is validness of pc->mem_cgroup. |
1321 | * |
1322 | * Changes to pc->mem_cgroup happens when |
1323 | * 1. charge |
1324 | * 2. moving account |
1325 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. |
1326 | * It is added to LRU before charge. |
1327 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. |
1328 | * When moving account, the page is not on LRU. It's isolated. |
1329 | */ |
1330 | |
1331 | /** |
1332 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page |
1333 | * @page: the page |
1334 | * @zone: zone of the page |
1335 | */ |
1336 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
1337 | { |
1338 | struct mem_cgroup_per_zone *mz; |
1339 | struct mem_cgroup *memcg; |
1340 | struct page_cgroup *pc; |
1341 | struct lruvec *lruvec; |
1342 | |
1343 | if (mem_cgroup_disabled()) { |
1344 | lruvec = &zone->lruvec; |
1345 | goto out; |
1346 | } |
1347 | |
1348 | pc = lookup_page_cgroup(page); |
1349 | memcg = pc->mem_cgroup; |
1350 | |
1351 | /* |
1352 | * Surreptitiously switch any uncharged offlist page to root: |
1353 | * an uncharged page off lru does nothing to secure |
1354 | * its former mem_cgroup from sudden removal. |
1355 | * |
1356 | * Our caller holds lru_lock, and PageCgroupUsed is updated |
1357 | * under page_cgroup lock: between them, they make all uses |
1358 | * of pc->mem_cgroup safe. |
1359 | */ |
1360 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) |
1361 | pc->mem_cgroup = memcg = root_mem_cgroup; |
1362 | |
1363 | mz = page_cgroup_zoneinfo(memcg, page); |
1364 | lruvec = &mz->lruvec; |
1365 | out: |
1366 | /* |
1367 | * Since a node can be onlined after the mem_cgroup was created, |
1368 | * we have to be prepared to initialize lruvec->zone here; |
1369 | * and if offlined then reonlined, we need to reinitialize it. |
1370 | */ |
1371 | if (unlikely(lruvec->zone != zone)) |
1372 | lruvec->zone = zone; |
1373 | return lruvec; |
1374 | } |
1375 | |
1376 | /** |
1377 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1378 | * @lruvec: mem_cgroup per zone lru vector |
1379 | * @lru: index of lru list the page is sitting on |
1380 | * @nr_pages: positive when adding or negative when removing |
1381 | * |
1382 | * This function must be called when a page is added to or removed from an |
1383 | * lru list. |
1384 | */ |
1385 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1386 | int nr_pages) |
1387 | { |
1388 | struct mem_cgroup_per_zone *mz; |
1389 | unsigned long *lru_size; |
1390 | |
1391 | if (mem_cgroup_disabled()) |
1392 | return; |
1393 | |
1394 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1395 | lru_size = mz->lru_size + lru; |
1396 | *lru_size += nr_pages; |
1397 | VM_BUG_ON((long)(*lru_size) < 0); |
1398 | } |
1399 | |
1400 | /* |
1401 | * Checks whether given mem is same or in the root_mem_cgroup's |
1402 | * hierarchy subtree |
1403 | */ |
1404 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1405 | struct mem_cgroup *memcg) |
1406 | { |
1407 | if (root_memcg == memcg) |
1408 | return true; |
1409 | if (!root_memcg->use_hierarchy || !memcg) |
1410 | return false; |
1411 | return css_is_ancestor(&memcg->css, &root_memcg->css); |
1412 | } |
1413 | |
1414 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1415 | struct mem_cgroup *memcg) |
1416 | { |
1417 | bool ret; |
1418 | |
1419 | rcu_read_lock(); |
1420 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); |
1421 | rcu_read_unlock(); |
1422 | return ret; |
1423 | } |
1424 | |
1425 | bool task_in_mem_cgroup(struct task_struct *task, |
1426 | const struct mem_cgroup *memcg) |
1427 | { |
1428 | struct mem_cgroup *curr = NULL; |
1429 | struct task_struct *p; |
1430 | bool ret; |
1431 | |
1432 | p = find_lock_task_mm(task); |
1433 | if (p) { |
1434 | curr = try_get_mem_cgroup_from_mm(p->mm); |
1435 | task_unlock(p); |
1436 | } else { |
1437 | /* |
1438 | * All threads may have already detached their mm's, but the oom |
1439 | * killer still needs to detect if they have already been oom |
1440 | * killed to prevent needlessly killing additional tasks. |
1441 | */ |
1442 | rcu_read_lock(); |
1443 | curr = mem_cgroup_from_task(task); |
1444 | if (curr) |
1445 | css_get(&curr->css); |
1446 | rcu_read_unlock(); |
1447 | } |
1448 | if (!curr) |
1449 | return false; |
1450 | /* |
1451 | * We should check use_hierarchy of "memcg" not "curr". Because checking |
1452 | * use_hierarchy of "curr" here make this function true if hierarchy is |
1453 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* |
1454 | * hierarchy(even if use_hierarchy is disabled in "memcg"). |
1455 | */ |
1456 | ret = mem_cgroup_same_or_subtree(memcg, curr); |
1457 | css_put(&curr->css); |
1458 | return ret; |
1459 | } |
1460 | |
1461 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
1462 | { |
1463 | unsigned long inactive_ratio; |
1464 | unsigned long inactive; |
1465 | unsigned long active; |
1466 | unsigned long gb; |
1467 | |
1468 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1469 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); |
1470 | |
1471 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1472 | if (gb) |
1473 | inactive_ratio = int_sqrt(10 * gb); |
1474 | else |
1475 | inactive_ratio = 1; |
1476 | |
1477 | return inactive * inactive_ratio < active; |
1478 | } |
1479 | |
1480 | #define mem_cgroup_from_res_counter(counter, member) \ |
1481 | container_of(counter, struct mem_cgroup, member) |
1482 | |
1483 | /** |
1484 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
1485 | * @memcg: the memory cgroup |
1486 | * |
1487 | * Returns the maximum amount of memory @mem can be charged with, in |
1488 | * pages. |
1489 | */ |
1490 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
1491 | { |
1492 | unsigned long long margin; |
1493 | |
1494 | margin = res_counter_margin(&memcg->res); |
1495 | if (do_swap_account) |
1496 | margin = min(margin, res_counter_margin(&memcg->memsw)); |
1497 | return margin >> PAGE_SHIFT; |
1498 | } |
1499 | |
1500 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
1501 | { |
1502 | /* root ? */ |
1503 | if (!css_parent(&memcg->css)) |
1504 | return vm_swappiness; |
1505 | |
1506 | return memcg->swappiness; |
1507 | } |
1508 | |
1509 | /* |
1510 | * memcg->moving_account is used for checking possibility that some thread is |
1511 | * calling move_account(). When a thread on CPU-A starts moving pages under |
1512 | * a memcg, other threads should check memcg->moving_account under |
1513 | * rcu_read_lock(), like this: |
1514 | * |
1515 | * CPU-A CPU-B |
1516 | * rcu_read_lock() |
1517 | * memcg->moving_account+1 if (memcg->mocing_account) |
1518 | * take heavy locks. |
1519 | * synchronize_rcu() update something. |
1520 | * rcu_read_unlock() |
1521 | * start move here. |
1522 | */ |
1523 | |
1524 | /* for quick checking without looking up memcg */ |
1525 | atomic_t memcg_moving __read_mostly; |
1526 | |
1527 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) |
1528 | { |
1529 | atomic_inc(&memcg_moving); |
1530 | atomic_inc(&memcg->moving_account); |
1531 | synchronize_rcu(); |
1532 | } |
1533 | |
1534 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) |
1535 | { |
1536 | /* |
1537 | * Now, mem_cgroup_clear_mc() may call this function with NULL. |
1538 | * We check NULL in callee rather than caller. |
1539 | */ |
1540 | if (memcg) { |
1541 | atomic_dec(&memcg_moving); |
1542 | atomic_dec(&memcg->moving_account); |
1543 | } |
1544 | } |
1545 | |
1546 | /* |
1547 | * 2 routines for checking "mem" is under move_account() or not. |
1548 | * |
1549 | * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This |
1550 | * is used for avoiding races in accounting. If true, |
1551 | * pc->mem_cgroup may be overwritten. |
1552 | * |
1553 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or |
1554 | * under hierarchy of moving cgroups. This is for |
1555 | * waiting at hith-memory prressure caused by "move". |
1556 | */ |
1557 | |
1558 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) |
1559 | { |
1560 | VM_BUG_ON(!rcu_read_lock_held()); |
1561 | return atomic_read(&memcg->moving_account) > 0; |
1562 | } |
1563 | |
1564 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
1565 | { |
1566 | struct mem_cgroup *from; |
1567 | struct mem_cgroup *to; |
1568 | bool ret = false; |
1569 | /* |
1570 | * Unlike task_move routines, we access mc.to, mc.from not under |
1571 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. |
1572 | */ |
1573 | spin_lock(&mc.lock); |
1574 | from = mc.from; |
1575 | to = mc.to; |
1576 | if (!from) |
1577 | goto unlock; |
1578 | |
1579 | ret = mem_cgroup_same_or_subtree(memcg, from) |
1580 | || mem_cgroup_same_or_subtree(memcg, to); |
1581 | unlock: |
1582 | spin_unlock(&mc.lock); |
1583 | return ret; |
1584 | } |
1585 | |
1586 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
1587 | { |
1588 | if (mc.moving_task && current != mc.moving_task) { |
1589 | if (mem_cgroup_under_move(memcg)) { |
1590 | DEFINE_WAIT(wait); |
1591 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); |
1592 | /* moving charge context might have finished. */ |
1593 | if (mc.moving_task) |
1594 | schedule(); |
1595 | finish_wait(&mc.waitq, &wait); |
1596 | return true; |
1597 | } |
1598 | } |
1599 | return false; |
1600 | } |
1601 | |
1602 | /* |
1603 | * Take this lock when |
1604 | * - a code tries to modify page's memcg while it's USED. |
1605 | * - a code tries to modify page state accounting in a memcg. |
1606 | * see mem_cgroup_stolen(), too. |
1607 | */ |
1608 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, |
1609 | unsigned long *flags) |
1610 | { |
1611 | spin_lock_irqsave(&memcg->move_lock, *flags); |
1612 | } |
1613 | |
1614 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, |
1615 | unsigned long *flags) |
1616 | { |
1617 | spin_unlock_irqrestore(&memcg->move_lock, *flags); |
1618 | } |
1619 | |
1620 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
1621 | /** |
1622 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. |
1623 | * @memcg: The memory cgroup that went over limit |
1624 | * @p: Task that is going to be killed |
1625 | * |
1626 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is |
1627 | * enabled |
1628 | */ |
1629 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) |
1630 | { |
1631 | struct cgroup *task_cgrp; |
1632 | struct cgroup *mem_cgrp; |
1633 | /* |
1634 | * Need a buffer in BSS, can't rely on allocations. The code relies |
1635 | * on the assumption that OOM is serialized for memory controller. |
1636 | * If this assumption is broken, revisit this code. |
1637 | */ |
1638 | static char memcg_name[PATH_MAX]; |
1639 | int ret; |
1640 | struct mem_cgroup *iter; |
1641 | unsigned int i; |
1642 | |
1643 | if (!p) |
1644 | return; |
1645 | |
1646 | rcu_read_lock(); |
1647 | |
1648 | mem_cgrp = memcg->css.cgroup; |
1649 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); |
1650 | |
1651 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); |
1652 | if (ret < 0) { |
1653 | /* |
1654 | * Unfortunately, we are unable to convert to a useful name |
1655 | * But we'll still print out the usage information |
1656 | */ |
1657 | rcu_read_unlock(); |
1658 | goto done; |
1659 | } |
1660 | rcu_read_unlock(); |
1661 | |
1662 | pr_info("Task in %s killed", memcg_name); |
1663 | |
1664 | rcu_read_lock(); |
1665 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); |
1666 | if (ret < 0) { |
1667 | rcu_read_unlock(); |
1668 | goto done; |
1669 | } |
1670 | rcu_read_unlock(); |
1671 | |
1672 | /* |
1673 | * Continues from above, so we don't need an KERN_ level |
1674 | */ |
1675 | pr_cont(" as a result of limit of %s\n", memcg_name); |
1676 | done: |
1677 | |
1678 | pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", |
1679 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
1680 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, |
1681 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); |
1682 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", |
1683 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, |
1684 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, |
1685 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); |
1686 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", |
1687 | res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, |
1688 | res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, |
1689 | res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); |
1690 | |
1691 | for_each_mem_cgroup_tree(iter, memcg) { |
1692 | pr_info("Memory cgroup stats"); |
1693 | |
1694 | rcu_read_lock(); |
1695 | ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); |
1696 | if (!ret) |
1697 | pr_cont(" for %s", memcg_name); |
1698 | rcu_read_unlock(); |
1699 | pr_cont(":"); |
1700 | |
1701 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
1702 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1703 | continue; |
1704 | pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], |
1705 | K(mem_cgroup_read_stat(iter, i))); |
1706 | } |
1707 | |
1708 | for (i = 0; i < NR_LRU_LISTS; i++) |
1709 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], |
1710 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); |
1711 | |
1712 | pr_cont("\n"); |
1713 | } |
1714 | } |
1715 | |
1716 | /* |
1717 | * This function returns the number of memcg under hierarchy tree. Returns |
1718 | * 1(self count) if no children. |
1719 | */ |
1720 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
1721 | { |
1722 | int num = 0; |
1723 | struct mem_cgroup *iter; |
1724 | |
1725 | for_each_mem_cgroup_tree(iter, memcg) |
1726 | num++; |
1727 | return num; |
1728 | } |
1729 | |
1730 | /* |
1731 | * Return the memory (and swap, if configured) limit for a memcg. |
1732 | */ |
1733 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) |
1734 | { |
1735 | u64 limit; |
1736 | |
1737 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
1738 | |
1739 | /* |
1740 | * Do not consider swap space if we cannot swap due to swappiness |
1741 | */ |
1742 | if (mem_cgroup_swappiness(memcg)) { |
1743 | u64 memsw; |
1744 | |
1745 | limit += total_swap_pages << PAGE_SHIFT; |
1746 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
1747 | |
1748 | /* |
1749 | * If memsw is finite and limits the amount of swap space |
1750 | * available to this memcg, return that limit. |
1751 | */ |
1752 | limit = min(limit, memsw); |
1753 | } |
1754 | |
1755 | return limit; |
1756 | } |
1757 | |
1758 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1759 | int order) |
1760 | { |
1761 | struct mem_cgroup *iter; |
1762 | unsigned long chosen_points = 0; |
1763 | unsigned long totalpages; |
1764 | unsigned int points = 0; |
1765 | struct task_struct *chosen = NULL; |
1766 | |
1767 | /* |
1768 | * If current has a pending SIGKILL or is exiting, then automatically |
1769 | * select it. The goal is to allow it to allocate so that it may |
1770 | * quickly exit and free its memory. |
1771 | */ |
1772 | if (fatal_signal_pending(current) || current->flags & PF_EXITING) { |
1773 | set_thread_flag(TIF_MEMDIE); |
1774 | return; |
1775 | } |
1776 | |
1777 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); |
1778 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; |
1779 | for_each_mem_cgroup_tree(iter, memcg) { |
1780 | struct css_task_iter it; |
1781 | struct task_struct *task; |
1782 | |
1783 | css_task_iter_start(&iter->css, &it); |
1784 | while ((task = css_task_iter_next(&it))) { |
1785 | switch (oom_scan_process_thread(task, totalpages, NULL, |
1786 | false)) { |
1787 | case OOM_SCAN_SELECT: |
1788 | if (chosen) |
1789 | put_task_struct(chosen); |
1790 | chosen = task; |
1791 | chosen_points = ULONG_MAX; |
1792 | get_task_struct(chosen); |
1793 | /* fall through */ |
1794 | case OOM_SCAN_CONTINUE: |
1795 | continue; |
1796 | case OOM_SCAN_ABORT: |
1797 | css_task_iter_end(&it); |
1798 | mem_cgroup_iter_break(memcg, iter); |
1799 | if (chosen) |
1800 | put_task_struct(chosen); |
1801 | return; |
1802 | case OOM_SCAN_OK: |
1803 | break; |
1804 | }; |
1805 | points = oom_badness(task, memcg, NULL, totalpages); |
1806 | if (points > chosen_points) { |
1807 | if (chosen) |
1808 | put_task_struct(chosen); |
1809 | chosen = task; |
1810 | chosen_points = points; |
1811 | get_task_struct(chosen); |
1812 | } |
1813 | } |
1814 | css_task_iter_end(&it); |
1815 | } |
1816 | |
1817 | if (!chosen) |
1818 | return; |
1819 | points = chosen_points * 1000 / totalpages; |
1820 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1821 | NULL, "Memory cgroup out of memory"); |
1822 | } |
1823 | |
1824 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, |
1825 | gfp_t gfp_mask, |
1826 | unsigned long flags) |
1827 | { |
1828 | unsigned long total = 0; |
1829 | bool noswap = false; |
1830 | int loop; |
1831 | |
1832 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) |
1833 | noswap = true; |
1834 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) |
1835 | noswap = true; |
1836 | |
1837 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { |
1838 | if (loop) |
1839 | drain_all_stock_async(memcg); |
1840 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); |
1841 | /* |
1842 | * Allow limit shrinkers, which are triggered directly |
1843 | * by userspace, to catch signals and stop reclaim |
1844 | * after minimal progress, regardless of the margin. |
1845 | */ |
1846 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) |
1847 | break; |
1848 | if (mem_cgroup_margin(memcg)) |
1849 | break; |
1850 | /* |
1851 | * If nothing was reclaimed after two attempts, there |
1852 | * may be no reclaimable pages in this hierarchy. |
1853 | */ |
1854 | if (loop && !total) |
1855 | break; |
1856 | } |
1857 | return total; |
1858 | } |
1859 | |
1860 | /** |
1861 | * test_mem_cgroup_node_reclaimable |
1862 | * @memcg: the target memcg |
1863 | * @nid: the node ID to be checked. |
1864 | * @noswap : specify true here if the user wants flle only information. |
1865 | * |
1866 | * This function returns whether the specified memcg contains any |
1867 | * reclaimable pages on a node. Returns true if there are any reclaimable |
1868 | * pages in the node. |
1869 | */ |
1870 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
1871 | int nid, bool noswap) |
1872 | { |
1873 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
1874 | return true; |
1875 | if (noswap || !total_swap_pages) |
1876 | return false; |
1877 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
1878 | return true; |
1879 | return false; |
1880 | |
1881 | } |
1882 | #if MAX_NUMNODES > 1 |
1883 | |
1884 | /* |
1885 | * Always updating the nodemask is not very good - even if we have an empty |
1886 | * list or the wrong list here, we can start from some node and traverse all |
1887 | * nodes based on the zonelist. So update the list loosely once per 10 secs. |
1888 | * |
1889 | */ |
1890 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
1891 | { |
1892 | int nid; |
1893 | /* |
1894 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET |
1895 | * pagein/pageout changes since the last update. |
1896 | */ |
1897 | if (!atomic_read(&memcg->numainfo_events)) |
1898 | return; |
1899 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
1900 | return; |
1901 | |
1902 | /* make a nodemask where this memcg uses memory from */ |
1903 | memcg->scan_nodes = node_states[N_MEMORY]; |
1904 | |
1905 | for_each_node_mask(nid, node_states[N_MEMORY]) { |
1906 | |
1907 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1908 | node_clear(nid, memcg->scan_nodes); |
1909 | } |
1910 | |
1911 | atomic_set(&memcg->numainfo_events, 0); |
1912 | atomic_set(&memcg->numainfo_updating, 0); |
1913 | } |
1914 | |
1915 | /* |
1916 | * Selecting a node where we start reclaim from. Because what we need is just |
