Root/mm/memory.c

1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/ksm.h>
49#include <linux/rmap.h>
50#include <linux/export.h>
51#include <linux/delayacct.h>
52#include <linux/init.h>
53#include <linux/writeback.h>
54#include <linux/memcontrol.h>
55#include <linux/mmu_notifier.h>
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
59#include <linux/gfp.h>
60#include <linux/migrate.h>
61#include <linux/string.h>
62
63#include <asm/io.h>
64#include <asm/pgalloc.h>
65#include <asm/uaccess.h>
66#include <asm/tlb.h>
67#include <asm/tlbflush.h>
68#include <asm/pgtable.h>
69
70#include "internal.h"
71
72#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74#endif
75
76#ifndef CONFIG_NEED_MULTIPLE_NODES
77/* use the per-pgdat data instead for discontigmem - mbligh */
78unsigned long max_mapnr;
79struct page *mem_map;
80
81EXPORT_SYMBOL(max_mapnr);
82EXPORT_SYMBOL(mem_map);
83#endif
84
85/*
86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90 * and ZONE_HIGHMEM.
91 */
92void * high_memory;
93
94EXPORT_SYMBOL(high_memory);
95
96/*
97 * Randomize the address space (stacks, mmaps, brk, etc.).
98 *
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. )
101 */
102int randomize_va_space __read_mostly =
103#ifdef CONFIG_COMPAT_BRK
104                    1;
105#else
106                    2;
107#endif
108
109static int __init disable_randmaps(char *s)
110{
111    randomize_va_space = 0;
112    return 1;
113}
114__setup("norandmaps", disable_randmaps);
115
116unsigned long zero_pfn __read_mostly;
117unsigned long highest_memmap_pfn __read_mostly;
118
119/*
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121 */
122static int __init init_zero_pfn(void)
123{
124    zero_pfn = page_to_pfn(ZERO_PAGE(0));
125    return 0;
126}
127core_initcall(init_zero_pfn);
128
129
130#if defined(SPLIT_RSS_COUNTING)
131
132void sync_mm_rss(struct mm_struct *mm)
133{
134    int i;
135
136    for (i = 0; i < NR_MM_COUNTERS; i++) {
137        if (current->rss_stat.count[i]) {
138            add_mm_counter(mm, i, current->rss_stat.count[i]);
139            current->rss_stat.count[i] = 0;
140        }
141    }
142    current->rss_stat.events = 0;
143}
144
145static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146{
147    struct task_struct *task = current;
148
149    if (likely(task->mm == mm))
150        task->rss_stat.count[member] += val;
151    else
152        add_mm_counter(mm, member, val);
153}
154#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157/* sync counter once per 64 page faults */
158#define TASK_RSS_EVENTS_THRESH (64)
159static void check_sync_rss_stat(struct task_struct *task)
160{
161    if (unlikely(task != current))
162        return;
163    if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164        sync_mm_rss(task->mm);
165}
166#else /* SPLIT_RSS_COUNTING */
167
168#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171static void check_sync_rss_stat(struct task_struct *task)
172{
173}
174
175#endif /* SPLIT_RSS_COUNTING */
176
177#ifdef HAVE_GENERIC_MMU_GATHER
178
179static int tlb_next_batch(struct mmu_gather *tlb)
180{
181    struct mmu_gather_batch *batch;
182
183    batch = tlb->active;
184    if (batch->next) {
185        tlb->active = batch->next;
186        return 1;
187    }
188
189    if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190        return 0;
191
192    batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193    if (!batch)
194        return 0;
195
196    tlb->batch_count++;
197    batch->next = NULL;
198    batch->nr = 0;
199    batch->max = MAX_GATHER_BATCH;
200
201    tlb->active->next = batch;
202    tlb->active = batch;
203
204    return 1;
205}
206
207/* tlb_gather_mmu
208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve).
211 */
212void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213{
214    tlb->mm = mm;
215
216    /* Is it from 0 to ~0? */
217    tlb->fullmm = !(start | (end+1));
218    tlb->need_flush_all = 0;
219    tlb->start = start;
220    tlb->end = end;
221    tlb->need_flush = 0;
222    tlb->local.next = NULL;
223    tlb->local.nr = 0;
224    tlb->local.max = ARRAY_SIZE(tlb->__pages);
225    tlb->active = &tlb->local;
226    tlb->batch_count = 0;
227
228#ifdef CONFIG_HAVE_RCU_TABLE_FREE
229    tlb->batch = NULL;
230#endif
231}
232
233void tlb_flush_mmu(struct mmu_gather *tlb)
234{
235    struct mmu_gather_batch *batch;
236
237    if (!tlb->need_flush)
238        return;
239    tlb->need_flush = 0;
240    tlb_flush(tlb);
241#ifdef CONFIG_HAVE_RCU_TABLE_FREE
242    tlb_table_flush(tlb);
243#endif
244
245    for (batch = &tlb->local; batch; batch = batch->next) {
246        free_pages_and_swap_cache(batch->pages, batch->nr);
247        batch->nr = 0;
248    }
249    tlb->active = &tlb->local;
250}
251
252/* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
255 */
256void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257{
258    struct mmu_gather_batch *batch, *next;
259
260    tlb_flush_mmu(tlb);
261
262    /* keep the page table cache within bounds */
263    check_pgt_cache();
264
265    for (batch = tlb->local.next; batch; batch = next) {
266        next = batch->next;
267        free_pages((unsigned long)batch, 0);
268    }
269    tlb->local.next = NULL;
270}
271
272/* __tlb_remove_page
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu().
277 */
278int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279{
280    struct mmu_gather_batch *batch;
281
282    VM_BUG_ON(!tlb->need_flush);
283
284    batch = tlb->active;
285    batch->pages[batch->nr++] = page;
286    if (batch->nr == batch->max) {
287        if (!tlb_next_batch(tlb))
288            return 0;
289        batch = tlb->active;
290    }
291    VM_BUG_ON(batch->nr > batch->max);
292
293    return batch->max - batch->nr;
294}
295
296#endif /* HAVE_GENERIC_MMU_GATHER */
297
298#ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300/*
301 * See the comment near struct mmu_table_batch.
302 */
303
304static void tlb_remove_table_smp_sync(void *arg)
305{
306    /* Simply deliver the interrupt */
307}
308
309static void tlb_remove_table_one(void *table)
310{
311    /*
312     * This isn't an RCU grace period and hence the page-tables cannot be
313     * assumed to be actually RCU-freed.
314     *
315     * It is however sufficient for software page-table walkers that rely on
316     * IRQ disabling. See the comment near struct mmu_table_batch.
317     */
318    smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319    __tlb_remove_table(table);
320}
321
322static void tlb_remove_table_rcu(struct rcu_head *head)
323{
324    struct mmu_table_batch *batch;
325    int i;
326
327    batch = container_of(head, struct mmu_table_batch, rcu);
328
329    for (i = 0; i < batch->nr; i++)
330        __tlb_remove_table(batch->tables[i]);
331
332    free_page((unsigned long)batch);
333}
334
335void tlb_table_flush(struct mmu_gather *tlb)
336{
337    struct mmu_table_batch **batch = &tlb->batch;
338
339    if (*batch) {
340        call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341        *batch = NULL;
342    }
343}
344
345void tlb_remove_table(struct mmu_gather *tlb, void *table)
346{
347    struct mmu_table_batch **batch = &tlb->batch;
348
349    tlb->need_flush = 1;
350
351    /*
352     * When there's less then two users of this mm there cannot be a
353     * concurrent page-table walk.
354     */
355    if (atomic_read(&tlb->mm->mm_users) < 2) {
356        __tlb_remove_table(table);
357        return;
358    }
359
360    if (*batch == NULL) {
361        *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362        if (*batch == NULL) {
363            tlb_remove_table_one(table);
364            return;
365        }
366        (*batch)->nr = 0;
367    }
368    (*batch)->tables[(*batch)->nr++] = table;
369    if ((*batch)->nr == MAX_TABLE_BATCH)
370        tlb_table_flush(tlb);
371}
372
373#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375/*
376 * Note: this doesn't free the actual pages themselves. That
377 * has been handled earlier when unmapping all the memory regions.
378 */
379static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380               unsigned long addr)
381{
382    pgtable_t token = pmd_pgtable(*pmd);
383    pmd_clear(pmd);
384    pte_free_tlb(tlb, token, addr);
385    tlb->mm->nr_ptes--;
386}
387
388static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389                unsigned long addr, unsigned long end,
390                unsigned long floor, unsigned long ceiling)
391{
392    pmd_t *pmd;
393    unsigned long next;
394    unsigned long start;
395
396    start = addr;
397    pmd = pmd_offset(pud, addr);
398    do {
399        next = pmd_addr_end(addr, end);
400        if (pmd_none_or_clear_bad(pmd))
401            continue;
402        free_pte_range(tlb, pmd, addr);
403    } while (pmd++, addr = next, addr != end);
404
405    start &= PUD_MASK;
406    if (start < floor)
407        return;
408    if (ceiling) {
409        ceiling &= PUD_MASK;
410        if (!ceiling)
411            return;
412    }
413    if (end - 1 > ceiling - 1)
414        return;
415
416    pmd = pmd_offset(pud, start);
417    pud_clear(pud);
418    pmd_free_tlb(tlb, pmd, start);
419}
420
421static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422                unsigned long addr, unsigned long end,
423                unsigned long floor, unsigned long ceiling)
424{
425    pud_t *pud;
426    unsigned long next;
427    unsigned long start;
428
429    start = addr;
430    pud = pud_offset(pgd, addr);
431    do {
432        next = pud_addr_end(addr, end);
433        if (pud_none_or_clear_bad(pud))
434            continue;
435        free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436    } while (pud++, addr = next, addr != end);
437
438    start &= PGDIR_MASK;
439    if (start < floor)
440        return;
441    if (ceiling) {
442        ceiling &= PGDIR_MASK;
443        if (!ceiling)
444            return;
445    }
446    if (end - 1 > ceiling - 1)
447        return;
448
449    pud = pud_offset(pgd, start);
450    pgd_clear(pgd);
451    pud_free_tlb(tlb, pud, start);
452}
453
454/*
455 * This function frees user-level page tables of a process.
456 *
457 * Must be called with pagetable lock held.
458 */
459void free_pgd_range(struct mmu_gather *tlb,
460            unsigned long addr, unsigned long end,
461            unsigned long floor, unsigned long ceiling)
462{
463    pgd_t *pgd;
464    unsigned long next;
465
466    /*
467     * The next few lines have given us lots of grief...
468     *
469     * Why are we testing PMD* at this top level? Because often
470     * there will be no work to do at all, and we'd prefer not to
471     * go all the way down to the bottom just to discover that.
472     *
473     * Why all these "- 1"s? Because 0 represents both the bottom
474     * of the address space and the top of it (using -1 for the
475     * top wouldn't help much: the masks would do the wrong thing).
476     * The rule is that addr 0 and floor 0 refer to the bottom of
477     * the address space, but end 0 and ceiling 0 refer to the top
478     * Comparisons need to use "end - 1" and "ceiling - 1" (though
479     * that end 0 case should be mythical).
480     *
481     * Wherever addr is brought up or ceiling brought down, we must
482     * be careful to reject "the opposite 0" before it confuses the
483     * subsequent tests. But what about where end is brought down
484     * by PMD_SIZE below? no, end can't go down to 0 there.
485     *
486     * Whereas we round start (addr) and ceiling down, by different
487     * masks at different levels, in order to test whether a table
488     * now has no other vmas using it, so can be freed, we don't
489     * bother to round floor or end up - the tests don't need that.
490     */
491
492    addr &= PMD_MASK;
493    if (addr < floor) {
494        addr += PMD_SIZE;
495        if (!addr)
496            return;
497    }
498    if (ceiling) {
499        ceiling &= PMD_MASK;
500        if (!ceiling)
501            return;
502    }
503    if (end - 1 > ceiling - 1)
504        end -= PMD_SIZE;
505    if (addr > end - 1)
506        return;
507
508    pgd = pgd_offset(tlb->mm, addr);
509    do {
510        next = pgd_addr_end(addr, end);
511        if (pgd_none_or_clear_bad(pgd))
512            continue;
513        free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514    } while (pgd++, addr = next, addr != end);
515}
516
517void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518        unsigned long floor, unsigned long ceiling)
519{
520    while (vma) {
521        struct vm_area_struct *next = vma->vm_next;
522        unsigned long addr = vma->vm_start;
523
524        /*
525         * Hide vma from rmap and truncate_pagecache before freeing
526         * pgtables
527         */
528        unlink_anon_vmas(vma);
529        unlink_file_vma(vma);
530
531        if (is_vm_hugetlb_page(vma)) {
532            hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533                floor, next? next->vm_start: ceiling);
534        } else {
535            /*
536             * Optimization: gather nearby vmas into one call down
537             */
538            while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539                   && !is_vm_hugetlb_page(next)) {
540                vma = next;
541                next = vma->vm_next;
542                unlink_anon_vmas(vma);
543                unlink_file_vma(vma);
544            }
545            free_pgd_range(tlb, addr, vma->vm_end,
546                floor, next? next->vm_start: ceiling);
547        }
548        vma = next;
549    }
550}
551
552int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553        pmd_t *pmd, unsigned long address)
554{
555    pgtable_t new = pte_alloc_one(mm, address);
556    int wait_split_huge_page;
557    if (!new)
558        return -ENOMEM;
559
560    /*
561     * Ensure all pte setup (eg. pte page lock and page clearing) are
562     * visible before the pte is made visible to other CPUs by being
563     * put into page tables.
564     *
565     * The other side of the story is the pointer chasing in the page
566     * table walking code (when walking the page table without locking;
567     * ie. most of the time). Fortunately, these data accesses consist
568     * of a chain of data-dependent loads, meaning most CPUs (alpha
569     * being the notable exception) will already guarantee loads are
570     * seen in-order. See the alpha page table accessors for the
571     * smp_read_barrier_depends() barriers in page table walking code.
572     */
573    smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574
575    spin_lock(&mm->page_table_lock);
576    wait_split_huge_page = 0;
577    if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
578        mm->nr_ptes++;
579        pmd_populate(mm, pmd, new);
580        new = NULL;
581    } else if (unlikely(pmd_trans_splitting(*pmd)))
582        wait_split_huge_page = 1;
583    spin_unlock(&mm->page_table_lock);
584    if (new)
585        pte_free(mm, new);
586    if (wait_split_huge_page)
587        wait_split_huge_page(vma->anon_vma, pmd);
588    return 0;
589}
590
591int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
592{
593    pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594    if (!new)
595        return -ENOMEM;
596
597    smp_wmb(); /* See comment in __pte_alloc */
598
599    spin_lock(&init_mm.page_table_lock);
600    if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
601        pmd_populate_kernel(&init_mm, pmd, new);
602        new = NULL;
603    } else
604        VM_BUG_ON(pmd_trans_splitting(*pmd));
605    spin_unlock(&init_mm.page_table_lock);
606    if (new)
607        pte_free_kernel(&init_mm, new);
608    return 0;
609}
610
611static inline void init_rss_vec(int *rss)
612{
613    memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614}
615
616static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
617{
618    int i;
619
620    if (current->mm == mm)
621        sync_mm_rss(mm);
622    for (i = 0; i < NR_MM_COUNTERS; i++)
623        if (rss[i])
624            add_mm_counter(mm, i, rss[i]);
625}
626
627/*
628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it.
631 *
632 * The calling function must still handle the error.
633 */
634static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635              pte_t pte, struct page *page)
636{
637    pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638    pud_t *pud = pud_offset(pgd, addr);
639    pmd_t *pmd = pmd_offset(pud, addr);
640    struct address_space *mapping;
641    pgoff_t index;
642    static unsigned long resume;
643    static unsigned long nr_shown;
644    static unsigned long nr_unshown;
645
646    /*
647     * Allow a burst of 60 reports, then keep quiet for that minute;
648     * or allow a steady drip of one report per second.
