Root/
1 | /* |
2 | * Simple NUMA memory policy for the Linux kernel. |
3 | * |
4 | * Copyright 2003,2004 Andi Kleen, SuSE Labs. |
5 | * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc. |
6 | * Subject to the GNU Public License, version 2. |
7 | * |
8 | * NUMA policy allows the user to give hints in which node(s) memory should |
9 | * be allocated. |
10 | * |
11 | * Support four policies per VMA and per process: |
12 | * |
13 | * The VMA policy has priority over the process policy for a page fault. |
14 | * |
15 | * interleave Allocate memory interleaved over a set of nodes, |
16 | * with normal fallback if it fails. |
17 | * For VMA based allocations this interleaves based on the |
18 | * offset into the backing object or offset into the mapping |
19 | * for anonymous memory. For process policy an process counter |
20 | * is used. |
21 | * |
22 | * bind Only allocate memory on a specific set of nodes, |
23 | * no fallback. |
24 | * FIXME: memory is allocated starting with the first node |
25 | * to the last. It would be better if bind would truly restrict |
26 | * the allocation to memory nodes instead |
27 | * |
28 | * preferred Try a specific node first before normal fallback. |
29 | * As a special case NUMA_NO_NODE here means do the allocation |
30 | * on the local CPU. This is normally identical to default, |
31 | * but useful to set in a VMA when you have a non default |
32 | * process policy. |
33 | * |
34 | * default Allocate on the local node first, or when on a VMA |
35 | * use the process policy. This is what Linux always did |
36 | * in a NUMA aware kernel and still does by, ahem, default. |
37 | * |
38 | * The process policy is applied for most non interrupt memory allocations |
39 | * in that process' context. Interrupts ignore the policies and always |
40 | * try to allocate on the local CPU. The VMA policy is only applied for memory |
41 | * allocations for a VMA in the VM. |
42 | * |
43 | * Currently there are a few corner cases in swapping where the policy |
44 | * is not applied, but the majority should be handled. When process policy |
45 | * is used it is not remembered over swap outs/swap ins. |
46 | * |
47 | * Only the highest zone in the zone hierarchy gets policied. Allocations |
48 | * requesting a lower zone just use default policy. This implies that |
49 | * on systems with highmem kernel lowmem allocation don't get policied. |
50 | * Same with GFP_DMA allocations. |
51 | * |
52 | * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between |
53 | * all users and remembered even when nobody has memory mapped. |
54 | */ |
55 | |
56 | /* Notebook: |
57 | fix mmap readahead to honour policy and enable policy for any page cache |
58 | object |
59 | statistics for bigpages |
60 | global policy for page cache? currently it uses process policy. Requires |
61 | first item above. |
62 | handle mremap for shared memory (currently ignored for the policy) |
63 | grows down? |
64 | make bind policy root only? It can trigger oom much faster and the |
65 | kernel is not always grateful with that. |
66 | */ |
67 | |
68 | #include <linux/mempolicy.h> |
69 | #include <linux/mm.h> |
70 | #include <linux/highmem.h> |
71 | #include <linux/hugetlb.h> |
72 | #include <linux/kernel.h> |
73 | #include <linux/sched.h> |
74 | #include <linux/nodemask.h> |
75 | #include <linux/cpuset.h> |
76 | #include <linux/slab.h> |
77 | #include <linux/string.h> |
78 | #include <linux/export.h> |
79 | #include <linux/nsproxy.h> |
80 | #include <linux/interrupt.h> |
81 | #include <linux/init.h> |
82 | #include <linux/compat.h> |
83 | #include <linux/swap.h> |
84 | #include <linux/seq_file.h> |
85 | #include <linux/proc_fs.h> |
86 | #include <linux/migrate.h> |
87 | #include <linux/ksm.h> |
88 | #include <linux/rmap.h> |
89 | #include <linux/security.h> |
90 | #include <linux/syscalls.h> |
91 | #include <linux/ctype.h> |
92 | #include <linux/mm_inline.h> |
93 | #include <linux/mmu_notifier.h> |
94 | |
95 | #include <asm/tlbflush.h> |
96 | #include <asm/uaccess.h> |
97 | #include <linux/random.h> |
98 | |
99 | #include "internal.h" |
100 | |
101 | /* Internal flags */ |
102 | #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ |
103 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ |
104 | |
105 | static struct kmem_cache *policy_cache; |
106 | static struct kmem_cache *sn_cache; |
107 | |
108 | /* Highest zone. An specific allocation for a zone below that is not |
109 | policied. */ |
110 | enum zone_type policy_zone = 0; |
111 | |
112 | /* |
113 | * run-time system-wide default policy => local allocation |
114 | */ |
115 | static struct mempolicy default_policy = { |
116 | .refcnt = ATOMIC_INIT(1), /* never free it */ |
117 | .mode = MPOL_PREFERRED, |
118 | .flags = MPOL_F_LOCAL, |
119 | }; |
120 | |
121 | static struct mempolicy preferred_node_policy[MAX_NUMNODES]; |
122 | |
123 | static struct mempolicy *get_task_policy(struct task_struct *p) |
124 | { |
125 | struct mempolicy *pol = p->mempolicy; |
126 | |
127 | if (!pol) { |
128 | int node = numa_node_id(); |
129 | |
130 | if (node != NUMA_NO_NODE) { |
131 | pol = &preferred_node_policy[node]; |
132 | /* |
133 | * preferred_node_policy is not initialised early in |
134 | * boot |
135 | */ |
136 | if (!pol->mode) |
137 | pol = NULL; |
138 | } |
139 | } |
140 | |
141 | return pol; |
142 | } |
143 | |
144 | static const struct mempolicy_operations { |
145 | int (*create)(struct mempolicy *pol, const nodemask_t *nodes); |
146 | /* |
147 | * If read-side task has no lock to protect task->mempolicy, write-side |
148 | * task will rebind the task->mempolicy by two step. The first step is |
149 | * setting all the newly nodes, and the second step is cleaning all the |
150 | * disallowed nodes. In this way, we can avoid finding no node to alloc |
151 | * page. |
152 | * If we have a lock to protect task->mempolicy in read-side, we do |
153 | * rebind directly. |
154 | * |
155 | * step: |
156 | * MPOL_REBIND_ONCE - do rebind work at once |
157 | * MPOL_REBIND_STEP1 - set all the newly nodes |
158 | * MPOL_REBIND_STEP2 - clean all the disallowed nodes |
159 | */ |
160 | void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes, |
161 | enum mpol_rebind_step step); |
162 | } mpol_ops[MPOL_MAX]; |
163 | |
164 | /* Check that the nodemask contains at least one populated zone */ |
165 | static int is_valid_nodemask(const nodemask_t *nodemask) |
166 | { |
167 | return nodes_intersects(*nodemask, node_states[N_MEMORY]); |
168 | } |
169 | |
170 | static inline int mpol_store_user_nodemask(const struct mempolicy *pol) |
171 | { |
172 | return pol->flags & MPOL_MODE_FLAGS; |
173 | } |
174 | |
175 | static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig, |
176 | const nodemask_t *rel) |
177 | { |
178 | nodemask_t tmp; |
179 | nodes_fold(tmp, *orig, nodes_weight(*rel)); |
180 | nodes_onto(*ret, tmp, *rel); |
181 | } |
182 | |
183 | static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes) |
184 | { |
185 | if (nodes_empty(*nodes)) |
186 | return -EINVAL; |
187 | pol->v.nodes = *nodes; |
188 | return 0; |
189 | } |
190 | |
191 | static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes) |
192 | { |
193 | if (!nodes) |
194 | pol->flags |= MPOL_F_LOCAL; /* local allocation */ |