1917 | * reducing usage counter, start from anywhere is O,K. Considering |
1918 | * memory reclaim from current node, there are pros. and cons. |
1919 | * |
1920 | * Freeing memory from current node means freeing memory from a node which |
1921 | * we'll use or we've used. So, it may make LRU bad. And if several threads |
1922 | * hit limits, it will see a contention on a node. But freeing from remote |
1923 | * node means more costs for memory reclaim because of memory latency. |
1924 | * |
1925 | * Now, we use round-robin. Better algorithm is welcomed. |
1926 | */ |
1927 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
1928 | { |
1929 | int node; |
1930 | |
1931 | mem_cgroup_may_update_nodemask(memcg); |
1932 | node = memcg->last_scanned_node; |
1933 | |
1934 | node = next_node(node, memcg->scan_nodes); |
1935 | if (node == MAX_NUMNODES) |
1936 | node = first_node(memcg->scan_nodes); |
1937 | /* |
1938 | * We call this when we hit limit, not when pages are added to LRU. |
1939 | * No LRU may hold pages because all pages are UNEVICTABLE or |
1940 | * memcg is too small and all pages are not on LRU. In that case, |
1941 | * we use curret node. |
1942 | */ |
1943 | if (unlikely(node == MAX_NUMNODES)) |
1944 | node = numa_node_id(); |
1945 | |
1946 | memcg->last_scanned_node = node; |
1947 | return node; |
1948 | } |
1949 | |
1950 | /* |
1951 | * Check all nodes whether it contains reclaimable pages or not. |
1952 | * For quick scan, we make use of scan_nodes. This will allow us to skip |
1953 | * unused nodes. But scan_nodes is lazily updated and may not cotain |
1954 | * enough new information. We need to do double check. |
1955 | */ |
1956 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1957 | { |
1958 | int nid; |
1959 | |
1960 | /* |
1961 | * quick check...making use of scan_node. |
1962 | * We can skip unused nodes. |
1963 | */ |
1964 | if (!nodes_empty(memcg->scan_nodes)) { |
1965 | for (nid = first_node(memcg->scan_nodes); |
1966 | nid < MAX_NUMNODES; |
1967 | nid = next_node(nid, memcg->scan_nodes)) { |
1968 | |
1969 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
1970 | return true; |
1971 | } |
1972 | } |
1973 | /* |
1974 | * Check rest of nodes. |
1975 | */ |
1976 | for_each_node_state(nid, N_MEMORY) { |
1977 | if (node_isset(nid, memcg->scan_nodes)) |
1978 | continue; |
1979 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
1980 | return true; |
1981 | } |
1982 | return false; |
1983 | } |
1984 | |
1985 | #else |
1986 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
1987 | { |
1988 | return 0; |
1989 | } |
1990 | |
1991 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
1992 | { |
1993 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); |
1994 | } |
1995 | #endif |
1996 | |
1997 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1998 | struct zone *zone, |
1999 | gfp_t gfp_mask, |
2000 | unsigned long *total_scanned) |
2001 | { |
2002 | struct mem_cgroup *victim = NULL; |
2003 | int total = 0; |
2004 | int loop = 0; |
2005 | unsigned long excess; |
2006 | unsigned long nr_scanned; |
2007 | struct mem_cgroup_reclaim_cookie reclaim = { |
2008 | .zone = zone, |
2009 | .priority = 0, |
2010 | }; |
2011 | |
2012 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; |
2013 | |
2014 | while (1) { |
2015 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); |
2016 | if (!victim) { |
2017 | loop++; |
2018 | if (loop >= 2) { |
2019 | /* |
2020 | * If we have not been able to reclaim |
2021 | * anything, it might because there are |
2022 | * no reclaimable pages under this hierarchy |
2023 | */ |
2024 | if (!total) |
2025 | break; |
2026 | /* |
2027 | * We want to do more targeted reclaim. |
2028 | * excess >> 2 is not to excessive so as to |
2029 | * reclaim too much, nor too less that we keep |
2030 | * coming back to reclaim from this cgroup |
2031 | */ |
2032 | if (total >= (excess >> 2) || |
2033 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
2034 | break; |
2035 | } |
2036 | continue; |
2037 | } |
2038 | if (!mem_cgroup_reclaimable(victim, false)) |
2039 | continue; |
2040 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, |
2041 | zone, &nr_scanned); |
2042 | *total_scanned += nr_scanned; |
2043 | if (!res_counter_soft_limit_excess(&root_memcg->res)) |
2044 | break; |
2045 | } |
2046 | mem_cgroup_iter_break(root_memcg, victim); |
2047 | return total; |
2048 | } |
2049 | |
2050 | #ifdef CONFIG_LOCKDEP |
2051 | static struct lockdep_map memcg_oom_lock_dep_map = { |
2052 | .name = "memcg_oom_lock", |
2053 | }; |
2054 | #endif |
2055 | |
2056 | static DEFINE_SPINLOCK(memcg_oom_lock); |
2057 | |
2058 | /* |
2059 | * Check OOM-Killer is already running under our hierarchy. |
2060 | * If someone is running, return false. |
2061 | */ |
2062 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) |
2063 | { |
2064 | struct mem_cgroup *iter, *failed = NULL; |
2065 | |
2066 | spin_lock(&memcg_oom_lock); |
2067 | |
2068 | for_each_mem_cgroup_tree(iter, memcg) { |
2069 | if (iter->oom_lock) { |
2070 | /* |
2071 | * this subtree of our hierarchy is already locked |
2072 | * so we cannot give a lock. |
2073 | */ |
2074 | failed = iter; |
2075 | mem_cgroup_iter_break(memcg, iter); |
2076 | break; |
2077 | } else |
2078 | iter->oom_lock = true; |
2079 | } |
2080 | |
2081 | if (failed) { |
2082 | /* |
2083 | * OK, we failed to lock the whole subtree so we have |
2084 | * to clean up what we set up to the failing subtree |
2085 | */ |
2086 | for_each_mem_cgroup_tree(iter, memcg) { |
2087 | if (iter == failed) { |
2088 | mem_cgroup_iter_break(memcg, iter); |
2089 | break; |
2090 | } |
2091 | iter->oom_lock = false; |
2092 | } |
2093 | } else |
2094 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); |
2095 | |
2096 | spin_unlock(&memcg_oom_lock); |
2097 | |
2098 | return !failed; |
2099 | } |
2100 | |
2101 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
2102 | { |
2103 | struct mem_cgroup *iter; |
2104 | |
2105 | spin_lock(&memcg_oom_lock); |
2106 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); |
2107 | for_each_mem_cgroup_tree(iter, memcg) |
2108 | iter->oom_lock = false; |
2109 | spin_unlock(&memcg_oom_lock); |
2110 | } |
2111 | |
2112 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
2113 | { |
2114 | struct mem_cgroup *iter; |
2115 | |
2116 | for_each_mem_cgroup_tree(iter, memcg) |
2117 | atomic_inc(&iter->under_oom); |
2118 | } |
2119 | |
2120 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
2121 | { |
2122 | struct mem_cgroup *iter; |
2123 | |
2124 | /* |
2125 | * When a new child is created while the hierarchy is under oom, |
2126 | * mem_cgroup_oom_lock() may not be called. We have to use |
2127 | * atomic_add_unless() here. |
2128 | */ |
2129 | for_each_mem_cgroup_tree(iter, memcg) |
2130 | atomic_add_unless(&iter->under_oom, -1, 0); |
2131 | } |
2132 | |
2133 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
2134 | |
2135 | struct oom_wait_info { |
2136 | struct mem_cgroup *memcg; |
2137 | wait_queue_t wait; |
2138 | }; |
2139 | |
2140 | static int memcg_oom_wake_function(wait_queue_t *wait, |
2141 | unsigned mode, int sync, void *arg) |
2142 | { |
2143 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
2144 | struct mem_cgroup *oom_wait_memcg; |
2145 | struct oom_wait_info *oom_wait_info; |
2146 | |
2147 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); |
2148 | oom_wait_memcg = oom_wait_info->memcg; |
2149 | |
2150 | /* |
2151 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. |
2152 | * Then we can use css_is_ancestor without taking care of RCU. |
2153 | */ |
2154 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) |
2155 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) |
2156 | return 0; |
2157 | return autoremove_wake_function(wait, mode, sync, arg); |
2158 | } |
2159 | |
2160 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
2161 | { |
2162 | atomic_inc(&memcg->oom_wakeups); |
2163 | /* for filtering, pass "memcg" as argument. */ |
2164 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); |
2165 | } |
2166 | |
2167 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
2168 | { |
2169 | if (memcg && atomic_read(&memcg->under_oom)) |
2170 | memcg_wakeup_oom(memcg); |
2171 | } |
2172 | |
2173 | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
2174 | { |
2175 | if (!current->memcg_oom.may_oom) |
2176 | return; |
2177 | /* |
2178 | * We are in the middle of the charge context here, so we |
2179 | * don't want to block when potentially sitting on a callstack |
2180 | * that holds all kinds of filesystem and mm locks. |
2181 | * |
2182 | * Also, the caller may handle a failed allocation gracefully |
2183 | * (like optional page cache readahead) and so an OOM killer |
2184 | * invocation might not even be necessary. |
2185 | * |
2186 | * That's why we don't do anything here except remember the |
2187 | * OOM context and then deal with it at the end of the page |
2188 | * fault when the stack is unwound, the locks are released, |
2189 | * and when we know whether the fault was overall successful. |
2190 | */ |
2191 | css_get(&memcg->css); |
2192 | current->memcg_oom.memcg = memcg; |
2193 | current->memcg_oom.gfp_mask = mask; |
2194 | current->memcg_oom.order = order; |
2195 | } |
2196 | |
2197 | /** |
2198 | * mem_cgroup_oom_synchronize - complete memcg OOM handling |
2199 | * @handle: actually kill/wait or just clean up the OOM state |
2200 | * |
2201 | * This has to be called at the end of a page fault if the memcg OOM |
2202 | * handler was enabled. |
2203 | * |
2204 | * Memcg supports userspace OOM handling where failed allocations must |
2205 | * sleep on a waitqueue until the userspace task resolves the |
2206 | * situation. Sleeping directly in the charge context with all kinds |
2207 | * of locks held is not a good idea, instead we remember an OOM state |
2208 | * in the task and mem_cgroup_oom_synchronize() has to be called at |
2209 | * the end of the page fault to complete the OOM handling. |
2210 | * |
2211 | * Returns %true if an ongoing memcg OOM situation was detected and |
2212 | * completed, %false otherwise. |
2213 | */ |
2214 | bool mem_cgroup_oom_synchronize(bool handle) |
2215 | { |
2216 | struct mem_cgroup *memcg = current->memcg_oom.memcg; |
2217 | struct oom_wait_info owait; |
2218 | bool locked; |
2219 | |
2220 | /* OOM is global, do not handle */ |
2221 | if (!memcg) |
2222 | return false; |
2223 | |
2224 | if (!handle) |
2225 | goto cleanup; |
2226 | |
2227 | owait.memcg = memcg; |
2228 | owait.wait.flags = 0; |
2229 | owait.wait.func = memcg_oom_wake_function; |
2230 | owait.wait.private = current; |
2231 | INIT_LIST_HEAD(&owait.wait.task_list); |
2232 | |
2233 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
2234 | mem_cgroup_mark_under_oom(memcg); |
2235 | |
2236 | locked = mem_cgroup_oom_trylock(memcg); |
2237 | |
2238 | if (locked) |
2239 | mem_cgroup_oom_notify(memcg); |
2240 | |
2241 | if (locked && !memcg->oom_kill_disable) { |
2242 | mem_cgroup_unmark_under_oom(memcg); |
2243 | finish_wait(&memcg_oom_waitq, &owait.wait); |
2244 | mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, |
2245 | current->memcg_oom.order); |
2246 | } else { |
2247 | schedule(); |
2248 | mem_cgroup_unmark_under_oom(memcg); |
2249 | finish_wait(&memcg_oom_waitq, &owait.wait); |
2250 | } |
2251 | |
2252 | if (locked) { |
2253 | mem_cgroup_oom_unlock(memcg); |
2254 | /* |
2255 | * There is no guarantee that an OOM-lock contender |
2256 | * sees the wakeups triggered by the OOM kill |
2257 | * uncharges. Wake any sleepers explicitely. |
2258 | */ |
2259 | memcg_oom_recover(memcg); |
2260 | } |
2261 | cleanup: |
2262 | current->memcg_oom.memcg = NULL; |
2263 | css_put(&memcg->css); |
2264 | return true; |
2265 | } |
2266 | |
2267 | /* |
2268 | * Currently used to update mapped file statistics, but the routine can be |
2269 | * generalized to update other statistics as well. |
2270 | * |
2271 | * Notes: Race condition |
2272 | * |
2273 | * We usually use page_cgroup_lock() for accessing page_cgroup member but |
2274 | * it tends to be costly. But considering some conditions, we doesn't need |
2275 | * to do so _always_. |
2276 | * |
2277 | * Considering "charge", lock_page_cgroup() is not required because all |
2278 | * file-stat operations happen after a page is attached to radix-tree. There |
2279 | * are no race with "charge". |
2280 | * |
2281 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup |
2282 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even |
2283 | * if there are race with "uncharge". Statistics itself is properly handled |
2284 | * by flags. |
2285 | * |
2286 | * Considering "move", this is an only case we see a race. To make the race |
2287 | * small, we check mm->moving_account and detect there are possibility of race |
2288 | * If there is, we take a lock. |
2289 | */ |
2290 | |
2291 | void __mem_cgroup_begin_update_page_stat(struct page *page, |
2292 | bool *locked, unsigned long *flags) |
2293 | { |
2294 | struct mem_cgroup *memcg; |
2295 | struct page_cgroup *pc; |
2296 | |
2297 | pc = lookup_page_cgroup(page); |
2298 | again: |
2299 | memcg = pc->mem_cgroup; |
2300 | if (unlikely(!memcg || !PageCgroupUsed(pc))) |
2301 | return; |
2302 | /* |
2303 | * If this memory cgroup is not under account moving, we don't |
2304 | * need to take move_lock_mem_cgroup(). Because we already hold |
2305 | * rcu_read_lock(), any calls to move_account will be delayed until |
2306 | * rcu_read_unlock() if mem_cgroup_stolen() == true. |
2307 | */ |
2308 | if (!mem_cgroup_stolen(memcg)) |
2309 | return; |
2310 | |
2311 | move_lock_mem_cgroup(memcg, flags); |
2312 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { |
2313 | move_unlock_mem_cgroup(memcg, flags); |
2314 | goto again; |
2315 | } |
2316 | *locked = true; |
2317 | } |
2318 | |
2319 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) |
2320 | { |
2321 | struct page_cgroup *pc = lookup_page_cgroup(page); |
2322 | |
2323 | /* |
2324 | * It's guaranteed that pc->mem_cgroup never changes while |
2325 | * lock is held because a routine modifies pc->mem_cgroup |
2326 | * should take move_lock_mem_cgroup(). |
2327 | */ |
2328 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); |
2329 | } |
2330 | |
2331 | void mem_cgroup_update_page_stat(struct page *page, |
2332 | enum mem_cgroup_stat_index idx, int val) |
2333 | { |
2334 | struct mem_cgroup *memcg; |
2335 | struct page_cgroup *pc = lookup_page_cgroup(page); |
2336 | unsigned long uninitialized_var(flags); |
2337 | |
2338 | if (mem_cgroup_disabled()) |
2339 | return; |
2340 | |
2341 | VM_BUG_ON(!rcu_read_lock_held()); |
2342 | memcg = pc->mem_cgroup; |
2343 | if (unlikely(!memcg || !PageCgroupUsed(pc))) |
2344 | return; |
2345 | |
2346 | this_cpu_add(memcg->stat->count[idx], val); |
2347 | } |
2348 | |
2349 | /* |
2350 | * size of first charge trial. "32" comes from vmscan.c's magic value. |
2351 | * TODO: maybe necessary to use big numbers in big irons. |
2352 | */ |
2353 | #define CHARGE_BATCH 32U |
2354 | struct memcg_stock_pcp { |
2355 | struct mem_cgroup *cached; /* this never be root cgroup */ |
2356 | unsigned int nr_pages; |
2357 | struct work_struct work; |
2358 | unsigned long flags; |
2359 | #define FLUSHING_CACHED_CHARGE 0 |
2360 | }; |
2361 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); |
2362 | static DEFINE_MUTEX(percpu_charge_mutex); |
2363 | |
2364 | /** |
2365 | * consume_stock: Try to consume stocked charge on this cpu. |
2366 | * @memcg: memcg to consume from. |
2367 | * @nr_pages: how many pages to charge. |
2368 | * |
2369 | * The charges will only happen if @memcg matches the current cpu's memcg |
2370 | * stock, and at least @nr_pages are available in that stock. Failure to |
2371 | * service an allocation will refill the stock. |
2372 | * |
2373 | * returns true if successful, false otherwise. |
2374 | */ |
2375 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2376 | { |
2377 | struct memcg_stock_pcp *stock; |
2378 | bool ret = true; |
2379 | |
2380 | if (nr_pages > CHARGE_BATCH) |
2381 | return false; |
2382 | |
2383 | stock = &get_cpu_var(memcg_stock); |
2384 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) |
2385 | stock->nr_pages -= nr_pages; |
2386 | else /* need to call res_counter_charge */ |
2387 | ret = false; |
2388 | put_cpu_var(memcg_stock); |
2389 | return ret; |
2390 | } |
2391 | |
2392 | /* |
2393 | * Returns stocks cached in percpu to res_counter and reset cached information. |
2394 | */ |
2395 | static void drain_stock(struct memcg_stock_pcp *stock) |
2396 | { |
2397 | struct mem_cgroup *old = stock->cached; |
2398 | |
2399 | if (stock->nr_pages) { |
2400 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; |
2401 | |
2402 | res_counter_uncharge(&old->res, bytes); |
2403 | if (do_swap_account) |
2404 | res_counter_uncharge(&old->memsw, bytes); |
2405 | stock->nr_pages = 0; |
2406 | } |
2407 | stock->cached = NULL; |
2408 | } |
2409 | |
2410 | /* |
2411 | * This must be called under preempt disabled or must be called by |
2412 | * a thread which is pinned to local cpu. |
2413 | */ |
2414 | static void drain_local_stock(struct work_struct *dummy) |
2415 | { |
2416 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); |
2417 | drain_stock(stock); |
2418 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
2419 | } |
2420 | |
2421 | static void __init memcg_stock_init(void) |
2422 | { |
2423 | int cpu; |
2424 | |
2425 | for_each_possible_cpu(cpu) { |
2426 | struct memcg_stock_pcp *stock = |
2427 | &per_cpu(memcg_stock, cpu); |
2428 | INIT_WORK(&stock->work, drain_local_stock); |
2429 | } |
2430 | } |
2431 | |
2432 | /* |
2433 | * Cache charges(val) which is from res_counter, to local per_cpu area. |
2434 | * This will be consumed by consume_stock() function, later. |
2435 | */ |
2436 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
2437 | { |
2438 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); |
2439 | |
2440 | if (stock->cached != memcg) { /* reset if necessary */ |
2441 | drain_stock(stock); |
2442 | stock->cached = memcg; |
2443 | } |
2444 | stock->nr_pages += nr_pages; |
2445 | put_cpu_var(memcg_stock); |
2446 | } |
2447 | |
2448 | /* |
2449 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
2450 | * of the hierarchy under it. sync flag says whether we should block |
2451 | * until the work is done. |
2452 | */ |
2453 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) |
2454 | { |
2455 | int cpu, curcpu; |
2456 | |
2457 | /* Notify other cpus that system-wide "drain" is running */ |
2458 | get_online_cpus(); |
2459 | curcpu = get_cpu(); |
2460 | for_each_online_cpu(cpu) { |
2461 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2462 | struct mem_cgroup *memcg; |
2463 | |
2464 | memcg = stock->cached; |
2465 | if (!memcg || !stock->nr_pages) |
2466 | continue; |
2467 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) |
2468 | continue; |
2469 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2470 | if (cpu == curcpu) |
2471 | drain_local_stock(&stock->work); |
2472 | else |
2473 | schedule_work_on(cpu, &stock->work); |
2474 | } |
2475 | } |
2476 | put_cpu(); |
2477 | |
2478 | if (!sync) |
2479 | goto out; |
2480 | |
2481 | for_each_online_cpu(cpu) { |
2482 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); |
2483 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) |
2484 | flush_work(&stock->work); |
2485 | } |
2486 | out: |
2487 | put_online_cpus(); |
2488 | } |
2489 | |
2490 | /* |
2491 | * Tries to drain stocked charges in other cpus. This function is asynchronous |
2492 | * and just put a work per cpu for draining localy on each cpu. Caller can |
2493 | * expects some charges will be back to res_counter later but cannot wait for |