649     */
650    if (nr_shown == 60) {
651        if (time_before(jiffies, resume)) {
652            nr_unshown++;
653            return;
654        }
655        if (nr_unshown) {
656            printk(KERN_ALERT
657                "BUG: Bad page map: %lu messages suppressed\n",
658                nr_unshown);
659            nr_unshown = 0;
660        }
661        nr_shown = 0;
662    }
663    if (nr_shown++ == 0)
664        resume = jiffies + 60 * HZ;
665
666    mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667    index = linear_page_index(vma, addr);
668
669    printk(KERN_ALERT
670        "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
671        current->comm,
672        (long long)pte_val(pte), (long long)pmd_val(*pmd));
673    if (page)
674        dump_page(page);
675    printk(KERN_ALERT
676        "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677        (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678    /*
679     * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680     */
681    if (vma->vm_ops)
682        printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683               vma->vm_ops->fault);
684    if (vma->vm_file && vma->vm_file->f_op)
685        printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686               vma->vm_file->f_op->mmap);
687    dump_stack();
688    add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
689}
690
691static inline bool is_cow_mapping(vm_flags_t flags)
692{
693    return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694}
695
696/*
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
698 *
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
702 *
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
711 *
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 *
719 * And for normal mappings this is false.
720 *
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
725 *
726 *
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
736 *
737 */
738#ifdef __HAVE_ARCH_PTE_SPECIAL
739# define HAVE_PTE_SPECIAL 1
740#else
741# define HAVE_PTE_SPECIAL 0
742#endif
743struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744                pte_t pte)
745{
746    unsigned long pfn = pte_pfn(pte);
747
748    if (HAVE_PTE_SPECIAL) {
749        if (likely(!pte_special(pte)))
750            goto check_pfn;
751        if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752            return NULL;
753        if (!is_zero_pfn(pfn))
754            print_bad_pte(vma, addr, pte, NULL);
755        return NULL;
756    }
757
758    /* !HAVE_PTE_SPECIAL case follows: */
759
760    if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761        if (vma->vm_flags & VM_MIXEDMAP) {
762            if (!pfn_valid(pfn))
763                return NULL;
764            goto out;
765        } else {
766            unsigned long off;
767            off = (addr - vma->vm_start) >> PAGE_SHIFT;
768            if (pfn == vma->vm_pgoff + off)
769                return NULL;
770            if (!is_cow_mapping(vma->vm_flags))
771                return NULL;
772        }
773    }
774
775    if (is_zero_pfn(pfn))
776        return NULL;
777check_pfn:
778    if (unlikely(pfn > highest_memmap_pfn)) {
779        print_bad_pte(vma, addr, pte, NULL);
780        return NULL;
781    }
782
783    /*
784     * NOTE! We still have PageReserved() pages in the page tables.
785     * eg. VDSO mappings can cause them to exist.
786     */
787out:
788    return pfn_to_page(pfn);
789}
790
791/*
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
795 */
796
797static inline unsigned long
798copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799        pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800        unsigned long addr, int *rss)
801{
802    unsigned long vm_flags = vma->vm_flags;
803    pte_t pte = *src_pte;
804    struct page *page;
805
806    /* pte contains position in swap or file, so copy. */
807    if (unlikely(!pte_present(pte))) {
808        if (!pte_file(pte)) {
809            swp_entry_t entry = pte_to_swp_entry(pte);
810
811            if (swap_duplicate(entry) < 0)
812                return entry.val;
813
814            /* make sure dst_mm is on swapoff's mmlist. */
815            if (unlikely(list_empty(&dst_mm->mmlist))) {
816                spin_lock(&mmlist_lock);
817                if (list_empty(&dst_mm->mmlist))
818                    list_add(&dst_mm->mmlist,
819                         &src_mm->mmlist);
820                spin_unlock(&mmlist_lock);
821            }
822            if (likely(!non_swap_entry(entry)))
823                rss[MM_SWAPENTS]++;
824            else if (is_migration_entry(entry)) {
825                page = migration_entry_to_page(entry);
826
827                if (PageAnon(page))
828                    rss[MM_ANONPAGES]++;
829                else
830                    rss[MM_FILEPAGES]++;
831
832                if (is_write_migration_entry(entry) &&
833                    is_cow_mapping(vm_flags)) {
834                    /*
835                     * COW mappings require pages in both
836                     * parent and child to be set to read.
837                     */
838                    make_migration_entry_read(&entry);
839                    pte = swp_entry_to_pte(entry);
840                    if (pte_swp_soft_dirty(*src_pte))
841                        pte = pte_swp_mksoft_dirty(pte);
842                    set_pte_at(src_mm, addr, src_pte, pte);
843                }
844            }
845        }
846        goto out_set_pte;
847    }
848
849    /*
850     * If it's a COW mapping, write protect it both
851     * in the parent and the child
852     */
853    if (is_cow_mapping(vm_flags)) {
854        ptep_set_wrprotect(src_mm, addr, src_pte);
855        pte = pte_wrprotect(pte);
856    }
857
858    /*
859     * If it's a shared mapping, mark it clean in
860     * the child
861     */
862    if (vm_flags & VM_SHARED)
863        pte = pte_mkclean(pte);
864    pte = pte_mkold(pte);
865
866    page = vm_normal_page(vma, addr, pte);
867    if (page) {
868        get_page(page);
869        page_dup_rmap(page);
870        if (PageAnon(page))
871            rss[MM_ANONPAGES]++;
872        else
873            rss[MM_FILEPAGES]++;
874    }
875
876out_set_pte:
877    set_pte_at(dst_mm, addr, dst_pte, pte);
878    return 0;
879}
880
881int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882           pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883           unsigned long addr, unsigned long end)
884{
885    pte_t *orig_src_pte, *orig_dst_pte;
886    pte_t *src_pte, *dst_pte;
887    spinlock_t *src_ptl, *dst_ptl;
888    int progress = 0;
889    int rss[NR_MM_COUNTERS];
890    swp_entry_t entry = (swp_entry_t){0};
891
892again:
893    init_rss_vec(rss);
894
895    dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
896    if (!dst_pte)
897        return -ENOMEM;
898    src_pte = pte_offset_map(src_pmd, addr);
899    src_ptl = pte_lockptr(src_mm, src_pmd);
900    spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
901    orig_src_pte = src_pte;
902    orig_dst_pte = dst_pte;
903    arch_enter_lazy_mmu_mode();
904
905    do {
906        /*
907         * We are holding two locks at this point - either of them
908         * could generate latencies in another task on another CPU.
909         */
910        if (progress >= 32) {
911            progress = 0;
912            if (need_resched() ||
913                spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
914                break;
915        }
916        if (pte_none(*src_pte)) {
917            progress++;
918            continue;
919        }
920        entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921                            vma, addr, rss);
922        if (entry.val)
923            break;
924        progress += 8;
925    } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
926
927    arch_leave_lazy_mmu_mode();
928    spin_unlock(src_ptl);
929    pte_unmap(orig_src_pte);
930    add_mm_rss_vec(dst_mm, rss);
931    pte_unmap_unlock(orig_dst_pte, dst_ptl);
932    cond_resched();
933
934    if (entry.val) {
935        if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936            return -ENOMEM;
937        progress = 0;
938    }
939    if (addr != end)
940        goto again;
941    return 0;
942}
943
944static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945        pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946        unsigned long addr, unsigned long end)
947{
948    pmd_t *src_pmd, *dst_pmd;
949    unsigned long next;
950
951    dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952    if (!dst_pmd)
953        return -ENOMEM;
954    src_pmd = pmd_offset(src_pud, addr);
955    do {
956        next = pmd_addr_end(addr, end);
957        if (pmd_trans_huge(*src_pmd)) {
958            int err;
959            VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
960            err = copy_huge_pmd(dst_mm, src_mm,
961                        dst_pmd, src_pmd, addr, vma);
962            if (err == -ENOMEM)
963                return -ENOMEM;
964            if (!err)
965                continue;
966            /* fall through */
967        }
968        if (pmd_none_or_clear_bad(src_pmd))
969            continue;
970        if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971                        vma, addr, next))
972            return -ENOMEM;
973    } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974    return 0;
975}
976
977static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978        pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979        unsigned long addr, unsigned long end)
980{
981    pud_t *src_pud, *dst_pud;
982    unsigned long next;
983
984    dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985    if (!dst_pud)
986        return -ENOMEM;
987    src_pud = pud_offset(src_pgd, addr);
988    do {
989        next = pud_addr_end(addr, end);
990        if (pud_none_or_clear_bad(src_pud))
991            continue;
992        if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993                        vma, addr, next))
994            return -ENOMEM;
995    } while (dst_pud++, src_pud++, addr = next, addr != end);
996    return 0;
997}
998
999int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000        struct vm_area_struct *vma)
1001{
1002    pgd_t *src_pgd, *dst_pgd;
1003    unsigned long next;
1004    unsigned long addr = vma->vm_start;
1005    unsigned long end = vma->vm_end;
1006    unsigned long mmun_start; /* For mmu_notifiers */
1007    unsigned long mmun_end; /* For mmu_notifiers */
1008    bool is_cow;
1009    int ret;
1010
1011    /*
1012     * Don't copy ptes where a page fault will fill them correctly.
1013     * Fork becomes much lighter when there are big shared or private
1014     * readonly mappings. The tradeoff is that copy_page_range is more
1015     * efficient than faulting.
1016     */
1017    if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018                   VM_PFNMAP | VM_MIXEDMAP))) {
1019        if (!vma->anon_vma)
1020            return 0;
1021    }
1022
1023    if (is_vm_hugetlb_page(vma))
1024        return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1025
1026    if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1027        /*
1028         * We do not free on error cases below as remove_vma
1029         * gets called on error from higher level routine
1030         */
1031        ret = track_pfn_copy(vma);
1032        if (ret)
1033            return ret;
1034    }
1035
1036    /*
1037     * We need to invalidate the secondary MMU mappings only when
1038     * there could be a permission downgrade on the ptes of the
1039     * parent mm. And a permission downgrade will only happen if
1040     * is_cow_mapping() returns true.
1041     */
1042    is_cow = is_cow_mapping(vma->vm_flags);
1043    mmun_start = addr;
1044    mmun_end = end;
1045    if (is_cow)
1046        mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047                            mmun_end);
1048
1049    ret = 0;
1050    dst_pgd = pgd_offset(dst_mm, addr);
1051    src_pgd = pgd_offset(src_mm, addr);
1052    do {
1053        next = pgd_addr_end(addr, end);
1054        if (pgd_none_or_clear_bad(src_pgd))
1055            continue;
1056        if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057                        vma, addr, next))) {
1058            ret = -ENOMEM;
1059            break;
1060        }
1061    } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1062
1063    if (is_cow)
1064        mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1065    return ret;
1066}
1067
1068static unsigned long zap_pte_range(struct mmu_gather *tlb,
1069                struct vm_area_struct *vma, pmd_t *pmd,
1070                unsigned long addr, unsigned long end,
1071                struct zap_details *details)
1072{
1073    struct mm_struct *mm = tlb->mm;
1074    int force_flush = 0;
1075    int rss[NR_MM_COUNTERS];
1076    spinlock_t *ptl;
1077    pte_t *start_pte;
1078    pte_t *pte;
1079
1080again:
1081    init_rss_vec(rss);
1082    start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083    pte = start_pte;
1084    arch_enter_lazy_mmu_mode();
1085    do {
1086        pte_t ptent = *pte;
1087        if (pte_none(ptent)) {
1088            continue;
1089        }
1090
1091        if (pte_present(ptent)) {
1092            struct page *page;
1093
1094            page = vm_normal_page(vma, addr, ptent);
1095            if (unlikely(details) && page) {
1096                /*
1097                 * unmap_shared_mapping_pages() wants to
1098                 * invalidate cache without truncating:
1099                 * unmap shared but keep private pages.
1100                 */
1101                if (details->check_mapping &&
1102                    details->check_mapping != page->mapping)
1103                    continue;
1104                /*
1105                 * Each page->index must be checked when
1106                 * invalidating or truncating nonlinear.
1107                 */
1108                if (details->nonlinear_vma &&
1109                    (page->index < details->first_index ||
1110                     page->index > details->last_index))
1111                    continue;
1112            }
1113            ptent = ptep_get_and_clear_full(mm, addr, pte,
1114                            tlb->fullmm);
1115            tlb_remove_tlb_entry(tlb, pte, addr);
1116            if (unlikely(!page))
1117                continue;
1118            if (unlikely(details) && details->nonlinear_vma
1119                && linear_page_index(details->nonlinear_vma,
1120                        addr) != page->index) {
1121                pte_t ptfile = pgoff_to_pte(page->index);
1122                if (pte_soft_dirty(ptent))
1123                    pte_file_mksoft_dirty(ptfile);
1124                set_pte_at(mm, addr, pte, ptfile);
1125            }
1126            if (PageAnon(page))
1127                rss[MM_ANONPAGES]--;
1128            else {
1129                if (pte_dirty(ptent))
1130                    set_page_dirty(page);
1131                if (pte_young(ptent) &&
1132                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1133                    mark_page_accessed(page);
1134                rss[MM_FILEPAGES]--;
1135            }
1136            page_remove_rmap(page);
1137            if (unlikely(page_mapcount(page) < 0))
1138                print_bad_pte(vma, addr, ptent, page);
1139            force_flush = !__tlb_remove_page(tlb, page);
1140            if (force_flush)
1141                break;
1142            continue;
1143        }
1144        /*
1145         * If details->check_mapping, we leave swap entries;
1146         * if details->nonlinear_vma, we leave file entries.
1147         */
1148        if (unlikely(details))
1149            continue;
1150        if (pte_file(ptent)) {
1151            if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152                print_bad_pte(vma, addr, ptent, NULL);
1153        } else {
1154            swp_entry_t entry = pte_to_swp_entry(ptent);
1155
1156            if (!non_swap_entry(entry))
1157                rss[MM_SWAPENTS]--;
1158            else if (is_migration_entry(entry)) {
1159                struct page *page;
1160
1161                page = migration_entry_to_page(entry);
1162
1163                if (PageAnon(page))
1164                    rss[MM_ANONPAGES]--;
1165                else
1166                    rss[MM_FILEPAGES]--;
1167            }
1168            if (unlikely(!free_swap_and_cache(entry)))
1169                print_bad_pte(vma, addr, ptent, NULL);
1170        }
1171        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1172    } while (pte++, addr += PAGE_SIZE, addr != end);
1173
1174    add_mm_rss_vec(mm, rss);
1175    arch_leave_lazy_mmu_mode();
1176    pte_unmap_unlock(start_pte, ptl);
1177
1178    /*
1179     * mmu_gather ran out of room to batch pages, we break out of
1180     * the PTE lock to avoid doing the potential expensive TLB invalidate
1181     * and page-free while holding it.
1182     */
1183    if (force_flush) {
1184        unsigned long old_end;
1185
1186        force_flush = 0;
1187
1188        /*
1189         * Flush the TLB just for the previous segment,
1190         * then update the range to be the remaining
1191         * TLB range.
1192         */
1193        old_end = tlb->end;
1194        tlb->end = addr;
1195
1196        tlb_flush_mmu(tlb);
1197
1198        tlb->start = addr;
1199        tlb->end = old_end;
1200
1201        if (addr != end)
1202            goto again;
1203    }
1204
1205    return addr;
1206}
1207
1208static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209                struct vm_area_struct *vma, pud_t *pud,
1210                unsigned long addr, unsigned long end,
1211                struct zap_details *details)
1212{
1213    pmd_t *pmd;
1214    unsigned long next;
1215
1216    pmd = pmd_offset(pud, addr);
1217    do {
1218        next = pmd_addr_end(addr, end);
1219        if (pmd_trans_huge(*pmd)) {
1220            if (next - addr != HPAGE_PMD_SIZE) {
1221#ifdef CONFIG_DEBUG_VM
1222                if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223                    pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224                        __func__, addr, end,
1225                        vma->vm_start,
1226                        vma->vm_end);
1227                    BUG();
1228                }
1229#endif
1230                split_huge_page_pmd(vma, addr, pmd);
1231            } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232                goto next;
1233            /* fall through */
1234        }
1235        /*
1236         * Here there can be other concurrent MADV_DONTNEED or
1237         * trans huge page faults running, and if the pmd is
1238         * none or trans huge it can change under us. This is
1239         * because MADV_DONTNEED holds the mmap_sem in read
1240         * mode.