195 | else if (nodes_empty(*nodes)) |
196 | return -EINVAL; /* no allowed nodes */ |
197 | else |
198 | pol->v.preferred_node = first_node(*nodes); |
199 | return 0; |
200 | } |
201 | |
202 | static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes) |
203 | { |
204 | if (!is_valid_nodemask(nodes)) |
205 | return -EINVAL; |
206 | pol->v.nodes = *nodes; |
207 | return 0; |
208 | } |
209 | |
210 | /* |
211 | * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if |
212 | * any, for the new policy. mpol_new() has already validated the nodes |
213 | * parameter with respect to the policy mode and flags. But, we need to |
214 | * handle an empty nodemask with MPOL_PREFERRED here. |
215 | * |
216 | * Must be called holding task's alloc_lock to protect task's mems_allowed |
217 | * and mempolicy. May also be called holding the mmap_semaphore for write. |
218 | */ |
219 | static int mpol_set_nodemask(struct mempolicy *pol, |
220 | const nodemask_t *nodes, struct nodemask_scratch *nsc) |
221 | { |
222 | int ret; |
223 | |
224 | /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */ |
225 | if (pol == NULL) |
226 | return 0; |
227 | /* Check N_MEMORY */ |
228 | nodes_and(nsc->mask1, |
229 | cpuset_current_mems_allowed, node_states[N_MEMORY]); |
230 | |
231 | VM_BUG_ON(!nodes); |
232 | if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes)) |
233 | nodes = NULL; /* explicit local allocation */ |
234 | else { |
235 | if (pol->flags & MPOL_F_RELATIVE_NODES) |
236 | mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1); |
237 | else |
238 | nodes_and(nsc->mask2, *nodes, nsc->mask1); |
239 | |
240 | if (mpol_store_user_nodemask(pol)) |
241 | pol->w.user_nodemask = *nodes; |
242 | else |
243 | pol->w.cpuset_mems_allowed = |
244 | cpuset_current_mems_allowed; |
245 | } |
246 | |
247 | if (nodes) |
248 | ret = mpol_ops[pol->mode].create(pol, &nsc->mask2); |
249 | else |
250 | ret = mpol_ops[pol->mode].create(pol, NULL); |
251 | return ret; |
252 | } |
253 | |
254 | /* |
255 | * This function just creates a new policy, does some check and simple |
256 | * initialization. You must invoke mpol_set_nodemask() to set nodes. |
257 | */ |
258 | static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags, |
259 | nodemask_t *nodes) |
260 | { |
261 | struct mempolicy *policy; |
262 | |
263 | pr_debug("setting mode %d flags %d nodes[0] %lx\n", |
264 | mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE); |
265 | |
266 | if (mode == MPOL_DEFAULT) { |
267 | if (nodes && !nodes_empty(*nodes)) |
268 | return ERR_PTR(-EINVAL); |
269 | return NULL; |
270 | } |
271 | VM_BUG_ON(!nodes); |
272 | |
273 | /* |
274 | * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or |
275 | * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation). |
276 | * All other modes require a valid pointer to a non-empty nodemask. |
277 | */ |
278 | if (mode == MPOL_PREFERRED) { |
279 | if (nodes_empty(*nodes)) { |
280 | if (((flags & MPOL_F_STATIC_NODES) || |
281 | (flags & MPOL_F_RELATIVE_NODES))) |
282 | return ERR_PTR(-EINVAL); |
283 | } |
284 | } else if (mode == MPOL_LOCAL) { |
285 | if (!nodes_empty(*nodes)) |
286 | return ERR_PTR(-EINVAL); |
287 | mode = MPOL_PREFERRED; |
288 | } else if (nodes_empty(*nodes)) |
289 | return ERR_PTR(-EINVAL); |
290 | policy = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
291 | if (!policy) |
292 | return ERR_PTR(-ENOMEM); |
293 | atomic_set(&policy->refcnt, 1); |
294 | policy->mode = mode; |
295 | policy->flags = flags; |
296 | |
297 | return policy; |
298 | } |
299 | |
300 | /* Slow path of a mpol destructor. */ |
301 | void __mpol_put(struct mempolicy *p) |
302 | { |
303 | if (!atomic_dec_and_test(&p->refcnt)) |
304 | return; |
305 | kmem_cache_free(policy_cache, p); |
306 | } |
307 | |
308 | static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes, |
309 | enum mpol_rebind_step step) |
310 | { |
311 | } |
312 | |
313 | /* |
314 | * step: |
315 | * MPOL_REBIND_ONCE - do rebind work at once |
316 | * MPOL_REBIND_STEP1 - set all the newly nodes |
317 | * MPOL_REBIND_STEP2 - clean all the disallowed nodes |
318 | */ |
319 | static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes, |
320 | enum mpol_rebind_step step) |
321 | { |
322 | nodemask_t tmp; |
323 | |
324 | if (pol->flags & MPOL_F_STATIC_NODES) |
325 | nodes_and(tmp, pol->w.user_nodemask, *nodes); |
326 | else if (pol->flags & MPOL_F_RELATIVE_NODES) |
327 | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); |
328 | else { |
329 | /* |
330 | * if step == 1, we use ->w.cpuset_mems_allowed to cache the |
331 | * result |
332 | */ |
333 | if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) { |
334 | nodes_remap(tmp, pol->v.nodes, |
335 | pol->w.cpuset_mems_allowed, *nodes); |
336 | pol->w.cpuset_mems_allowed = step ? tmp : *nodes; |
337 | } else if (step == MPOL_REBIND_STEP2) { |
338 | tmp = pol->w.cpuset_mems_allowed; |
339 | pol->w.cpuset_mems_allowed = *nodes; |
340 | } else |
341 | BUG(); |
342 | } |
343 | |
344 | if (nodes_empty(tmp)) |
345 | tmp = *nodes; |
346 | |
347 | if (step == MPOL_REBIND_STEP1) |
348 | nodes_or(pol->v.nodes, pol->v.nodes, tmp); |
349 | else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2) |
350 | pol->v.nodes = tmp; |
351 | else |
352 | BUG(); |
353 | |
354 | if (!node_isset(current->il_next, tmp)) { |
355 | current->il_next = next_node(current->il_next, tmp); |
356 | if (current->il_next >= MAX_NUMNODES) |
357 | current->il_next = first_node(tmp); |
358 | if (current->il_next >= MAX_NUMNODES) |
359 | current->il_next = numa_node_id(); |
360 | } |
361 | } |
362 | |
363 | static void mpol_rebind_preferred(struct mempolicy *pol, |
364 | const nodemask_t *nodes, |
365 | enum mpol_rebind_step step) |
366 | { |
367 | nodemask_t tmp; |
368 | |
369 | if (pol->flags & MPOL_F_STATIC_NODES) { |
370 | int node = first_node(pol->w.user_nodemask); |
371 | |
372 | if (node_isset(node, *nodes)) { |
373 | pol->v.preferred_node = node; |
374 | pol->flags &= ~MPOL_F_LOCAL; |
375 | } else |
376 | pol->flags |= MPOL_F_LOCAL; |
377 | } else if (pol->flags & MPOL_F_RELATIVE_NODES) { |
378 | mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes); |
379 | pol->v.preferred_node = first_node(tmp); |
380 | } else if (!(pol->flags & MPOL_F_LOCAL)) { |
381 | pol->v.preferred_node = node_remap(pol->v.preferred_node, |
382 | pol->w.cpuset_mems_allowed, |
383 | *nodes); |
384 | pol->w.cpuset_mems_allowed = *nodes; |
385 | } |
386 | } |
387 | |
388 | /* |
389 | * mpol_rebind_policy - Migrate a policy to a different set of nodes |
390 | * |
391 | * If read-side task has no lock to protect task->mempolicy, write-side |
392 | * task will rebind the task->mempolicy by two step. The first step is |
393 | * setting all the newly nodes, and the second step is cleaning all the |
394 | * disallowed nodes. In this way, we can avoid finding no node to alloc |
395 | * page. |
396 | * If we have a lock to protect task->mempolicy in read-side, we do |
397 | * rebind directly. |
398 | * |
399 | * step: |
400 | * MPOL_REBIND_ONCE - do rebind work at once |
401 | * MPOL_REBIND_STEP1 - set all the newly nodes |
402 | * MPOL_REBIND_STEP2 - clean all the disallowed nodes |
403 | */ |
404 | static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask, |