2494 | * it. |
2495 | */ |
2496 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) |
2497 | { |
2498 | /* |
2499 | * If someone calls draining, avoid adding more kworker runs. |
2500 | */ |
2501 | if (!mutex_trylock(&percpu_charge_mutex)) |
2502 | return; |
2503 | drain_all_stock(root_memcg, false); |
2504 | mutex_unlock(&percpu_charge_mutex); |
2505 | } |
2506 | |
2507 | /* This is a synchronous drain interface. */ |
2508 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) |
2509 | { |
2510 | /* called when force_empty is called */ |
2511 | mutex_lock(&percpu_charge_mutex); |
2512 | drain_all_stock(root_memcg, true); |
2513 | mutex_unlock(&percpu_charge_mutex); |
2514 | } |
2515 | |
2516 | /* |
2517 | * This function drains percpu counter value from DEAD cpu and |
2518 | * move it to local cpu. Note that this function can be preempted. |
2519 | */ |
2520 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
2521 | { |
2522 | int i; |
2523 | |
2524 | spin_lock(&memcg->pcp_counter_lock); |
2525 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
2526 | long x = per_cpu(memcg->stat->count[i], cpu); |
2527 | |
2528 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2529 | memcg->nocpu_base.count[i] += x; |
2530 | } |
2531 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
2532 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
2533 | |
2534 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2535 | memcg->nocpu_base.events[i] += x; |
2536 | } |
2537 | spin_unlock(&memcg->pcp_counter_lock); |
2538 | } |
2539 | |
2540 | static int memcg_cpu_hotplug_callback(struct notifier_block *nb, |
2541 | unsigned long action, |
2542 | void *hcpu) |
2543 | { |
2544 | int cpu = (unsigned long)hcpu; |
2545 | struct memcg_stock_pcp *stock; |
2546 | struct mem_cgroup *iter; |
2547 | |
2548 | if (action == CPU_ONLINE) |
2549 | return NOTIFY_OK; |
2550 | |
2551 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
2552 | return NOTIFY_OK; |
2553 | |
2554 | for_each_mem_cgroup(iter) |
2555 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2556 | |
2557 | stock = &per_cpu(memcg_stock, cpu); |
2558 | drain_stock(stock); |
2559 | return NOTIFY_OK; |
2560 | } |
2561 | |
2562 | |
2563 | /* See __mem_cgroup_try_charge() for details */ |
2564 | enum { |
2565 | CHARGE_OK, /* success */ |
2566 | CHARGE_RETRY, /* need to retry but retry is not bad */ |
2567 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ |
2568 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ |
2569 | }; |
2570 | |
2571 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2572 | unsigned int nr_pages, unsigned int min_pages, |
2573 | bool invoke_oom) |
2574 | { |
2575 | unsigned long csize = nr_pages * PAGE_SIZE; |
2576 | struct mem_cgroup *mem_over_limit; |
2577 | struct res_counter *fail_res; |
2578 | unsigned long flags = 0; |
2579 | int ret; |
2580 | |
2581 | ret = res_counter_charge(&memcg->res, csize, &fail_res); |
2582 | |
2583 | if (likely(!ret)) { |
2584 | if (!do_swap_account) |
2585 | return CHARGE_OK; |
2586 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); |
2587 | if (likely(!ret)) |
2588 | return CHARGE_OK; |
2589 | |
2590 | res_counter_uncharge(&memcg->res, csize); |
2591 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
2592 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; |
2593 | } else |
2594 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); |
2595 | /* |
2596 | * Never reclaim on behalf of optional batching, retry with a |
2597 | * single page instead. |
2598 | */ |
2599 | if (nr_pages > min_pages) |
2600 | return CHARGE_RETRY; |
2601 | |
2602 | if (!(gfp_mask & __GFP_WAIT)) |
2603 | return CHARGE_WOULDBLOCK; |
2604 | |
2605 | if (gfp_mask & __GFP_NORETRY) |
2606 | return CHARGE_NOMEM; |
2607 | |
2608 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); |
2609 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
2610 | return CHARGE_RETRY; |
2611 | /* |
2612 | * Even though the limit is exceeded at this point, reclaim |
2613 | * may have been able to free some pages. Retry the charge |
2614 | * before killing the task. |
2615 | * |
2616 | * Only for regular pages, though: huge pages are rather |
2617 | * unlikely to succeed so close to the limit, and we fall back |
2618 | * to regular pages anyway in case of failure. |
2619 | */ |
2620 | if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) |
2621 | return CHARGE_RETRY; |
2622 | |
2623 | /* |
2624 | * At task move, charge accounts can be doubly counted. So, it's |
2625 | * better to wait until the end of task_move if something is going on. |
2626 | */ |
2627 | if (mem_cgroup_wait_acct_move(mem_over_limit)) |
2628 | return CHARGE_RETRY; |
2629 | |
2630 | if (invoke_oom) |
2631 | mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); |
2632 | |
2633 | return CHARGE_NOMEM; |
2634 | } |
2635 | |
2636 | /* |
2637 | * __mem_cgroup_try_charge() does |
2638 | * 1. detect memcg to be charged against from passed *mm and *ptr, |
2639 | * 2. update res_counter |
2640 | * 3. call memory reclaim if necessary. |
2641 | * |
2642 | * In some special case, if the task is fatal, fatal_signal_pending() or |
2643 | * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup |
2644 | * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon |
2645 | * as possible without any hazards. 2: all pages should have a valid |
2646 | * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg |
2647 | * pointer, that is treated as a charge to root_mem_cgroup. |
2648 | * |
2649 | * So __mem_cgroup_try_charge() will return |
2650 | * 0 ... on success, filling *ptr with a valid memcg pointer. |
2651 | * -ENOMEM ... charge failure because of resource limits. |
2652 | * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. |
2653 | * |
2654 | * Unlike the exported interface, an "oom" parameter is added. if oom==true, |
2655 | * the oom-killer can be invoked. |
2656 | */ |
2657 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
2658 | gfp_t gfp_mask, |
2659 | unsigned int nr_pages, |
2660 | struct mem_cgroup **ptr, |
2661 | bool oom) |
2662 | { |
2663 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
2664 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
2665 | struct mem_cgroup *memcg = NULL; |
2666 | int ret; |
2667 | |
2668 | /* |
2669 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage |
2670 | * in system level. So, allow to go ahead dying process in addition to |
2671 | * MEMDIE process. |
2672 | */ |
2673 | if (unlikely(test_thread_flag(TIF_MEMDIE) |
2674 | || fatal_signal_pending(current))) |
2675 | goto bypass; |
2676 | |
2677 | if (unlikely(task_in_memcg_oom(current))) |
2678 | goto bypass; |
2679 | |
2680 | /* |
2681 | * We always charge the cgroup the mm_struct belongs to. |
2682 | * The mm_struct's mem_cgroup changes on task migration if the |
2683 | * thread group leader migrates. It's possible that mm is not |
2684 | * set, if so charge the root memcg (happens for pagecache usage). |
2685 | */ |
2686 | if (!*ptr && !mm) |
2687 | *ptr = root_mem_cgroup; |
2688 | again: |
2689 | if (*ptr) { /* css should be a valid one */ |
2690 | memcg = *ptr; |
2691 | if (mem_cgroup_is_root(memcg)) |
2692 | goto done; |
2693 | if (consume_stock(memcg, nr_pages)) |
2694 | goto done; |
2695 | css_get(&memcg->css); |
2696 | } else { |
2697 | struct task_struct *p; |
2698 | |
2699 | rcu_read_lock(); |
2700 | p = rcu_dereference(mm->owner); |
2701 | /* |
2702 | * Because we don't have task_lock(), "p" can exit. |
2703 | * In that case, "memcg" can point to root or p can be NULL with |
2704 | * race with swapoff. Then, we have small risk of mis-accouning. |
2705 | * But such kind of mis-account by race always happens because |
2706 | * we don't have cgroup_mutex(). It's overkill and we allo that |
2707 | * small race, here. |
2708 | * (*) swapoff at el will charge against mm-struct not against |
2709 | * task-struct. So, mm->owner can be NULL. |
2710 | */ |
2711 | memcg = mem_cgroup_from_task(p); |
2712 | if (!memcg) |
2713 | memcg = root_mem_cgroup; |
2714 | if (mem_cgroup_is_root(memcg)) { |
2715 | rcu_read_unlock(); |
2716 | goto done; |
2717 | } |
2718 | if (consume_stock(memcg, nr_pages)) { |
2719 | /* |
2720 | * It seems dagerous to access memcg without css_get(). |
2721 | * But considering how consume_stok works, it's not |
2722 | * necessary. If consume_stock success, some charges |
2723 | * from this memcg are cached on this cpu. So, we |
2724 | * don't need to call css_get()/css_tryget() before |
2725 | * calling consume_stock(). |
2726 | */ |
2727 | rcu_read_unlock(); |
2728 | goto done; |
2729 | } |
2730 | /* after here, we may be blocked. we need to get refcnt */ |
2731 | if (!css_tryget(&memcg->css)) { |
2732 | rcu_read_unlock(); |
2733 | goto again; |
2734 | } |
2735 | rcu_read_unlock(); |
2736 | } |
2737 | |
2738 | do { |
2739 | bool invoke_oom = oom && !nr_oom_retries; |
2740 | |
2741 | /* If killed, bypass charge */ |
2742 | if (fatal_signal_pending(current)) { |
2743 | css_put(&memcg->css); |
2744 | goto bypass; |
2745 | } |
2746 | |
2747 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, |
2748 | nr_pages, invoke_oom); |
2749 | switch (ret) { |
2750 | case CHARGE_OK: |
2751 | break; |
2752 | case CHARGE_RETRY: /* not in OOM situation but retry */ |
2753 | batch = nr_pages; |
2754 | css_put(&memcg->css); |
2755 | memcg = NULL; |
2756 | goto again; |
2757 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
2758 | css_put(&memcg->css); |
2759 | goto nomem; |
2760 | case CHARGE_NOMEM: /* OOM routine works */ |
2761 | if (!oom || invoke_oom) { |
2762 | css_put(&memcg->css); |
2763 | goto nomem; |
2764 | } |
2765 | nr_oom_retries--; |
2766 | break; |
2767 | } |
2768 | } while (ret != CHARGE_OK); |
2769 | |
2770 | if (batch > nr_pages) |
2771 | refill_stock(memcg, batch - nr_pages); |
2772 | css_put(&memcg->css); |
2773 | done: |
2774 | *ptr = memcg; |
2775 | return 0; |
2776 | nomem: |
2777 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2778 | *ptr = NULL; |
2779 | return -ENOMEM; |
2780 | } |
2781 | bypass: |
2782 | *ptr = root_mem_cgroup; |
2783 | return -EINTR; |
2784 | } |
2785 | |
2786 | /* |
2787 | * Somemtimes we have to undo a charge we got by try_charge(). |
2788 | * This function is for that and do uncharge, put css's refcnt. |
2789 | * gotten by try_charge(). |
2790 | */ |
2791 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, |
2792 | unsigned int nr_pages) |
2793 | { |
2794 | if (!mem_cgroup_is_root(memcg)) { |
2795 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2796 | |
2797 | res_counter_uncharge(&memcg->res, bytes); |
2798 | if (do_swap_account) |
2799 | res_counter_uncharge(&memcg->memsw, bytes); |
2800 | } |
2801 | } |
2802 | |
2803 | /* |
2804 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. |
2805 | * This is useful when moving usage to parent cgroup. |
2806 | */ |
2807 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, |
2808 | unsigned int nr_pages) |
2809 | { |
2810 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2811 | |
2812 | if (mem_cgroup_is_root(memcg)) |
2813 | return; |
2814 | |
2815 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); |
2816 | if (do_swap_account) |
2817 | res_counter_uncharge_until(&memcg->memsw, |
2818 | memcg->memsw.parent, bytes); |
2819 | } |
2820 | |
2821 | /* |
2822 | * A helper function to get mem_cgroup from ID. must be called under |
2823 | * rcu_read_lock(). The caller is responsible for calling css_tryget if |
2824 | * the mem_cgroup is used for charging. (dropping refcnt from swap can be |
2825 | * called against removed memcg.) |
2826 | */ |
2827 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) |
2828 | { |
2829 | struct cgroup_subsys_state *css; |
2830 | |
2831 | /* ID 0 is unused ID */ |
2832 | if (!id) |
2833 | return NULL; |
2834 | css = css_lookup(&mem_cgroup_subsys, id); |
2835 | if (!css) |
2836 | return NULL; |
2837 | return mem_cgroup_from_css(css); |
2838 | } |
2839 | |
2840 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
2841 | { |
2842 | struct mem_cgroup *memcg = NULL; |
2843 | struct page_cgroup *pc; |
2844 | unsigned short id; |
2845 | swp_entry_t ent; |
2846 | |
2847 | VM_BUG_ON(!PageLocked(page)); |
2848 | |
2849 | pc = lookup_page_cgroup(page); |
2850 | lock_page_cgroup(pc); |
2851 | if (PageCgroupUsed(pc)) { |
2852 | memcg = pc->mem_cgroup; |
2853 | if (memcg && !css_tryget(&memcg->css)) |
2854 | memcg = NULL; |
2855 | } else if (PageSwapCache(page)) { |
2856 | ent.val = page_private(page); |
2857 | id = lookup_swap_cgroup_id(ent); |
2858 | rcu_read_lock(); |
2859 | memcg = mem_cgroup_lookup(id); |
2860 | if (memcg && !css_tryget(&memcg->css)) |
2861 | memcg = NULL; |
2862 | rcu_read_unlock(); |
2863 | } |
2864 | unlock_page_cgroup(pc); |
2865 | return memcg; |
2866 | } |
2867 | |
2868 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, |
2869 | struct page *page, |
2870 | unsigned int nr_pages, |
2871 | enum charge_type ctype, |
2872 | bool lrucare) |
2873 | { |
2874 | struct page_cgroup *pc = lookup_page_cgroup(page); |
2875 | struct zone *uninitialized_var(zone); |
2876 | struct lruvec *lruvec; |
2877 | bool was_on_lru = false; |
2878 | bool anon; |
2879 | |
2880 | lock_page_cgroup(pc); |
2881 | VM_BUG_ON(PageCgroupUsed(pc)); |
2882 | /* |
2883 | * we don't need page_cgroup_lock about tail pages, becase they are not |
2884 | * accessed by any other context at this point. |
2885 | */ |
2886 | |
2887 | /* |
2888 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page |
2889 | * may already be on some other mem_cgroup's LRU. Take care of it. |
2890 | */ |
2891 | if (lrucare) { |
2892 | zone = page_zone(page); |
2893 | spin_lock_irq(&zone->lru_lock); |
2894 | if (PageLRU(page)) { |
2895 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
2896 | ClearPageLRU(page); |
2897 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
2898 | was_on_lru = true; |
2899 | } |
2900 | } |
2901 | |
2902 | pc->mem_cgroup = memcg; |
2903 | /* |
2904 | * We access a page_cgroup asynchronously without lock_page_cgroup(). |
2905 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup |
2906 | * is accessed after testing USED bit. To make pc->mem_cgroup visible |
2907 | * before USED bit, we need memory barrier here. |
2908 | * See mem_cgroup_add_lru_list(), etc. |
2909 | */ |
2910 | smp_wmb(); |
2911 | SetPageCgroupUsed(pc); |
2912 | |
2913 | if (lrucare) { |
2914 | if (was_on_lru) { |
2915 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
2916 | VM_BUG_ON(PageLRU(page)); |
2917 | SetPageLRU(page); |
2918 | add_page_to_lru_list(page, lruvec, page_lru(page)); |
2919 | } |
2920 | spin_unlock_irq(&zone->lru_lock); |
2921 | } |
2922 | |
2923 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) |
2924 | anon = true; |
2925 | else |
2926 | anon = false; |
2927 | |
2928 | mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); |
2929 | unlock_page_cgroup(pc); |
2930 | |
2931 | /* |
2932 | * "charge_statistics" updated event counter. Then, check it. |
2933 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. |
2934 | * if they exceeds softlimit. |
2935 | */ |
2936 | memcg_check_events(memcg, page); |
2937 | } |
2938 | |
2939 | static DEFINE_MUTEX(set_limit_mutex); |
2940 | |
2941 | #ifdef CONFIG_MEMCG_KMEM |
2942 | static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) |
2943 | { |
2944 | return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && |
2945 | (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); |
2946 | } |
2947 | |
2948 | /* |
2949 | * This is a bit cumbersome, but it is rarely used and avoids a backpointer |
2950 | * in the memcg_cache_params struct. |
2951 | */ |
2952 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) |
2953 | { |
2954 | struct kmem_cache *cachep; |
2955 | |
2956 | VM_BUG_ON(p->is_root_cache); |
2957 | cachep = p->root_cache; |
2958 | return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; |
2959 | } |
2960 | |
2961 | #ifdef CONFIG_SLABINFO |
2962 | static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, |
2963 | struct cftype *cft, struct seq_file *m) |
2964 | { |
2965 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
2966 | struct memcg_cache_params *params; |
2967 | |
2968 | if (!memcg_can_account_kmem(memcg)) |
2969 | return -EIO; |
2970 | |
2971 | print_slabinfo_header(m); |
2972 | |
2973 | mutex_lock(&memcg->slab_caches_mutex); |
2974 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) |
2975 | cache_show(memcg_params_to_cache(params), m); |
2976 | mutex_unlock(&memcg->slab_caches_mutex); |
2977 | |
2978 | return 0; |
2979 | } |
2980 | #endif |
2981 | |
2982 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) |
2983 | { |
2984 | struct res_counter *fail_res; |
2985 | struct mem_cgroup *_memcg; |
2986 | int ret = 0; |
2987 | bool may_oom; |
2988 | |
2989 | ret = res_counter_charge(&memcg->kmem, size, &fail_res); |
2990 | if (ret) |
2991 | return ret; |
2992 | |
2993 | /* |
2994 | * Conditions under which we can wait for the oom_killer. Those are |
2995 | * the same conditions tested by the core page allocator |
2996 | */ |
2997 | may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); |
2998 | |
2999 | _memcg = memcg; |
3000 | ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, |
3001 | &_memcg, may_oom); |
3002 | |
3003 | if (ret == -EINTR) { |
3004 | /* |
3005 | * __mem_cgroup_try_charge() chosed to bypass to root due to |
3006 | * OOM kill or fatal signal. Since our only options are to |
3007 | * either fail the allocation or charge it to this cgroup, do |
3008 | * it as a temporary condition. But we can't fail. From a |
3009 | * kmem/slab perspective, the cache has already been selected, |
3010 | * by mem_cgroup_kmem_get_cache(), so it is too late to change |
3011 | * our minds. |
3012 | * |
3013 | * This condition will only trigger if the task entered |
3014 | * memcg_charge_kmem in a sane state, but was OOM-killed during |
3015 | * __mem_cgroup_try_charge() above. Tasks that were already |
3016 | * dying when the allocation triggers should have been already |
3017 | * directed to the root cgroup in memcontrol.h |
3018 | */ |
3019 | res_counter_charge_nofail(&memcg->res, size, &fail_res); |
3020 | if (do_swap_account) |
3021 | res_counter_charge_nofail(&memcg->memsw, size, |
3022 | &fail_res); |
3023 | ret = 0; |
3024 | } else if (ret) |
3025 | res_counter_uncharge(&memcg->kmem, size); |
3026 | |
3027 | return ret; |
3028 | } |
3029 | |
3030 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) |
3031 | { |
3032 | res_counter_uncharge(&memcg->res, size); |
3033 | if (do_swap_account) |
3034 | res_counter_uncharge(&memcg->memsw, size); |
3035 | |
3036 | /* Not down to 0 */ |
3037 | if (res_counter_uncharge(&memcg->kmem, size)) |
3038 | return; |
3039 | |
3040 | /* |
3041 | * Releases a reference taken in kmem_cgroup_css_offline in case |
3042 | * this last uncharge is racing with the offlining code or it is |
3043 | * outliving the memcg existence. |
3044 | * |
3045 | * The memory barrier imposed by test&clear is paired with the |
3046 | * explicit one in memcg_kmem_mark_dead(). |
3047 | */ |
3048 | if (memcg_kmem_test_and_clear_dead(memcg)) |
3049 | css_put(&memcg->css); |
3050 | } |
3051 | |
3052 | void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) |
3053 | { |
3054 | if (!memcg) |
3055 | return; |
3056 | |
3057 | mutex_lock(&memcg->slab_caches_mutex); |
3058 | list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); |
3059 | mutex_unlock(&memcg->slab_caches_mutex); |
3060 | } |
3061 | |
3062 | /* |
3063 | * helper for acessing a memcg's index. It will be used as an index in the |
3064 | * child cache array in kmem_cache, and also to derive its name. This function |
3065 | * will return -1 when this is not a kmem-limited memcg. |