1241         */
1242        if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243            goto next;
1244        next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245next:
1246        cond_resched();
1247    } while (pmd++, addr = next, addr != end);
1248
1249    return addr;
1250}
1251
1252static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253                struct vm_area_struct *vma, pgd_t *pgd,
1254                unsigned long addr, unsigned long end,
1255                struct zap_details *details)
1256{
1257    pud_t *pud;
1258    unsigned long next;
1259
1260    pud = pud_offset(pgd, addr);
1261    do {
1262        next = pud_addr_end(addr, end);
1263        if (pud_none_or_clear_bad(pud))
1264            continue;
1265        next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266    } while (pud++, addr = next, addr != end);
1267
1268    return addr;
1269}
1270
1271static void unmap_page_range(struct mmu_gather *tlb,
1272                 struct vm_area_struct *vma,
1273                 unsigned long addr, unsigned long end,
1274                 struct zap_details *details)
1275{
1276    pgd_t *pgd;
1277    unsigned long next;
1278
1279    if (details && !details->check_mapping && !details->nonlinear_vma)
1280        details = NULL;
1281
1282    BUG_ON(addr >= end);
1283    mem_cgroup_uncharge_start();
1284    tlb_start_vma(tlb, vma);
1285    pgd = pgd_offset(vma->vm_mm, addr);
1286    do {
1287        next = pgd_addr_end(addr, end);
1288        if (pgd_none_or_clear_bad(pgd))
1289            continue;
1290        next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291    } while (pgd++, addr = next, addr != end);
1292    tlb_end_vma(tlb, vma);
1293    mem_cgroup_uncharge_end();
1294}
1295
1296
1297static void unmap_single_vma(struct mmu_gather *tlb,
1298        struct vm_area_struct *vma, unsigned long start_addr,
1299        unsigned long end_addr,
1300        struct zap_details *details)
1301{
1302    unsigned long start = max(vma->vm_start, start_addr);
1303    unsigned long end;
1304
1305    if (start >= vma->vm_end)
1306        return;
1307    end = min(vma->vm_end, end_addr);
1308    if (end <= vma->vm_start)
1309        return;
1310
1311    if (vma->vm_file)
1312        uprobe_munmap(vma, start, end);
1313
1314    if (unlikely(vma->vm_flags & VM_PFNMAP))
1315        untrack_pfn(vma, 0, 0);
1316
1317    if (start != end) {
1318        if (unlikely(is_vm_hugetlb_page(vma))) {
1319            /*
1320             * It is undesirable to test vma->vm_file as it
1321             * should be non-null for valid hugetlb area.
1322             * However, vm_file will be NULL in the error
1323             * cleanup path of do_mmap_pgoff. When
1324             * hugetlbfs ->mmap method fails,
1325             * do_mmap_pgoff() nullifies vma->vm_file
1326             * before calling this function to clean up.
1327             * Since no pte has actually been setup, it is
1328             * safe to do nothing in this case.
1329             */
1330            if (vma->vm_file) {
1331                mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333                mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1334            }
1335        } else
1336            unmap_page_range(tlb, vma, start, end, details);
1337    }
1338}
1339
1340/**
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
1342 * @tlb: address of the caller's struct mmu_gather
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1346 *
1347 * Unmap all pages in the vma list.
1348 *
1349 * Only addresses between `start' and `end' will be unmapped.
1350 *
1351 * The VMA list must be sorted in ascending virtual address order.
1352 *
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1357 */
1358void unmap_vmas(struct mmu_gather *tlb,
1359        struct vm_area_struct *vma, unsigned long start_addr,
1360        unsigned long end_addr)
1361{
1362    struct mm_struct *mm = vma->vm_mm;
1363
1364    mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365    for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366        unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367    mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1368}
1369
1370/**
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
1373 * @start: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
1376 *
1377 * Caller must protect the VMA list
1378 */
1379void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380        unsigned long size, struct zap_details *details)
1381{
1382    struct mm_struct *mm = vma->vm_mm;
1383    struct mmu_gather tlb;
1384    unsigned long end = start + size;
1385
1386    lru_add_drain();
1387    tlb_gather_mmu(&tlb, mm, start, end);
1388    update_hiwater_rss(mm);
1389    mmu_notifier_invalidate_range_start(mm, start, end);
1390    for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391        unmap_single_vma(&tlb, vma, start, end, details);
1392    mmu_notifier_invalidate_range_end(mm, start, end);
1393    tlb_finish_mmu(&tlb, start, end);
1394}
1395
1396/**
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 *
1403 * The range must fit into one VMA.
1404 */
1405static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406        unsigned long size, struct zap_details *details)
1407{
1408    struct mm_struct *mm = vma->vm_mm;
1409    struct mmu_gather tlb;
1410    unsigned long end = address + size;
1411
1412    lru_add_drain();
1413    tlb_gather_mmu(&tlb, mm, address, end);
1414    update_hiwater_rss(mm);
1415    mmu_notifier_invalidate_range_start(mm, address, end);
1416    unmap_single_vma(&tlb, vma, address, end, details);
1417    mmu_notifier_invalidate_range_end(mm, address, end);
1418    tlb_finish_mmu(&tlb, address, end);
1419}
1420
1421/**
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1426 *
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 *
1429 * The entire address range must be fully contained within the vma.
1430 *
1431 * Returns 0 if successful.
1432 */
1433int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434        unsigned long size)
1435{
1436    if (address < vma->vm_start || address + size > vma->vm_end ||
1437                !(vma->vm_flags & VM_PFNMAP))
1438        return -1;
1439    zap_page_range_single(vma, address, size, NULL);
1440    return 0;
1441}
1442EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443
1444/**
1445 * follow_page_mask - look up a page descriptor from a user-virtual address
1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour
1449 * @page_mask: on output, *page_mask is set according to the size of the page
1450 *
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1452 *
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()).
1456 */
1457struct page *follow_page_mask(struct vm_area_struct *vma,
1458                  unsigned long address, unsigned int flags,
1459                  unsigned int *page_mask)
1460{
1461    pgd_t *pgd;
1462    pud_t *pud;
1463    pmd_t *pmd;
1464    pte_t *ptep, pte;
1465    spinlock_t *ptl;
1466    struct page *page;
1467    struct mm_struct *mm = vma->vm_mm;
1468
1469    *page_mask = 0;
1470
1471    page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472    if (!IS_ERR(page)) {
1473        BUG_ON(flags & FOLL_GET);
1474        goto out;
1475    }
1476
1477    page = NULL;
1478    pgd = pgd_offset(mm, address);
1479    if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480        goto no_page_table;
1481
1482    pud = pud_offset(pgd, address);
1483    if (pud_none(*pud))
1484        goto no_page_table;
1485    if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486        if (flags & FOLL_GET)
1487            goto out;
1488        page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489        goto out;
1490    }
1491    if (unlikely(pud_bad(*pud)))
1492        goto no_page_table;
1493
1494    pmd = pmd_offset(pud, address);
1495    if (pmd_none(*pmd))
1496        goto no_page_table;
1497    if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498        page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499        if (flags & FOLL_GET) {
1500            /*
1501             * Refcount on tail pages are not well-defined and
1502             * shouldn't be taken. The caller should handle a NULL
1503             * return when trying to follow tail pages.
1504             */
1505            if (PageHead(page))
1506                get_page(page);
1507            else {
1508                page = NULL;
1509                goto out;
1510            }
1511        }
1512        goto out;
1513    }
1514    if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515        goto no_page_table;
1516    if (pmd_trans_huge(*pmd)) {
1517        if (flags & FOLL_SPLIT) {
1518            split_huge_page_pmd(vma, address, pmd);
1519            goto split_fallthrough;
1520        }
1521        spin_lock(&mm->page_table_lock);
1522        if (likely(pmd_trans_huge(*pmd))) {
1523            if (unlikely(pmd_trans_splitting(*pmd))) {
1524                spin_unlock(&mm->page_table_lock);
1525                wait_split_huge_page(vma->anon_vma, pmd);
1526            } else {
1527                page = follow_trans_huge_pmd(vma, address,
1528                                 pmd, flags);
1529                spin_unlock(&mm->page_table_lock);
1530                *page_mask = HPAGE_PMD_NR - 1;
1531                goto out;
1532            }
1533        } else
1534            spin_unlock(&mm->page_table_lock);
1535        /* fall through */
1536    }
1537split_fallthrough:
1538    if (unlikely(pmd_bad(*pmd)))
1539        goto no_page_table;
1540
1541    ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1542
1543    pte = *ptep;
1544    if (!pte_present(pte)) {
1545        swp_entry_t entry;
1546        /*
1547         * KSM's break_ksm() relies upon recognizing a ksm page
1548         * even while it is being migrated, so for that case we
1549         * need migration_entry_wait().
1550         */
1551        if (likely(!(flags & FOLL_MIGRATION)))
1552            goto no_page;
1553        if (pte_none(pte) || pte_file(pte))
1554            goto no_page;
1555        entry = pte_to_swp_entry(pte);
1556        if (!is_migration_entry(entry))
1557            goto no_page;
1558        pte_unmap_unlock(ptep, ptl);
1559        migration_entry_wait(mm, pmd, address);
1560        goto split_fallthrough;
1561    }
1562    if ((flags & FOLL_NUMA) && pte_numa(pte))
1563        goto no_page;
1564    if ((flags & FOLL_WRITE) && !pte_write(pte))
1565        goto unlock;
1566
1567    page = vm_normal_page(vma, address, pte);
1568    if (unlikely(!page)) {
1569        if ((flags & FOLL_DUMP) ||
1570            !is_zero_pfn(pte_pfn(pte)))
1571            goto bad_page;
1572        page = pte_page(pte);
1573    }
1574
1575    if (flags & FOLL_GET)
1576        get_page_foll(page);
1577    if (flags & FOLL_TOUCH) {
1578        if ((flags & FOLL_WRITE) &&
1579            !pte_dirty(pte) && !PageDirty(page))
1580            set_page_dirty(page);
1581        /*
1582         * pte_mkyoung() would be more correct here, but atomic care
1583         * is needed to avoid losing the dirty bit: it is easier to use
1584         * mark_page_accessed().
1585         */
1586        mark_page_accessed(page);
1587    }
1588    if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1589        /*
1590         * The preliminary mapping check is mainly to avoid the
1591         * pointless overhead of lock_page on the ZERO_PAGE
1592         * which might bounce very badly if there is contention.
1593         *
1594         * If the page is already locked, we don't need to
1595         * handle it now - vmscan will handle it later if and
1596         * when it attempts to reclaim the page.
1597         */
1598        if (page->mapping && trylock_page(page)) {
1599            lru_add_drain(); /* push cached pages to LRU */
1600            /*
1601             * Because we lock page here, and migration is
1602             * blocked by the pte's page reference, and we
1603             * know the page is still mapped, we don't even
1604             * need to check for file-cache page truncation.
1605             */
1606            mlock_vma_page(page);
1607            unlock_page(page);
1608        }
1609    }
1610unlock:
1611    pte_unmap_unlock(ptep, ptl);
1612out:
1613    return page;
1614
1615bad_page:
1616    pte_unmap_unlock(ptep, ptl);
1617    return ERR_PTR(-EFAULT);
1618
1619no_page:
1620    pte_unmap_unlock(ptep, ptl);
1621    if (!pte_none(pte))
1622        return page;
1623
1624no_page_table:
1625    /*
1626     * When core dumping an enormous anonymous area that nobody
1627     * has touched so far, we don't want to allocate unnecessary pages or
1628     * page tables. Return error instead of NULL to skip handle_mm_fault,
1629     * then get_dump_page() will return NULL to leave a hole in the dump.
1630     * But we can only make this optimization where a hole would surely
1631     * be zero-filled if handle_mm_fault() actually did handle it.
1632     */
1633    if ((flags & FOLL_DUMP) &&
1634        (!vma->vm_ops || !vma->vm_ops->fault))
1635        return ERR_PTR(-EFAULT);
1636    return page;
1637}
1638
1639static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640{
1641    return stack_guard_page_start(vma, addr) ||
1642           stack_guard_page_end(vma, addr+PAGE_SIZE);
1643}
1644
1645/**
1646 * __get_user_pages() - pin user pages in memory
1647 * @tsk: task_struct of target task
1648 * @mm: mm_struct of target mm
1649 * @start: starting user address
1650 * @nr_pages: number of pages from start to pin
1651 * @gup_flags: flags modifying pin behaviour
1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them.
1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658 *
1659 * Returns number of pages pinned. This may be fewer than the number
1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661 * were pinned, returns -errno. Each page returned must be released
1662 * with a put_page() call when it is finished with. vmas will only
1663 * remain valid while mmap_sem is held.
1664 *
1665 * Must be called with mmap_sem held for read or write.
1666 *
1667 * __get_user_pages walks a process's page tables and takes a reference to
1668 * each struct page that each user address corresponds to at a given
1669 * instant. That is, it takes the page that would be accessed if a user
1670 * thread accesses the given user virtual address at that instant.
1671 *
1672 * This does not guarantee that the page exists in the user mappings when
1673 * __get_user_pages returns, and there may even be a completely different
1674 * page there in some cases (eg. if mmapped pagecache has been invalidated
1675 * and subsequently re faulted). However it does guarantee that the page
1676 * won't be freed completely. And mostly callers simply care that the page
1677 * contains data that was valid *at some point in time*. Typically, an IO
1678 * or similar operation cannot guarantee anything stronger anyway because
1679 * locks can't be held over the syscall boundary.
1680 *
1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683 * appropriate) must be called after the page is finished with, and
1684 * before put_page is called.
1685 *
1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687 * or mmap_sem contention, and if waiting is needed to pin all pages,
1688 * *@nonblocking will be set to 0.
1689 *
1690 * In most cases, get_user_pages or get_user_pages_fast should be used
1691 * instead of __get_user_pages. __get_user_pages should be used only if
1692 * you need some special @gup_flags.
1693 */
1694long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695        unsigned long start, unsigned long nr_pages,
1696        unsigned int gup_flags, struct page **pages,
1697        struct vm_area_struct **vmas, int *nonblocking)
1698{
1699    long i;
1700    unsigned long vm_flags;
1701    unsigned int page_mask;
1702
1703    if (!nr_pages)
1704        return 0;
1705
1706    VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707
1708    /*
1709     * Require read or write permissions.
1710     * If FOLL_FORCE is set, we only require the "MAY" flags.
1711     */
1712    vm_flags = (gup_flags & FOLL_WRITE) ?
1713            (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714    vm_flags &= (gup_flags & FOLL_FORCE) ?
1715            (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1716
1717    /*
1718     * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719     * would be called on PROT_NONE ranges. We must never invoke
1720     * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721     * page faults would unprotect the PROT_NONE ranges if
1722     * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723     * bitflag. So to avoid that, don't set FOLL_NUMA if
1724     * FOLL_FORCE is set.
1725     */
1726    if (!(gup_flags & FOLL_FORCE))
1727        gup_flags |= FOLL_NUMA;
1728
1729    i = 0;
1730
1731    do {
1732        struct vm_area_struct *vma;
1733
1734        vma = find_extend_vma(mm, start);
1735        if (!vma && in_gate_area(mm, start)) {
1736            unsigned long pg = start & PAGE_MASK;
1737            pgd_t *pgd;
1738            pud_t *pud;
1739            pmd_t *pmd;
1740            pte_t *pte;
1741
1742            /* user gate pages are read-only */
1743            if (gup_flags & FOLL_WRITE)
1744                return i ? : -EFAULT;
1745            if (pg > TASK_SIZE)
1746                pgd = pgd_offset_k(pg);
1747            else
1748                pgd = pgd_offset_gate(mm, pg);
1749            BUG_ON(pgd_none(*pgd));
1750            pud = pud_offset(pgd, pg);
1751            BUG_ON(pud_none(*pud));
1752            pmd = pmd_offset(pud, pg);
1753            if (pmd_none(*pmd))
1754                return i ? : -EFAULT;
1755            VM_BUG_ON(pmd_trans_huge(*pmd));
1756            pte = pte_offset_map(pmd, pg);
1757            if (pte_none(*pte)) {
1758                pte_unmap(pte);
1759                return i ? : -EFAULT;
1760            }
1761            vma = get_gate_vma(mm);
1762            if (pages) {
1763                struct page *page;
1764
1765                page = vm_normal_page(vma, start, *pte);
1766                if (!page) {
1767                    if (!(gup_flags & FOLL_DUMP) &&
1768                         is_zero_pfn(pte_pfn(*pte)))
1769                        page = pte_page(*pte);
1770                    else {
1771                        pte_unmap(pte);
1772                        return i ? : -EFAULT;
1773                    }
1774                }
1775                pages[i] = page;
1776                get_page(page);
1777            }
1778            pte_unmap(pte);
1779            page_mask = 0;
1780            goto next_page;
1781        }
1782
1783        if (!vma ||
1784            (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1785            !(vm_flags & vma->vm_flags))
1786            return i ? : -EFAULT;
1787
1788        if (is_vm_hugetlb_page(vma)) {
1789            i = follow_hugetlb_page(mm, vma, pages, vmas,
1790                    &start, &nr_pages, i, gup_flags);
1791            continue;
1792        }
1793
1794        do {
1795            struct page *page;
1796            unsigned int foll_flags = gup_flags;
1797            unsigned int page_increm;
1798
1799            /*
1800             * If we have a pending SIGKILL, don't keep faulting
1801             * pages and potentially allocating memory.