405 | enum mpol_rebind_step step) |
406 | { |
407 | if (!pol) |
408 | return; |
409 | if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE && |
410 | nodes_equal(pol->w.cpuset_mems_allowed, *newmask)) |
411 | return; |
412 | |
413 | if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING)) |
414 | return; |
415 | |
416 | if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING)) |
417 | BUG(); |
418 | |
419 | if (step == MPOL_REBIND_STEP1) |
420 | pol->flags |= MPOL_F_REBINDING; |
421 | else if (step == MPOL_REBIND_STEP2) |
422 | pol->flags &= ~MPOL_F_REBINDING; |
423 | else if (step >= MPOL_REBIND_NSTEP) |
424 | BUG(); |
425 | |
426 | mpol_ops[pol->mode].rebind(pol, newmask, step); |
427 | } |
428 | |
429 | /* |
430 | * Wrapper for mpol_rebind_policy() that just requires task |
431 | * pointer, and updates task mempolicy. |
432 | * |
433 | * Called with task's alloc_lock held. |
434 | */ |
435 | |
436 | void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, |
437 | enum mpol_rebind_step step) |
438 | { |
439 | mpol_rebind_policy(tsk->mempolicy, new, step); |
440 | } |
441 | |
442 | /* |
443 | * Rebind each vma in mm to new nodemask. |
444 | * |
445 | * Call holding a reference to mm. Takes mm->mmap_sem during call. |
446 | */ |
447 | |
448 | void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) |
449 | { |
450 | struct vm_area_struct *vma; |
451 | |
452 | down_write(&mm->mmap_sem); |
453 | for (vma = mm->mmap; vma; vma = vma->vm_next) |
454 | mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE); |
455 | up_write(&mm->mmap_sem); |
456 | } |
457 | |
458 | static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { |
459 | [MPOL_DEFAULT] = { |
460 | .rebind = mpol_rebind_default, |
461 | }, |
462 | [MPOL_INTERLEAVE] = { |
463 | .create = mpol_new_interleave, |
464 | .rebind = mpol_rebind_nodemask, |
465 | }, |
466 | [MPOL_PREFERRED] = { |
467 | .create = mpol_new_preferred, |
468 | .rebind = mpol_rebind_preferred, |
469 | }, |
470 | [MPOL_BIND] = { |
471 | .create = mpol_new_bind, |
472 | .rebind = mpol_rebind_nodemask, |
473 | }, |
474 | }; |
475 | |
476 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
477 | unsigned long flags); |
478 | |
479 | /* |
480 | * Scan through pages checking if pages follow certain conditions, |
481 | * and move them to the pagelist if they do. |
482 | */ |
483 | static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
484 | unsigned long addr, unsigned long end, |
485 | const nodemask_t *nodes, unsigned long flags, |
486 | void *private) |
487 | { |
488 | pte_t *orig_pte; |
489 | pte_t *pte; |
490 | spinlock_t *ptl; |
491 | |
492 | orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
493 | do { |
494 | struct page *page; |
495 | int nid; |
496 | |
497 | if (!pte_present(*pte)) |
498 | continue; |
499 | page = vm_normal_page(vma, addr, *pte); |
500 | if (!page) |
501 | continue; |
502 | /* |
503 | * vm_normal_page() filters out zero pages, but there might |
504 | * still be PageReserved pages to skip, perhaps in a VDSO. |
505 | */ |
506 | if (PageReserved(page)) |
507 | continue; |
508 | nid = page_to_nid(page); |
509 | if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) |
510 | continue; |
511 | |
512 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) |
513 | migrate_page_add(page, private, flags); |
514 | else |
515 | break; |
516 | } while (pte++, addr += PAGE_SIZE, addr != end); |
517 | pte_unmap_unlock(orig_pte, ptl); |
518 | return addr != end; |
519 | } |
520 | |
521 | static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma, |
522 | pmd_t *pmd, const nodemask_t *nodes, unsigned long flags, |
523 | void *private) |
524 | { |
525 | #ifdef CONFIG_HUGETLB_PAGE |
526 | int nid; |
527 | struct page *page; |
528 | |
529 | spin_lock(&vma->vm_mm->page_table_lock); |
530 | page = pte_page(huge_ptep_get((pte_t *)pmd)); |
531 | nid = page_to_nid(page); |
532 | if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) |
533 | goto unlock; |
534 | /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ |
535 | if (flags & (MPOL_MF_MOVE_ALL) || |
536 | (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) |
537 | isolate_huge_page(page, private); |
538 | unlock: |
539 | spin_unlock(&vma->vm_mm->page_table_lock); |
540 | #else |
541 | BUG(); |
542 | #endif |
543 | } |
544 | |
545 | static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
546 | unsigned long addr, unsigned long end, |
547 | const nodemask_t *nodes, unsigned long flags, |
548 | void *private) |
549 | { |
550 | pmd_t *pmd; |
551 | unsigned long next; |
552 | |
553 | pmd = pmd_offset(pud, addr); |
554 | do { |
555 | next = pmd_addr_end(addr, end); |
556 | if (!pmd_present(*pmd)) |
557 | continue; |
558 | if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) { |
559 | queue_pages_hugetlb_pmd_range(vma, pmd, nodes, |
560 | flags, private); |
561 | continue; |
562 | } |
563 | split_huge_page_pmd(vma, addr, pmd); |
564 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) |
565 | continue; |
566 | if (queue_pages_pte_range(vma, pmd, addr, next, nodes, |
567 | flags, private)) |
568 | return -EIO; |
569 | } while (pmd++, addr = next, addr != end); |
570 | return 0; |
571 | } |
572 | |
573 | static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd, |
574 | unsigned long addr, unsigned long end, |
575 | const nodemask_t *nodes, unsigned long flags, |
576 | void *private) |
577 | { |
578 | pud_t *pud; |
579 | unsigned long next; |
580 | |
581 | pud = pud_offset(pgd, addr); |
582 | do { |
583 | next = pud_addr_end(addr, end); |
584 | if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) |
585 | continue; |
586 | if (pud_none_or_clear_bad(pud)) |
587 | continue; |
588 | if (queue_pages_pmd_range(vma, pud, addr, next, nodes, |
589 | flags, private)) |
590 | return -EIO; |
591 | } while (pud++, addr = next, addr != end); |
592 | return 0; |
593 | } |
594 | |
595 | static inline int queue_pages_pgd_range(struct vm_area_struct *vma, |
596 | unsigned long addr, unsigned long end, |
597 | const nodemask_t *nodes, unsigned long flags, |
598 | void *private) |
599 | { |
600 | pgd_t *pgd; |
601 | unsigned long next; |
602 | |
603 | pgd = pgd_offset(vma->vm_mm, addr); |
604 | do { |
605 | next = pgd_addr_end(addr, end); |
606 | if (pgd_none_or_clear_bad(pgd)) |
607 | continue; |
608 | if (queue_pages_pud_range(vma, pgd, addr, next, nodes, |
609 | flags, private)) |
610 | return -EIO; |
611 | } while (pgd++, addr = next, addr != end); |
612 | return 0; |
613 | } |
614 | |
615 | #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE |
616 | /* |
617 | * This is used to mark a range of virtual addresses to be inaccessible. |
618 | * These are later cleared by a NUMA hinting fault. Depending on these |
619 | * faults, pages may be migrated for better NUMA placement. |
620 | * |
621 | * This is assuming that NUMA faults are handled using PROT_NONE. If |
622 | * an architecture makes a different choice, it will need further |
623 | * changes to the core. |
624 | */ |
625 | unsigned long change_prot_numa(struct vm_area_struct *vma, |
626 | unsigned long addr, unsigned long end) |
627 | { |
628 | int nr_updated; |
629 | BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE); |
630 | |