3066 | */ |
3067 | int memcg_cache_id(struct mem_cgroup *memcg) |
3068 | { |
3069 | return memcg ? memcg->kmemcg_id : -1; |
3070 | } |
3071 | |
3072 | /* |
3073 | * This ends up being protected by the set_limit mutex, during normal |
3074 | * operation, because that is its main call site. |
3075 | * |
3076 | * But when we create a new cache, we can call this as well if its parent |
3077 | * is kmem-limited. That will have to hold set_limit_mutex as well. |
3078 | */ |
3079 | int memcg_update_cache_sizes(struct mem_cgroup *memcg) |
3080 | { |
3081 | int num, ret; |
3082 | |
3083 | num = ida_simple_get(&kmem_limited_groups, |
3084 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); |
3085 | if (num < 0) |
3086 | return num; |
3087 | /* |
3088 | * After this point, kmem_accounted (that we test atomically in |
3089 | * the beginning of this conditional), is no longer 0. This |
3090 | * guarantees only one process will set the following boolean |
3091 | * to true. We don't need test_and_set because we're protected |
3092 | * by the set_limit_mutex anyway. |
3093 | */ |
3094 | memcg_kmem_set_activated(memcg); |
3095 | |
3096 | ret = memcg_update_all_caches(num+1); |
3097 | if (ret) { |
3098 | ida_simple_remove(&kmem_limited_groups, num); |
3099 | memcg_kmem_clear_activated(memcg); |
3100 | return ret; |
3101 | } |
3102 | |
3103 | memcg->kmemcg_id = num; |
3104 | INIT_LIST_HEAD(&memcg->memcg_slab_caches); |
3105 | mutex_init(&memcg->slab_caches_mutex); |
3106 | return 0; |
3107 | } |
3108 | |
3109 | static size_t memcg_caches_array_size(int num_groups) |
3110 | { |
3111 | ssize_t size; |
3112 | if (num_groups <= 0) |
3113 | return 0; |
3114 | |
3115 | size = 2 * num_groups; |
3116 | if (size < MEMCG_CACHES_MIN_SIZE) |
3117 | size = MEMCG_CACHES_MIN_SIZE; |
3118 | else if (size > MEMCG_CACHES_MAX_SIZE) |
3119 | size = MEMCG_CACHES_MAX_SIZE; |
3120 | |
3121 | return size; |
3122 | } |
3123 | |
3124 | /* |
3125 | * We should update the current array size iff all caches updates succeed. This |
3126 | * can only be done from the slab side. The slab mutex needs to be held when |
3127 | * calling this. |
3128 | */ |
3129 | void memcg_update_array_size(int num) |
3130 | { |
3131 | if (num > memcg_limited_groups_array_size) |
3132 | memcg_limited_groups_array_size = memcg_caches_array_size(num); |
3133 | } |
3134 | |
3135 | static void kmem_cache_destroy_work_func(struct work_struct *w); |
3136 | |
3137 | int memcg_update_cache_size(struct kmem_cache *s, int num_groups) |
3138 | { |
3139 | struct memcg_cache_params *cur_params = s->memcg_params; |
3140 | |
3141 | VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); |
3142 | |
3143 | if (num_groups > memcg_limited_groups_array_size) { |
3144 | int i; |
3145 | ssize_t size = memcg_caches_array_size(num_groups); |
3146 | |
3147 | size *= sizeof(void *); |
3148 | size += offsetof(struct memcg_cache_params, memcg_caches); |
3149 | |
3150 | s->memcg_params = kzalloc(size, GFP_KERNEL); |
3151 | if (!s->memcg_params) { |
3152 | s->memcg_params = cur_params; |
3153 | return -ENOMEM; |
3154 | } |
3155 | |
3156 | s->memcg_params->is_root_cache = true; |
3157 | |
3158 | /* |
3159 | * There is the chance it will be bigger than |
3160 | * memcg_limited_groups_array_size, if we failed an allocation |
3161 | * in a cache, in which case all caches updated before it, will |
3162 | * have a bigger array. |
3163 | * |
3164 | * But if that is the case, the data after |
3165 | * memcg_limited_groups_array_size is certainly unused |
3166 | */ |
3167 | for (i = 0; i < memcg_limited_groups_array_size; i++) { |
3168 | if (!cur_params->memcg_caches[i]) |
3169 | continue; |
3170 | s->memcg_params->memcg_caches[i] = |
3171 | cur_params->memcg_caches[i]; |
3172 | } |
3173 | |
3174 | /* |
3175 | * Ideally, we would wait until all caches succeed, and only |
3176 | * then free the old one. But this is not worth the extra |
3177 | * pointer per-cache we'd have to have for this. |
3178 | * |
3179 | * It is not a big deal if some caches are left with a size |
3180 | * bigger than the others. And all updates will reset this |
3181 | * anyway. |
3182 | */ |
3183 | kfree(cur_params); |
3184 | } |
3185 | return 0; |
3186 | } |
3187 | |
3188 | int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, |
3189 | struct kmem_cache *root_cache) |
3190 | { |
3191 | size_t size; |
3192 | |
3193 | if (!memcg_kmem_enabled()) |
3194 | return 0; |
3195 | |
3196 | if (!memcg) { |
3197 | size = offsetof(struct memcg_cache_params, memcg_caches); |
3198 | size += memcg_limited_groups_array_size * sizeof(void *); |
3199 | } else |
3200 | size = sizeof(struct memcg_cache_params); |
3201 | |
3202 | s->memcg_params = kzalloc(size, GFP_KERNEL); |
3203 | if (!s->memcg_params) |
3204 | return -ENOMEM; |
3205 | |
3206 | if (memcg) { |
3207 | s->memcg_params->memcg = memcg; |
3208 | s->memcg_params->root_cache = root_cache; |
3209 | INIT_WORK(&s->memcg_params->destroy, |
3210 | kmem_cache_destroy_work_func); |
3211 | } else |
3212 | s->memcg_params->is_root_cache = true; |
3213 | |
3214 | return 0; |
3215 | } |
3216 | |
3217 | void memcg_release_cache(struct kmem_cache *s) |
3218 | { |
3219 | struct kmem_cache *root; |
3220 | struct mem_cgroup *memcg; |
3221 | int id; |
3222 | |
3223 | /* |
3224 | * This happens, for instance, when a root cache goes away before we |
3225 | * add any memcg. |
3226 | */ |
3227 | if (!s->memcg_params) |
3228 | return; |
3229 | |
3230 | if (s->memcg_params->is_root_cache) |
3231 | goto out; |
3232 | |
3233 | memcg = s->memcg_params->memcg; |
3234 | id = memcg_cache_id(memcg); |
3235 | |
3236 | root = s->memcg_params->root_cache; |
3237 | root->memcg_params->memcg_caches[id] = NULL; |
3238 | |
3239 | mutex_lock(&memcg->slab_caches_mutex); |
3240 | list_del(&s->memcg_params->list); |
3241 | mutex_unlock(&memcg->slab_caches_mutex); |
3242 | |
3243 | css_put(&memcg->css); |
3244 | out: |
3245 | kfree(s->memcg_params); |
3246 | } |
3247 | |
3248 | /* |
3249 | * During the creation a new cache, we need to disable our accounting mechanism |
3250 | * altogether. This is true even if we are not creating, but rather just |
3251 | * enqueing new caches to be created. |
3252 | * |
3253 | * This is because that process will trigger allocations; some visible, like |
3254 | * explicit kmallocs to auxiliary data structures, name strings and internal |
3255 | * cache structures; some well concealed, like INIT_WORK() that can allocate |
3256 | * objects during debug. |
3257 | * |
3258 | * If any allocation happens during memcg_kmem_get_cache, we will recurse back |
3259 | * to it. This may not be a bounded recursion: since the first cache creation |
3260 | * failed to complete (waiting on the allocation), we'll just try to create the |
3261 | * cache again, failing at the same point. |
3262 | * |
3263 | * memcg_kmem_get_cache is prepared to abort after seeing a positive count of |
3264 | * memcg_kmem_skip_account. So we enclose anything that might allocate memory |
3265 | * inside the following two functions. |
3266 | */ |
3267 | static inline void memcg_stop_kmem_account(void) |
3268 | { |
3269 | VM_BUG_ON(!current->mm); |
3270 | current->memcg_kmem_skip_account++; |
3271 | } |
3272 | |
3273 | static inline void memcg_resume_kmem_account(void) |
3274 | { |
3275 | VM_BUG_ON(!current->mm); |
3276 | current->memcg_kmem_skip_account--; |
3277 | } |
3278 | |
3279 | static void kmem_cache_destroy_work_func(struct work_struct *w) |
3280 | { |
3281 | struct kmem_cache *cachep; |
3282 | struct memcg_cache_params *p; |
3283 | |
3284 | p = container_of(w, struct memcg_cache_params, destroy); |
3285 | |
3286 | cachep = memcg_params_to_cache(p); |
3287 | |
3288 | /* |
3289 | * If we get down to 0 after shrink, we could delete right away. |
3290 | * However, memcg_release_pages() already puts us back in the workqueue |
3291 | * in that case. If we proceed deleting, we'll get a dangling |
3292 | * reference, and removing the object from the workqueue in that case |
3293 | * is unnecessary complication. We are not a fast path. |
3294 | * |
3295 | * Note that this case is fundamentally different from racing with |
3296 | * shrink_slab(): if memcg_cgroup_destroy_cache() is called in |
3297 | * kmem_cache_shrink, not only we would be reinserting a dead cache |
3298 | * into the queue, but doing so from inside the worker racing to |
3299 | * destroy it. |
3300 | * |
3301 | * So if we aren't down to zero, we'll just schedule a worker and try |
3302 | * again |
3303 | */ |
3304 | if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { |
3305 | kmem_cache_shrink(cachep); |
3306 | if (atomic_read(&cachep->memcg_params->nr_pages) == 0) |
3307 | return; |
3308 | } else |
3309 | kmem_cache_destroy(cachep); |
3310 | } |
3311 | |
3312 | void mem_cgroup_destroy_cache(struct kmem_cache *cachep) |
3313 | { |
3314 | if (!cachep->memcg_params->dead) |
3315 | return; |
3316 | |
3317 | /* |
3318 | * There are many ways in which we can get here. |
3319 | * |
3320 | * We can get to a memory-pressure situation while the delayed work is |
3321 | * still pending to run. The vmscan shrinkers can then release all |
3322 | * cache memory and get us to destruction. If this is the case, we'll |
3323 | * be executed twice, which is a bug (the second time will execute over |
3324 | * bogus data). In this case, cancelling the work should be fine. |
3325 | * |
3326 | * But we can also get here from the worker itself, if |
3327 | * kmem_cache_shrink is enough to shake all the remaining objects and |
3328 | * get the page count to 0. In this case, we'll deadlock if we try to |
3329 | * cancel the work (the worker runs with an internal lock held, which |
3330 | * is the same lock we would hold for cancel_work_sync().) |
3331 | * |
3332 | * Since we can't possibly know who got us here, just refrain from |
3333 | * running if there is already work pending |
3334 | */ |
3335 | if (work_pending(&cachep->memcg_params->destroy)) |
3336 | return; |
3337 | /* |
3338 | * We have to defer the actual destroying to a workqueue, because |
3339 | * we might currently be in a context that cannot sleep. |
3340 | */ |
3341 | schedule_work(&cachep->memcg_params->destroy); |
3342 | } |
3343 | |
3344 | /* |
3345 | * This lock protects updaters, not readers. We want readers to be as fast as |
3346 | * they can, and they will either see NULL or a valid cache value. Our model |
3347 | * allow them to see NULL, in which case the root memcg will be selected. |
3348 | * |
3349 | * We need this lock because multiple allocations to the same cache from a non |
3350 | * will span more than one worker. Only one of them can create the cache. |
3351 | */ |
3352 | static DEFINE_MUTEX(memcg_cache_mutex); |
3353 | |
3354 | /* |
3355 | * Called with memcg_cache_mutex held |
3356 | */ |
3357 | static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, |
3358 | struct kmem_cache *s) |
3359 | { |
3360 | struct kmem_cache *new; |
3361 | static char *tmp_name = NULL; |
3362 | |
3363 | lockdep_assert_held(&memcg_cache_mutex); |
3364 | |
3365 | /* |
3366 | * kmem_cache_create_memcg duplicates the given name and |
3367 | * cgroup_name for this name requires RCU context. |
3368 | * This static temporary buffer is used to prevent from |
3369 | * pointless shortliving allocation. |
3370 | */ |
3371 | if (!tmp_name) { |
3372 | tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); |
3373 | if (!tmp_name) |
3374 | return NULL; |
3375 | } |
3376 | |
3377 | rcu_read_lock(); |
3378 | snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, |
3379 | memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); |
3380 | rcu_read_unlock(); |
3381 | |
3382 | new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, |
3383 | (s->flags & ~SLAB_PANIC), s->ctor, s); |
3384 | |
3385 | if (new) |
3386 | new->allocflags |= __GFP_KMEMCG; |
3387 | |
3388 | return new; |
3389 | } |
3390 | |
3391 | static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, |
3392 | struct kmem_cache *cachep) |
3393 | { |
3394 | struct kmem_cache *new_cachep; |
3395 | int idx; |
3396 | |
3397 | BUG_ON(!memcg_can_account_kmem(memcg)); |
3398 | |
3399 | idx = memcg_cache_id(memcg); |
3400 | |
3401 | mutex_lock(&memcg_cache_mutex); |
3402 | new_cachep = cachep->memcg_params->memcg_caches[idx]; |
3403 | if (new_cachep) { |
3404 | css_put(&memcg->css); |
3405 | goto out; |
3406 | } |
3407 | |
3408 | new_cachep = kmem_cache_dup(memcg, cachep); |
3409 | if (new_cachep == NULL) { |
3410 | new_cachep = cachep; |
3411 | css_put(&memcg->css); |
3412 | goto out; |
3413 | } |
3414 | |
3415 | atomic_set(&new_cachep->memcg_params->nr_pages , 0); |
3416 | |
3417 | cachep->memcg_params->memcg_caches[idx] = new_cachep; |
3418 | /* |
3419 | * the readers won't lock, make sure everybody sees the updated value, |
3420 | * so they won't put stuff in the queue again for no reason |
3421 | */ |
3422 | wmb(); |
3423 | out: |
3424 | mutex_unlock(&memcg_cache_mutex); |
3425 | return new_cachep; |
3426 | } |
3427 | |
3428 | void kmem_cache_destroy_memcg_children(struct kmem_cache *s) |
3429 | { |
3430 | struct kmem_cache *c; |
3431 | int i; |
3432 | |
3433 | if (!s->memcg_params) |
3434 | return; |
3435 | if (!s->memcg_params->is_root_cache) |
3436 | return; |
3437 | |
3438 | /* |
3439 | * If the cache is being destroyed, we trust that there is no one else |
3440 | * requesting objects from it. Even if there are, the sanity checks in |
3441 | * kmem_cache_destroy should caught this ill-case. |
3442 | * |
3443 | * Still, we don't want anyone else freeing memcg_caches under our |
3444 | * noses, which can happen if a new memcg comes to life. As usual, |
3445 | * we'll take the set_limit_mutex to protect ourselves against this. |
3446 | */ |
3447 | mutex_lock(&set_limit_mutex); |
3448 | for (i = 0; i < memcg_limited_groups_array_size; i++) { |
3449 | c = s->memcg_params->memcg_caches[i]; |
3450 | if (!c) |
3451 | continue; |
3452 | |
3453 | /* |
3454 | * We will now manually delete the caches, so to avoid races |
3455 | * we need to cancel all pending destruction workers and |
3456 | * proceed with destruction ourselves. |
3457 | * |
3458 | * kmem_cache_destroy() will call kmem_cache_shrink internally, |
3459 | * and that could spawn the workers again: it is likely that |
3460 | * the cache still have active pages until this very moment. |
3461 | * This would lead us back to mem_cgroup_destroy_cache. |
3462 | * |
3463 | * But that will not execute at all if the "dead" flag is not |
3464 | * set, so flip it down to guarantee we are in control. |
3465 | */ |
3466 | c->memcg_params->dead = false; |
3467 | cancel_work_sync(&c->memcg_params->destroy); |
3468 | kmem_cache_destroy(c); |
3469 | } |
3470 | mutex_unlock(&set_limit_mutex); |
3471 | } |
3472 | |
3473 | struct create_work { |
3474 | struct mem_cgroup *memcg; |
3475 | struct kmem_cache *cachep; |
3476 | struct work_struct work; |
3477 | }; |
3478 | |
3479 | static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) |
3480 | { |
3481 | struct kmem_cache *cachep; |
3482 | struct memcg_cache_params *params; |
3483 | |
3484 | if (!memcg_kmem_is_active(memcg)) |
3485 | return; |
3486 | |
3487 | mutex_lock(&memcg->slab_caches_mutex); |
3488 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) { |
3489 | cachep = memcg_params_to_cache(params); |
3490 | cachep->memcg_params->dead = true; |
3491 | schedule_work(&cachep->memcg_params->destroy); |
3492 | } |
3493 | mutex_unlock(&memcg->slab_caches_mutex); |
3494 | } |
3495 | |
3496 | static void memcg_create_cache_work_func(struct work_struct *w) |
3497 | { |
3498 | struct create_work *cw; |
3499 | |
3500 | cw = container_of(w, struct create_work, work); |
3501 | memcg_create_kmem_cache(cw->memcg, cw->cachep); |
3502 | kfree(cw); |
3503 | } |
3504 | |
3505 | /* |
3506 | * Enqueue the creation of a per-memcg kmem_cache. |
3507 | */ |
3508 | static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, |
3509 | struct kmem_cache *cachep) |
3510 | { |
3511 | struct create_work *cw; |
3512 | |
3513 | cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); |
3514 | if (cw == NULL) { |
3515 | css_put(&memcg->css); |
3516 | return; |
3517 | } |
3518 | |
3519 | cw->memcg = memcg; |
3520 | cw->cachep = cachep; |
3521 | |
3522 | INIT_WORK(&cw->work, memcg_create_cache_work_func); |
3523 | schedule_work(&cw->work); |
3524 | } |
3525 | |
3526 | static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, |
3527 | struct kmem_cache *cachep) |
3528 | { |
3529 | /* |
3530 | * We need to stop accounting when we kmalloc, because if the |
3531 | * corresponding kmalloc cache is not yet created, the first allocation |
3532 | * in __memcg_create_cache_enqueue will recurse. |
3533 | * |
3534 | * However, it is better to enclose the whole function. Depending on |
3535 | * the debugging options enabled, INIT_WORK(), for instance, can |
3536 | * trigger an allocation. This too, will make us recurse. Because at |
3537 | * this point we can't allow ourselves back into memcg_kmem_get_cache, |
3538 | * the safest choice is to do it like this, wrapping the whole function. |
3539 | */ |
3540 | memcg_stop_kmem_account(); |
3541 | __memcg_create_cache_enqueue(memcg, cachep); |
3542 | memcg_resume_kmem_account(); |
3543 | } |
3544 | /* |
3545 | * Return the kmem_cache we're supposed to use for a slab allocation. |
3546 | * We try to use the current memcg's version of the cache. |
3547 | * |
3548 | * If the cache does not exist yet, if we are the first user of it, |
3549 | * we either create it immediately, if possible, or create it asynchronously |
3550 | * in a workqueue. |
3551 | * In the latter case, we will let the current allocation go through with |
3552 | * the original cache. |
3553 | * |
3554 | * Can't be called in interrupt context or from kernel threads. |
3555 | * This function needs to be called with rcu_read_lock() held. |
3556 | */ |
3557 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, |
3558 | gfp_t gfp) |
3559 | { |
3560 | struct mem_cgroup *memcg; |
3561 | int idx; |
3562 | |
3563 | VM_BUG_ON(!cachep->memcg_params); |
3564 | VM_BUG_ON(!cachep->memcg_params->is_root_cache); |
3565 | |
3566 | if (!current->mm || current->memcg_kmem_skip_account) |
3567 | return cachep; |
3568 | |
3569 | rcu_read_lock(); |
3570 | memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); |
3571 | |
3572 | if (!memcg_can_account_kmem(memcg)) |
3573 | goto out; |
3574 | |
3575 | idx = memcg_cache_id(memcg); |
3576 | |
3577 | /* |
3578 | * barrier to mare sure we're always seeing the up to date value. The |
3579 | * code updating memcg_caches will issue a write barrier to match this. |
3580 | */ |
3581 | read_barrier_depends(); |
3582 | if (likely(cachep->memcg_params->memcg_caches[idx])) { |
3583 | cachep = cachep->memcg_params->memcg_caches[idx]; |
3584 | goto out; |
3585 | } |
3586 | |
3587 | /* The corresponding put will be done in the workqueue. */ |
3588 | if (!css_tryget(&memcg->css)) |
3589 | goto out; |
3590 | rcu_read_unlock(); |
3591 | |
3592 | /* |
3593 | * If we are in a safe context (can wait, and not in interrupt |
3594 | * context), we could be be predictable and return right away. |
3595 | * This would guarantee that the allocation being performed |
3596 | * already belongs in the new cache. |
3597 | * |
3598 | * However, there are some clashes that can arrive from locking. |
3599 | * For instance, because we acquire the slab_mutex while doing |
3600 | * kmem_cache_dup, this means no further allocation could happen |
3601 | * with the slab_mutex held. |
3602 | * |
3603 | * Also, because cache creation issue get_online_cpus(), this |
3604 | * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, |
3605 | * that ends up reversed during cpu hotplug. (cpuset allocates |