1802             */
1803            if (unlikely(fatal_signal_pending(current)))
1804                return i ? i : -ERESTARTSYS;
1805
1806            cond_resched();
1807            while (!(page = follow_page_mask(vma, start,
1808                        foll_flags, &page_mask))) {
1809                int ret;
1810                unsigned int fault_flags = 0;
1811
1812                /* For mlock, just skip the stack guard page. */
1813                if (foll_flags & FOLL_MLOCK) {
1814                    if (stack_guard_page(vma, start))
1815                        goto next_page;
1816                }
1817                if (foll_flags & FOLL_WRITE)
1818                    fault_flags |= FAULT_FLAG_WRITE;
1819                if (nonblocking)
1820                    fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1821                if (foll_flags & FOLL_NOWAIT)
1822                    fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1823
1824                ret = handle_mm_fault(mm, vma, start,
1825                            fault_flags);
1826
1827                if (ret & VM_FAULT_ERROR) {
1828                    if (ret & VM_FAULT_OOM)
1829                        return i ? i : -ENOMEM;
1830                    if (ret & (VM_FAULT_HWPOISON |
1831                           VM_FAULT_HWPOISON_LARGE)) {
1832                        if (i)
1833                            return i;
1834                        else if (gup_flags & FOLL_HWPOISON)
1835                            return -EHWPOISON;
1836                        else
1837                            return -EFAULT;
1838                    }
1839                    if (ret & VM_FAULT_SIGBUS)
1840                        return i ? i : -EFAULT;
1841                    BUG();
1842                }
1843
1844                if (tsk) {
1845                    if (ret & VM_FAULT_MAJOR)
1846                        tsk->maj_flt++;
1847                    else
1848                        tsk->min_flt++;
1849                }
1850
1851                if (ret & VM_FAULT_RETRY) {
1852                    if (nonblocking)
1853                        *nonblocking = 0;
1854                    return i;
1855                }
1856
1857                /*
1858                 * The VM_FAULT_WRITE bit tells us that
1859                 * do_wp_page has broken COW when necessary,
1860                 * even if maybe_mkwrite decided not to set
1861                 * pte_write. We can thus safely do subsequent
1862                 * page lookups as if they were reads. But only
1863                 * do so when looping for pte_write is futile:
1864                 * in some cases userspace may also be wanting
1865                 * to write to the gotten user page, which a
1866                 * read fault here might prevent (a readonly
1867                 * page might get reCOWed by userspace write).
1868                 */
1869                if ((ret & VM_FAULT_WRITE) &&
1870                    !(vma->vm_flags & VM_WRITE))
1871                    foll_flags &= ~FOLL_WRITE;
1872
1873                cond_resched();
1874            }
1875            if (IS_ERR(page))
1876                return i ? i : PTR_ERR(page);
1877            if (pages) {
1878                pages[i] = page;
1879
1880                flush_anon_page(vma, page, start);
1881                flush_dcache_page(page);
1882                page_mask = 0;
1883            }
1884next_page:
1885            if (vmas) {
1886                vmas[i] = vma;
1887                page_mask = 0;
1888            }
1889            page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1890            if (page_increm > nr_pages)
1891                page_increm = nr_pages;
1892            i += page_increm;
1893            start += page_increm * PAGE_SIZE;
1894            nr_pages -= page_increm;
1895        } while (nr_pages && start < vma->vm_end);
1896    } while (nr_pages);
1897    return i;
1898}
1899EXPORT_SYMBOL(__get_user_pages);
1900
1901/*
1902 * fixup_user_fault() - manually resolve a user page fault
1903 * @tsk: the task_struct to use for page fault accounting, or
1904 * NULL if faults are not to be recorded.
1905 * @mm: mm_struct of target mm
1906 * @address: user address
1907 * @fault_flags:flags to pass down to handle_mm_fault()
1908 *
1909 * This is meant to be called in the specific scenario where for locking reasons
1910 * we try to access user memory in atomic context (within a pagefault_disable()
1911 * section), this returns -EFAULT, and we want to resolve the user fault before
1912 * trying again.
1913 *
1914 * Typically this is meant to be used by the futex code.
1915 *
1916 * The main difference with get_user_pages() is that this function will
1917 * unconditionally call handle_mm_fault() which will in turn perform all the
1918 * necessary SW fixup of the dirty and young bits in the PTE, while
1919 * handle_mm_fault() only guarantees to update these in the struct page.
1920 *
1921 * This is important for some architectures where those bits also gate the
1922 * access permission to the page because they are maintained in software. On
1923 * such architectures, gup() will not be enough to make a subsequent access
1924 * succeed.
1925 *
1926 * This should be called with the mm_sem held for read.
1927 */
1928int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1929             unsigned long address, unsigned int fault_flags)
1930{
1931    struct vm_area_struct *vma;
1932    int ret;
1933
1934    vma = find_extend_vma(mm, address);
1935    if (!vma || address < vma->vm_start)
1936        return -EFAULT;
1937
1938    ret = handle_mm_fault(mm, vma, address, fault_flags);
1939    if (ret & VM_FAULT_ERROR) {
1940        if (ret & VM_FAULT_OOM)
1941            return -ENOMEM;
1942        if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1943            return -EHWPOISON;
1944        if (ret & VM_FAULT_SIGBUS)
1945            return -EFAULT;
1946        BUG();
1947    }
1948    if (tsk) {
1949        if (ret & VM_FAULT_MAJOR)
1950            tsk->maj_flt++;
1951        else
1952            tsk->min_flt++;
1953    }
1954    return 0;
1955}
1956
1957/*
1958 * get_user_pages() - pin user pages in memory
1959 * @tsk: the task_struct to use for page fault accounting, or
1960 * NULL if faults are not to be recorded.
1961 * @mm: mm_struct of target mm
1962 * @start: starting user address
1963 * @nr_pages: number of pages from start to pin
1964 * @write: whether pages will be written to by the caller
1965 * @force: whether to force write access even if user mapping is
1966 * readonly. This will result in the page being COWed even
1967 * in MAP_SHARED mappings. You do not want this.
1968 * @pages: array that receives pointers to the pages pinned.
1969 * Should be at least nr_pages long. Or NULL, if caller
1970 * only intends to ensure the pages are faulted in.
1971 * @vmas: array of pointers to vmas corresponding to each page.
1972 * Or NULL if the caller does not require them.
1973 *
1974 * Returns number of pages pinned. This may be fewer than the number
1975 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1976 * were pinned, returns -errno. Each page returned must be released
1977 * with a put_page() call when it is finished with. vmas will only
1978 * remain valid while mmap_sem is held.
1979 *
1980 * Must be called with mmap_sem held for read or write.
1981 *
1982 * get_user_pages walks a process's page tables and takes a reference to
1983 * each struct page that each user address corresponds to at a given
1984 * instant. That is, it takes the page that would be accessed if a user
1985 * thread accesses the given user virtual address at that instant.
1986 *
1987 * This does not guarantee that the page exists in the user mappings when
1988 * get_user_pages returns, and there may even be a completely different
1989 * page there in some cases (eg. if mmapped pagecache has been invalidated
1990 * and subsequently re faulted). However it does guarantee that the page
1991 * won't be freed completely. And mostly callers simply care that the page
1992 * contains data that was valid *at some point in time*. Typically, an IO
1993 * or similar operation cannot guarantee anything stronger anyway because
1994 * locks can't be held over the syscall boundary.
1995 *
1996 * If write=0, the page must not be written to. If the page is written to,
1997 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1998 * after the page is finished with, and before put_page is called.
1999 *
2000 * get_user_pages is typically used for fewer-copy IO operations, to get a
2001 * handle on the memory by some means other than accesses via the user virtual
2002 * addresses. The pages may be submitted for DMA to devices or accessed via
2003 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2004 * use the correct cache flushing APIs.
2005 *
2006 * See also get_user_pages_fast, for performance critical applications.
2007 */
2008long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2009        unsigned long start, unsigned long nr_pages, int write,
2010        int force, struct page **pages, struct vm_area_struct **vmas)
2011{
2012    int flags = FOLL_TOUCH;
2013
2014    if (pages)
2015        flags |= FOLL_GET;
2016    if (write)
2017        flags |= FOLL_WRITE;
2018    if (force)
2019        flags |= FOLL_FORCE;
2020
2021    return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2022                NULL);
2023}
2024EXPORT_SYMBOL(get_user_pages);
2025
2026/**
2027 * get_dump_page() - pin user page in memory while writing it to core dump
2028 * @addr: user address
2029 *
2030 * Returns struct page pointer of user page pinned for dump,
2031 * to be freed afterwards by page_cache_release() or put_page().
2032 *
2033 * Returns NULL on any kind of failure - a hole must then be inserted into
2034 * the corefile, to preserve alignment with its headers; and also returns
2035 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2036 * allowing a hole to be left in the corefile to save diskspace.
2037 *
2038 * Called without mmap_sem, but after all other threads have been killed.
2039 */
2040#ifdef CONFIG_ELF_CORE
2041struct page *get_dump_page(unsigned long addr)
2042{
2043    struct vm_area_struct *vma;
2044    struct page *page;
2045
2046    if (__get_user_pages(current, current->mm, addr, 1,
2047                 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2048                 NULL) < 1)
2049        return NULL;
2050    flush_cache_page(vma, addr, page_to_pfn(page));
2051    return page;
2052}
2053#endif /* CONFIG_ELF_CORE */
2054
2055pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2056            spinlock_t **ptl)
2057{
2058    pgd_t * pgd = pgd_offset(mm, addr);
2059    pud_t * pud = pud_alloc(mm, pgd, addr);
2060    if (pud) {
2061        pmd_t * pmd = pmd_alloc(mm, pud, addr);
2062        if (pmd) {
2063            VM_BUG_ON(pmd_trans_huge(*pmd));
2064            return pte_alloc_map_lock(mm, pmd, addr, ptl);
2065        }
2066    }
2067    return NULL;
2068}
2069
2070/*
2071 * This is the old fallback for page remapping.
2072 *
2073 * For historical reasons, it only allows reserved pages. Only
2074 * old drivers should use this, and they needed to mark their
2075 * pages reserved for the old functions anyway.
2076 */
2077static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2078            struct page *page, pgprot_t prot)
2079{
2080    struct mm_struct *mm = vma->vm_mm;
2081    int retval;
2082    pte_t *pte;
2083    spinlock_t *ptl;
2084
2085    retval = -EINVAL;
2086    if (PageAnon(page))
2087        goto out;
2088    retval = -ENOMEM;
2089    flush_dcache_page(page);
2090    pte = get_locked_pte(mm, addr, &ptl);
2091    if (!pte)
2092        goto out;
2093    retval = -EBUSY;
2094    if (!pte_none(*pte))
2095        goto out_unlock;
2096
2097    /* Ok, finally just insert the thing.. */
2098    get_page(page);
2099    inc_mm_counter_fast(mm, MM_FILEPAGES);
2100    page_add_file_rmap(page);
2101    set_pte_at(mm, addr, pte, mk_pte(page, prot));
2102
2103    retval = 0;
2104    pte_unmap_unlock(pte, ptl);
2105    return retval;
2106out_unlock:
2107    pte_unmap_unlock(pte, ptl);
2108out:
2109    return retval;
2110}
2111
2112/**
2113 * vm_insert_page - insert single page into user vma
2114 * @vma: user vma to map to
2115 * @addr: target user address of this page
2116 * @page: source kernel page
2117 *
2118 * This allows drivers to insert individual pages they've allocated
2119 * into a user vma.
2120 *
2121 * The page has to be a nice clean _individual_ kernel allocation.
2122 * If you allocate a compound page, you need to have marked it as
2123 * such (__GFP_COMP), or manually just split the page up yourself
2124 * (see split_page()).
2125 *
2126 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2127 * took an arbitrary page protection parameter. This doesn't allow
2128 * that. Your vma protection will have to be set up correctly, which
2129 * means that if you want a shared writable mapping, you'd better
2130 * ask for a shared writable mapping!
2131 *
2132 * The page does not need to be reserved.
2133 *
2134 * Usually this function is called from f_op->mmap() handler
2135 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2136 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2137 * function from other places, for example from page-fault handler.
2138 */
2139int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2140            struct page *page)
2141{
2142    if (addr < vma->vm_start || addr >= vma->vm_end)
2143        return -EFAULT;
2144    if (!page_count(page))
2145        return -EINVAL;
2146    if (!(vma->vm_flags & VM_MIXEDMAP)) {
2147        BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2148        BUG_ON(vma->vm_flags & VM_PFNMAP);
2149        vma->vm_flags |= VM_MIXEDMAP;
2150    }
2151    return insert_page(vma, addr, page, vma->vm_page_prot);
2152}
2153EXPORT_SYMBOL(vm_insert_page);
2154
2155static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2156            unsigned long pfn, pgprot_t prot)
2157{
2158    struct mm_struct *mm = vma->vm_mm;
2159    int retval;
2160    pte_t *pte, entry;
2161    spinlock_t *ptl;
2162
2163    retval = -ENOMEM;
2164    pte = get_locked_pte(mm, addr, &ptl);
2165    if (!pte)
2166        goto out;
2167    retval = -EBUSY;
2168    if (!pte_none(*pte))
2169        goto out_unlock;
2170
2171    /* Ok, finally just insert the thing.. */
2172    entry = pte_mkspecial(pfn_pte(pfn, prot));
2173    set_pte_at(mm, addr, pte, entry);
2174    update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2175
2176    retval = 0;
2177out_unlock:
2178    pte_unmap_unlock(pte, ptl);
2179out:
2180    return retval;
2181}
2182
2183/**
2184 * vm_insert_pfn - insert single pfn into user vma
2185 * @vma: user vma to map to
2186 * @addr: target user address of this page
2187 * @pfn: source kernel pfn
2188 *
2189 * Similar to vm_insert_page, this allows drivers to insert individual pages
2190 * they've allocated into a user vma. Same comments apply.
2191 *
2192 * This function should only be called from a vm_ops->fault handler, and
2193 * in that case the handler should return NULL.
2194 *
2195 * vma cannot be a COW mapping.
2196 *
2197 * As this is called only for pages that do not currently exist, we
2198 * do not need to flush old virtual caches or the TLB.
2199 */
2200int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201            unsigned long pfn)
2202{
2203    int ret;
2204    pgprot_t pgprot = vma->vm_page_prot;
2205    /*
2206     * Technically, architectures with pte_special can avoid all these
2207     * restrictions (same for remap_pfn_range). However we would like
2208     * consistency in testing and feature parity among all, so we should
2209     * try to keep these invariants in place for everybody.
2210     */
2211    BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212    BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213                        (VM_PFNMAP|VM_MIXEDMAP));
2214    BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215    BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216
2217    if (addr < vma->vm_start || addr >= vma->vm_end)
2218        return -EFAULT;
2219    if (track_pfn_insert(vma, &pgprot, pfn))
2220        return -EINVAL;
2221
2222    ret = insert_pfn(vma, addr, pfn, pgprot);
2223
2224    return ret;
2225}
2226EXPORT_SYMBOL(vm_insert_pfn);
2227
2228int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2229            unsigned long pfn)
2230{
2231    BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2232
2233    if (addr < vma->vm_start || addr >= vma->vm_end)
2234        return -EFAULT;
2235
2236    /*
2237     * If we don't have pte special, then we have to use the pfn_valid()
2238     * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239     * refcount the page if pfn_valid is true (hence insert_page rather
2240     * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2241     * without pte special, it would there be refcounted as a normal page.