631 | nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1); |
632 | if (nr_updated) |
633 | count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated); |
634 | |
635 | return nr_updated; |
636 | } |
637 | #else |
638 | static unsigned long change_prot_numa(struct vm_area_struct *vma, |
639 | unsigned long addr, unsigned long end) |
640 | { |
641 | return 0; |
642 | } |
643 | #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ |
644 | |
645 | /* |
646 | * Walk through page tables and collect pages to be migrated. |
647 | * |
648 | * If pages found in a given range are on a set of nodes (determined by |
649 | * @nodes and @flags,) it's isolated and queued to the pagelist which is |
650 | * passed via @private.) |
651 | */ |
652 | static struct vm_area_struct * |
653 | queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, |
654 | const nodemask_t *nodes, unsigned long flags, void *private) |
655 | { |
656 | int err; |
657 | struct vm_area_struct *first, *vma, *prev; |
658 | |
659 | |
660 | first = find_vma(mm, start); |
661 | if (!first) |
662 | return ERR_PTR(-EFAULT); |
663 | prev = NULL; |
664 | for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { |
665 | unsigned long endvma = vma->vm_end; |
666 | |
667 | if (endvma > end) |
668 | endvma = end; |
669 | if (vma->vm_start > start) |
670 | start = vma->vm_start; |
671 | |
672 | if (!(flags & MPOL_MF_DISCONTIG_OK)) { |
673 | if (!vma->vm_next && vma->vm_end < end) |
674 | return ERR_PTR(-EFAULT); |
675 | if (prev && prev->vm_end < vma->vm_start) |
676 | return ERR_PTR(-EFAULT); |
677 | } |
678 | |
679 | if (flags & MPOL_MF_LAZY) { |
680 | change_prot_numa(vma, start, endvma); |
681 | goto next; |
682 | } |
683 | |
684 | if ((flags & MPOL_MF_STRICT) || |
685 | ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && |
686 | vma_migratable(vma))) { |
687 | |
688 | err = queue_pages_pgd_range(vma, start, endvma, nodes, |
689 | flags, private); |
690 | if (err) { |
691 | first = ERR_PTR(err); |
692 | break; |
693 | } |
694 | } |
695 | next: |
696 | prev = vma; |
697 | } |
698 | return first; |
699 | } |
700 | |
701 | /* |
702 | * Apply policy to a single VMA |
703 | * This must be called with the mmap_sem held for writing. |
704 | */ |
705 | static int vma_replace_policy(struct vm_area_struct *vma, |
706 | struct mempolicy *pol) |
707 | { |
708 | int err; |
709 | struct mempolicy *old; |
710 | struct mempolicy *new; |
711 | |
712 | pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", |
713 | vma->vm_start, vma->vm_end, vma->vm_pgoff, |
714 | vma->vm_ops, vma->vm_file, |
715 | vma->vm_ops ? vma->vm_ops->set_policy : NULL); |
716 | |
717 | new = mpol_dup(pol); |
718 | if (IS_ERR(new)) |
719 | return PTR_ERR(new); |
720 | |
721 | if (vma->vm_ops && vma->vm_ops->set_policy) { |
722 | err = vma->vm_ops->set_policy(vma, new); |
723 | if (err) |
724 | goto err_out; |
725 | } |
726 | |
727 | old = vma->vm_policy; |
728 | vma->vm_policy = new; /* protected by mmap_sem */ |
729 | mpol_put(old); |
730 | |
731 | return 0; |
732 | err_out: |
733 | mpol_put(new); |
734 | return err; |
735 | } |
736 | |
737 | /* Step 2: apply policy to a range and do splits. */ |
738 | static int mbind_range(struct mm_struct *mm, unsigned long start, |
739 | unsigned long end, struct mempolicy *new_pol) |
740 | { |
741 | struct vm_area_struct *next; |
742 | struct vm_area_struct *prev; |
743 | struct vm_area_struct *vma; |
744 | int err = 0; |
745 | pgoff_t pgoff; |
746 | unsigned long vmstart; |
747 | unsigned long vmend; |
748 | |
749 | vma = find_vma(mm, start); |
750 | if (!vma || vma->vm_start > start) |
751 | return -EFAULT; |
752 | |
753 | prev = vma->vm_prev; |
754 | if (start > vma->vm_start) |
755 | prev = vma; |
756 | |
757 | for (; vma && vma->vm_start < end; prev = vma, vma = next) { |
758 | next = vma->vm_next; |
759 | vmstart = max(start, vma->vm_start); |
760 | vmend = min(end, vma->vm_end); |
761 | |
762 | if (mpol_equal(vma_policy(vma), new_pol)) |
763 | continue; |
764 | |
765 | pgoff = vma->vm_pgoff + |
766 | ((vmstart - vma->vm_start) >> PAGE_SHIFT); |
767 | prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags, |
768 | vma->anon_vma, vma->vm_file, pgoff, |
769 | new_pol); |
770 | if (prev) { |
771 | vma = prev; |
772 | next = vma->vm_next; |
773 | if (mpol_equal(vma_policy(vma), new_pol)) |
774 | continue; |
775 | /* vma_merge() joined vma && vma->next, case 8 */ |
776 | goto replace; |
777 | } |
778 | if (vma->vm_start != vmstart) { |
779 | err = split_vma(vma->vm_mm, vma, vmstart, 1); |
780 | if (err) |
781 | goto out; |
782 | } |
783 | if (vma->vm_end != vmend) { |
784 | err = split_vma(vma->vm_mm, vma, vmend, 0); |
785 | if (err) |
786 | goto out; |
787 | } |
788 | replace: |
789 | err = vma_replace_policy(vma, new_pol); |
790 | if (err) |
791 | goto out; |
792 | } |
793 | |
794 | out: |
795 | return err; |
796 | } |
797 | |
798 | /* |
799 | * Update task->flags PF_MEMPOLICY bit: set iff non-default |
800 | * mempolicy. Allows more rapid checking of this (combined perhaps |
801 | * with other PF_* flag bits) on memory allocation hot code paths. |
802 | * |
803 | * If called from outside this file, the task 'p' should -only- be |
804 | * a newly forked child not yet visible on the task list, because |
805 | * manipulating the task flags of a visible task is not safe. |
806 | * |
807 | * The above limitation is why this routine has the funny name |
808 | * mpol_fix_fork_child_flag(). |
809 | * |
810 | * It is also safe to call this with a task pointer of current, |
811 | * which the static wrapper mpol_set_task_struct_flag() does, |
812 | * for use within this file. |
813 | */ |
814 | |
815 | void mpol_fix_fork_child_flag(struct task_struct *p) |
816 | { |
817 | if (p->mempolicy) |
818 | p->flags |= PF_MEMPOLICY; |
819 | else |
820 | p->flags &= ~PF_MEMPOLICY; |
821 | } |
822 | |
823 | static void mpol_set_task_struct_flag(void) |
824 | { |
825 | mpol_fix_fork_child_flag(current); |
826 | } |
827 | |
828 | /* Set the process memory policy */ |
829 | static long do_set_mempolicy(unsigned short mode, unsigned short flags, |
830 | nodemask_t *nodes) |
831 | { |
832 | struct mempolicy *new, *old; |
833 | struct mm_struct *mm = current->mm; |
834 | NODEMASK_SCRATCH(scratch); |
835 | int ret; |
836 | |
837 | if (!scratch) |
838 | return -ENOMEM; |
839 | |
840 | new = mpol_new(mode, flags, nodes); |
841 | if (IS_ERR(new)) { |
842 | ret = PTR_ERR(new); |
843 | goto out; |
844 | } |
845 | /* |
846 | * prevent changing our mempolicy while show_numa_maps() |
847 | * is using it. |
848 | * Note: do_set_mempolicy() can be called at init time |
849 | * with no 'mm'. |
850 | */ |
851 | if (mm) |
852 | down_write(&mm->mmap_sem); |
853 | task_lock(current); |
854 | ret = mpol_set_nodemask(new, nodes, scratch); |
855 | if (ret) { |
856 | task_unlock(current); |
857 | if (mm) |
858 | up_write(&mm->mmap_sem); |
859 | mpol_put(new); |
860 | goto out; |
861 | } |
862 | old = current->mempolicy; |
863 | current->mempolicy = new; |
864 | mpol_set_task_struct_flag(); |
865 | if (new && new->mode == MPOL_INTERLEAVE && |
866 | nodes_weight(new->v.nodes)) |
867 | current->il_next = first_node(new->v.nodes); |
868 | task_unlock(current); |
869 | if (mm) |
870 | up_write(&mm->mmap_sem); |