3606 | * a bunch of GFP_KERNEL memory during cpuup). Due to all that, |
3607 | * better to defer everything. |
3608 | */ |
3609 | memcg_create_cache_enqueue(memcg, cachep); |
3610 | return cachep; |
3611 | out: |
3612 | rcu_read_unlock(); |
3613 | return cachep; |
3614 | } |
3615 | EXPORT_SYMBOL(__memcg_kmem_get_cache); |
3616 | |
3617 | /* |
3618 | * We need to verify if the allocation against current->mm->owner's memcg is |
3619 | * possible for the given order. But the page is not allocated yet, so we'll |
3620 | * need a further commit step to do the final arrangements. |
3621 | * |
3622 | * It is possible for the task to switch cgroups in this mean time, so at |
3623 | * commit time, we can't rely on task conversion any longer. We'll then use |
3624 | * the handle argument to return to the caller which cgroup we should commit |
3625 | * against. We could also return the memcg directly and avoid the pointer |
3626 | * passing, but a boolean return value gives better semantics considering |
3627 | * the compiled-out case as well. |
3628 | * |
3629 | * Returning true means the allocation is possible. |
3630 | */ |
3631 | bool |
3632 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) |
3633 | { |
3634 | struct mem_cgroup *memcg; |
3635 | int ret; |
3636 | |
3637 | *_memcg = NULL; |
3638 | |
3639 | /* |
3640 | * Disabling accounting is only relevant for some specific memcg |
3641 | * internal allocations. Therefore we would initially not have such |
3642 | * check here, since direct calls to the page allocator that are marked |
3643 | * with GFP_KMEMCG only happen outside memcg core. We are mostly |
3644 | * concerned with cache allocations, and by having this test at |
3645 | * memcg_kmem_get_cache, we are already able to relay the allocation to |
3646 | * the root cache and bypass the memcg cache altogether. |
3647 | * |
3648 | * There is one exception, though: the SLUB allocator does not create |
3649 | * large order caches, but rather service large kmallocs directly from |
3650 | * the page allocator. Therefore, the following sequence when backed by |
3651 | * the SLUB allocator: |
3652 | * |
3653 | * memcg_stop_kmem_account(); |
3654 | * kmalloc(<large_number>) |
3655 | * memcg_resume_kmem_account(); |
3656 | * |
3657 | * would effectively ignore the fact that we should skip accounting, |
3658 | * since it will drive us directly to this function without passing |
3659 | * through the cache selector memcg_kmem_get_cache. Such large |
3660 | * allocations are extremely rare but can happen, for instance, for the |
3661 | * cache arrays. We bring this test here. |
3662 | */ |
3663 | if (!current->mm || current->memcg_kmem_skip_account) |
3664 | return true; |
3665 | |
3666 | memcg = try_get_mem_cgroup_from_mm(current->mm); |
3667 | |
3668 | /* |
3669 | * very rare case described in mem_cgroup_from_task. Unfortunately there |
3670 | * isn't much we can do without complicating this too much, and it would |
3671 | * be gfp-dependent anyway. Just let it go |
3672 | */ |
3673 | if (unlikely(!memcg)) |
3674 | return true; |
3675 | |
3676 | if (!memcg_can_account_kmem(memcg)) { |
3677 | css_put(&memcg->css); |
3678 | return true; |
3679 | } |
3680 | |
3681 | ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); |
3682 | if (!ret) |
3683 | *_memcg = memcg; |
3684 | |
3685 | css_put(&memcg->css); |
3686 | return (ret == 0); |
3687 | } |
3688 | |
3689 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, |
3690 | int order) |
3691 | { |
3692 | struct page_cgroup *pc; |
3693 | |
3694 | VM_BUG_ON(mem_cgroup_is_root(memcg)); |
3695 | |
3696 | /* The page allocation failed. Revert */ |
3697 | if (!page) { |
3698 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); |
3699 | return; |
3700 | } |
3701 | |
3702 | pc = lookup_page_cgroup(page); |
3703 | lock_page_cgroup(pc); |
3704 | pc->mem_cgroup = memcg; |
3705 | SetPageCgroupUsed(pc); |
3706 | unlock_page_cgroup(pc); |
3707 | } |
3708 | |
3709 | void __memcg_kmem_uncharge_pages(struct page *page, int order) |
3710 | { |
3711 | struct mem_cgroup *memcg = NULL; |
3712 | struct page_cgroup *pc; |
3713 | |
3714 | |
3715 | pc = lookup_page_cgroup(page); |
3716 | /* |
3717 | * Fast unlocked return. Theoretically might have changed, have to |
3718 | * check again after locking. |
3719 | */ |
3720 | if (!PageCgroupUsed(pc)) |
3721 | return; |
3722 | |
3723 | lock_page_cgroup(pc); |
3724 | if (PageCgroupUsed(pc)) { |
3725 | memcg = pc->mem_cgroup; |
3726 | ClearPageCgroupUsed(pc); |
3727 | } |
3728 | unlock_page_cgroup(pc); |
3729 | |
3730 | /* |
3731 | * We trust that only if there is a memcg associated with the page, it |
3732 | * is a valid allocation |
3733 | */ |
3734 | if (!memcg) |
3735 | return; |
3736 | |
3737 | VM_BUG_ON(mem_cgroup_is_root(memcg)); |
3738 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); |
3739 | } |
3740 | #else |
3741 | static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) |
3742 | { |
3743 | } |
3744 | #endif /* CONFIG_MEMCG_KMEM */ |
3745 | |
3746 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
3747 | |
3748 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) |
3749 | /* |
3750 | * Because tail pages are not marked as "used", set it. We're under |
3751 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
3752 | * charge/uncharge will be never happen and move_account() is done under |
3753 | * compound_lock(), so we don't have to take care of races. |
3754 | */ |
3755 | void mem_cgroup_split_huge_fixup(struct page *head) |
3756 | { |
3757 | struct page_cgroup *head_pc = lookup_page_cgroup(head); |
3758 | struct page_cgroup *pc; |
3759 | struct mem_cgroup *memcg; |
3760 | int i; |
3761 | |
3762 | if (mem_cgroup_disabled()) |
3763 | return; |
3764 | |
3765 | memcg = head_pc->mem_cgroup; |
3766 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
3767 | pc = head_pc + i; |
3768 | pc->mem_cgroup = memcg; |
3769 | smp_wmb();/* see __commit_charge() */ |
3770 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
3771 | } |
3772 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
3773 | HPAGE_PMD_NR); |
3774 | } |
3775 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
3776 | |
3777 | static inline |
3778 | void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, |
3779 | struct mem_cgroup *to, |
3780 | unsigned int nr_pages, |
3781 | enum mem_cgroup_stat_index idx) |
3782 | { |
3783 | /* Update stat data for mem_cgroup */ |
3784 | preempt_disable(); |
3785 | __this_cpu_sub(from->stat->count[idx], nr_pages); |
3786 | __this_cpu_add(to->stat->count[idx], nr_pages); |
3787 | preempt_enable(); |
3788 | } |
3789 | |
3790 | /** |
3791 | * mem_cgroup_move_account - move account of the page |
3792 | * @page: the page |
3793 | * @nr_pages: number of regular pages (>1 for huge pages) |
3794 | * @pc: page_cgroup of the page. |
3795 | * @from: mem_cgroup which the page is moved from. |
3796 | * @to: mem_cgroup which the page is moved to. @from != @to. |
3797 | * |
3798 | * The caller must confirm following. |
3799 | * - page is not on LRU (isolate_page() is useful.) |
3800 | * - compound_lock is held when nr_pages > 1 |
3801 | * |
3802 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
3803 | * from old cgroup. |
3804 | */ |
3805 | static int mem_cgroup_move_account(struct page *page, |
3806 | unsigned int nr_pages, |
3807 | struct page_cgroup *pc, |
3808 | struct mem_cgroup *from, |
3809 | struct mem_cgroup *to) |
3810 | { |
3811 | unsigned long flags; |
3812 | int ret; |
3813 | bool anon = PageAnon(page); |
3814 | |
3815 | VM_BUG_ON(from == to); |
3816 | VM_BUG_ON(PageLRU(page)); |
3817 | /* |
3818 | * The page is isolated from LRU. So, collapse function |
3819 | * will not handle this page. But page splitting can happen. |
3820 | * Do this check under compound_page_lock(). The caller should |
3821 | * hold it. |
3822 | */ |
3823 | ret = -EBUSY; |
3824 | if (nr_pages > 1 && !PageTransHuge(page)) |
3825 | goto out; |
3826 | |
3827 | lock_page_cgroup(pc); |
3828 | |
3829 | ret = -EINVAL; |
3830 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) |
3831 | goto unlock; |
3832 | |
3833 | move_lock_mem_cgroup(from, &flags); |
3834 | |
3835 | if (!anon && page_mapped(page)) |
3836 | mem_cgroup_move_account_page_stat(from, to, nr_pages, |
3837 | MEM_CGROUP_STAT_FILE_MAPPED); |
3838 | |
3839 | if (PageWriteback(page)) |
3840 | mem_cgroup_move_account_page_stat(from, to, nr_pages, |
3841 | MEM_CGROUP_STAT_WRITEBACK); |
3842 | |
3843 | mem_cgroup_charge_statistics(from, page, anon, -nr_pages); |
3844 | |
3845 | /* caller should have done css_get */ |
3846 | pc->mem_cgroup = to; |
3847 | mem_cgroup_charge_statistics(to, page, anon, nr_pages); |
3848 | move_unlock_mem_cgroup(from, &flags); |
3849 | ret = 0; |
3850 | unlock: |
3851 | unlock_page_cgroup(pc); |
3852 | /* |
3853 | * check events |
3854 | */ |
3855 | memcg_check_events(to, page); |
3856 | memcg_check_events(from, page); |
3857 | out: |
3858 | return ret; |
3859 | } |
3860 | |
3861 | /** |
3862 | * mem_cgroup_move_parent - moves page to the parent group |
3863 | * @page: the page to move |
3864 | * @pc: page_cgroup of the page |
3865 | * @child: page's cgroup |
3866 | * |
3867 | * move charges to its parent or the root cgroup if the group has no |
3868 | * parent (aka use_hierarchy==0). |
3869 | * Although this might fail (get_page_unless_zero, isolate_lru_page or |
3870 | * mem_cgroup_move_account fails) the failure is always temporary and |
3871 | * it signals a race with a page removal/uncharge or migration. In the |
3872 | * first case the page is on the way out and it will vanish from the LRU |
3873 | * on the next attempt and the call should be retried later. |
3874 | * Isolation from the LRU fails only if page has been isolated from |
3875 | * the LRU since we looked at it and that usually means either global |
3876 | * reclaim or migration going on. The page will either get back to the |
3877 | * LRU or vanish. |
3878 | * Finaly mem_cgroup_move_account fails only if the page got uncharged |
3879 | * (!PageCgroupUsed) or moved to a different group. The page will |
3880 | * disappear in the next attempt. |
3881 | */ |
3882 | static int mem_cgroup_move_parent(struct page *page, |
3883 | struct page_cgroup *pc, |
3884 | struct mem_cgroup *child) |
3885 | { |
3886 | struct mem_cgroup *parent; |
3887 | unsigned int nr_pages; |
3888 | unsigned long uninitialized_var(flags); |
3889 | int ret; |
3890 | |
3891 | VM_BUG_ON(mem_cgroup_is_root(child)); |
3892 | |
3893 | ret = -EBUSY; |
3894 | if (!get_page_unless_zero(page)) |
3895 | goto out; |
3896 | if (isolate_lru_page(page)) |
3897 | goto put; |
3898 | |
3899 | nr_pages = hpage_nr_pages(page); |
3900 | |
3901 | parent = parent_mem_cgroup(child); |
3902 | /* |
3903 | * If no parent, move charges to root cgroup. |
3904 | */ |
3905 | if (!parent) |
3906 | parent = root_mem_cgroup; |
3907 | |
3908 | if (nr_pages > 1) { |
3909 | VM_BUG_ON(!PageTransHuge(page)); |
3910 | flags = compound_lock_irqsave(page); |
3911 | } |
3912 | |
3913 | ret = mem_cgroup_move_account(page, nr_pages, |
3914 | pc, child, parent); |
3915 | if (!ret) |
3916 | __mem_cgroup_cancel_local_charge(child, nr_pages); |
3917 | |
3918 | if (nr_pages > 1) |
3919 | compound_unlock_irqrestore(page, flags); |
3920 | putback_lru_page(page); |
3921 | put: |
3922 | put_page(page); |
3923 | out: |
3924 | return ret; |
3925 | } |
3926 | |
3927 | /* |
3928 | * Charge the memory controller for page usage. |
3929 | * Return |
3930 | * 0 if the charge was successful |
3931 | * < 0 if the cgroup is over its limit |
3932 | */ |
3933 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
3934 | gfp_t gfp_mask, enum charge_type ctype) |
3935 | { |
3936 | struct mem_cgroup *memcg = NULL; |
3937 | unsigned int nr_pages = 1; |
3938 | bool oom = true; |
3939 | int ret; |
3940 | |
3941 | if (PageTransHuge(page)) { |
3942 | nr_pages <<= compound_order(page); |
3943 | VM_BUG_ON(!PageTransHuge(page)); |
3944 | /* |
3945 | * Never OOM-kill a process for a huge page. The |
3946 | * fault handler will fall back to regular pages. |
3947 | */ |
3948 | oom = false; |
3949 | } |
3950 | |
3951 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); |
3952 | if (ret == -ENOMEM) |
3953 | return ret; |
3954 | __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); |
3955 | return 0; |
3956 | } |
3957 | |
3958 | int mem_cgroup_newpage_charge(struct page *page, |
3959 | struct mm_struct *mm, gfp_t gfp_mask) |
3960 | { |
3961 | if (mem_cgroup_disabled()) |
3962 | return 0; |
3963 | VM_BUG_ON(page_mapped(page)); |
3964 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
3965 | VM_BUG_ON(!mm); |
3966 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
3967 | MEM_CGROUP_CHARGE_TYPE_ANON); |
3968 | } |
3969 | |
3970 | /* |
3971 | * While swap-in, try_charge -> commit or cancel, the page is locked. |
3972 | * And when try_charge() successfully returns, one refcnt to memcg without |
3973 | * struct page_cgroup is acquired. This refcnt will be consumed by |
3974 | * "commit()" or removed by "cancel()" |
3975 | */ |
3976 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
3977 | struct page *page, |
3978 | gfp_t mask, |
3979 | struct mem_cgroup **memcgp) |
3980 | { |
3981 | struct mem_cgroup *memcg; |
3982 | struct page_cgroup *pc; |
3983 | int ret; |
3984 | |
3985 | pc = lookup_page_cgroup(page); |
3986 | /* |
3987 | * Every swap fault against a single page tries to charge the |
3988 | * page, bail as early as possible. shmem_unuse() encounters |
3989 | * already charged pages, too. The USED bit is protected by |
3990 | * the page lock, which serializes swap cache removal, which |
3991 | * in turn serializes uncharging. |
3992 | */ |
3993 | if (PageCgroupUsed(pc)) |
3994 | return 0; |
3995 | if (!do_swap_account) |
3996 | goto charge_cur_mm; |
3997 | memcg = try_get_mem_cgroup_from_page(page); |
3998 | if (!memcg) |
3999 | goto charge_cur_mm; |
4000 | *memcgp = memcg; |
4001 | ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); |
4002 | css_put(&memcg->css); |
4003 | if (ret == -EINTR) |
4004 | ret = 0; |
4005 | return ret; |
4006 | charge_cur_mm: |
4007 | ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); |
4008 | if (ret == -EINTR) |
4009 | ret = 0; |
4010 | return ret; |
4011 | } |
4012 | |
4013 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, |
4014 | gfp_t gfp_mask, struct mem_cgroup **memcgp) |
4015 | { |
4016 | *memcgp = NULL; |
4017 | if (mem_cgroup_disabled()) |
4018 | return 0; |
4019 | /* |
4020 | * A racing thread's fault, or swapoff, may have already |
4021 | * updated the pte, and even removed page from swap cache: in |
4022 | * those cases unuse_pte()'s pte_same() test will fail; but |
4023 | * there's also a KSM case which does need to charge the page. |
4024 | */ |
4025 | if (!PageSwapCache(page)) { |
4026 | int ret; |
4027 | |
4028 | ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); |
4029 | if (ret == -EINTR) |
4030 | ret = 0; |
4031 | return ret; |
4032 | } |
4033 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); |
4034 | } |
4035 | |
4036 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) |
4037 | { |
4038 | if (mem_cgroup_disabled()) |
4039 | return; |
4040 | if (!memcg) |
4041 | return; |
4042 | __mem_cgroup_cancel_charge(memcg, 1); |
4043 | } |
4044 | |
4045 | static void |
4046 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, |
4047 | enum charge_type ctype) |
4048 | { |
4049 | if (mem_cgroup_disabled()) |
4050 | return; |
4051 | if (!memcg) |
4052 | return; |
4053 | |
4054 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); |
4055 | /* |
4056 | * Now swap is on-memory. This means this page may be |
4057 | * counted both as mem and swap....double count. |
4058 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
4059 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() |
4060 | * may call delete_from_swap_cache() before reach here. |
4061 | */ |
4062 | if (do_swap_account && PageSwapCache(page)) { |
4063 | swp_entry_t ent = {.val = page_private(page)}; |
4064 | mem_cgroup_uncharge_swap(ent); |
4065 | } |
4066 | } |
4067 | |
4068 | void mem_cgroup_commit_charge_swapin(struct page *page, |
4069 | struct mem_cgroup *memcg) |
4070 | { |
4071 | __mem_cgroup_commit_charge_swapin(page, memcg, |
4072 | MEM_CGROUP_CHARGE_TYPE_ANON); |
4073 | } |
4074 | |
4075 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
4076 | gfp_t gfp_mask) |
4077 | { |
4078 | struct mem_cgroup *memcg = NULL; |
4079 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
4080 | int ret; |
4081 | |
4082 | if (mem_cgroup_disabled()) |
4083 | return 0; |
4084 | if (PageCompound(page)) |
4085 | return 0; |
4086 | |
4087 | if (!PageSwapCache(page)) |
4088 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); |
4089 | else { /* page is swapcache/shmem */ |
4090 | ret = __mem_cgroup_try_charge_swapin(mm, page, |
4091 | gfp_mask, &memcg); |
4092 | if (!ret) |
4093 | __mem_cgroup_commit_charge_swapin(page, memcg, type); |
4094 | } |
4095 | return ret; |
4096 | } |
4097 | |
4098 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, |
4099 | unsigned int nr_pages, |
4100 | const enum charge_type ctype) |
4101 | { |
4102 | struct memcg_batch_info *batch = NULL; |
4103 | bool uncharge_memsw = true; |
4104 | |
4105 | /* If swapout, usage of swap doesn't decrease */ |
4106 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) |
4107 | uncharge_memsw = false; |
4108 | |
4109 | batch = ¤t->memcg_batch; |
4110 | /* |
4111 | * In usual, we do css_get() when we remember memcg pointer. |
4112 | * But in this case, we keep res->usage until end of a series of |
4113 | * uncharges. Then, it's ok to ignore memcg's refcnt. |
4114 | */ |
4115 | if (!batch->memcg) |
4116 | batch->memcg = memcg; |
4117 | /* |
4118 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. |
4119 | * In those cases, all pages freed continuously can be expected to be in |
4120 | * the same cgroup and we have chance to coalesce uncharges. |
4121 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) |
4122 | * because we want to do uncharge as soon as possible. |
4123 | */ |
4124 | |
4125 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) |
4126 | goto direct_uncharge; |
4127 | |
4128 | if (nr_pages > 1) |
4129 | goto direct_uncharge; |
4130 | |
4131 | /* |
4132 | * In typical case, batch->memcg == mem. This means we can |
4133 | * merge a series of uncharges to an uncharge of res_counter. |
4134 | * If not, we uncharge res_counter ony by one. |
4135 | */ |
4136 | if (batch->memcg != memcg) |
4137 | goto direct_uncharge; |
4138 | /* remember freed charge and uncharge it later */ |
4139 | batch->nr_pages++; |
4140 | if (uncharge_memsw) |
4141 | batch->memsw_nr_pages++; |
4142 | return; |
4143 | direct_uncharge: |
4144 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); |
4145 | if (uncharge_memsw) |
4146 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); |
4147 | if (unlikely(batch->memcg != memcg)) |
4148 | memcg_oom_recover(memcg); |
4149 | } |
4150 | |
4151 | /* |
4152 | * uncharge if !page_mapped(page) |
4153 | */ |
4154 | static struct mem_cgroup * |
4155 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, |
4156 | bool end_migration) |
4157 | { |
4158 | struct mem_cgroup *memcg = NULL; |
4159 | unsigned int nr_pages = 1; |
4160 | struct page_cgroup *pc; |
4161 | bool anon; |
4162 | |
4163 | if (mem_cgroup_disabled()) |
4164 | return NULL; |
4165 | |
4166 | if (PageTransHuge(page)) { |
4167 | nr_pages <<= compound_order(page); |
4168 | VM_BUG_ON(!PageTransHuge(page)); |
4169 | } |
4170 | /* |
4171 | * Check if our page_cgroup is valid |
4172 | */ |
4173 | pc = lookup_page_cgroup(page); |
4174 | if (unlikely(!PageCgroupUsed(pc))) |
4175 | return NULL; |
4176 | |
4177 | lock_page_cgroup(pc); |