2242     */
2243    if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2244        struct page *page;
2245
2246        page = pfn_to_page(pfn);
2247        return insert_page(vma, addr, page, vma->vm_page_prot);
2248    }
2249    return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2250}
2251EXPORT_SYMBOL(vm_insert_mixed);
2252
2253/*
2254 * maps a range of physical memory into the requested pages. the old
2255 * mappings are removed. any references to nonexistent pages results
2256 * in null mappings (currently treated as "copy-on-access")
2257 */
2258static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2259            unsigned long addr, unsigned long end,
2260            unsigned long pfn, pgprot_t prot)
2261{
2262    pte_t *pte;
2263    spinlock_t *ptl;
2264
2265    pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2266    if (!pte)
2267        return -ENOMEM;
2268    arch_enter_lazy_mmu_mode();
2269    do {
2270        BUG_ON(!pte_none(*pte));
2271        set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2272        pfn++;
2273    } while (pte++, addr += PAGE_SIZE, addr != end);
2274    arch_leave_lazy_mmu_mode();
2275    pte_unmap_unlock(pte - 1, ptl);
2276    return 0;
2277}
2278
2279static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2280            unsigned long addr, unsigned long end,
2281            unsigned long pfn, pgprot_t prot)
2282{
2283    pmd_t *pmd;
2284    unsigned long next;
2285
2286    pfn -= addr >> PAGE_SHIFT;
2287    pmd = pmd_alloc(mm, pud, addr);
2288    if (!pmd)
2289        return -ENOMEM;
2290    VM_BUG_ON(pmd_trans_huge(*pmd));
2291    do {
2292        next = pmd_addr_end(addr, end);
2293        if (remap_pte_range(mm, pmd, addr, next,
2294                pfn + (addr >> PAGE_SHIFT), prot))
2295            return -ENOMEM;
2296    } while (pmd++, addr = next, addr != end);
2297    return 0;
2298}
2299
2300static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2301            unsigned long addr, unsigned long end,
2302            unsigned long pfn, pgprot_t prot)
2303{
2304    pud_t *pud;
2305    unsigned long next;
2306
2307    pfn -= addr >> PAGE_SHIFT;
2308    pud = pud_alloc(mm, pgd, addr);
2309    if (!pud)
2310        return -ENOMEM;
2311    do {
2312        next = pud_addr_end(addr, end);
2313        if (remap_pmd_range(mm, pud, addr, next,
2314                pfn + (addr >> PAGE_SHIFT), prot))
2315            return -ENOMEM;
2316    } while (pud++, addr = next, addr != end);
2317    return 0;
2318}
2319
2320/**
2321 * remap_pfn_range - remap kernel memory to userspace
2322 * @vma: user vma to map to
2323 * @addr: target user address to start at
2324 * @pfn: physical address of kernel memory
2325 * @size: size of map area
2326 * @prot: page protection flags for this mapping
2327 *
2328 * Note: this is only safe if the mm semaphore is held when called.
2329 */
2330int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2331            unsigned long pfn, unsigned long size, pgprot_t prot)
2332{
2333    pgd_t *pgd;
2334    unsigned long next;
2335    unsigned long end = addr + PAGE_ALIGN(size);
2336    struct mm_struct *mm = vma->vm_mm;
2337    int err;
2338
2339    /*
2340     * Physically remapped pages are special. Tell the
2341     * rest of the world about it:
2342     * VM_IO tells people not to look at these pages
2343     * (accesses can have side effects).
2344     * VM_PFNMAP tells the core MM that the base pages are just
2345     * raw PFN mappings, and do not have a "struct page" associated
2346     * with them.
2347     * VM_DONTEXPAND
2348     * Disable vma merging and expanding with mremap().
2349     * VM_DONTDUMP
2350     * Omit vma from core dump, even when VM_IO turned off.
2351     *
2352     * There's a horrible special case to handle copy-on-write
2353     * behaviour that some programs depend on. We mark the "original"
2354     * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2355     * See vm_normal_page() for details.
2356     */
2357    if (is_cow_mapping(vma->vm_flags)) {
2358        if (addr != vma->vm_start || end != vma->vm_end)
2359            return -EINVAL;
2360        vma->vm_pgoff = pfn;
2361    }
2362
2363    err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2364    if (err)
2365        return -EINVAL;
2366
2367    vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2368
2369    BUG_ON(addr >= end);
2370    pfn -= addr >> PAGE_SHIFT;
2371    pgd = pgd_offset(mm, addr);
2372    flush_cache_range(vma, addr, end);
2373    do {
2374        next = pgd_addr_end(addr, end);
2375        err = remap_pud_range(mm, pgd, addr, next,
2376                pfn + (addr >> PAGE_SHIFT), prot);
2377        if (err)
2378            break;
2379    } while (pgd++, addr = next, addr != end);
2380
2381    if (err)
2382        untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2383
2384    return err;
2385}
2386EXPORT_SYMBOL(remap_pfn_range);
2387
2388/**
2389 * vm_iomap_memory - remap memory to userspace
2390 * @vma: user vma to map to
2391 * @start: start of area
2392 * @len: size of area
2393 *
2394 * This is a simplified io_remap_pfn_range() for common driver use. The
2395 * driver just needs to give us the physical memory range to be mapped,
2396 * we'll figure out the rest from the vma information.
2397 *
2398 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2399 * whatever write-combining details or similar.
2400 */
2401int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2402{
2403    unsigned long vm_len, pfn, pages;
2404
2405    /* Check that the physical memory area passed in looks valid */
2406    if (start + len < start)
2407        return -EINVAL;
2408    /*
2409     * You *really* shouldn't map things that aren't page-aligned,
2410     * but we've historically allowed it because IO memory might
2411     * just have smaller alignment.
2412     */
2413    len += start & ~PAGE_MASK;
2414    pfn = start >> PAGE_SHIFT;
2415    pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2416    if (pfn + pages < pfn)
2417        return -EINVAL;
2418
2419    /* We start the mapping 'vm_pgoff' pages into the area */
2420    if (vma->vm_pgoff > pages)
2421        return -EINVAL;
2422    pfn += vma->vm_pgoff;
2423    pages -= vma->vm_pgoff;
2424
2425    /* Can we fit all of the mapping? */
2426    vm_len = vma->vm_end - vma->vm_start;
2427    if (vm_len >> PAGE_SHIFT > pages)
2428        return -EINVAL;
2429
2430    /* Ok, let it rip */
2431    return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2432}
2433EXPORT_SYMBOL(vm_iomap_memory);
2434
2435static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2436                     unsigned long addr, unsigned long end,
2437                     pte_fn_t fn, void *data)
2438{
2439    pte_t *pte;
2440    int err;
2441    pgtable_t token;
2442    spinlock_t *uninitialized_var(ptl);
2443
2444    pte = (mm == &init_mm) ?
2445        pte_alloc_kernel(pmd, addr) :
2446        pte_alloc_map_lock(mm, pmd, addr, &ptl);
2447    if (!pte)
2448        return -ENOMEM;
2449
2450    BUG_ON(pmd_huge(*pmd));
2451
2452    arch_enter_lazy_mmu_mode();
2453
2454    token = pmd_pgtable(*pmd);
2455
2456    do {
2457        err = fn(pte++, token, addr, data);
2458        if (err)
2459            break;
2460    } while (addr += PAGE_SIZE, addr != end);
2461
2462    arch_leave_lazy_mmu_mode();
2463
2464    if (mm != &init_mm)
2465        pte_unmap_unlock(pte-1, ptl);
2466    return err;
2467}
2468
2469static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2470                     unsigned long addr, unsigned long end,
2471                     pte_fn_t fn, void *data)
2472{
2473    pmd_t *pmd;
2474    unsigned long next;
2475    int err;
2476
2477    BUG_ON(pud_huge(*pud));
2478
2479    pmd = pmd_alloc(mm, pud, addr);
2480    if (!pmd)
2481        return -ENOMEM;
2482    do {
2483        next = pmd_addr_end(addr, end);
2484        err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2485        if (err)
2486            break;
2487    } while (pmd++, addr = next, addr != end);
2488    return err;
2489}
2490
2491static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2492                     unsigned long addr, unsigned long end,
2493                     pte_fn_t fn, void *data)
2494{
2495    pud_t *pud;
2496    unsigned long next;
2497    int err;
2498
2499    pud = pud_alloc(mm, pgd, addr);
2500    if (!pud)
2501        return -ENOMEM;
2502    do {
2503        next = pud_addr_end(addr, end);
2504        err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2505        if (err)
2506            break;
2507    } while (pud++, addr = next, addr != end);
2508    return err;
2509}
2510
2511/*
2512 * Scan a region of virtual memory, filling in page tables as necessary
2513 * and calling a provided function on each leaf page table.
2514 */
2515int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516            unsigned long size, pte_fn_t fn, void *data)
2517{
2518    pgd_t *pgd;
2519    unsigned long next;
2520    unsigned long end = addr + size;
2521    int err;
2522
2523    BUG_ON(addr >= end);
2524    pgd = pgd_offset(mm, addr);
2525    do {
2526        next = pgd_addr_end(addr, end);
2527        err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2528        if (err)
2529            break;
2530    } while (pgd++, addr = next, addr != end);
2531
2532    return err;
2533}
2534EXPORT_SYMBOL_GPL(apply_to_page_range);
2535
2536/*
2537 * handle_pte_fault chooses page fault handler according to an entry
2538 * which was read non-atomically. Before making any commitment, on
2539 * those architectures or configurations (e.g. i386 with PAE) which
2540 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2541 * must check under lock before unmapping the pte and proceeding
2542 * (but do_wp_page is only called after already making such a check;
2543 * and do_anonymous_page can safely check later on).
2544 */
2545static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2546                pte_t *page_table, pte_t orig_pte)
2547{
2548    int same = 1;
2549#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2550    if (sizeof(pte_t) > sizeof(unsigned long)) {
2551        spinlock_t *ptl = pte_lockptr(mm, pmd);
2552        spin_lock(ptl);
2553        same = pte_same(*page_table, orig_pte);
2554        spin_unlock(ptl);
2555    }
2556#endif
2557    pte_unmap(page_table);
2558    return same;
2559}
2560
2561static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2562{
2563    /*
2564     * If the source page was a PFN mapping, we don't have
2565     * a "struct page" for it. We do a best-effort copy by
2566     * just copying from the original user address. If that
2567     * fails, we just zero-fill it. Live with it.
2568     */
2569    if (unlikely(!src)) {
2570        void *kaddr = kmap_atomic(dst);
2571        void __user *uaddr = (void __user *)(va & PAGE_MASK);
2572
2573        /*
2574         * This really shouldn't fail, because the page is there
2575         * in the page tables. But it might just be unreadable,
2576         * in which case we just give up and fill the result with
2577         * zeroes.
2578         */
2579        if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2580            clear_page(kaddr);
2581        kunmap_atomic(kaddr);
2582        flush_dcache_page(dst);
2583    } else
2584        copy_user_highpage(dst, src, va, vma);
2585}
2586
2587/*
2588 * This routine handles present pages, when users try to write
2589 * to a shared page. It is done by copying the page to a new address
2590 * and decrementing the shared-page counter for the old page.
2591 *
2592 * Note that this routine assumes that the protection checks have been
2593 * done by the caller (the low-level page fault routine in most cases).
2594 * Thus we can safely just mark it writable once we've done any necessary
2595 * COW.
2596 *
2597 * We also mark the page dirty at this point even though the page will
2598 * change only once the write actually happens. This avoids a few races,
2599 * and potentially makes it more efficient.
2600 *
2601 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2602 * but allow concurrent faults), with pte both mapped and locked.
2603 * We return with mmap_sem still held, but pte unmapped and unlocked.
2604 */
2605static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2606        unsigned long address, pte_t *page_table, pmd_t *pmd,
2607        spinlock_t *ptl, pte_t orig_pte)
2608    __releases(ptl)
2609{
2610    struct page *old_page, *new_page = NULL;
2611    pte_t entry;
2612    int ret = 0;
2613    int page_mkwrite = 0;
2614    struct page *dirty_page = NULL;
2615    unsigned long mmun_start = 0; /* For mmu_notifiers */
2616    unsigned long mmun_end = 0; /* For mmu_notifiers */
2617
2618    old_page = vm_normal_page(vma, address, orig_pte);
2619    if (!old_page) {
2620        /*
2621         * VM_MIXEDMAP !pfn_valid() case
2622         *
2623         * We should not cow pages in a shared writeable mapping.
2624         * Just mark the pages writable as we can't do any dirty
2625         * accounting on raw pfn maps.
2626         */
2627        if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2628                     (VM_WRITE|VM_SHARED))
2629            goto reuse;
2630        goto gotten;
2631    }
2632
2633    /*
2634     * Take out anonymous pages first, anonymous shared vmas are
2635     * not dirty accountable.
2636     */
2637    if (PageAnon(old_page) && !PageKsm(old_page)) {
2638        if (!trylock_page(old_page)) {
2639            page_cache_get(old_page);
2640            pte_unmap_unlock(page_table, ptl);
2641            lock_page(old_page);
2642            page_table = pte_offset_map_lock(mm, pmd, address,
2643                             &ptl);
2644            if (!pte_same(*page_table, orig_pte)) {
2645                unlock_page(old_page);
2646                goto unlock;
2647            }
2648            page_cache_release(old_page);
2649        }
2650        if (reuse_swap_page(old_page)) {
2651            /*
2652             * The page is all ours. Move it to our anon_vma so
2653             * the rmap code will not search our parent or siblings.
2654             * Protected against the rmap code by the page lock.
2655             */
2656            page_move_anon_rmap(old_page, vma, address);
2657            unlock_page(old_page);
2658            goto reuse;
2659        }
2660        unlock_page(old_page);
2661    } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2662                    (VM_WRITE|VM_SHARED))) {
2663        /*
2664         * Only catch write-faults on shared writable pages,
2665         * read-only shared pages can get COWed by
2666         * get_user_pages(.write=1, .force=1).
2667         */
2668        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2669            struct vm_fault vmf;
2670            int tmp;
2671
2672            vmf.virtual_address = (void __user *)(address &
2673                                PAGE_MASK);
2674            vmf.pgoff = old_page->index;
2675            vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2676            vmf.page = old_page;
2677
2678            /*
2679             * Notify the address space that the page is about to
2680             * become writable so that it can prohibit this or wait
2681             * for the page to get into an appropriate state.
2682             *
2683             * We do this without the lock held, so that it can
2684             * sleep if it needs to.
2685             */
2686            page_cache_get(old_page);
2687            pte_unmap_unlock(page_table, ptl);
2688
2689            tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2690            if (unlikely(tmp &
2691                    (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692                ret = tmp;
2693                goto unwritable_page;
2694            }
2695            if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2696                lock_page(old_page);
2697                if (!old_page->mapping) {
2698                    ret = 0; /* retry the fault */
2699                    unlock_page(old_page);
2700                    goto unwritable_page;
2701                }
2702            } else
2703                VM_BUG_ON(!PageLocked(old_page));
2704
2705            /*
2706             * Since we dropped the lock we need to revalidate
2707             * the PTE as someone else may have changed it. If
2708             * they did, we just return, as we can count on the
2709             * MMU to tell us if they didn't also make it writable.
2710             */
2711            page_table = pte_offset_map_lock(mm, pmd, address,
2712                             &ptl);
2713            if (!pte_same(*page_table, orig_pte)) {
2714                unlock_page(old_page);
2715                goto unlock;
2716            }
2717
2718            page_mkwrite = 1;
2719        }
2720        dirty_page = old_page;
2721        get_page(dirty_page);
2722
2723reuse:
2724        flush_cache_page(vma, address, pte_pfn(orig_pte));
2725        entry = pte_mkyoung(orig_pte);
2726        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2727        if (ptep_set_access_flags(vma, address, page_table, entry,1))
2728            update_mmu_cache(vma, address, page_table);
2729        pte_unmap_unlock(page_table, ptl);
2730        ret |= VM_FAULT_WRITE;
2731
2732        if (!dirty_page)
2733            return ret;
2734
2735        /*
2736         * Yes, Virginia, this is actually required to prevent a race
2737         * with clear_page_dirty_for_io() from clearing the page dirty
2738         * bit after it clear all dirty ptes, but before a racing
2739         * do_wp_page installs a dirty pte.
2740         *
2741         * __do_fault is protected similarly.
2742         */
2743        if (!page_mkwrite) {
2744            wait_on_page_locked(dirty_page);
2745            set_page_dirty_balance(dirty_page, page_mkwrite);
2746            /* file_update_time outside page_lock */
2747            if (vma->vm_file)
2748                file_update_time(vma->vm_file);
2749        }
2750        put_page(dirty_page);
2751        if (page_mkwrite) {
2752            struct address_space *mapping = dirty_page->mapping;
2753
2754            set_page_dirty(dirty_page);
2755            unlock_page(dirty_page);
2756            page_cache_release(dirty_page);
2757            if (mapping) {
2758                /*
2759                 * Some device drivers do not set page.mapping
2760                 * but still dirty their pages
2761                 */
2762                balance_dirty_pages_ratelimited(mapping);
2763            }
2764        }
2765
2766        return ret;
2767    }
2768
2769    /*
2770     * Ok, we need to copy. Oh, well..