871 | |
872 | mpol_put(old); |
873 | ret = 0; |
874 | out: |
875 | NODEMASK_SCRATCH_FREE(scratch); |
876 | return ret; |
877 | } |
878 | |
879 | /* |
880 | * Return nodemask for policy for get_mempolicy() query |
881 | * |
882 | * Called with task's alloc_lock held |
883 | */ |
884 | static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes) |
885 | { |
886 | nodes_clear(*nodes); |
887 | if (p == &default_policy) |
888 | return; |
889 | |
890 | switch (p->mode) { |
891 | case MPOL_BIND: |
892 | /* Fall through */ |
893 | case MPOL_INTERLEAVE: |
894 | *nodes = p->v.nodes; |
895 | break; |
896 | case MPOL_PREFERRED: |
897 | if (!(p->flags & MPOL_F_LOCAL)) |
898 | node_set(p->v.preferred_node, *nodes); |
899 | /* else return empty node mask for local allocation */ |
900 | break; |
901 | default: |
902 | BUG(); |
903 | } |
904 | } |
905 | |
906 | static int lookup_node(struct mm_struct *mm, unsigned long addr) |
907 | { |
908 | struct page *p; |
909 | int err; |
910 | |
911 | err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL); |
912 | if (err >= 0) { |
913 | err = page_to_nid(p); |
914 | put_page(p); |
915 | } |
916 | return err; |
917 | } |
918 | |
919 | /* Retrieve NUMA policy */ |
920 | static long do_get_mempolicy(int *policy, nodemask_t *nmask, |
921 | unsigned long addr, unsigned long flags) |
922 | { |
923 | int err; |
924 | struct mm_struct *mm = current->mm; |
925 | struct vm_area_struct *vma = NULL; |
926 | struct mempolicy *pol = current->mempolicy; |
927 | |
928 | if (flags & |
929 | ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED)) |
930 | return -EINVAL; |
931 | |
932 | if (flags & MPOL_F_MEMS_ALLOWED) { |
933 | if (flags & (MPOL_F_NODE|MPOL_F_ADDR)) |
934 | return -EINVAL; |
935 | *policy = 0; /* just so it's initialized */ |
936 | task_lock(current); |
937 | *nmask = cpuset_current_mems_allowed; |
938 | task_unlock(current); |
939 | return 0; |
940 | } |
941 | |
942 | if (flags & MPOL_F_ADDR) { |
943 | /* |
944 | * Do NOT fall back to task policy if the |
945 | * vma/shared policy at addr is NULL. We |
946 | * want to return MPOL_DEFAULT in this case. |
947 | */ |
948 | down_read(&mm->mmap_sem); |
949 | vma = find_vma_intersection(mm, addr, addr+1); |
950 | if (!vma) { |
951 | up_read(&mm->mmap_sem); |
952 | return -EFAULT; |
953 | } |
954 | if (vma->vm_ops && vma->vm_ops->get_policy) |
955 | pol = vma->vm_ops->get_policy(vma, addr); |
956 | else |
957 | pol = vma->vm_policy; |
958 | } else if (addr) |
959 | return -EINVAL; |
960 | |
961 | if (!pol) |
962 | pol = &default_policy; /* indicates default behavior */ |
963 | |
964 | if (flags & MPOL_F_NODE) { |
965 | if (flags & MPOL_F_ADDR) { |
966 | err = lookup_node(mm, addr); |
967 | if (err < 0) |
968 | goto out; |
969 | *policy = err; |
970 | } else if (pol == current->mempolicy && |
971 | pol->mode == MPOL_INTERLEAVE) { |
972 | *policy = current->il_next; |
973 | } else { |
974 | err = -EINVAL; |
975 | goto out; |
976 | } |
977 | } else { |
978 | *policy = pol == &default_policy ? MPOL_DEFAULT : |
979 | pol->mode; |
980 | /* |
981 | * Internal mempolicy flags must be masked off before exposing |
982 | * the policy to userspace. |
983 | */ |
984 | *policy |= (pol->flags & MPOL_MODE_FLAGS); |
985 | } |
986 | |
987 | if (vma) { |
988 | up_read(¤t->mm->mmap_sem); |
989 | vma = NULL; |
990 | } |
991 | |
992 | err = 0; |
993 | if (nmask) { |
994 | if (mpol_store_user_nodemask(pol)) { |
995 | *nmask = pol->w.user_nodemask; |
996 | } else { |
997 | task_lock(current); |
998 | get_policy_nodemask(pol, nmask); |
999 | task_unlock(current); |
1000 | } |
1001 | } |
1002 | |
1003 | out: |
1004 | mpol_cond_put(pol); |
1005 | if (vma) |
1006 | up_read(¤t->mm->mmap_sem); |
1007 | return err; |
1008 | } |
1009 | |
1010 | #ifdef CONFIG_MIGRATION |
1011 | /* |
1012 | * page migration |
1013 | */ |
1014 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
1015 | unsigned long flags) |
1016 | { |
1017 | /* |
1018 | * Avoid migrating a page that is shared with others. |
1019 | */ |
1020 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { |
1021 | if (!isolate_lru_page(page)) { |
1022 | list_add_tail(&page->lru, pagelist); |
1023 | inc_zone_page_state(page, NR_ISOLATED_ANON + |
1024 | page_is_file_cache(page)); |
1025 | } |
1026 | } |
1027 | } |
1028 | |
1029 | static struct page *new_node_page(struct page *page, unsigned long node, int **x) |
1030 | { |
1031 | if (PageHuge(page)) |
1032 | return alloc_huge_page_node(page_hstate(compound_head(page)), |
1033 | node); |
1034 | else |
1035 | return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); |
1036 | } |
1037 | |
1038 | /* |
1039 | * Migrate pages from one node to a target node. |
1040 | * Returns error or the number of pages not migrated. |
1041 | */ |
1042 | static int migrate_to_node(struct mm_struct *mm, int source, int dest, |
1043 | int flags) |
1044 | { |
1045 | nodemask_t nmask; |
1046 | LIST_HEAD(pagelist); |
1047 | int err = 0; |
1048 | |
1049 | nodes_clear(nmask); |
1050 | node_set(source, nmask); |
1051 | |
1052 | /* |
1053 | * This does not "check" the range but isolates all pages that |
1054 | * need migration. Between passing in the full user address |
1055 | * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. |
1056 | */ |
1057 | VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); |
1058 | queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, |
1059 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); |
1060 | |
1061 | if (!list_empty(&pagelist)) { |
1062 | err = migrate_pages(&pagelist, new_node_page, dest, |
1063 | MIGRATE_SYNC, MR_SYSCALL); |
1064 | if (err) |
1065 | putback_movable_pages(&pagelist); |
1066 | } |
1067 | |
1068 | return err; |
1069 | } |
1070 | |
1071 | /* |
1072 | * Move pages between the two nodesets so as to preserve the physical |
1073 | * layout as much as possible. |
1074 | * |
1075 | * Returns the number of page that could not be moved. |
1076 | */ |
1077 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, |
1078 | const nodemask_t *to, int flags) |
1079 | { |
1080 | int busy = 0; |
1081 | int err; |
1082 | nodemask_t tmp; |
1083 | |
1084 | err = migrate_prep(); |
1085 | if (err) |
1086 | return err; |
1087 | |
1088 | down_read(&mm->mmap_sem); |
1089 | |
1090 | err = migrate_vmas(mm, from, to, flags); |
1091 | if (err) |
1092 | goto out; |
1093 | |
1094 | /* |
1095 | * Find a 'source' bit set in 'tmp' whose corresponding 'dest' |
1096 | * bit in 'to' is not also set in 'tmp'. Clear the found 'source' |
1097 | * bit in 'tmp', and return that <source, dest> pair for migration. |
1098 | * The pair of nodemasks 'to' and 'from' define the map. |
1099 | * |
1100 | * If no pair of bits is found that way, fallback to picking some |
1101 | * pair of 'source' and 'dest' bits that are not the same. If the |
1102 | * 'source' and 'dest' bits are the same, this represents a node |
1103 | * that will be migrating to itself, so no pages need move. |
1104 | * |
1105 | * If no bits are left in 'tmp', or if all remaining bits left |
1106 | * in 'tmp' correspond to the same bit in 'to', return false |
1107 | * (nothing left to migrate). |
1108 | * |
1109 | * This lets us pick a pair of nodes to migrate between, such that |