4178 | |
4179 | memcg = pc->mem_cgroup; |
4180 | |
4181 | if (!PageCgroupUsed(pc)) |
4182 | goto unlock_out; |
4183 | |
4184 | anon = PageAnon(page); |
4185 | |
4186 | switch (ctype) { |
4187 | case MEM_CGROUP_CHARGE_TYPE_ANON: |
4188 | /* |
4189 | * Generally PageAnon tells if it's the anon statistics to be |
4190 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is |
4191 | * used before page reached the stage of being marked PageAnon. |
4192 | */ |
4193 | anon = true; |
4194 | /* fallthrough */ |
4195 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
4196 | /* See mem_cgroup_prepare_migration() */ |
4197 | if (page_mapped(page)) |
4198 | goto unlock_out; |
4199 | /* |
4200 | * Pages under migration may not be uncharged. But |
4201 | * end_migration() /must/ be the one uncharging the |
4202 | * unused post-migration page and so it has to call |
4203 | * here with the migration bit still set. See the |
4204 | * res_counter handling below. |
4205 | */ |
4206 | if (!end_migration && PageCgroupMigration(pc)) |
4207 | goto unlock_out; |
4208 | break; |
4209 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: |
4210 | if (!PageAnon(page)) { /* Shared memory */ |
4211 | if (page->mapping && !page_is_file_cache(page)) |
4212 | goto unlock_out; |
4213 | } else if (page_mapped(page)) /* Anon */ |
4214 | goto unlock_out; |
4215 | break; |
4216 | default: |
4217 | break; |
4218 | } |
4219 | |
4220 | mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); |
4221 | |
4222 | ClearPageCgroupUsed(pc); |
4223 | /* |
4224 | * pc->mem_cgroup is not cleared here. It will be accessed when it's |
4225 | * freed from LRU. This is safe because uncharged page is expected not |
4226 | * to be reused (freed soon). Exception is SwapCache, it's handled by |
4227 | * special functions. |
4228 | */ |
4229 | |
4230 | unlock_page_cgroup(pc); |
4231 | /* |
4232 | * even after unlock, we have memcg->res.usage here and this memcg |
4233 | * will never be freed, so it's safe to call css_get(). |
4234 | */ |
4235 | memcg_check_events(memcg, page); |
4236 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
4237 | mem_cgroup_swap_statistics(memcg, true); |
4238 | css_get(&memcg->css); |
4239 | } |
4240 | /* |
4241 | * Migration does not charge the res_counter for the |
4242 | * replacement page, so leave it alone when phasing out the |
4243 | * page that is unused after the migration. |
4244 | */ |
4245 | if (!end_migration && !mem_cgroup_is_root(memcg)) |
4246 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); |
4247 | |
4248 | return memcg; |
4249 | |
4250 | unlock_out: |
4251 | unlock_page_cgroup(pc); |
4252 | return NULL; |
4253 | } |
4254 | |
4255 | void mem_cgroup_uncharge_page(struct page *page) |
4256 | { |
4257 | /* early check. */ |
4258 | if (page_mapped(page)) |
4259 | return; |
4260 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
4261 | /* |
4262 | * If the page is in swap cache, uncharge should be deferred |
4263 | * to the swap path, which also properly accounts swap usage |
4264 | * and handles memcg lifetime. |
4265 | * |
4266 | * Note that this check is not stable and reclaim may add the |
4267 | * page to swap cache at any time after this. However, if the |
4268 | * page is not in swap cache by the time page->mapcount hits |
4269 | * 0, there won't be any page table references to the swap |
4270 | * slot, and reclaim will free it and not actually write the |
4271 | * page to disk. |
4272 | */ |
4273 | if (PageSwapCache(page)) |
4274 | return; |
4275 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); |
4276 | } |
4277 | |
4278 | void mem_cgroup_uncharge_cache_page(struct page *page) |
4279 | { |
4280 | VM_BUG_ON(page_mapped(page)); |
4281 | VM_BUG_ON(page->mapping); |
4282 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); |
4283 | } |
4284 | |
4285 | /* |
4286 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. |
4287 | * In that cases, pages are freed continuously and we can expect pages |
4288 | * are in the same memcg. All these calls itself limits the number of |
4289 | * pages freed at once, then uncharge_start/end() is called properly. |
4290 | * This may be called prural(2) times in a context, |
4291 | */ |
4292 | |
4293 | void mem_cgroup_uncharge_start(void) |
4294 | { |
4295 | current->memcg_batch.do_batch++; |
4296 | /* We can do nest. */ |
4297 | if (current->memcg_batch.do_batch == 1) { |
4298 | current->memcg_batch.memcg = NULL; |
4299 | current->memcg_batch.nr_pages = 0; |
4300 | current->memcg_batch.memsw_nr_pages = 0; |
4301 | } |
4302 | } |
4303 | |
4304 | void mem_cgroup_uncharge_end(void) |
4305 | { |
4306 | struct memcg_batch_info *batch = ¤t->memcg_batch; |
4307 | |
4308 | if (!batch->do_batch) |
4309 | return; |
4310 | |
4311 | batch->do_batch--; |
4312 | if (batch->do_batch) /* If stacked, do nothing. */ |
4313 | return; |
4314 | |
4315 | if (!batch->memcg) |
4316 | return; |
4317 | /* |
4318 | * This "batch->memcg" is valid without any css_get/put etc... |
4319 | * bacause we hide charges behind us. |
4320 | */ |
4321 | if (batch->nr_pages) |
4322 | res_counter_uncharge(&batch->memcg->res, |
4323 | batch->nr_pages * PAGE_SIZE); |
4324 | if (batch->memsw_nr_pages) |
4325 | res_counter_uncharge(&batch->memcg->memsw, |
4326 | batch->memsw_nr_pages * PAGE_SIZE); |
4327 | memcg_oom_recover(batch->memcg); |
4328 | /* forget this pointer (for sanity check) */ |
4329 | batch->memcg = NULL; |
4330 | } |
4331 | |
4332 | #ifdef CONFIG_SWAP |
4333 | /* |
4334 | * called after __delete_from_swap_cache() and drop "page" account. |
4335 | * memcg information is recorded to swap_cgroup of "ent" |
4336 | */ |
4337 | void |
4338 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) |
4339 | { |
4340 | struct mem_cgroup *memcg; |
4341 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
4342 | |
4343 | if (!swapout) /* this was a swap cache but the swap is unused ! */ |
4344 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; |
4345 | |
4346 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); |
4347 | |
4348 | /* |
4349 | * record memcg information, if swapout && memcg != NULL, |
4350 | * css_get() was called in uncharge(). |
4351 | */ |
4352 | if (do_swap_account && swapout && memcg) |
4353 | swap_cgroup_record(ent, css_id(&memcg->css)); |
4354 | } |
4355 | #endif |
4356 | |
4357 | #ifdef CONFIG_MEMCG_SWAP |
4358 | /* |
4359 | * called from swap_entry_free(). remove record in swap_cgroup and |
4360 | * uncharge "memsw" account. |
4361 | */ |
4362 | void mem_cgroup_uncharge_swap(swp_entry_t ent) |
4363 | { |
4364 | struct mem_cgroup *memcg; |
4365 | unsigned short id; |
4366 | |
4367 | if (!do_swap_account) |
4368 | return; |
4369 | |
4370 | id = swap_cgroup_record(ent, 0); |
4371 | rcu_read_lock(); |
4372 | memcg = mem_cgroup_lookup(id); |
4373 | if (memcg) { |
4374 | /* |
4375 | * We uncharge this because swap is freed. |
4376 | * This memcg can be obsolete one. We avoid calling css_tryget |
4377 | */ |
4378 | if (!mem_cgroup_is_root(memcg)) |
4379 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
4380 | mem_cgroup_swap_statistics(memcg, false); |
4381 | css_put(&memcg->css); |
4382 | } |
4383 | rcu_read_unlock(); |
4384 | } |
4385 | |
4386 | /** |
4387 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. |
4388 | * @entry: swap entry to be moved |
4389 | * @from: mem_cgroup which the entry is moved from |
4390 | * @to: mem_cgroup which the entry is moved to |
4391 | * |
4392 | * It succeeds only when the swap_cgroup's record for this entry is the same |
4393 | * as the mem_cgroup's id of @from. |
4394 | * |
4395 | * Returns 0 on success, -EINVAL on failure. |
4396 | * |
4397 | * The caller must have charged to @to, IOW, called res_counter_charge() about |
4398 | * both res and memsw, and called css_get(). |
4399 | */ |
4400 | static int mem_cgroup_move_swap_account(swp_entry_t entry, |
4401 | struct mem_cgroup *from, struct mem_cgroup *to) |
4402 | { |
4403 | unsigned short old_id, new_id; |
4404 | |
4405 | old_id = css_id(&from->css); |
4406 | new_id = css_id(&to->css); |
4407 | |
4408 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { |
4409 | mem_cgroup_swap_statistics(from, false); |
4410 | mem_cgroup_swap_statistics(to, true); |
4411 | /* |
4412 | * This function is only called from task migration context now. |
4413 | * It postpones res_counter and refcount handling till the end |
4414 | * of task migration(mem_cgroup_clear_mc()) for performance |
4415 | * improvement. But we cannot postpone css_get(to) because if |
4416 | * the process that has been moved to @to does swap-in, the |
4417 | * refcount of @to might be decreased to 0. |
4418 | * |
4419 | * We are in attach() phase, so the cgroup is guaranteed to be |
4420 | * alive, so we can just call css_get(). |
4421 | */ |
4422 | css_get(&to->css); |
4423 | return 0; |
4424 | } |
4425 | return -EINVAL; |
4426 | } |
4427 | #else |
4428 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, |
4429 | struct mem_cgroup *from, struct mem_cgroup *to) |
4430 | { |
4431 | return -EINVAL; |
4432 | } |
4433 | #endif |
4434 | |
4435 | /* |
4436 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
4437 | * page belongs to. |
4438 | */ |
4439 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, |
4440 | struct mem_cgroup **memcgp) |
4441 | { |
4442 | struct mem_cgroup *memcg = NULL; |
4443 | unsigned int nr_pages = 1; |
4444 | struct page_cgroup *pc; |
4445 | enum charge_type ctype; |
4446 | |
4447 | *memcgp = NULL; |
4448 | |
4449 | if (mem_cgroup_disabled()) |
4450 | return; |
4451 | |
4452 | if (PageTransHuge(page)) |
4453 | nr_pages <<= compound_order(page); |
4454 | |
4455 | pc = lookup_page_cgroup(page); |
4456 | lock_page_cgroup(pc); |
4457 | if (PageCgroupUsed(pc)) { |
4458 | memcg = pc->mem_cgroup; |
4459 | css_get(&memcg->css); |
4460 | /* |
4461 | * At migrating an anonymous page, its mapcount goes down |
4462 | * to 0 and uncharge() will be called. But, even if it's fully |
4463 | * unmapped, migration may fail and this page has to be |
4464 | * charged again. We set MIGRATION flag here and delay uncharge |
4465 | * until end_migration() is called |
4466 | * |
4467 | * Corner Case Thinking |
4468 | * A) |
4469 | * When the old page was mapped as Anon and it's unmap-and-freed |
4470 | * while migration was ongoing. |
4471 | * If unmap finds the old page, uncharge() of it will be delayed |
4472 | * until end_migration(). If unmap finds a new page, it's |
4473 | * uncharged when it make mapcount to be 1->0. If unmap code |
4474 | * finds swap_migration_entry, the new page will not be mapped |
4475 | * and end_migration() will find it(mapcount==0). |
4476 | * |
4477 | * B) |
4478 | * When the old page was mapped but migraion fails, the kernel |
4479 | * remaps it. A charge for it is kept by MIGRATION flag even |
4480 | * if mapcount goes down to 0. We can do remap successfully |
4481 | * without charging it again. |
4482 | * |
4483 | * C) |
4484 | * The "old" page is under lock_page() until the end of |
4485 | * migration, so, the old page itself will not be swapped-out. |
4486 | * If the new page is swapped out before end_migraton, our |
4487 | * hook to usual swap-out path will catch the event. |
4488 | */ |
4489 | if (PageAnon(page)) |
4490 | SetPageCgroupMigration(pc); |
4491 | } |
4492 | unlock_page_cgroup(pc); |
4493 | /* |
4494 | * If the page is not charged at this point, |
4495 | * we return here. |
4496 | */ |
4497 | if (!memcg) |
4498 | return; |
4499 | |
4500 | *memcgp = memcg; |
4501 | /* |
4502 | * We charge new page before it's used/mapped. So, even if unlock_page() |
4503 | * is called before end_migration, we can catch all events on this new |
4504 | * page. In the case new page is migrated but not remapped, new page's |
4505 | * mapcount will be finally 0 and we call uncharge in end_migration(). |
4506 | */ |
4507 | if (PageAnon(page)) |
4508 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; |
4509 | else |
4510 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
4511 | /* |
4512 | * The page is committed to the memcg, but it's not actually |
4513 | * charged to the res_counter since we plan on replacing the |
4514 | * old one and only one page is going to be left afterwards. |
4515 | */ |
4516 | __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); |
4517 | } |
4518 | |
4519 | /* remove redundant charge if migration failed*/ |
4520 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, |
4521 | struct page *oldpage, struct page *newpage, bool migration_ok) |
4522 | { |
4523 | struct page *used, *unused; |
4524 | struct page_cgroup *pc; |
4525 | bool anon; |
4526 | |
4527 | if (!memcg) |
4528 | return; |
4529 | |
4530 | if (!migration_ok) { |
4531 | used = oldpage; |
4532 | unused = newpage; |
4533 | } else { |
4534 | used = newpage; |
4535 | unused = oldpage; |
4536 | } |
4537 | anon = PageAnon(used); |
4538 | __mem_cgroup_uncharge_common(unused, |
4539 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON |
4540 | : MEM_CGROUP_CHARGE_TYPE_CACHE, |
4541 | true); |
4542 | css_put(&memcg->css); |
4543 | /* |
4544 | * We disallowed uncharge of pages under migration because mapcount |
4545 | * of the page goes down to zero, temporarly. |
4546 | * Clear the flag and check the page should be charged. |
4547 | */ |
4548 | pc = lookup_page_cgroup(oldpage); |
4549 | lock_page_cgroup(pc); |
4550 | ClearPageCgroupMigration(pc); |
4551 | unlock_page_cgroup(pc); |
4552 | |
4553 | /* |
4554 | * If a page is a file cache, radix-tree replacement is very atomic |
4555 | * and we can skip this check. When it was an Anon page, its mapcount |
4556 | * goes down to 0. But because we added MIGRATION flage, it's not |
4557 | * uncharged yet. There are several case but page->mapcount check |
4558 | * and USED bit check in mem_cgroup_uncharge_page() will do enough |
4559 | * check. (see prepare_charge() also) |
4560 | */ |
4561 | if (anon) |
4562 | mem_cgroup_uncharge_page(used); |
4563 | } |
4564 | |
4565 | /* |
4566 | * At replace page cache, newpage is not under any memcg but it's on |
4567 | * LRU. So, this function doesn't touch res_counter but handles LRU |
4568 | * in correct way. Both pages are locked so we cannot race with uncharge. |
4569 | */ |
4570 | void mem_cgroup_replace_page_cache(struct page *oldpage, |
4571 | struct page *newpage) |
4572 | { |
4573 | struct mem_cgroup *memcg = NULL; |
4574 | struct page_cgroup *pc; |
4575 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
4576 | |
4577 | if (mem_cgroup_disabled()) |
4578 | return; |
4579 | |
4580 | pc = lookup_page_cgroup(oldpage); |
4581 | /* fix accounting on old pages */ |
4582 | lock_page_cgroup(pc); |
4583 | if (PageCgroupUsed(pc)) { |
4584 | memcg = pc->mem_cgroup; |
4585 | mem_cgroup_charge_statistics(memcg, oldpage, false, -1); |
4586 | ClearPageCgroupUsed(pc); |
4587 | } |
4588 | unlock_page_cgroup(pc); |
4589 | |
4590 | /* |
4591 | * When called from shmem_replace_page(), in some cases the |
4592 | * oldpage has already been charged, and in some cases not. |
4593 | */ |
4594 | if (!memcg) |
4595 | return; |
4596 | /* |
4597 | * Even if newpage->mapping was NULL before starting replacement, |
4598 | * the newpage may be on LRU(or pagevec for LRU) already. We lock |
4599 | * LRU while we overwrite pc->mem_cgroup. |
4600 | */ |
4601 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); |
4602 | } |
4603 | |
4604 | #ifdef CONFIG_DEBUG_VM |
4605 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) |
4606 | { |
4607 | struct page_cgroup *pc; |
4608 | |
4609 | pc = lookup_page_cgroup(page); |
4610 | /* |
4611 | * Can be NULL while feeding pages into the page allocator for |
4612 | * the first time, i.e. during boot or memory hotplug; |
4613 | * or when mem_cgroup_disabled(). |
4614 | */ |
4615 | if (likely(pc) && PageCgroupUsed(pc)) |
4616 | return pc; |
4617 | return NULL; |
4618 | } |
4619 | |
4620 | bool mem_cgroup_bad_page_check(struct page *page) |
4621 | { |
4622 | if (mem_cgroup_disabled()) |
4623 | return false; |
4624 | |
4625 | return lookup_page_cgroup_used(page) != NULL; |
4626 | } |
4627 | |
4628 | void mem_cgroup_print_bad_page(struct page *page) |
4629 | { |
4630 | struct page_cgroup *pc; |
4631 | |
4632 | pc = lookup_page_cgroup_used(page); |
4633 | if (pc) { |
4634 | pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", |
4635 | pc, pc->flags, pc->mem_cgroup); |
4636 | } |
4637 | } |
4638 | #endif |
4639 | |
4640 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
4641 | unsigned long long val) |
4642 | { |
4643 | int retry_count; |
4644 | u64 memswlimit, memlimit; |
4645 | int ret = 0; |
4646 | int children = mem_cgroup_count_children(memcg); |
4647 | u64 curusage, oldusage; |
4648 | int enlarge; |
4649 | |
4650 | /* |
4651 | * For keeping hierarchical_reclaim simple, how long we should retry |
4652 | * is depends on callers. We set our retry-count to be function |
4653 | * of # of children which we should visit in this loop. |
4654 | */ |
4655 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; |
4656 | |
4657 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
4658 | |
4659 | enlarge = 0; |
4660 | while (retry_count) { |
4661 | if (signal_pending(current)) { |
4662 | ret = -EINTR; |
4663 | break; |
4664 | } |
4665 | /* |
4666 | * Rather than hide all in some function, I do this in |
4667 | * open coded manner. You see what this really does. |
4668 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
4669 | */ |
4670 | mutex_lock(&set_limit_mutex); |
4671 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4672 | if (memswlimit < val) { |
4673 | ret = -EINVAL; |
4674 | mutex_unlock(&set_limit_mutex); |
4675 | break; |
4676 | } |
4677 | |
4678 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
4679 | if (memlimit < val) |
4680 | enlarge = 1; |
4681 | |
4682 | ret = res_counter_set_limit(&memcg->res, val); |
4683 | if (!ret) { |
4684 | if (memswlimit == val) |
4685 | memcg->memsw_is_minimum = true; |
4686 | else |
4687 | memcg->memsw_is_minimum = false; |
4688 | } |
4689 | mutex_unlock(&set_limit_mutex); |
4690 | |
4691 | if (!ret) |
4692 | break; |
4693 | |
4694 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4695 | MEM_CGROUP_RECLAIM_SHRINK); |
4696 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
4697 | /* Usage is reduced ? */ |
4698 | if (curusage >= oldusage) |
4699 | retry_count--; |
4700 | else |
4701 | oldusage = curusage; |
4702 | } |
4703 | if (!ret && enlarge) |
4704 | memcg_oom_recover(memcg); |
4705 | |
4706 | return ret; |
4707 | } |
4708 | |
4709 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
4710 | unsigned long long val) |
4711 | { |
4712 | int retry_count; |
4713 | u64 memlimit, memswlimit, oldusage, curusage; |
4714 | int children = mem_cgroup_count_children(memcg); |
4715 | int ret = -EBUSY; |
4716 | int enlarge = 0; |
4717 | |
4718 | /* see mem_cgroup_resize_res_limit */ |
4719 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; |
4720 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
4721 | while (retry_count) { |
4722 | if (signal_pending(current)) { |
4723 | ret = -EINTR; |
4724 | break; |
4725 | } |
4726 | /* |
4727 | * Rather than hide all in some function, I do this in |
4728 | * open coded manner. You see what this really does. |
4729 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
4730 | */ |
4731 | mutex_lock(&set_limit_mutex); |
4732 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
4733 | if (memlimit > val) { |
4734 | ret = -EINVAL; |
4735 | mutex_unlock(&set_limit_mutex); |
4736 | break; |
4737 | } |
4738 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4739 | if (memswlimit < val) |
4740 | enlarge = 1; |
4741 | ret = res_counter_set_limit(&memcg->memsw, val); |
4742 | if (!ret) { |