2771     */
2772    page_cache_get(old_page);
2773gotten:
2774    pte_unmap_unlock(page_table, ptl);
2775
2776    if (unlikely(anon_vma_prepare(vma)))
2777        goto oom;
2778
2779    if (is_zero_pfn(pte_pfn(orig_pte))) {
2780        new_page = alloc_zeroed_user_highpage_movable(vma, address);
2781        if (!new_page)
2782            goto oom;
2783    } else {
2784        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2785        if (!new_page)
2786            goto oom;
2787        cow_user_page(new_page, old_page, address, vma);
2788    }
2789    __SetPageUptodate(new_page);
2790
2791    if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2792        goto oom_free_new;
2793
2794    mmun_start = address & PAGE_MASK;
2795    mmun_end = mmun_start + PAGE_SIZE;
2796    mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2797
2798    /*
2799     * Re-check the pte - we dropped the lock
2800     */
2801    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2802    if (likely(pte_same(*page_table, orig_pte))) {
2803        if (old_page) {
2804            if (!PageAnon(old_page)) {
2805                dec_mm_counter_fast(mm, MM_FILEPAGES);
2806                inc_mm_counter_fast(mm, MM_ANONPAGES);
2807            }
2808        } else
2809            inc_mm_counter_fast(mm, MM_ANONPAGES);
2810        flush_cache_page(vma, address, pte_pfn(orig_pte));
2811        entry = mk_pte(new_page, vma->vm_page_prot);
2812        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2813        /*
2814         * Clear the pte entry and flush it first, before updating the
2815         * pte with the new entry. This will avoid a race condition
2816         * seen in the presence of one thread doing SMC and another
2817         * thread doing COW.
2818         */
2819        ptep_clear_flush(vma, address, page_table);
2820        page_add_new_anon_rmap(new_page, vma, address);
2821        /*
2822         * We call the notify macro here because, when using secondary
2823         * mmu page tables (such as kvm shadow page tables), we want the
2824         * new page to be mapped directly into the secondary page table.
2825         */
2826        set_pte_at_notify(mm, address, page_table, entry);
2827        update_mmu_cache(vma, address, page_table);
2828        if (old_page) {
2829            /*
2830             * Only after switching the pte to the new page may
2831             * we remove the mapcount here. Otherwise another
2832             * process may come and find the rmap count decremented
2833             * before the pte is switched to the new page, and
2834             * "reuse" the old page writing into it while our pte
2835             * here still points into it and can be read by other
2836             * threads.
2837             *
2838             * The critical issue is to order this
2839             * page_remove_rmap with the ptp_clear_flush above.
2840             * Those stores are ordered by (if nothing else,)
2841             * the barrier present in the atomic_add_negative
2842             * in page_remove_rmap.
2843             *
2844             * Then the TLB flush in ptep_clear_flush ensures that
2845             * no process can access the old page before the
2846             * decremented mapcount is visible. And the old page
2847             * cannot be reused until after the decremented
2848             * mapcount is visible. So transitively, TLBs to
2849             * old page will be flushed before it can be reused.
2850             */
2851            page_remove_rmap(old_page);
2852        }
2853
2854        /* Free the old page.. */
2855        new_page = old_page;
2856        ret |= VM_FAULT_WRITE;
2857    } else
2858        mem_cgroup_uncharge_page(new_page);
2859
2860    if (new_page)
2861        page_cache_release(new_page);
2862unlock:
2863    pte_unmap_unlock(page_table, ptl);
2864    if (mmun_end > mmun_start)
2865        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2866    if (old_page) {
2867        /*
2868         * Don't let another task, with possibly unlocked vma,
2869         * keep the mlocked page.
2870         */
2871        if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2872            lock_page(old_page); /* LRU manipulation */
2873            munlock_vma_page(old_page);
2874            unlock_page(old_page);
2875        }
2876        page_cache_release(old_page);
2877    }
2878    return ret;
2879oom_free_new:
2880    page_cache_release(new_page);
2881oom:
2882    if (old_page)
2883        page_cache_release(old_page);
2884    return VM_FAULT_OOM;
2885
2886unwritable_page:
2887    page_cache_release(old_page);
2888    return ret;
2889}
2890
2891static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2892        unsigned long start_addr, unsigned long end_addr,
2893        struct zap_details *details)
2894{
2895    zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2896}
2897
2898static inline void unmap_mapping_range_tree(struct rb_root *root,
2899                        struct zap_details *details)
2900{
2901    struct vm_area_struct *vma;
2902    pgoff_t vba, vea, zba, zea;
2903
2904    vma_interval_tree_foreach(vma, root,
2905            details->first_index, details->last_index) {
2906
2907        vba = vma->vm_pgoff;
2908        vea = vba + vma_pages(vma) - 1;
2909        /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2910        zba = details->first_index;
2911        if (zba < vba)
2912            zba = vba;
2913        zea = details->last_index;
2914        if (zea > vea)
2915            zea = vea;
2916
2917        unmap_mapping_range_vma(vma,
2918            ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2919            ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2920                details);
2921    }
2922}
2923
2924static inline void unmap_mapping_range_list(struct list_head *head,
2925                        struct zap_details *details)
2926{
2927    struct vm_area_struct *vma;
2928
2929    /*
2930     * In nonlinear VMAs there is no correspondence between virtual address
2931     * offset and file offset. So we must perform an exhaustive search
2932     * across *all* the pages in each nonlinear VMA, not just the pages
2933     * whose virtual address lies outside the file truncation point.
2934     */
2935    list_for_each_entry(vma, head, shared.nonlinear) {
2936        details->nonlinear_vma = vma;
2937        unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2938    }
2939}
2940
2941/**
2942 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2943 * @mapping: the address space containing mmaps to be unmapped.
2944 * @holebegin: byte in first page to unmap, relative to the start of
2945 * the underlying file. This will be rounded down to a PAGE_SIZE
2946 * boundary. Note that this is different from truncate_pagecache(), which
2947 * must keep the partial page. In contrast, we must get rid of
2948 * partial pages.
2949 * @holelen: size of prospective hole in bytes. This will be rounded
2950 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2951 * end of the file.
2952 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2953 * but 0 when invalidating pagecache, don't throw away private data.
2954 */
2955void unmap_mapping_range(struct address_space *mapping,
2956        loff_t const holebegin, loff_t const holelen, int even_cows)
2957{
2958    struct zap_details details;
2959    pgoff_t hba = holebegin >> PAGE_SHIFT;
2960    pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2961
2962    /* Check for overflow. */
2963    if (sizeof(holelen) > sizeof(hlen)) {
2964        long long holeend =
2965            (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2966        if (holeend & ~(long long)ULONG_MAX)
2967            hlen = ULONG_MAX - hba + 1;
2968    }
2969
2970    details.check_mapping = even_cows? NULL: mapping;
2971    details.nonlinear_vma = NULL;
2972    details.first_index = hba;
2973    details.last_index = hba + hlen - 1;
2974    if (details.last_index < details.first_index)
2975        details.last_index = ULONG_MAX;
2976
2977
2978    mutex_lock(&mapping->i_mmap_mutex);
2979    if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2980        unmap_mapping_range_tree(&mapping->i_mmap, &details);
2981    if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2982        unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2983    mutex_unlock(&mapping->i_mmap_mutex);
2984}
2985EXPORT_SYMBOL(unmap_mapping_range);
2986
2987/*
2988 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2989 * but allow concurrent faults), and pte mapped but not yet locked.
2990 * We return with mmap_sem still held, but pte unmapped and unlocked.
2991 */
2992static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2993        unsigned long address, pte_t *page_table, pmd_t *pmd,
2994        unsigned int flags, pte_t orig_pte)
2995{
2996    spinlock_t *ptl;
2997    struct page *page, *swapcache;
2998    swp_entry_t entry;
2999    pte_t pte;
3000    int locked;
3001    struct mem_cgroup *ptr;
3002    int exclusive = 0;
3003    int ret = 0;
3004
3005    if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3006        goto out;
3007
3008    entry = pte_to_swp_entry(orig_pte);
3009    if (unlikely(non_swap_entry(entry))) {
3010        if (is_migration_entry(entry)) {
3011            migration_entry_wait(mm, pmd, address);
3012        } else if (is_hwpoison_entry(entry)) {
3013            ret = VM_FAULT_HWPOISON;
3014        } else {
3015            print_bad_pte(vma, address, orig_pte, NULL);
3016            ret = VM_FAULT_SIGBUS;
3017        }
3018        goto out;
3019    }
3020    delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3021    page = lookup_swap_cache(entry);
3022    if (!page) {
3023        page = swapin_readahead(entry,
3024                    GFP_HIGHUSER_MOVABLE, vma, address);
3025        if (!page) {
3026            /*
3027             * Back out if somebody else faulted in this pte
3028             * while we released the pte lock.
3029             */
3030            page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3031            if (likely(pte_same(*page_table, orig_pte)))
3032                ret = VM_FAULT_OOM;
3033            delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3034            goto unlock;
3035        }
3036
3037        /* Had to read the page from swap area: Major fault */
3038        ret = VM_FAULT_MAJOR;
3039        count_vm_event(PGMAJFAULT);
3040        mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3041    } else if (PageHWPoison(page)) {
3042        /*
3043         * hwpoisoned dirty swapcache pages are kept for killing
3044         * owner processes (which may be unknown at hwpoison time)
3045         */
3046        ret = VM_FAULT_HWPOISON;
3047        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3048        swapcache = page;
3049        goto out_release;
3050    }
3051
3052    swapcache = page;
3053    locked = lock_page_or_retry(page, mm, flags);
3054
3055    delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3056    if (!locked) {
3057        ret |= VM_FAULT_RETRY;
3058        goto out_release;
3059    }
3060
3061    /*
3062     * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3063     * release the swapcache from under us. The page pin, and pte_same
3064     * test below, are not enough to exclude that. Even if it is still
3065     * swapcache, we need to check that the page's swap has not changed.
3066     */
3067    if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3068        goto out_page;
3069
3070    page = ksm_might_need_to_copy(page, vma, address);
3071    if (unlikely(!page)) {
3072        ret = VM_FAULT_OOM;
3073        page = swapcache;
3074        goto out_page;
3075    }
3076
3077    if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3078        ret = VM_FAULT_OOM;
3079        goto out_page;
3080    }
3081
3082    /*
3083     * Back out if somebody else already faulted in this pte.
3084     */
3085    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3086    if (unlikely(!pte_same(*page_table, orig_pte)))
3087        goto out_nomap;
3088
3089    if (unlikely(!PageUptodate(page))) {
3090        ret = VM_FAULT_SIGBUS;
3091        goto out_nomap;
3092    }
3093
3094    /*
3095     * The page isn't present yet, go ahead with the fault.
3096     *
3097     * Be careful about the sequence of operations here.
3098     * To get its accounting right, reuse_swap_page() must be called
3099     * while the page is counted on swap but not yet in mapcount i.e.
3100     * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3101     * must be called after the swap_free(), or it will never succeed.
3102     * Because delete_from_swap_page() may be called by reuse_swap_page(),
3103     * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3104     * in page->private. In this case, a record in swap_cgroup is silently
3105     * discarded at swap_free().
3106     */
3107
3108    inc_mm_counter_fast(mm, MM_ANONPAGES);
3109    dec_mm_counter_fast(mm, MM_SWAPENTS);
3110    pte = mk_pte(page, vma->vm_page_prot);
3111    if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3112        pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3113        flags &= ~FAULT_FLAG_WRITE;
3114        ret |= VM_FAULT_WRITE;
3115        exclusive = 1;
3116    }
3117    flush_icache_page(vma, page);
3118    if (pte_swp_soft_dirty(orig_pte))
3119        pte = pte_mksoft_dirty(pte);
3120    set_pte_at(mm, address, page_table, pte);
3121    if (page == swapcache)
3122        do_page_add_anon_rmap(page, vma, address, exclusive);
3123    else /* ksm created a completely new copy */
3124        page_add_new_anon_rmap(page, vma, address);
3125    /* It's better to call commit-charge after rmap is established */
3126    mem_cgroup_commit_charge_swapin(page, ptr);
3127
3128    swap_free(entry);
3129    if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3130        try_to_free_swap(page);
3131    unlock_page(page);
3132    if (page != swapcache) {
3133        /*
3134         * Hold the lock to avoid the swap entry to be reused
3135         * until we take the PT lock for the pte_same() check
3136         * (to avoid false positives from pte_same). For
3137         * further safety release the lock after the swap_free
3138         * so that the swap count won't change under a
3139         * parallel locked swapcache.
3140         */
3141        unlock_page(swapcache);
3142        page_cache_release(swapcache);
3143    }
3144
3145    if (flags & FAULT_FLAG_WRITE) {
3146        ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3147        if (ret & VM_FAULT_ERROR)
3148            ret &= VM_FAULT_ERROR;
3149        goto out;
3150    }
3151
3152    /* No need to invalidate - it was non-present before */
3153    update_mmu_cache(vma, address, page_table);
3154unlock:
3155    pte_unmap_unlock(page_table, ptl);
3156out:
3157    return ret;
3158out_nomap:
3159    mem_cgroup_cancel_charge_swapin(ptr);
3160    pte_unmap_unlock(page_table, ptl);
3161out_page:
3162    unlock_page(page);
3163out_release:
3164    page_cache_release(page);
3165    if (page != swapcache) {
3166        unlock_page(swapcache);
3167        page_cache_release(swapcache);
3168    }
3169    return ret;
3170}
3171
3172/*
3173 * This is like a special single-page "expand_{down|up}wards()",
3174 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3175 * doesn't hit another vma.
3176 */
3177static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3178{
3179    address &= PAGE_MASK;
3180    if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3181        struct vm_area_struct *prev = vma->vm_prev;
3182
3183        /*
3184         * Is there a mapping abutting this one below?
3185         *
3186         * That's only ok if it's the same stack mapping
3187         * that has gotten split..
3188         */
3189        if (prev && prev->vm_end == address)
3190            return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3191
3192        expand_downwards(vma, address - PAGE_SIZE);
3193    }
3194    if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3195        struct vm_area_struct *next = vma->vm_next;
3196
3197        /* As VM_GROWSDOWN but s/below/above/ */
3198        if (next && next->vm_start == address + PAGE_SIZE)
3199            return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3200
3201        expand_upwards(vma, address + PAGE_SIZE);
3202    }
3203    return 0;
3204}
3205
3206/*
3207 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3208 * but allow concurrent faults), and pte mapped but not yet locked.
3209 * We return with mmap_sem still held, but pte unmapped and unlocked.
3210 */
3211static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3212        unsigned long address, pte_t *page_table, pmd_t *pmd,
3213        unsigned int flags)
3214{
3215    struct page *page;
3216    spinlock_t *ptl;
3217    pte_t entry;
3218
3219    pte_unmap(page_table);
3220
3221    /* Check if we need to add a guard page to the stack */
3222    if (check_stack_guard_page(vma, address) < 0)
3223        return VM_FAULT_SIGBUS;
3224
3225    /* Use the zero-page for reads */
3226    if (!(flags & FAULT_FLAG_WRITE)) {
3227        entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3228                        vma->vm_page_prot));
3229        page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3230        if (!pte_none(*page_table))
3231            goto unlock;
3232        goto setpte;
3233    }
3234
3235    /* Allocate our own private page. */
3236    if (unlikely(anon_vma_prepare(vma)))
3237        goto oom;
3238    page = alloc_zeroed_user_highpage_movable(vma, address);
3239    if (!page)
3240        goto oom;
3241    /*
3242     * The memory barrier inside __SetPageUptodate makes sure that
3243     * preceeding stores to the page contents become visible before
3244     * the set_pte_at() write.
3245     */
3246    __SetPageUptodate(page);
3247
3248    if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3249        goto oom_free_page;
3250
3251    entry = mk_pte(page, vma->vm_page_prot);
3252    if (vma->vm_flags & VM_WRITE)
3253        entry = pte_mkwrite(pte_mkdirty(entry));
3254
3255    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3256    if (!pte_none(*page_table))
3257        goto release;
3258
3259    inc_mm_counter_fast(mm, MM_ANONPAGES);
3260    page_add_new_anon_rmap(page, vma, address);
3261setpte:
3262    set_pte_at(mm, address, page_table, entry);
3263
3264    /* No need to invalidate - it was non-present before */
3265    update_mmu_cache(vma, address, page_table);
3266unlock:
3267    pte_unmap_unlock(page_table, ptl);
3268    return 0;
3269release:
3270    mem_cgroup_uncharge_page(page);
3271    page_cache_release(page);
3272    goto unlock;
3273oom_free_page:
3274    page_cache_release(page);
3275oom:
3276    return VM_FAULT_OOM;
3277}
3278
3279/*
3280 * __do_fault() tries to create a new page mapping. It aggressively
3281 * tries to share with existing pages, but makes a separate copy if
3282 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3283 * the next page fault.