1110 | * if possible the dest node is not already occupied by some other |
1111 | * source node, minimizing the risk of overloading the memory on a |
1112 | * node that would happen if we migrated incoming memory to a node |
1113 | * before migrating outgoing memory source that same node. |
1114 | * |
1115 | * A single scan of tmp is sufficient. As we go, we remember the |
1116 | * most recent <s, d> pair that moved (s != d). If we find a pair |
1117 | * that not only moved, but what's better, moved to an empty slot |
1118 | * (d is not set in tmp), then we break out then, with that pair. |
1119 | * Otherwise when we finish scanning from_tmp, we at least have the |
1120 | * most recent <s, d> pair that moved. If we get all the way through |
1121 | * the scan of tmp without finding any node that moved, much less |
1122 | * moved to an empty node, then there is nothing left worth migrating. |
1123 | */ |
1124 | |
1125 | tmp = *from; |
1126 | while (!nodes_empty(tmp)) { |
1127 | int s,d; |
1128 | int source = -1; |
1129 | int dest = 0; |
1130 | |
1131 | for_each_node_mask(s, tmp) { |
1132 | |
1133 | /* |
1134 | * do_migrate_pages() tries to maintain the relative |
1135 | * node relationship of the pages established between |
1136 | * threads and memory areas. |
1137 | * |
1138 | * However if the number of source nodes is not equal to |
1139 | * the number of destination nodes we can not preserve |
1140 | * this node relative relationship. In that case, skip |
1141 | * copying memory from a node that is in the destination |
1142 | * mask. |
1143 | * |
1144 | * Example: [2,3,4] -> [3,4,5] moves everything. |
1145 | * [0-7] - > [3,4,5] moves only 0,1,2,6,7. |
1146 | */ |
1147 | |
1148 | if ((nodes_weight(*from) != nodes_weight(*to)) && |
1149 | (node_isset(s, *to))) |
1150 | continue; |
1151 | |
1152 | d = node_remap(s, *from, *to); |
1153 | if (s == d) |
1154 | continue; |
1155 | |
1156 | source = s; /* Node moved. Memorize */ |
1157 | dest = d; |
1158 | |
1159 | /* dest not in remaining from nodes? */ |
1160 | if (!node_isset(dest, tmp)) |
1161 | break; |
1162 | } |
1163 | if (source == -1) |
1164 | break; |
1165 | |
1166 | node_clear(source, tmp); |
1167 | err = migrate_to_node(mm, source, dest, flags); |
1168 | if (err > 0) |
1169 | busy += err; |
1170 | if (err < 0) |
1171 | break; |
1172 | } |
1173 | out: |
1174 | up_read(&mm->mmap_sem); |
1175 | if (err < 0) |
1176 | return err; |
1177 | return busy; |
1178 | |
1179 | } |
1180 | |
1181 | /* |
1182 | * Allocate a new page for page migration based on vma policy. |
1183 | * Start assuming that page is mapped by vma pointed to by @private. |
1184 | * Search forward from there, if not. N.B., this assumes that the |
1185 | * list of pages handed to migrate_pages()--which is how we get here-- |
1186 | * is in virtual address order. |
1187 | */ |
1188 | static struct page *new_vma_page(struct page *page, unsigned long private, int **x) |
1189 | { |
1190 | struct vm_area_struct *vma = (struct vm_area_struct *)private; |
1191 | unsigned long uninitialized_var(address); |
1192 | |
1193 | while (vma) { |
1194 | address = page_address_in_vma(page, vma); |
1195 | if (address != -EFAULT) |
1196 | break; |
1197 | vma = vma->vm_next; |
1198 | } |
1199 | /* |
1200 | * queue_pages_range() confirms that @page belongs to some vma, |
1201 | * so vma shouldn't be NULL. |
1202 | */ |
1203 | BUG_ON(!vma); |
1204 | |
1205 | if (PageHuge(page)) |
1206 | return alloc_huge_page_noerr(vma, address, 1); |
1207 | return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); |
1208 | } |
1209 | #else |
1210 | |
1211 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
1212 | unsigned long flags) |
1213 | { |
1214 | } |
1215 | |
1216 | int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, |
1217 | const nodemask_t *to, int flags) |
1218 | { |
1219 | return -ENOSYS; |
1220 | } |
1221 | |
1222 | static struct page *new_vma_page(struct page *page, unsigned long private, int **x) |
1223 | { |
1224 | return NULL; |
1225 | } |
1226 | #endif |
1227 | |
1228 | static long do_mbind(unsigned long start, unsigned long len, |
1229 | unsigned short mode, unsigned short mode_flags, |
1230 | nodemask_t *nmask, unsigned long flags) |
1231 | { |
1232 | struct vm_area_struct *vma; |
1233 | struct mm_struct *mm = current->mm; |
1234 | struct mempolicy *new; |
1235 | unsigned long end; |
1236 | int err; |
1237 | LIST_HEAD(pagelist); |
1238 | |
1239 | if (flags & ~(unsigned long)MPOL_MF_VALID) |
1240 | return -EINVAL; |
1241 | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) |
1242 | return -EPERM; |
1243 | |
1244 | if (start & ~PAGE_MASK) |
1245 | return -EINVAL; |
1246 | |
1247 | if (mode == MPOL_DEFAULT) |
1248 | flags &= ~MPOL_MF_STRICT; |
1249 | |
1250 | len = (len + PAGE_SIZE - 1) & PAGE_MASK; |
1251 | end = start + len; |
1252 | |
1253 | if (end < start) |
1254 | return -EINVAL; |
1255 | if (end == start) |
1256 | return 0; |
1257 | |
1258 | new = mpol_new(mode, mode_flags, nmask); |
1259 | if (IS_ERR(new)) |
1260 | return PTR_ERR(new); |
1261 | |
1262 | if (flags & MPOL_MF_LAZY) |
1263 | new->flags |= MPOL_F_MOF; |
1264 | |
1265 | /* |
1266 | * If we are using the default policy then operation |
1267 | * on discontinuous address spaces is okay after all |
1268 | */ |
1269 | if (!new) |
1270 | flags |= MPOL_MF_DISCONTIG_OK; |
1271 | |
1272 | pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n", |
1273 | start, start + len, mode, mode_flags, |
1274 | nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE); |
1275 | |
1276 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { |
1277 | |
1278 | err = migrate_prep(); |
1279 | if (err) |
1280 | goto mpol_out; |
1281 | } |
1282 | { |
1283 | NODEMASK_SCRATCH(scratch); |
1284 | if (scratch) { |
1285 | down_write(&mm->mmap_sem); |
1286 | task_lock(current); |
1287 | err = mpol_set_nodemask(new, nmask, scratch); |
1288 | task_unlock(current); |
1289 | if (err) |
1290 | up_write(&mm->mmap_sem); |
1291 | } else |
1292 | err = -ENOMEM; |
1293 | NODEMASK_SCRATCH_FREE(scratch); |
1294 | } |
1295 | if (err) |
1296 | goto mpol_out; |
1297 | |
1298 | vma = queue_pages_range(mm, start, end, nmask, |
1299 | flags | MPOL_MF_INVERT, &pagelist); |
1300 | |
1301 | err = PTR_ERR(vma); /* maybe ... */ |
1302 | if (!IS_ERR(vma)) |
1303 | err = mbind_range(mm, start, end, new); |
1304 | |
1305 | if (!err) { |
1306 | int nr_failed = 0; |
1307 | |
1308 | if (!list_empty(&pagelist)) { |
1309 | WARN_ON_ONCE(flags & MPOL_MF_LAZY); |
1310 | nr_failed = migrate_pages(&pagelist, new_vma_page, |
1311 | (unsigned long)vma, |
1312 | MIGRATE_SYNC, MR_MEMPOLICY_MBIND); |
1313 | if (nr_failed) |
1314 | putback_movable_pages(&pagelist); |
1315 | } |
1316 | |
1317 | if (nr_failed && (flags & MPOL_MF_STRICT)) |
1318 | err = -EIO; |
1319 | } else |
1320 | putback_lru_pages(&pagelist); |
1321 | |
1322 | up_write(&mm->mmap_sem); |
1323 | mpol_out: |
1324 | mpol_put(new); |
1325 | return err; |
1326 | } |
1327 | |
1328 | /* |
1329 | * User space interface with variable sized bitmaps for nodelists. |
1330 | */ |
1331 | |
1332 | /* Copy a node mask from user space. */ |
1333 | static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, |
1334 | unsigned long maxnode) |
1335 | { |
1336 | unsigned long k; |