4743 | if (memlimit == val) |
4744 | memcg->memsw_is_minimum = true; |
4745 | else |
4746 | memcg->memsw_is_minimum = false; |
4747 | } |
4748 | mutex_unlock(&set_limit_mutex); |
4749 | |
4750 | if (!ret) |
4751 | break; |
4752 | |
4753 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4754 | MEM_CGROUP_RECLAIM_NOSWAP | |
4755 | MEM_CGROUP_RECLAIM_SHRINK); |
4756 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
4757 | /* Usage is reduced ? */ |
4758 | if (curusage >= oldusage) |
4759 | retry_count--; |
4760 | else |
4761 | oldusage = curusage; |
4762 | } |
4763 | if (!ret && enlarge) |
4764 | memcg_oom_recover(memcg); |
4765 | return ret; |
4766 | } |
4767 | |
4768 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
4769 | gfp_t gfp_mask, |
4770 | unsigned long *total_scanned) |
4771 | { |
4772 | unsigned long nr_reclaimed = 0; |
4773 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; |
4774 | unsigned long reclaimed; |
4775 | int loop = 0; |
4776 | struct mem_cgroup_tree_per_zone *mctz; |
4777 | unsigned long long excess; |
4778 | unsigned long nr_scanned; |
4779 | |
4780 | if (order > 0) |
4781 | return 0; |
4782 | |
4783 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
4784 | /* |
4785 | * This loop can run a while, specially if mem_cgroup's continuously |
4786 | * keep exceeding their soft limit and putting the system under |
4787 | * pressure |
4788 | */ |
4789 | do { |
4790 | if (next_mz) |
4791 | mz = next_mz; |
4792 | else |
4793 | mz = mem_cgroup_largest_soft_limit_node(mctz); |
4794 | if (!mz) |
4795 | break; |
4796 | |
4797 | nr_scanned = 0; |
4798 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, |
4799 | gfp_mask, &nr_scanned); |
4800 | nr_reclaimed += reclaimed; |
4801 | *total_scanned += nr_scanned; |
4802 | spin_lock(&mctz->lock); |
4803 | |
4804 | /* |
4805 | * If we failed to reclaim anything from this memory cgroup |
4806 | * it is time to move on to the next cgroup |
4807 | */ |
4808 | next_mz = NULL; |
4809 | if (!reclaimed) { |
4810 | do { |
4811 | /* |
4812 | * Loop until we find yet another one. |
4813 | * |
4814 | * By the time we get the soft_limit lock |
4815 | * again, someone might have aded the |
4816 | * group back on the RB tree. Iterate to |
4817 | * make sure we get a different mem. |
4818 | * mem_cgroup_largest_soft_limit_node returns |
4819 | * NULL if no other cgroup is present on |
4820 | * the tree |
4821 | */ |
4822 | next_mz = |
4823 | __mem_cgroup_largest_soft_limit_node(mctz); |
4824 | if (next_mz == mz) |
4825 | css_put(&next_mz->memcg->css); |
4826 | else /* next_mz == NULL or other memcg */ |
4827 | break; |
4828 | } while (1); |
4829 | } |
4830 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
4831 | excess = res_counter_soft_limit_excess(&mz->memcg->res); |
4832 | /* |
4833 | * One school of thought says that we should not add |
4834 | * back the node to the tree if reclaim returns 0. |
4835 | * But our reclaim could return 0, simply because due |
4836 | * to priority we are exposing a smaller subset of |
4837 | * memory to reclaim from. Consider this as a longer |
4838 | * term TODO. |
4839 | */ |
4840 | /* If excess == 0, no tree ops */ |
4841 | __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); |
4842 | spin_unlock(&mctz->lock); |
4843 | css_put(&mz->memcg->css); |
4844 | loop++; |
4845 | /* |
4846 | * Could not reclaim anything and there are no more |
4847 | * mem cgroups to try or we seem to be looping without |
4848 | * reclaiming anything. |
4849 | */ |
4850 | if (!nr_reclaimed && |
4851 | (next_mz == NULL || |
4852 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) |
4853 | break; |
4854 | } while (!nr_reclaimed); |
4855 | if (next_mz) |
4856 | css_put(&next_mz->memcg->css); |
4857 | return nr_reclaimed; |
4858 | } |
4859 | |
4860 | /** |
4861 | * mem_cgroup_force_empty_list - clears LRU of a group |
4862 | * @memcg: group to clear |
4863 | * @node: NUMA node |
4864 | * @zid: zone id |
4865 | * @lru: lru to to clear |
4866 | * |
4867 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't |
4868 | * reclaim the pages page themselves - pages are moved to the parent (or root) |
4869 | * group. |
4870 | */ |
4871 | static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, |
4872 | int node, int zid, enum lru_list lru) |
4873 | { |
4874 | struct lruvec *lruvec; |
4875 | unsigned long flags; |
4876 | struct list_head *list; |
4877 | struct page *busy; |
4878 | struct zone *zone; |
4879 | |
4880 | zone = &NODE_DATA(node)->node_zones[zid]; |
4881 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
4882 | list = &lruvec->lists[lru]; |
4883 | |
4884 | busy = NULL; |
4885 | do { |
4886 | struct page_cgroup *pc; |
4887 | struct page *page; |
4888 | |
4889 | spin_lock_irqsave(&zone->lru_lock, flags); |
4890 | if (list_empty(list)) { |
4891 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
4892 | break; |
4893 | } |
4894 | page = list_entry(list->prev, struct page, lru); |
4895 | if (busy == page) { |
4896 | list_move(&page->lru, list); |
4897 | busy = NULL; |
4898 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
4899 | continue; |
4900 | } |
4901 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
4902 | |
4903 | pc = lookup_page_cgroup(page); |
4904 | |
4905 | if (mem_cgroup_move_parent(page, pc, memcg)) { |
4906 | /* found lock contention or "pc" is obsolete. */ |
4907 | busy = page; |
4908 | cond_resched(); |
4909 | } else |
4910 | busy = NULL; |
4911 | } while (!list_empty(list)); |
4912 | } |
4913 | |
4914 | /* |
4915 | * make mem_cgroup's charge to be 0 if there is no task by moving |
4916 | * all the charges and pages to the parent. |
4917 | * This enables deleting this mem_cgroup. |
4918 | * |
4919 | * Caller is responsible for holding css reference on the memcg. |
4920 | */ |
4921 | static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) |
4922 | { |
4923 | int node, zid; |
4924 | u64 usage; |
4925 | |
4926 | do { |
4927 | /* This is for making all *used* pages to be on LRU. */ |
4928 | lru_add_drain_all(); |
4929 | drain_all_stock_sync(memcg); |
4930 | mem_cgroup_start_move(memcg); |
4931 | for_each_node_state(node, N_MEMORY) { |
4932 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
4933 | enum lru_list lru; |
4934 | for_each_lru(lru) { |
4935 | mem_cgroup_force_empty_list(memcg, |
4936 | node, zid, lru); |
4937 | } |
4938 | } |
4939 | } |
4940 | mem_cgroup_end_move(memcg); |
4941 | memcg_oom_recover(memcg); |
4942 | cond_resched(); |
4943 | |
4944 | /* |
4945 | * Kernel memory may not necessarily be trackable to a specific |
4946 | * process. So they are not migrated, and therefore we can't |
4947 | * expect their value to drop to 0 here. |
4948 | * Having res filled up with kmem only is enough. |
4949 | * |
4950 | * This is a safety check because mem_cgroup_force_empty_list |
4951 | * could have raced with mem_cgroup_replace_page_cache callers |
4952 | * so the lru seemed empty but the page could have been added |
4953 | * right after the check. RES_USAGE should be safe as we always |
4954 | * charge before adding to the LRU. |
4955 | */ |
4956 | usage = res_counter_read_u64(&memcg->res, RES_USAGE) - |
4957 | res_counter_read_u64(&memcg->kmem, RES_USAGE); |
4958 | } while (usage > 0); |
4959 | } |
4960 | |
4961 | static inline bool memcg_has_children(struct mem_cgroup *memcg) |
4962 | { |
4963 | lockdep_assert_held(&memcg_create_mutex); |
4964 | /* |
4965 | * The lock does not prevent addition or deletion to the list |
4966 | * of children, but it prevents a new child from being |
4967 | * initialized based on this parent in css_online(), so it's |
4968 | * enough to decide whether hierarchically inherited |
4969 | * attributes can still be changed or not. |
4970 | */ |
4971 | return memcg->use_hierarchy && |
4972 | !list_empty(&memcg->css.cgroup->children); |
4973 | } |
4974 | |
4975 | /* |
4976 | * Reclaims as many pages from the given memcg as possible and moves |
4977 | * the rest to the parent. |
4978 | * |
4979 | * Caller is responsible for holding css reference for memcg. |
4980 | */ |
4981 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) |
4982 | { |
4983 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
4984 | struct cgroup *cgrp = memcg->css.cgroup; |
4985 | |
4986 | /* returns EBUSY if there is a task or if we come here twice. */ |
4987 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
4988 | return -EBUSY; |
4989 | |
4990 | /* we call try-to-free pages for make this cgroup empty */ |
4991 | lru_add_drain_all(); |
4992 | /* try to free all pages in this cgroup */ |
4993 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { |
4994 | int progress; |
4995 | |
4996 | if (signal_pending(current)) |
4997 | return -EINTR; |
4998 | |
4999 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, |
5000 | false); |
5001 | if (!progress) { |
5002 | nr_retries--; |
5003 | /* maybe some writeback is necessary */ |
5004 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
5005 | } |
5006 | |
5007 | } |
5008 | lru_add_drain(); |
5009 | mem_cgroup_reparent_charges(memcg); |
5010 | |
5011 | return 0; |
5012 | } |
5013 | |
5014 | static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, |
5015 | unsigned int event) |
5016 | { |
5017 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5018 | |
5019 | if (mem_cgroup_is_root(memcg)) |
5020 | return -EINVAL; |
5021 | return mem_cgroup_force_empty(memcg); |
5022 | } |
5023 | |
5024 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, |
5025 | struct cftype *cft) |
5026 | { |
5027 | return mem_cgroup_from_css(css)->use_hierarchy; |
5028 | } |
5029 | |
5030 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, |
5031 | struct cftype *cft, u64 val) |
5032 | { |
5033 | int retval = 0; |
5034 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5035 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); |
5036 | |
5037 | mutex_lock(&memcg_create_mutex); |
5038 | |
5039 | if (memcg->use_hierarchy == val) |
5040 | goto out; |
5041 | |
5042 | /* |
5043 | * If parent's use_hierarchy is set, we can't make any modifications |
5044 | * in the child subtrees. If it is unset, then the change can |
5045 | * occur, provided the current cgroup has no children. |
5046 | * |
5047 | * For the root cgroup, parent_mem is NULL, we allow value to be |
5048 | * set if there are no children. |
5049 | */ |
5050 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
5051 | (val == 1 || val == 0)) { |
5052 | if (list_empty(&memcg->css.cgroup->children)) |
5053 | memcg->use_hierarchy = val; |
5054 | else |
5055 | retval = -EBUSY; |
5056 | } else |
5057 | retval = -EINVAL; |
5058 | |
5059 | out: |
5060 | mutex_unlock(&memcg_create_mutex); |
5061 | |
5062 | return retval; |
5063 | } |
5064 | |
5065 | |
5066 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, |
5067 | enum mem_cgroup_stat_index idx) |
5068 | { |
5069 | struct mem_cgroup *iter; |
5070 | long val = 0; |
5071 | |
5072 | /* Per-cpu values can be negative, use a signed accumulator */ |
5073 | for_each_mem_cgroup_tree(iter, memcg) |
5074 | val += mem_cgroup_read_stat(iter, idx); |
5075 | |
5076 | if (val < 0) /* race ? */ |
5077 | val = 0; |
5078 | return val; |
5079 | } |
5080 | |
5081 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
5082 | { |
5083 | u64 val; |
5084 | |
5085 | if (!mem_cgroup_is_root(memcg)) { |
5086 | if (!swap) |
5087 | return res_counter_read_u64(&memcg->res, RES_USAGE); |
5088 | else |
5089 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); |
5090 | } |
5091 | |
5092 | /* |
5093 | * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS |
5094 | * as well as in MEM_CGROUP_STAT_RSS_HUGE. |
5095 | */ |
5096 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); |
5097 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); |
5098 | |
5099 | if (swap) |
5100 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); |
5101 | |
5102 | return val << PAGE_SHIFT; |
5103 | } |
5104 | |
5105 | static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, |
5106 | struct cftype *cft, struct file *file, |
5107 | char __user *buf, size_t nbytes, loff_t *ppos) |
5108 | { |
5109 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5110 | char str[64]; |
5111 | u64 val; |
5112 | int name, len; |
5113 | enum res_type type; |
5114 | |
5115 | type = MEMFILE_TYPE(cft->private); |
5116 | name = MEMFILE_ATTR(cft->private); |
5117 | |
5118 | switch (type) { |
5119 | case _MEM: |
5120 | if (name == RES_USAGE) |
5121 | val = mem_cgroup_usage(memcg, false); |
5122 | else |
5123 | val = res_counter_read_u64(&memcg->res, name); |
5124 | break; |
5125 | case _MEMSWAP: |
5126 | if (name == RES_USAGE) |
5127 | val = mem_cgroup_usage(memcg, true); |
5128 | else |
5129 | val = res_counter_read_u64(&memcg->memsw, name); |
5130 | break; |
5131 | case _KMEM: |
5132 | val = res_counter_read_u64(&memcg->kmem, name); |
5133 | break; |
5134 | default: |
5135 | BUG(); |
5136 | } |
5137 | |
5138 | len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); |
5139 | return simple_read_from_buffer(buf, nbytes, ppos, str, len); |
5140 | } |
5141 | |
5142 | static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) |
5143 | { |
5144 | int ret = -EINVAL; |
5145 | #ifdef CONFIG_MEMCG_KMEM |
5146 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5147 | /* |
5148 | * For simplicity, we won't allow this to be disabled. It also can't |
5149 | * be changed if the cgroup has children already, or if tasks had |
5150 | * already joined. |
5151 | * |
5152 | * If tasks join before we set the limit, a person looking at |
5153 | * kmem.usage_in_bytes will have no way to determine when it took |
5154 | * place, which makes the value quite meaningless. |
5155 | * |
5156 | * After it first became limited, changes in the value of the limit are |
5157 | * of course permitted. |
5158 | */ |
5159 | mutex_lock(&memcg_create_mutex); |
5160 | mutex_lock(&set_limit_mutex); |
5161 | if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { |
5162 | if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { |
5163 | ret = -EBUSY; |
5164 | goto out; |
5165 | } |
5166 | ret = res_counter_set_limit(&memcg->kmem, val); |
5167 | VM_BUG_ON(ret); |
5168 | |
5169 | ret = memcg_update_cache_sizes(memcg); |
5170 | if (ret) { |
5171 | res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); |
5172 | goto out; |
5173 | } |
5174 | static_key_slow_inc(&memcg_kmem_enabled_key); |
5175 | /* |
5176 | * setting the active bit after the inc will guarantee no one |
5177 | * starts accounting before all call sites are patched |
5178 | */ |
5179 | memcg_kmem_set_active(memcg); |
5180 | } else |
5181 | ret = res_counter_set_limit(&memcg->kmem, val); |
5182 | out: |
5183 | mutex_unlock(&set_limit_mutex); |
5184 | mutex_unlock(&memcg_create_mutex); |
5185 | #endif |
5186 | return ret; |
5187 | } |
5188 | |
5189 | #ifdef CONFIG_MEMCG_KMEM |
5190 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) |
5191 | { |
5192 | int ret = 0; |
5193 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
5194 | if (!parent) |
5195 | goto out; |
5196 | |
5197 | memcg->kmem_account_flags = parent->kmem_account_flags; |
5198 | /* |
5199 | * When that happen, we need to disable the static branch only on those |
5200 | * memcgs that enabled it. To achieve this, we would be forced to |
5201 | * complicate the code by keeping track of which memcgs were the ones |
5202 | * that actually enabled limits, and which ones got it from its |
5203 | * parents. |
5204 | * |
5205 | * It is a lot simpler just to do static_key_slow_inc() on every child |
5206 | * that is accounted. |
5207 | */ |
5208 | if (!memcg_kmem_is_active(memcg)) |
5209 | goto out; |
5210 | |
5211 | /* |
5212 | * __mem_cgroup_free() will issue static_key_slow_dec() because this |
5213 | * memcg is active already. If the later initialization fails then the |
5214 | * cgroup core triggers the cleanup so we do not have to do it here. |
5215 | */ |
5216 | static_key_slow_inc(&memcg_kmem_enabled_key); |
5217 | |
5218 | mutex_lock(&set_limit_mutex); |
5219 | memcg_stop_kmem_account(); |
5220 | ret = memcg_update_cache_sizes(memcg); |
5221 | memcg_resume_kmem_account(); |
5222 | mutex_unlock(&set_limit_mutex); |
5223 | out: |
5224 | return ret; |
5225 | } |
5226 | #endif /* CONFIG_MEMCG_KMEM */ |
5227 | |
5228 | /* |
5229 | * The user of this function is... |
5230 | * RES_LIMIT. |
5231 | */ |
5232 | static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, |
5233 | const char *buffer) |
5234 | { |
5235 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5236 | enum res_type type; |
5237 | int name; |
5238 | unsigned long long val; |
5239 | int ret; |
5240 | |
5241 | type = MEMFILE_TYPE(cft->private); |
5242 | name = MEMFILE_ATTR(cft->private); |
5243 | |
5244 | switch (name) { |
5245 | case RES_LIMIT: |
5246 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
5247 | ret = -EINVAL; |
5248 | break; |
5249 | } |
5250 | /* This function does all necessary parse...reuse it */ |
5251 | ret = res_counter_memparse_write_strategy(buffer, &val); |
5252 | if (ret) |
5253 | break; |
5254 | if (type == _MEM) |
5255 | ret = mem_cgroup_resize_limit(memcg, val); |
5256 | else if (type == _MEMSWAP) |
5257 | ret = mem_cgroup_resize_memsw_limit(memcg, val); |
5258 | else if (type == _KMEM) |
5259 | ret = memcg_update_kmem_limit(css, val); |
5260 | else |
5261 | return -EINVAL; |
5262 | break; |
5263 | case RES_SOFT_LIMIT: |
5264 | ret = res_counter_memparse_write_strategy(buffer, &val); |
5265 | if (ret) |
5266 | break; |
5267 | /* |
5268 | * For memsw, soft limits are hard to implement in terms |
5269 | * of semantics, for now, we support soft limits for |
5270 | * control without swap |
5271 | */ |
5272 | if (type == _MEM) |
5273 | ret = res_counter_set_soft_limit(&memcg->res, val); |
5274 | else |
5275 | ret = -EINVAL; |
5276 | break; |
5277 | default: |
5278 | ret = -EINVAL; /* should be BUG() ? */ |
5279 | break; |
5280 | } |
5281 | return ret; |
5282 | } |
5283 | |
5284 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
5285 | unsigned long long *mem_limit, unsigned long long *memsw_limit) |
5286 | { |
5287 | unsigned long long min_limit, min_memsw_limit, tmp; |
5288 | |
5289 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
5290 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
5291 | if (!memcg->use_hierarchy) |
5292 | goto out; |
5293 | |
5294 | while (css_parent(&memcg->css)) { |
5295 | memcg = mem_cgroup_from_css(css_parent(&memcg->css)); |
5296 | if (!memcg->use_hierarchy) |
5297 | break; |
5298 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); |
5299 | min_limit = min(min_limit, tmp); |
5300 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
5301 | min_memsw_limit = min(min_memsw_limit, tmp); |
5302 | } |
5303 | out: |
5304 | *mem_limit = min_limit; |
5305 | *memsw_limit = min_memsw_limit; |
5306 | } |
5307 | |
5308 | static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) |
5309 | { |
5310 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5311 | int name; |
5312 | enum res_type type; |
5313 | |
5314 | type = MEMFILE_TYPE(event); |
5315 | name = MEMFILE_ATTR(event); |
5316 | |
5317 | switch (name) { |
5318 | case RES_MAX_USAGE: |
5319 | if (type == _MEM) |
5320 | res_counter_reset_max(&memcg->res); |
5321 | else if (type == _MEMSWAP) |
5322 | res_counter_reset_max(&memcg->memsw); |
5323 | else if (type == _KMEM) |
5324 | res_counter_reset_max(&memcg->kmem); |
5325 | else |
5326 | return -EINVAL; |
5327 | break; |
5328 | case RES_FAILCNT: |
5329 | if (type == _MEM) |
5330 | res_counter_reset_failcnt(&memcg->res); |
5331 | else if (type == _MEMSWAP) |
5332 | res_counter_reset_failcnt(&memcg->memsw); |
5333 | else if (type == _KMEM) |
5334 | res_counter_reset_failcnt(&memcg->kmem); |
5335 | else |