3284 *
3285 * As this is called only for pages that do not currently exist, we
3286 * do not need to flush old virtual caches or the TLB.
3287 *
3288 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3289 * but allow concurrent faults), and pte neither mapped nor locked.
3290 * We return with mmap_sem still held, but pte unmapped and unlocked.
3291 */
3292static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3293        unsigned long address, pmd_t *pmd,
3294        pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3295{
3296    pte_t *page_table;
3297    spinlock_t *ptl;
3298    struct page *page;
3299    struct page *cow_page;
3300    pte_t entry;
3301    int anon = 0;
3302    struct page *dirty_page = NULL;
3303    struct vm_fault vmf;
3304    int ret;
3305    int page_mkwrite = 0;
3306
3307    /*
3308     * If we do COW later, allocate page befor taking lock_page()
3309     * on the file cache page. This will reduce lock holding time.
3310     */
3311    if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3312
3313        if (unlikely(anon_vma_prepare(vma)))
3314            return VM_FAULT_OOM;
3315
3316        cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3317        if (!cow_page)
3318            return VM_FAULT_OOM;
3319
3320        if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3321            page_cache_release(cow_page);
3322            return VM_FAULT_OOM;
3323        }
3324    } else
3325        cow_page = NULL;
3326
3327    vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3328    vmf.pgoff = pgoff;
3329    vmf.flags = flags;
3330    vmf.page = NULL;
3331
3332    ret = vma->vm_ops->fault(vma, &vmf);
3333    if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3334                VM_FAULT_RETRY)))
3335        goto uncharge_out;
3336
3337    if (unlikely(PageHWPoison(vmf.page))) {
3338        if (ret & VM_FAULT_LOCKED)
3339            unlock_page(vmf.page);
3340        ret = VM_FAULT_HWPOISON;
3341        goto uncharge_out;
3342    }
3343
3344    /*
3345     * For consistency in subsequent calls, make the faulted page always
3346     * locked.
3347     */
3348    if (unlikely(!(ret & VM_FAULT_LOCKED)))
3349        lock_page(vmf.page);
3350    else
3351        VM_BUG_ON(!PageLocked(vmf.page));
3352
3353    /*
3354     * Should we do an early C-O-W break?
3355     */
3356    page = vmf.page;
3357    if (flags & FAULT_FLAG_WRITE) {
3358        if (!(vma->vm_flags & VM_SHARED)) {
3359            page = cow_page;
3360            anon = 1;
3361            copy_user_highpage(page, vmf.page, address, vma);
3362            __SetPageUptodate(page);
3363        } else {
3364            /*
3365             * If the page will be shareable, see if the backing
3366             * address space wants to know that the page is about
3367             * to become writable
3368             */
3369            if (vma->vm_ops->page_mkwrite) {
3370                int tmp;
3371
3372                unlock_page(page);
3373                vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3374                tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3375                if (unlikely(tmp &
3376                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3377                    ret = tmp;
3378                    goto unwritable_page;
3379                }
3380                if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3381                    lock_page(page);
3382                    if (!page->mapping) {
3383                        ret = 0; /* retry the fault */
3384                        unlock_page(page);
3385                        goto unwritable_page;
3386                    }
3387                } else
3388                    VM_BUG_ON(!PageLocked(page));
3389                page_mkwrite = 1;
3390            }
3391        }
3392
3393    }
3394
3395    page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3396
3397    /*
3398     * This silly early PAGE_DIRTY setting removes a race
3399     * due to the bad i386 page protection. But it's valid
3400     * for other architectures too.
3401     *
3402     * Note that if FAULT_FLAG_WRITE is set, we either now have
3403     * an exclusive copy of the page, or this is a shared mapping,
3404     * so we can make it writable and dirty to avoid having to
3405     * handle that later.
3406     */
3407    /* Only go through if we didn't race with anybody else... */
3408    if (likely(pte_same(*page_table, orig_pte))) {
3409        flush_icache_page(vma, page);
3410        entry = mk_pte(page, vma->vm_page_prot);
3411        if (flags & FAULT_FLAG_WRITE)
3412            entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3413        else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3414            pte_mksoft_dirty(entry);
3415        if (anon) {
3416            inc_mm_counter_fast(mm, MM_ANONPAGES);
3417            page_add_new_anon_rmap(page, vma, address);
3418        } else {
3419            inc_mm_counter_fast(mm, MM_FILEPAGES);
3420            page_add_file_rmap(page);
3421            if (flags & FAULT_FLAG_WRITE) {
3422                dirty_page = page;
3423                get_page(dirty_page);
3424            }
3425        }
3426        set_pte_at(mm, address, page_table, entry);
3427
3428        /* no need to invalidate: a not-present page won't be cached */
3429        update_mmu_cache(vma, address, page_table);
3430    } else {
3431        if (cow_page)
3432            mem_cgroup_uncharge_page(cow_page);
3433        if (anon)
3434            page_cache_release(page);
3435        else
3436            anon = 1; /* no anon but release faulted_page */
3437    }
3438
3439    pte_unmap_unlock(page_table, ptl);
3440
3441    if (dirty_page) {
3442        struct address_space *mapping = page->mapping;
3443        int dirtied = 0;
3444
3445        if (set_page_dirty(dirty_page))
3446            dirtied = 1;
3447        unlock_page(dirty_page);
3448        put_page(dirty_page);
3449        if ((dirtied || page_mkwrite) && mapping) {
3450            /*
3451             * Some device drivers do not set page.mapping but still
3452             * dirty their pages
3453             */
3454            balance_dirty_pages_ratelimited(mapping);
3455        }
3456
3457        /* file_update_time outside page_lock */
3458        if (vma->vm_file && !page_mkwrite)
3459            file_update_time(vma->vm_file);
3460    } else {
3461        unlock_page(vmf.page);
3462        if (anon)
3463            page_cache_release(vmf.page);
3464    }
3465
3466    return ret;
3467
3468unwritable_page:
3469    page_cache_release(page);
3470    return ret;
3471uncharge_out:
3472    /* fs's fault handler get error */
3473    if (cow_page) {
3474        mem_cgroup_uncharge_page(cow_page);
3475        page_cache_release(cow_page);
3476    }
3477    return ret;
3478}
3479
3480static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3481        unsigned long address, pte_t *page_table, pmd_t *pmd,
3482        unsigned int flags, pte_t orig_pte)
3483{
3484    pgoff_t pgoff = (((address & PAGE_MASK)
3485            - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3486
3487    pte_unmap(page_table);
3488    return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3489}
3490
3491/*
3492 * Fault of a previously existing named mapping. Repopulate the pte
3493 * from the encoded file_pte if possible. This enables swappable
3494 * nonlinear vmas.
3495 *
3496 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3497 * but allow concurrent faults), and pte mapped but not yet locked.
3498 * We return with mmap_sem still held, but pte unmapped and unlocked.
3499 */
3500static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3501        unsigned long address, pte_t *page_table, pmd_t *pmd,
3502        unsigned int flags, pte_t orig_pte)
3503{
3504    pgoff_t pgoff;
3505
3506    flags |= FAULT_FLAG_NONLINEAR;
3507
3508    if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3509        return 0;
3510
3511    if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3512        /*
3513         * Page table corrupted: show pte and kill process.
3514         */
3515        print_bad_pte(vma, address, orig_pte, NULL);
3516        return VM_FAULT_SIGBUS;
3517    }
3518
3519    pgoff = pte_to_pgoff(orig_pte);
3520    return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3521}
3522
3523int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3524                unsigned long addr, int page_nid)
3525{
3526    get_page(page);
3527
3528    count_vm_numa_event(NUMA_HINT_FAULTS);
3529    if (page_nid == numa_node_id())
3530        count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3531
3532    return mpol_misplaced(page, vma, addr);
3533}
3534
3535int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3536           unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3537{
3538    struct page *page = NULL;
3539    spinlock_t *ptl;
3540    int page_nid = -1;
3541    int target_nid;
3542    bool migrated = false;
3543
3544    /*
3545    * The "pte" at this point cannot be used safely without
3546    * validation through pte_unmap_same(). It's of NUMA type but
3547    * the pfn may be screwed if the read is non atomic.
3548    *
3549    * ptep_modify_prot_start is not called as this is clearing
3550    * the _PAGE_NUMA bit and it is not really expected that there
3551    * would be concurrent hardware modifications to the PTE.
3552    */
3553    ptl = pte_lockptr(mm, pmd);
3554    spin_lock(ptl);
3555    if (unlikely(!pte_same(*ptep, pte))) {
3556        pte_unmap_unlock(ptep, ptl);
3557        goto out;
3558    }
3559
3560    pte = pte_mknonnuma(pte);
3561    set_pte_at(mm, addr, ptep, pte);
3562    update_mmu_cache(vma, addr, ptep);
3563
3564    page = vm_normal_page(vma, addr, pte);
3565    if (!page) {
3566        pte_unmap_unlock(ptep, ptl);
3567        return 0;
3568    }
3569
3570    page_nid = page_to_nid(page);
3571    target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3572    pte_unmap_unlock(ptep, ptl);
3573    if (target_nid == -1) {
3574        put_page(page);
3575        goto out;
3576    }
3577
3578    /* Migrate to the requested node */
3579    migrated = migrate_misplaced_page(page, target_nid);
3580    if (migrated)
3581        page_nid = target_nid;
3582
3583out:
3584    if (page_nid != -1)
3585        task_numa_fault(page_nid, 1, migrated);
3586    return 0;
3587}
3588
3589/* NUMA hinting page fault entry point for regular pmds */
3590#ifdef CONFIG_NUMA_BALANCING
3591static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3592             unsigned long addr, pmd_t *pmdp)
3593{
3594    pmd_t pmd;
3595    pte_t *pte, *orig_pte;
3596    unsigned long _addr = addr & PMD_MASK;
3597    unsigned long offset;
3598    spinlock_t *ptl;
3599    bool numa = false;
3600
3601    spin_lock(&mm->page_table_lock);
3602    pmd = *pmdp;
3603    if (pmd_numa(pmd)) {
3604        set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3605        numa = true;
3606    }
3607    spin_unlock(&mm->page_table_lock);
3608
3609    if (!numa)
3610        return 0;
3611
3612    /* we're in a page fault so some vma must be in the range */
3613    BUG_ON(!vma);
3614    BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3615    offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3616    VM_BUG_ON(offset >= PMD_SIZE);
3617    orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3618    pte += offset >> PAGE_SHIFT;
3619    for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3620        pte_t pteval = *pte;
3621        struct page *page;
3622        int page_nid = -1;
3623        int target_nid;
3624        bool migrated = false;
3625
3626        if (!pte_present(pteval))
3627            continue;
3628        if (!pte_numa(pteval))
3629            continue;
3630        if (addr >= vma->vm_end) {
3631            vma = find_vma(mm, addr);
3632            /* there's a pte present so there must be a vma */
3633            BUG_ON(!vma);
3634            BUG_ON(addr < vma->vm_start);
3635        }
3636        if (pte_numa(pteval)) {
3637            pteval = pte_mknonnuma(pteval);
3638            set_pte_at(mm, addr, pte, pteval);
3639        }
3640        page = vm_normal_page(vma, addr, pteval);
3641        if (unlikely(!page))
3642            continue;
3643        /* only check non-shared pages */
3644        if (unlikely(page_mapcount(page) != 1))
3645            continue;
3646
3647        page_nid = page_to_nid(page);
3648        target_nid = numa_migrate_prep(page, vma, addr, page_nid);
3649        pte_unmap_unlock(pte, ptl);
3650        if (target_nid != -1) {
3651            migrated = migrate_misplaced_page(page, target_nid);
3652            if (migrated)
3653                page_nid = target_nid;
3654        } else {
3655            put_page(page);
3656        }
3657
3658        if (page_nid != -1)
3659            task_numa_fault(page_nid, 1, migrated);
3660
3661        pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3662    }
3663    pte_unmap_unlock(orig_pte, ptl);
3664
3665    return 0;
3666}
3667#else
3668static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3669             unsigned long addr, pmd_t *pmdp)
3670{
3671    BUG();
3672    return 0;
3673}
3674#endif /* CONFIG_NUMA_BALANCING */
3675
3676/*
3677 * These routines also need to handle stuff like marking pages dirty
3678 * and/or accessed for architectures that don't do it in hardware (most
3679 * RISC architectures). The early dirtying is also good on the i386.
3680 *
3681 * There is also a hook called "update_mmu_cache()" that architectures
3682 * with external mmu caches can use to update those (ie the Sparc or
3683 * PowerPC hashed page tables that act as extended TLBs).
3684 *
3685 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3686 * but allow concurrent faults), and pte mapped but not yet locked.
3687 * We return with mmap_sem still held, but pte unmapped and unlocked.
3688 */
3689static int handle_pte_fault(struct mm_struct *mm,
3690             struct vm_area_struct *vma, unsigned long address,
3691             pte_t *pte, pmd_t *pmd, unsigned int flags)
3692{
3693    pte_t entry;
3694    spinlock_t *ptl;
3695
3696    entry = *pte;
3697    if (!pte_present(entry)) {
3698        if (pte_none(entry)) {
3699            if (vma->vm_ops) {
3700                if (likely(vma->vm_ops->fault))
3701                    return do_linear_fault(mm, vma, address,
3702                        pte, pmd, flags, entry);
3703            }
3704            return do_anonymous_page(mm, vma, address,
3705                         pte, pmd, flags);
3706        }
3707        if (pte_file(entry))
3708            return do_nonlinear_fault(mm, vma, address,
3709                    pte, pmd, flags, entry);
3710        return do_swap_page(mm, vma, address,
3711                    pte, pmd, flags, entry);
3712    }
3713
3714    if (pte_numa(entry))
3715        return do_numa_page(mm, vma, address, entry, pte, pmd);
3716
3717    ptl = pte_lockptr(mm, pmd);
3718    spin_lock(ptl);
3719    if (unlikely(!pte_same(*pte, entry)))
3720        goto unlock;
3721    if (flags & FAULT_FLAG_WRITE) {
3722        if (!pte_write(entry))
3723            return do_wp_page(mm, vma, address,
3724                    pte, pmd, ptl, entry);
3725        entry = pte_mkdirty(entry);
3726    }
3727    entry = pte_mkyoung(entry);
3728    if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3729        update_mmu_cache(vma, address, pte);
3730    } else {
3731        /*
3732         * This is needed only for protection faults but the arch code
3733         * is not yet telling us if this is a protection fault or not.
3734         * This still avoids useless tlb flushes for .text page faults
3735         * with threads.
3736         */
3737        if (flags & FAULT_FLAG_WRITE)
3738            flush_tlb_fix_spurious_fault(vma, address);
3739    }
3740unlock:
3741    pte_unmap_unlock(pte, ptl);
3742    return 0;
3743}
3744
3745/*
3746 * By the time we get here, we already hold the mm semaphore
3747 */
3748static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3749                 unsigned long address, unsigned int flags)
3750{
3751    pgd_t *pgd;
3752    pud_t *pud;
3753    pmd_t *pmd;
3754    pte_t *pte;
3755
3756    if (unlikely(is_vm_hugetlb_page(vma)))
3757        return hugetlb_fault(mm, vma, address, flags);
3758
3759retry:
3760    pgd = pgd_offset(mm, address);
3761    pud = pud_alloc(mm, pgd, address);
3762    if (!pud)
3763        return VM_FAULT_OOM;
3764    pmd = pmd_alloc(mm, pud, address);
3765    if (!pmd)
3766        return VM_FAULT_OOM;
3767    if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3768        int ret = VM_FAULT_FALLBACK;
3769        if (!vma->vm_ops)
3770            ret = do_huge_pmd_anonymous_page(mm, vma, address,
3771                    pmd, flags);
3772        if (!(ret & VM_FAULT_FALLBACK))
3773            return ret;
3774    } else {
3775        pmd_t orig_pmd = *pmd;
3776        int ret;
3777
3778        barrier();
3779        if (pmd_trans_huge(orig_pmd)) {
3780            unsigned int dirty = flags & FAULT_FLAG_WRITE;
3781
3782            /*
3783             * If the pmd is splitting, return and retry the
3784             * the fault. Alternative: wait until the split
3785             * is done, and goto retry.