1337 | unsigned long nlongs; |
1338 | unsigned long endmask; |
1339 | |
1340 | --maxnode; |
1341 | nodes_clear(*nodes); |
1342 | if (maxnode == 0 || !nmask) |
1343 | return 0; |
1344 | if (maxnode > PAGE_SIZE*BITS_PER_BYTE) |
1345 | return -EINVAL; |
1346 | |
1347 | nlongs = BITS_TO_LONGS(maxnode); |
1348 | if ((maxnode % BITS_PER_LONG) == 0) |
1349 | endmask = ~0UL; |
1350 | else |
1351 | endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1; |
1352 | |
1353 | /* When the user specified more nodes than supported just check |
1354 | if the non supported part is all zero. */ |
1355 | if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) { |
1356 | if (nlongs > PAGE_SIZE/sizeof(long)) |
1357 | return -EINVAL; |
1358 | for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) { |
1359 | unsigned long t; |
1360 | if (get_user(t, nmask + k)) |
1361 | return -EFAULT; |
1362 | if (k == nlongs - 1) { |
1363 | if (t & endmask) |
1364 | return -EINVAL; |
1365 | } else if (t) |
1366 | return -EINVAL; |
1367 | } |
1368 | nlongs = BITS_TO_LONGS(MAX_NUMNODES); |
1369 | endmask = ~0UL; |
1370 | } |
1371 | |
1372 | if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long))) |
1373 | return -EFAULT; |
1374 | nodes_addr(*nodes)[nlongs-1] &= endmask; |
1375 | return 0; |
1376 | } |
1377 | |
1378 | /* Copy a kernel node mask to user space */ |
1379 | static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode, |
1380 | nodemask_t *nodes) |
1381 | { |
1382 | unsigned long copy = ALIGN(maxnode-1, 64) / 8; |
1383 | const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long); |
1384 | |
1385 | if (copy > nbytes) { |
1386 | if (copy > PAGE_SIZE) |
1387 | return -EINVAL; |
1388 | if (clear_user((char __user *)mask + nbytes, copy - nbytes)) |
1389 | return -EFAULT; |
1390 | copy = nbytes; |
1391 | } |
1392 | return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0; |
1393 | } |
1394 | |
1395 | SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len, |
1396 | unsigned long, mode, unsigned long __user *, nmask, |
1397 | unsigned long, maxnode, unsigned, flags) |
1398 | { |
1399 | nodemask_t nodes; |
1400 | int err; |
1401 | unsigned short mode_flags; |
1402 | |
1403 | mode_flags = mode & MPOL_MODE_FLAGS; |
1404 | mode &= ~MPOL_MODE_FLAGS; |
1405 | if (mode >= MPOL_MAX) |
1406 | return -EINVAL; |
1407 | if ((mode_flags & MPOL_F_STATIC_NODES) && |
1408 | (mode_flags & MPOL_F_RELATIVE_NODES)) |
1409 | return -EINVAL; |
1410 | err = get_nodes(&nodes, nmask, maxnode); |
1411 | if (err) |
1412 | return err; |
1413 | return do_mbind(start, len, mode, mode_flags, &nodes, flags); |
1414 | } |
1415 | |
1416 | /* Set the process memory policy */ |
1417 | SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask, |
1418 | unsigned long, maxnode) |
1419 | { |
1420 | int err; |
1421 | nodemask_t nodes; |
1422 | unsigned short flags; |
1423 | |
1424 | flags = mode & MPOL_MODE_FLAGS; |
1425 | mode &= ~MPOL_MODE_FLAGS; |
1426 | if ((unsigned int)mode >= MPOL_MAX) |
1427 | return -EINVAL; |
1428 | if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES)) |
1429 | return -EINVAL; |
1430 | err = get_nodes(&nodes, nmask, maxnode); |
1431 | if (err) |
1432 | return err; |
1433 | return do_set_mempolicy(mode, flags, &nodes); |
1434 | } |
1435 | |
1436 | SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, |
1437 | const unsigned long __user *, old_nodes, |
1438 | const unsigned long __user *, new_nodes) |
1439 | { |
1440 | const struct cred *cred = current_cred(), *tcred; |
1441 | struct mm_struct *mm = NULL; |
1442 | struct task_struct *task; |
1443 | nodemask_t task_nodes; |
1444 | int err; |
1445 | nodemask_t *old; |
1446 | nodemask_t *new; |
1447 | NODEMASK_SCRATCH(scratch); |
1448 | |
1449 | if (!scratch) |
1450 | return -ENOMEM; |
1451 | |
1452 | old = &scratch->mask1; |
1453 | new = &scratch->mask2; |
1454 | |
1455 | err = get_nodes(old, old_nodes, maxnode); |
1456 | if (err) |
1457 | goto out; |
1458 | |
1459 | err = get_nodes(new, new_nodes, maxnode); |
1460 | if (err) |
1461 | goto out; |
1462 | |
1463 | /* Find the mm_struct */ |
1464 | rcu_read_lock(); |
1465 | task = pid ? find_task_by_vpid(pid) : current; |
1466 | if (!task) { |
1467 | rcu_read_unlock(); |
1468 | err = -ESRCH; |
1469 | goto out; |
1470 | } |
1471 | get_task_struct(task); |
1472 | |
1473 | err = -EINVAL; |
1474 | |
1475 | /* |
1476 | * Check if this process has the right to modify the specified |
1477 | * process. The right exists if the process has administrative |
1478 | * capabilities, superuser privileges or the same |
1479 | * userid as the target process. |
1480 | */ |
1481 | tcred = __task_cred(task); |
1482 | if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) && |
1483 | !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) && |
1484 | !capable(CAP_SYS_NICE)) { |
1485 | rcu_read_unlock(); |
1486 | err = -EPERM; |
1487 | goto out_put; |
1488 | } |
1489 | rcu_read_unlock(); |
1490 | |
1491 | task_nodes = cpuset_mems_allowed(task); |
1492 | /* Is the user allowed to access the target nodes? */ |
1493 | if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { |
1494 | err = -EPERM; |
1495 | goto out_put; |
1496 | } |
1497 | |
1498 | if (!nodes_subset(*new, node_states[N_MEMORY])) { |
1499 | err = -EINVAL; |
1500 | goto out_put; |
1501 | } |
1502 | |
1503 | err = security_task_movememory(task); |
1504 | if (err) |
1505 | goto out_put; |
1506 | |
1507 | mm = get_task_mm(task); |
1508 | put_task_struct(task); |
1509 | |
1510 | if (!mm) { |
1511 | err = -EINVAL; |
1512 | goto out; |
1513 | } |
1514 | |
1515 | err = do_migrate_pages(mm, old, new, |
1516 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); |
1517 | |
1518 | mmput(mm); |
1519 | out: |
1520 | NODEMASK_SCRATCH_FREE(scratch); |
1521 | |
1522 | return err; |
1523 | |
1524 | out_put: |
1525 | put_task_struct(task); |
1526 | goto out; |
1527 | |
1528 | } |
1529 | |
1530 | |
1531 | /* Retrieve NUMA policy */ |
1532 | SYSCALL_DEFINE5(get_mempolicy, int __user *, policy, |
1533 | unsigned long __user *, nmask, unsigned long, maxnode, |
1534 | unsigned long, addr, unsigned long, flags) |
1535 | { |
1536 | int err; |
1537 | int uninitialized_var(pval); |
1538 | nodemask_t nodes; |
1539 | |
1540 | if (nmask != NULL && maxnode < MAX_NUMNODES) |
1541 | return -EINVAL; |
1542 | |
1543 | err = do_get_mempolicy(&pval, &nodes, addr, flags); |
1544 | |
1545 | if (err) |
1546 | return err; |
1547 | |
1548 | if (policy && put_user(pval, policy)) |
1549 | return -EFAULT; |
1550 | |
1551 | if (nmask) |
1552 | err = copy_nodes_to_user(nmask, maxnode, &nodes); |
1553 | |
1554 | return err; |
1555 | } |
1556 | |
1557 | #ifdef CONFIG_COMPAT |
1558 | |
1559 | asmlinkage long compat_sys_get_mempolicy(int __user *policy, |
1560 | compat_ulong_t __user *nmask, |
1561 | compat_ulong_t maxnode, |
1562 | compat_ulong_t addr, compat_ulong_t flags) |
1563 | { |
1564 | long err; |
1565 | unsigned long __user *nm = NULL; |
1566 | unsigned long nr_bits, alloc_size; |
1567 | DECLARE_BITMAP(bm, MAX_NUMNODES); |
1568 | |
1569 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
1570 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
1571 | |
1572 | if (nmask) |
1573 | nm = compat_alloc_user_space(alloc_size); |
1574 | |