5336 | return -EINVAL; |
5337 | break; |
5338 | } |
5339 | |
5340 | return 0; |
5341 | } |
5342 | |
5343 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, |
5344 | struct cftype *cft) |
5345 | { |
5346 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; |
5347 | } |
5348 | |
5349 | #ifdef CONFIG_MMU |
5350 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
5351 | struct cftype *cft, u64 val) |
5352 | { |
5353 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5354 | |
5355 | if (val >= (1 << NR_MOVE_TYPE)) |
5356 | return -EINVAL; |
5357 | |
5358 | /* |
5359 | * No kind of locking is needed in here, because ->can_attach() will |
5360 | * check this value once in the beginning of the process, and then carry |
5361 | * on with stale data. This means that changes to this value will only |
5362 | * affect task migrations starting after the change. |
5363 | */ |
5364 | memcg->move_charge_at_immigrate = val; |
5365 | return 0; |
5366 | } |
5367 | #else |
5368 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
5369 | struct cftype *cft, u64 val) |
5370 | { |
5371 | return -ENOSYS; |
5372 | } |
5373 | #endif |
5374 | |
5375 | #ifdef CONFIG_NUMA |
5376 | static int memcg_numa_stat_show(struct cgroup_subsys_state *css, |
5377 | struct cftype *cft, struct seq_file *m) |
5378 | { |
5379 | int nid; |
5380 | unsigned long total_nr, file_nr, anon_nr, unevictable_nr; |
5381 | unsigned long node_nr; |
5382 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5383 | |
5384 | total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); |
5385 | seq_printf(m, "total=%lu", total_nr); |
5386 | for_each_node_state(nid, N_MEMORY) { |
5387 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); |
5388 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5389 | } |
5390 | seq_putc(m, '\n'); |
5391 | |
5392 | file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); |
5393 | seq_printf(m, "file=%lu", file_nr); |
5394 | for_each_node_state(nid, N_MEMORY) { |
5395 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
5396 | LRU_ALL_FILE); |
5397 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5398 | } |
5399 | seq_putc(m, '\n'); |
5400 | |
5401 | anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); |
5402 | seq_printf(m, "anon=%lu", anon_nr); |
5403 | for_each_node_state(nid, N_MEMORY) { |
5404 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
5405 | LRU_ALL_ANON); |
5406 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5407 | } |
5408 | seq_putc(m, '\n'); |
5409 | |
5410 | unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); |
5411 | seq_printf(m, "unevictable=%lu", unevictable_nr); |
5412 | for_each_node_state(nid, N_MEMORY) { |
5413 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
5414 | BIT(LRU_UNEVICTABLE)); |
5415 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5416 | } |
5417 | seq_putc(m, '\n'); |
5418 | return 0; |
5419 | } |
5420 | #endif /* CONFIG_NUMA */ |
5421 | |
5422 | static inline void mem_cgroup_lru_names_not_uptodate(void) |
5423 | { |
5424 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); |
5425 | } |
5426 | |
5427 | static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, |
5428 | struct seq_file *m) |
5429 | { |
5430 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5431 | struct mem_cgroup *mi; |
5432 | unsigned int i; |
5433 | |
5434 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
5435 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
5436 | continue; |
5437 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
5438 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); |
5439 | } |
5440 | |
5441 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
5442 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], |
5443 | mem_cgroup_read_events(memcg, i)); |
5444 | |
5445 | for (i = 0; i < NR_LRU_LISTS; i++) |
5446 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], |
5447 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); |
5448 | |
5449 | /* Hierarchical information */ |
5450 | { |
5451 | unsigned long long limit, memsw_limit; |
5452 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); |
5453 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); |
5454 | if (do_swap_account) |
5455 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
5456 | memsw_limit); |
5457 | } |
5458 | |
5459 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
5460 | long long val = 0; |
5461 | |
5462 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
5463 | continue; |
5464 | for_each_mem_cgroup_tree(mi, memcg) |
5465 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; |
5466 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); |
5467 | } |
5468 | |
5469 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
5470 | unsigned long long val = 0; |
5471 | |
5472 | for_each_mem_cgroup_tree(mi, memcg) |
5473 | val += mem_cgroup_read_events(mi, i); |
5474 | seq_printf(m, "total_%s %llu\n", |
5475 | mem_cgroup_events_names[i], val); |
5476 | } |
5477 | |
5478 | for (i = 0; i < NR_LRU_LISTS; i++) { |
5479 | unsigned long long val = 0; |
5480 | |
5481 | for_each_mem_cgroup_tree(mi, memcg) |
5482 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; |
5483 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); |
5484 | } |
5485 | |
5486 | #ifdef CONFIG_DEBUG_VM |
5487 | { |
5488 | int nid, zid; |
5489 | struct mem_cgroup_per_zone *mz; |
5490 | struct zone_reclaim_stat *rstat; |
5491 | unsigned long recent_rotated[2] = {0, 0}; |
5492 | unsigned long recent_scanned[2] = {0, 0}; |
5493 | |
5494 | for_each_online_node(nid) |
5495 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
5496 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
5497 | rstat = &mz->lruvec.reclaim_stat; |
5498 | |
5499 | recent_rotated[0] += rstat->recent_rotated[0]; |
5500 | recent_rotated[1] += rstat->recent_rotated[1]; |
5501 | recent_scanned[0] += rstat->recent_scanned[0]; |
5502 | recent_scanned[1] += rstat->recent_scanned[1]; |
5503 | } |
5504 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
5505 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); |
5506 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); |
5507 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); |
5508 | } |
5509 | #endif |
5510 | |
5511 | return 0; |
5512 | } |
5513 | |
5514 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, |
5515 | struct cftype *cft) |
5516 | { |
5517 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5518 | |
5519 | return mem_cgroup_swappiness(memcg); |
5520 | } |
5521 | |
5522 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, |
5523 | struct cftype *cft, u64 val) |
5524 | { |
5525 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5526 | struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); |
5527 | |
5528 | if (val > 100 || !parent) |
5529 | return -EINVAL; |
5530 | |
5531 | mutex_lock(&memcg_create_mutex); |
5532 | |
5533 | /* If under hierarchy, only empty-root can set this value */ |
5534 | if ((parent->use_hierarchy) || memcg_has_children(memcg)) { |
5535 | mutex_unlock(&memcg_create_mutex); |
5536 | return -EINVAL; |
5537 | } |
5538 | |
5539 | memcg->swappiness = val; |
5540 | |
5541 | mutex_unlock(&memcg_create_mutex); |
5542 | |
5543 | return 0; |
5544 | } |
5545 | |
5546 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
5547 | { |
5548 | struct mem_cgroup_threshold_ary *t; |
5549 | u64 usage; |
5550 | int i; |
5551 | |
5552 | rcu_read_lock(); |
5553 | if (!swap) |
5554 | t = rcu_dereference(memcg->thresholds.primary); |
5555 | else |
5556 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
5557 | |
5558 | if (!t) |
5559 | goto unlock; |
5560 | |
5561 | usage = mem_cgroup_usage(memcg, swap); |
5562 | |
5563 | /* |
5564 | * current_threshold points to threshold just below or equal to usage. |
5565 | * If it's not true, a threshold was crossed after last |
5566 | * call of __mem_cgroup_threshold(). |
5567 | */ |
5568 | i = t->current_threshold; |
5569 | |
5570 | /* |
5571 | * Iterate backward over array of thresholds starting from |
5572 | * current_threshold and check if a threshold is crossed. |
5573 | * If none of thresholds below usage is crossed, we read |
5574 | * only one element of the array here. |
5575 | */ |
5576 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) |
5577 | eventfd_signal(t->entries[i].eventfd, 1); |
5578 | |
5579 | /* i = current_threshold + 1 */ |
5580 | i++; |
5581 | |
5582 | /* |
5583 | * Iterate forward over array of thresholds starting from |
5584 | * current_threshold+1 and check if a threshold is crossed. |
5585 | * If none of thresholds above usage is crossed, we read |
5586 | * only one element of the array here. |
5587 | */ |
5588 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) |
5589 | eventfd_signal(t->entries[i].eventfd, 1); |
5590 | |
5591 | /* Update current_threshold */ |
5592 | t->current_threshold = i - 1; |
5593 | unlock: |
5594 | rcu_read_unlock(); |
5595 | } |
5596 | |
5597 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) |
5598 | { |
5599 | while (memcg) { |
5600 | __mem_cgroup_threshold(memcg, false); |
5601 | if (do_swap_account) |
5602 | __mem_cgroup_threshold(memcg, true); |
5603 | |
5604 | memcg = parent_mem_cgroup(memcg); |
5605 | } |
5606 | } |
5607 | |
5608 | static int compare_thresholds(const void *a, const void *b) |
5609 | { |
5610 | const struct mem_cgroup_threshold *_a = a; |
5611 | const struct mem_cgroup_threshold *_b = b; |
5612 | |
5613 | if (_a->threshold > _b->threshold) |
5614 | return 1; |
5615 | |
5616 | if (_a->threshold < _b->threshold) |
5617 | return -1; |
5618 | |
5619 | return 0; |
5620 | } |
5621 | |
5622 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
5623 | { |
5624 | struct mem_cgroup_eventfd_list *ev; |
5625 | |
5626 | list_for_each_entry(ev, &memcg->oom_notify, list) |
5627 | eventfd_signal(ev->eventfd, 1); |
5628 | return 0; |
5629 | } |
5630 | |
5631 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
5632 | { |
5633 | struct mem_cgroup *iter; |
5634 | |
5635 | for_each_mem_cgroup_tree(iter, memcg) |
5636 | mem_cgroup_oom_notify_cb(iter); |
5637 | } |
5638 | |
5639 | static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, |
5640 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) |
5641 | { |
5642 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5643 | struct mem_cgroup_thresholds *thresholds; |
5644 | struct mem_cgroup_threshold_ary *new; |
5645 | enum res_type type = MEMFILE_TYPE(cft->private); |
5646 | u64 threshold, usage; |
5647 | int i, size, ret; |
5648 | |
5649 | ret = res_counter_memparse_write_strategy(args, &threshold); |
5650 | if (ret) |
5651 | return ret; |
5652 | |
5653 | mutex_lock(&memcg->thresholds_lock); |
5654 | |
5655 | if (type == _MEM) |
5656 | thresholds = &memcg->thresholds; |
5657 | else if (type == _MEMSWAP) |
5658 | thresholds = &memcg->memsw_thresholds; |
5659 | else |
5660 | BUG(); |
5661 | |
5662 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
5663 | |
5664 | /* Check if a threshold crossed before adding a new one */ |
5665 | if (thresholds->primary) |
5666 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
5667 | |
5668 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
5669 | |
5670 | /* Allocate memory for new array of thresholds */ |
5671 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
5672 | GFP_KERNEL); |
5673 | if (!new) { |
5674 | ret = -ENOMEM; |
5675 | goto unlock; |
5676 | } |
5677 | new->size = size; |
5678 | |
5679 | /* Copy thresholds (if any) to new array */ |
5680 | if (thresholds->primary) { |
5681 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * |
5682 | sizeof(struct mem_cgroup_threshold)); |
5683 | } |
5684 | |
5685 | /* Add new threshold */ |
5686 | new->entries[size - 1].eventfd = eventfd; |
5687 | new->entries[size - 1].threshold = threshold; |
5688 | |
5689 | /* Sort thresholds. Registering of new threshold isn't time-critical */ |
5690 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
5691 | compare_thresholds, NULL); |
5692 | |
5693 | /* Find current threshold */ |
5694 | new->current_threshold = -1; |
5695 | for (i = 0; i < size; i++) { |
5696 | if (new->entries[i].threshold <= usage) { |
5697 | /* |
5698 | * new->current_threshold will not be used until |
5699 | * rcu_assign_pointer(), so it's safe to increment |
5700 | * it here. |
5701 | */ |
5702 | ++new->current_threshold; |
5703 | } else |
5704 | break; |
5705 | } |
5706 | |
5707 | /* Free old spare buffer and save old primary buffer as spare */ |
5708 | kfree(thresholds->spare); |
5709 | thresholds->spare = thresholds->primary; |
5710 | |
5711 | rcu_assign_pointer(thresholds->primary, new); |
5712 | |
5713 | /* To be sure that nobody uses thresholds */ |
5714 | synchronize_rcu(); |
5715 | |
5716 | unlock: |
5717 | mutex_unlock(&memcg->thresholds_lock); |
5718 | |
5719 | return ret; |
5720 | } |
5721 | |
5722 | static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, |
5723 | struct cftype *cft, struct eventfd_ctx *eventfd) |
5724 | { |
5725 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5726 | struct mem_cgroup_thresholds *thresholds; |
5727 | struct mem_cgroup_threshold_ary *new; |
5728 | enum res_type type = MEMFILE_TYPE(cft->private); |
5729 | u64 usage; |
5730 | int i, j, size; |
5731 | |
5732 | mutex_lock(&memcg->thresholds_lock); |
5733 | if (type == _MEM) |
5734 | thresholds = &memcg->thresholds; |
5735 | else if (type == _MEMSWAP) |
5736 | thresholds = &memcg->memsw_thresholds; |
5737 | else |
5738 | BUG(); |
5739 | |
5740 | if (!thresholds->primary) |
5741 | goto unlock; |
5742 | |
5743 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
5744 | |
5745 | /* Check if a threshold crossed before removing */ |
5746 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
5747 | |
5748 | /* Calculate new number of threshold */ |
5749 | size = 0; |
5750 | for (i = 0; i < thresholds->primary->size; i++) { |
5751 | if (thresholds->primary->entries[i].eventfd != eventfd) |
5752 | size++; |
5753 | } |
5754 | |
5755 | new = thresholds->spare; |
5756 | |
5757 | /* Set thresholds array to NULL if we don't have thresholds */ |
5758 | if (!size) { |
5759 | kfree(new); |
5760 | new = NULL; |
5761 | goto swap_buffers; |
5762 | } |
5763 | |
5764 | new->size = size; |
5765 | |
5766 | /* Copy thresholds and find current threshold */ |
5767 | new->current_threshold = -1; |
5768 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { |
5769 | if (thresholds->primary->entries[i].eventfd == eventfd) |
5770 | continue; |
5771 | |
5772 | new->entries[j] = thresholds->primary->entries[i]; |
5773 | if (new->entries[j].threshold <= usage) { |
5774 | /* |
5775 | * new->current_threshold will not be used |
5776 | * until rcu_assign_pointer(), so it's safe to increment |
5777 | * it here. |
5778 | */ |
5779 | ++new->current_threshold; |
5780 | } |
5781 | j++; |
5782 | } |
5783 | |
5784 | swap_buffers: |
5785 | /* Swap primary and spare array */ |
5786 | thresholds->spare = thresholds->primary; |
5787 | /* If all events are unregistered, free the spare array */ |
5788 | if (!new) { |
5789 | kfree(thresholds->spare); |
5790 | thresholds->spare = NULL; |
5791 | } |
5792 | |
5793 | rcu_assign_pointer(thresholds->primary, new); |
5794 | |
5795 | /* To be sure that nobody uses thresholds */ |
5796 | synchronize_rcu(); |
5797 | unlock: |
5798 | mutex_unlock(&memcg->thresholds_lock); |
5799 | } |
5800 | |
5801 | static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, |
5802 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) |
5803 | { |
5804 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5805 | struct mem_cgroup_eventfd_list *event; |
5806 | enum res_type type = MEMFILE_TYPE(cft->private); |
5807 | |
5808 | BUG_ON(type != _OOM_TYPE); |
5809 | event = kmalloc(sizeof(*event), GFP_KERNEL); |
5810 | if (!event) |
5811 | return -ENOMEM; |
5812 | |
5813 | spin_lock(&memcg_oom_lock); |
5814 | |
5815 | event->eventfd = eventfd; |
5816 | list_add(&event->list, &memcg->oom_notify); |
5817 | |
5818 | /* already in OOM ? */ |
5819 | if (atomic_read(&memcg->under_oom)) |
5820 | eventfd_signal(eventfd, 1); |
5821 | spin_unlock(&memcg_oom_lock); |
5822 | |
5823 | return 0; |
5824 | } |
5825 | |
5826 | static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, |
5827 | struct cftype *cft, struct eventfd_ctx *eventfd) |
5828 | { |
5829 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5830 | struct mem_cgroup_eventfd_list *ev, *tmp; |
5831 | enum res_type type = MEMFILE_TYPE(cft->private); |
5832 | |
5833 | BUG_ON(type != _OOM_TYPE); |
5834 | |
5835 | spin_lock(&memcg_oom_lock); |
5836 | |
5837 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
5838 | if (ev->eventfd == eventfd) { |
5839 | list_del(&ev->list); |
5840 | kfree(ev); |
5841 | } |
5842 | } |
5843 | |
5844 | spin_unlock(&memcg_oom_lock); |
5845 | } |
5846 | |
5847 | static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, |
5848 | struct cftype *cft, struct cgroup_map_cb *cb) |
5849 | { |
5850 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5851 | |
5852 | cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); |
5853 | |
5854 | if (atomic_read(&memcg->under_oom)) |
5855 | cb->fill(cb, "under_oom", 1); |
5856 | else |
5857 | cb->fill(cb, "under_oom", 0); |
5858 | return 0; |
5859 | } |
5860 | |
5861 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, |
5862 | struct cftype *cft, u64 val) |
5863 | { |
5864 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5865 | struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); |
5866 | |
5867 | /* cannot set to root cgroup and only 0 and 1 are allowed */ |
5868 | if (!parent || !((val == 0) || (val == 1))) |
5869 | return -EINVAL; |
5870 | |
5871 | mutex_lock(&memcg_create_mutex); |
5872 | /* oom-kill-disable is a flag for subhierarchy. */ |
5873 | if ((parent->use_hierarchy) || memcg_has_children(memcg)) { |
5874 | mutex_unlock(&memcg_create_mutex); |
5875 | return -EINVAL; |
5876 | } |
5877 | memcg->oom_kill_disable = val; |
5878 | if (!val) |
5879 | memcg_oom_recover(memcg); |
5880 | mutex_unlock(&memcg_create_mutex); |
5881 | return 0; |
5882 | } |
5883 | |
5884 | #ifdef CONFIG_MEMCG_KMEM |
5885 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
5886 | { |
5887 | int ret; |
5888 | |
5889 | memcg->kmemcg_id = -1; |
5890 | ret = memcg_propagate_kmem(memcg); |
5891 | if (ret) |
5892 | return ret; |
5893 | |
5894 | return mem_cgroup_sockets_init(memcg, ss); |
5895 | } |
5896 | |
5897 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) |
5898 | { |
5899 | mem_cgroup_sockets_destroy(memcg); |
5900 | } |
5901 | |
5902 | static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) |
5903 | { |
5904 | if (!memcg_kmem_is_active(memcg)) |
5905 | return; |
5906 | |
5907 | /* |
5908 | * kmem charges can outlive the cgroup. In the case of slab |
5909 | * pages, for instance, a page contain objects from various |
5910 | * processes. As we prevent from taking a reference for every |
5911 | * such allocation we have to be careful when doing uncharge |
5912 | * (see memcg_uncharge_kmem) and here during offlining. |
5913 | * |
5914 | * The idea is that that only the _last_ uncharge which sees |
5915 | * the dead memcg will drop the last reference. An additional |
5916 | * reference is taken here before the group is marked dead |
5917 | * which is then paired with css_put during uncharge resp. here. |
5918 | * |
5919 | * Although this might sound strange as this path is called from |
5920 | * css_offline() when the referencemight have dropped down to 0 |
5921 | * and shouldn't be incremented anymore (css_tryget would fail) |
5922 | * we do not have other options because of the kmem allocations |
5923 | * lifetime. |
5924 | */ |
5925 | css_get(&memcg->css); |
|