3786             */
3787            if (pmd_trans_splitting(orig_pmd))
3788                return 0;
3789
3790            if (pmd_numa(orig_pmd))
3791                return do_huge_pmd_numa_page(mm, vma, address,
3792                                 orig_pmd, pmd);
3793
3794            if (dirty && !pmd_write(orig_pmd)) {
3795                ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3796                              orig_pmd);
3797                /*
3798                 * If COW results in an oom, the huge pmd will
3799                 * have been split, so retry the fault on the
3800                 * pte for a smaller charge.
3801                 */
3802                if (unlikely(ret & VM_FAULT_OOM))
3803                    goto retry;
3804                return ret;
3805            } else {
3806                huge_pmd_set_accessed(mm, vma, address, pmd,
3807                              orig_pmd, dirty);
3808            }
3809
3810            return 0;
3811        }
3812    }
3813
3814    if (pmd_numa(*pmd))
3815        return do_pmd_numa_page(mm, vma, address, pmd);
3816
3817    /*
3818     * Use __pte_alloc instead of pte_alloc_map, because we can't
3819     * run pte_offset_map on the pmd, if an huge pmd could
3820     * materialize from under us from a different thread.
3821     */
3822    if (unlikely(pmd_none(*pmd)) &&
3823        unlikely(__pte_alloc(mm, vma, pmd, address)))
3824        return VM_FAULT_OOM;
3825    /* if an huge pmd materialized from under us just retry later */
3826    if (unlikely(pmd_trans_huge(*pmd)))
3827        return 0;
3828    /*
3829     * A regular pmd is established and it can't morph into a huge pmd
3830     * from under us anymore at this point because we hold the mmap_sem
3831     * read mode and khugepaged takes it in write mode. So now it's
3832     * safe to run pte_offset_map().
3833     */
3834    pte = pte_offset_map(pmd, address);
3835
3836    return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3837}
3838
3839int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3840            unsigned long address, unsigned int flags)
3841{
3842    int ret;
3843
3844    __set_current_state(TASK_RUNNING);
3845
3846    count_vm_event(PGFAULT);
3847    mem_cgroup_count_vm_event(mm, PGFAULT);
3848
3849    /* do counter updates before entering really critical section. */
3850    check_sync_rss_stat(current);
3851
3852    /*
3853     * Enable the memcg OOM handling for faults triggered in user
3854     * space. Kernel faults are handled more gracefully.
3855     */
3856    if (flags & FAULT_FLAG_USER)
3857        mem_cgroup_oom_enable();
3858
3859    ret = __handle_mm_fault(mm, vma, address, flags);
3860
3861    if (flags & FAULT_FLAG_USER) {
3862        mem_cgroup_oom_disable();
3863                /*
3864                 * The task may have entered a memcg OOM situation but
3865                 * if the allocation error was handled gracefully (no
3866                 * VM_FAULT_OOM), there is no need to kill anything.
3867                 * Just clean up the OOM state peacefully.
3868                 */
3869                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3870                        mem_cgroup_oom_synchronize(false);
3871    }
3872
3873    return ret;
3874}
3875
3876#ifndef __PAGETABLE_PUD_FOLDED
3877/*
3878 * Allocate page upper directory.
3879 * We've already handled the fast-path in-line.
3880 */
3881int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3882{
3883    pud_t *new = pud_alloc_one(mm, address);
3884    if (!new)
3885        return -ENOMEM;
3886
3887    smp_wmb(); /* See comment in __pte_alloc */
3888
3889    spin_lock(&mm->page_table_lock);
3890    if (pgd_present(*pgd)) /* Another has populated it */
3891        pud_free(mm, new);
3892    else
3893        pgd_populate(mm, pgd, new);
3894    spin_unlock(&mm->page_table_lock);
3895    return 0;
3896}
3897#endif /* __PAGETABLE_PUD_FOLDED */
3898
3899#ifndef __PAGETABLE_PMD_FOLDED
3900/*
3901 * Allocate page middle directory.
3902 * We've already handled the fast-path in-line.
3903 */
3904int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3905{
3906    pmd_t *new = pmd_alloc_one(mm, address);
3907    if (!new)
3908        return -ENOMEM;
3909
3910    smp_wmb(); /* See comment in __pte_alloc */
3911
3912    spin_lock(&mm->page_table_lock);
3913#ifndef __ARCH_HAS_4LEVEL_HACK
3914    if (pud_present(*pud)) /* Another has populated it */
3915        pmd_free(mm, new);
3916    else
3917        pud_populate(mm, pud, new);
3918#else
3919    if (pgd_present(*pud)) /* Another has populated it */
3920        pmd_free(mm, new);
3921    else
3922        pgd_populate(mm, pud, new);
3923#endif /* __ARCH_HAS_4LEVEL_HACK */
3924    spin_unlock(&mm->page_table_lock);
3925    return 0;
3926}
3927#endif /* __PAGETABLE_PMD_FOLDED */
3928
3929#if !defined(__HAVE_ARCH_GATE_AREA)
3930
3931#if defined(AT_SYSINFO_EHDR)
3932static struct vm_area_struct gate_vma;
3933
3934static int __init gate_vma_init(void)
3935{
3936    gate_vma.vm_mm = NULL;
3937    gate_vma.vm_start = FIXADDR_USER_START;
3938    gate_vma.vm_end = FIXADDR_USER_END;
3939    gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3940    gate_vma.vm_page_prot = __P101;
3941
3942    return 0;
3943}
3944__initcall(gate_vma_init);
3945#endif
3946
3947struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3948{
3949#ifdef AT_SYSINFO_EHDR
3950    return &gate_vma;
3951#else
3952    return NULL;
3953#endif
3954}
3955
3956int in_gate_area_no_mm(unsigned long addr)
3957{
3958#ifdef AT_SYSINFO_EHDR
3959    if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3960        return 1;
3961#endif
3962    return 0;
3963}
3964
3965#endif /* __HAVE_ARCH_GATE_AREA */
3966
3967static int __follow_pte(struct mm_struct *mm, unsigned long address,
3968        pte_t **ptepp, spinlock_t **ptlp)
3969{
3970    pgd_t *pgd;
3971    pud_t *pud;
3972    pmd_t *pmd;
3973    pte_t *ptep;
3974
3975    pgd = pgd_offset(mm, address);
3976    if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3977        goto out;
3978
3979    pud = pud_offset(pgd, address);
3980    if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3981        goto out;
3982
3983    pmd = pmd_offset(pud, address);
3984    VM_BUG_ON(pmd_trans_huge(*pmd));
3985    if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3986        goto out;
3987
3988    /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3989    if (pmd_huge(*pmd))
3990        goto out;
3991
3992    ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3993    if (!ptep)
3994        goto out;
3995    if (!pte_present(*ptep))
3996        goto unlock;
3997    *ptepp = ptep;
3998    return 0;
3999unlock:
4000    pte_unmap_unlock(ptep, *ptlp);
4001out:
4002    return -EINVAL;
4003}
4004
4005static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4006                 pte_t **ptepp, spinlock_t **ptlp)
4007{
4008    int res;
4009
4010    /* (void) is needed to make gcc happy */
4011    (void) __cond_lock(*ptlp,
4012               !(res = __follow_pte(mm, address, ptepp, ptlp)));
4013    return res;
4014}
4015
4016/**
4017 * follow_pfn - look up PFN at a user virtual address
4018 * @vma: memory mapping
4019 * @address: user virtual address
4020 * @pfn: location to store found PFN
4021 *
4022 * Only IO mappings and raw PFN mappings are allowed.
4023 *
4024 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4025 */
4026int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4027    unsigned long *pfn)
4028{
4029    int ret = -EINVAL;
4030    spinlock_t *ptl;
4031    pte_t *ptep;
4032
4033    if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4034        return ret;
4035
4036    ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4037    if (ret)
4038        return ret;
4039    *pfn = pte_pfn(*ptep);
4040    pte_unmap_unlock(ptep, ptl);
4041    return 0;
4042}
4043EXPORT_SYMBOL(follow_pfn);
4044
4045#ifdef CONFIG_HAVE_IOREMAP_PROT
4046int follow_phys(struct vm_area_struct *vma,
4047        unsigned long address, unsigned int flags,
4048        unsigned long *prot, resource_size_t *phys)
4049{
4050    int ret = -EINVAL;
4051    pte_t *ptep, pte;
4052    spinlock_t *ptl;
4053
4054    if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4055        goto out;
4056
4057    if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4058        goto out;
4059    pte = *ptep;
4060
4061    if ((flags & FOLL_WRITE) && !pte_write(pte))
4062        goto unlock;
4063
4064    *prot = pgprot_val(pte_pgprot(pte));
4065    *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4066
4067    ret = 0;
4068unlock:
4069    pte_unmap_unlock(ptep, ptl);
4070out:
4071    return ret;
4072}
4073
4074int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4075            void *buf, int len, int write)
4076{
4077    resource_size_t phys_addr;
4078    unsigned long prot = 0;
4079    void __iomem *maddr;
4080    int offset = addr & (PAGE_SIZE-1);
4081
4082    if (follow_phys(vma, addr, write, &prot, &phys_addr))
4083        return -EINVAL;
4084
4085    maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4086    if (write)
4087        memcpy_toio(maddr + offset, buf, len);
4088    else
4089        memcpy_fromio(buf, maddr + offset, len);
4090    iounmap(maddr);
4091
4092    return len;
4093}
4094EXPORT_SYMBOL_GPL(generic_access_phys);
4095#endif
4096
4097/*
4098 * Access another process' address space as given in mm. If non-NULL, use the
4099 * given task for page fault accounting.
4100 */
4101static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4102        unsigned long addr, void *buf, int len, int write)
4103{
4104    struct vm_area_struct *vma;
4105    void *old_buf = buf;
4106
4107    down_read(&mm->mmap_sem);
4108    /* ignore errors, just check how much was successfully transferred */
4109    while (len) {
4110        int bytes, ret, offset;
4111        void *maddr;
4112        struct page *page = NULL;
4113
4114        ret = get_user_pages(tsk, mm, addr, 1,
4115                write, 1, &page, &vma);
4116        if (ret <= 0) {
4117            /*
4118             * Check if this is a VM_IO | VM_PFNMAP VMA, which
4119             * we can access using slightly different code.
4120             */
4121#ifdef CONFIG_HAVE_IOREMAP_PROT
4122            vma = find_vma(mm, addr);
4123            if (!vma || vma->vm_start > addr)
4124                break;
4125            if (vma->vm_ops && vma->vm_ops->access)
4126                ret = vma->vm_ops->access(vma, addr, buf,
4127                              len, write);
4128            if (ret <= 0)
4129#endif
4130                break;
4131            bytes = ret;
4132        } else {
4133            bytes = len;
4134            offset = addr & (PAGE_SIZE-1);
4135            if (bytes > PAGE_SIZE-offset)
4136                bytes = PAGE_SIZE-offset;
4137
4138            maddr = kmap(page);
4139            if (write) {
4140                copy_to_user_page(vma, page, addr,
4141                          maddr + offset, buf, bytes);
4142                set_page_dirty_lock(page);
4143            } else {
4144                copy_from_user_page(vma, page, addr,
4145                            buf, maddr + offset, bytes);
4146            }
4147            kunmap(page);
4148            page_cache_release(page);
4149        }
4150        len -= bytes;
4151        buf += bytes;
4152        addr += bytes;
4153    }
4154    up_read(&mm->mmap_sem);
4155
4156    return buf - old_buf;
4157}
4158
4159/**
4160 * access_remote_vm - access another process' address space
4161 * @mm: the mm_struct of the target address space
4162 * @addr: start address to access
4163 * @buf: source or destination buffer
4164 * @len: number of bytes to transfer
4165 * @write: whether the access is a write
4166 *
4167 * The caller must hold a reference on @mm.
4168 */
4169int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4170        void *buf, int len, int write)
4171{
4172    return __access_remote_vm(NULL, mm, addr, buf, len, write);
4173}
4174
4175/*
4176 * Access another process' address space.
4177 * Source/target buffer must be kernel space,
4178 * Do not walk the page table directly, use get_user_pages
4179 */
4180int access_process_vm(struct task_struct *tsk, unsigned long addr,
4181        void *buf, int len, int write)
4182{
4183    struct mm_struct *mm;
4184    int ret;
4185
4186    mm = get_task_mm(tsk);
4187    if (!mm)
4188        return 0;
4189
4190    ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4191    mmput(mm);
4192
4193    return ret;
4194}
4195
4196/*
4197 * Print the name of a VMA.
4198 */
4199void print_vma_addr(char *prefix, unsigned long ip)
4200{
4201    struct mm_struct *mm = current->mm;
4202    struct vm_area_struct *vma;
4203
4204    /*
4205     * Do not print if we are in atomic
4206     * contexts (in exception stacks, etc.):
4207     */
4208    if (preempt_count())
4209        return;
4210
4211    down_read(&mm->mmap_sem);
4212    vma = find_vma(mm, ip);
4213    if (vma && vma->vm_file) {
4214        struct file *f = vma->vm_file;
4215        char *buf = (char *)__get_free_page(GFP_KERNEL);
4216        if (buf) {
4217            char *p;
4218
4219            p = d_path(&f->f_path, buf, PAGE_SIZE);
4220            if (IS_ERR(p))
4221                p = "?";
4222            printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4223                    vma->vm_start,
4224                    vma->vm_end - vma->vm_start);
4225            free_page((unsigned long)buf);
4226        }
4227    }
4228    up_read(&mm->mmap_sem);
4229}
4230
4231#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4232void might_fault(void)
4233{
4234    /*
4235     * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4236     * holding the mmap_sem, this is safe because kernel memory doesn't
4237     * get paged out, therefore we'll never actually fault, and the
4238     * below annotations will generate false positives.
4239     */
4240    if (segment_eq(get_fs(), KERNEL_DS))
4241        return;
4242
4243    /*
4244     * it would be nicer only to annotate paths which are not under
4245     * pagefault_disable, however that requires a larger audit and
4246     * providing helpers like get_user_atomic.
4247     */
4248    if (in_atomic())
4249        return;
4250
4251    __might_sleep(__FILE__, __LINE__, 0);
4252
4253    if (current->mm)
4254        might_lock_read(&current->mm->mmap_sem);
4255}
4256EXPORT_SYMBOL(might_fault);
4257#endif
4258
4259#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4260static void clear_gigantic_page(struct page *page,
4261                unsigned long addr,
4262                unsigned int pages_per_huge_page)
4263{
4264    int i;
4265    struct page *p = page;
4266
4267    might_sleep();
4268    for (i = 0; i < pages_per_huge_page;
4269         i++, p = mem_map_next(p, page, i)) {
4270        cond_resched();
4271        clear_user_highpage(p, addr + i * PAGE_SIZE);
4272    }
4273}
4274void clear_huge_page(struct page *page,
4275             unsigned long addr, unsigned int pages_per_huge_page)
4276{
4277    int i;
4278
4279    if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4280        clear_gigantic_page(page, addr, pages_per_huge_page);
4281        return;
4282    }
4283
4284    might_sleep();
4285    for (i = 0; i < pages_per_huge_page; i++) {
4286        cond_resched();
4287        clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4288    }
4289}
4290
4291static void copy_user_gigantic_page(struct page *dst, struct page *src,
4292                    unsigned long addr,
4293                    struct vm_area_struct *vma,
4294                    unsigned int pages_per_huge_page)
4295{
4296    int i;
4297    struct page *dst_base = dst;
4298    struct page *src_base = src;
4299
4300    for (i = 0; i < pages_per_huge_page; ) {
4301        cond_resched();
4302        copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4303
4304        i++;
4305        dst = mem_map_next(dst, dst_base, i);
4306        src = mem_map_next(src, src_base, i);
4307    }
4308}
4309
4310void copy_user_huge_page(struct page *dst, struct page *src,
4311             unsigned long addr, struct vm_area_struct *vma,
4312             unsigned int pages_per_huge_page)
4313{
4314    int i;
4315
4316    if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4317        copy_user_gigantic_page(dst, src, addr, vma,
4318                    pages_per_huge_page);
4319        return;
4320    }
4321
4322    might_sleep();
4323    for (i = 0; i < pages_per_huge_page; i++) {
4324        cond_resched();
4325        copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4326    }
4327}
4328#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4329

Archive Download this file



interactive