1575 | err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags); |
1576 | |
1577 | if (!err && nmask) { |
1578 | unsigned long copy_size; |
1579 | copy_size = min_t(unsigned long, sizeof(bm), alloc_size); |
1580 | err = copy_from_user(bm, nm, copy_size); |
1581 | /* ensure entire bitmap is zeroed */ |
1582 | err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8); |
1583 | err |= compat_put_bitmap(nmask, bm, nr_bits); |
1584 | } |
1585 | |
1586 | return err; |
1587 | } |
1588 | |
1589 | asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask, |
1590 | compat_ulong_t maxnode) |
1591 | { |
1592 | long err = 0; |
1593 | unsigned long __user *nm = NULL; |
1594 | unsigned long nr_bits, alloc_size; |
1595 | DECLARE_BITMAP(bm, MAX_NUMNODES); |
1596 | |
1597 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
1598 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
1599 | |
1600 | if (nmask) { |
1601 | err = compat_get_bitmap(bm, nmask, nr_bits); |
1602 | nm = compat_alloc_user_space(alloc_size); |
1603 | err |= copy_to_user(nm, bm, alloc_size); |
1604 | } |
1605 | |
1606 | if (err) |
1607 | return -EFAULT; |
1608 | |
1609 | return sys_set_mempolicy(mode, nm, nr_bits+1); |
1610 | } |
1611 | |
1612 | asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, |
1613 | compat_ulong_t mode, compat_ulong_t __user *nmask, |
1614 | compat_ulong_t maxnode, compat_ulong_t flags) |
1615 | { |
1616 | long err = 0; |
1617 | unsigned long __user *nm = NULL; |
1618 | unsigned long nr_bits, alloc_size; |
1619 | nodemask_t bm; |
1620 | |
1621 | nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES); |
1622 | alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8; |
1623 | |
1624 | if (nmask) { |
1625 | err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits); |
1626 | nm = compat_alloc_user_space(alloc_size); |
1627 | err |= copy_to_user(nm, nodes_addr(bm), alloc_size); |
1628 | } |
1629 | |
1630 | if (err) |
1631 | return -EFAULT; |
1632 | |
1633 | return sys_mbind(start, len, mode, nm, nr_bits+1, flags); |
1634 | } |
1635 | |
1636 | #endif |
1637 | |
1638 | /* |
1639 | * get_vma_policy(@task, @vma, @addr) |
1640 | * @task - task for fallback if vma policy == default |
1641 | * @vma - virtual memory area whose policy is sought |
1642 | * @addr - address in @vma for shared policy lookup |
1643 | * |
1644 | * Returns effective policy for a VMA at specified address. |
1645 | * Falls back to @task or system default policy, as necessary. |
1646 | * Current or other task's task mempolicy and non-shared vma policies must be |
1647 | * protected by task_lock(task) by the caller. |
1648 | * Shared policies [those marked as MPOL_F_SHARED] require an extra reference |
1649 | * count--added by the get_policy() vm_op, as appropriate--to protect against |
1650 | * freeing by another task. It is the caller's responsibility to free the |
1651 | * extra reference for shared policies. |
1652 | */ |
1653 | struct mempolicy *get_vma_policy(struct task_struct *task, |
1654 | struct vm_area_struct *vma, unsigned long addr) |
1655 | { |
1656 | struct mempolicy *pol = get_task_policy(task); |
1657 | |
1658 | if (vma) { |
1659 | if (vma->vm_ops && vma->vm_ops->get_policy) { |
1660 | struct mempolicy *vpol = vma->vm_ops->get_policy(vma, |
1661 | addr); |
1662 | if (vpol) |
1663 | pol = vpol; |
1664 | } else if (vma->vm_policy) { |
1665 | pol = vma->vm_policy; |
1666 | |
1667 | /* |
1668 | * shmem_alloc_page() passes MPOL_F_SHARED policy with |
1669 | * a pseudo vma whose vma->vm_ops=NULL. Take a reference |
1670 | * count on these policies which will be dropped by |
1671 | * mpol_cond_put() later |
1672 | */ |
1673 | if (mpol_needs_cond_ref(pol)) |
1674 | mpol_get(pol); |
1675 | } |
1676 | } |
1677 | if (!pol) |
1678 | pol = &default_policy; |
1679 | return pol; |
1680 | } |
1681 | |
1682 | static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone) |
1683 | { |
1684 | enum zone_type dynamic_policy_zone = policy_zone; |
1685 | |
1686 | BUG_ON(dynamic_policy_zone == ZONE_MOVABLE); |
1687 | |
1688 | /* |
1689 | * if policy->v.nodes has movable memory only, |
1690 | * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only. |
1691 | * |
1692 | * policy->v.nodes is intersect with node_states[N_MEMORY]. |
1693 | * so if the following test faile, it implies |
1694 | * policy->v.nodes has movable memory only. |
1695 | */ |
1696 | if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY])) |
1697 | dynamic_policy_zone = ZONE_MOVABLE; |
1698 | |
1699 | return zone >= dynamic_policy_zone; |
1700 | } |
1701 | |
1702 | /* |
1703 | * Return a nodemask representing a mempolicy for filtering nodes for |
1704 | * page allocation |
1705 | */ |
1706 | static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy) |
1707 | { |
1708 | /* Lower zones don't get a nodemask applied for MPOL_BIND */ |
1709 | if (unlikely(policy->mode == MPOL_BIND) && |
1710 | apply_policy_zone(policy, gfp_zone(gfp)) && |
1711 | cpuset_nodemask_valid_mems_allowed(&policy->v.nodes)) |
1712 | return &policy->v.nodes; |
1713 | |
1714 | return NULL; |
1715 | } |
1716 | |
1717 | /* Return a zonelist indicated by gfp for node representing a mempolicy */ |
1718 | static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy, |
1719 | int nd) |
1720 | { |
1721 | switch (policy->mode) { |
1722 | case MPOL_PREFERRED: |
1723 | if (!(policy->flags & MPOL_F_LOCAL)) |
1724 | nd = policy->v.preferred_node; |
1725 | break; |
1726 | case MPOL_BIND: |
1727 | /* |
1728 | * Normally, MPOL_BIND allocations are node-local within the |
1729 | * allowed nodemask. However, if __GFP_THISNODE is set and the |
1730 | * current node isn't part of the mask, we use the zonelist for |
1731 | * the first node in the mask instead. |
1732 | */ |
1733 | if (unlikely(gfp & __GFP_THISNODE) && |
1734 | unlikely(!node_isset(nd, policy->v.nodes))) |
1735 | nd = first_node(policy->v.nodes); |
1736 | break; |
1737 | default: |
1738 | BUG(); |
1739 | } |
1740 | return node_zonelist(nd, gfp); |
1741 | } |
1742 | |
1743 | /* Do dynamic interleaving for a process */ |
1744 | static unsigned interleave_nodes(struct mempolicy *policy) |
1745 | { |
1746 | unsigned nid, next; |
1747 | struct task_struct *me = current; |
1748 | |
1749 | nid = me->il_next; |
1750 | next = next_node(nid, policy->v.nodes); |
1751 | if (next >= MAX_NUMNODES) |
1752 | next = first_node(policy->v.nodes); |
1753 | if (next < MAX_NUMNODES) |
1754 | me->il_next = next; |
1755 | return nid; |
1756 | } |
1757 | |
1758 | /* |
1759 | * Depending on the memory policy provide a node from which to allocate the |
1760 | * next slab entry. |
1761 | * @policy must be protected by freeing by the caller. If @policy is |
1762 | * the current task's mempolicy, this protection is implicit, as only the |
1763 | * task can change it's policy. The system default policy requires no |
1764 | * such protection. |
1765 | */ |
1766 | unsigned slab_node(void) |
1767 | { |
1768 | struct mempolicy *policy; |
1769 | |
1770 | if (in_interrupt()) |
1771 | return numa_node_id(); |
1772 | |
1773 | policy = current->mempolicy; |
1774 | if (!policy || policy->flags & MPOL_F_LOCAL) |
1775 | return numa_node_id(); |
1776 | |
1777 | switch (policy->mode) { |
1778 | case MPOL_PREFERRED: |
1779 | /* |
1780 | * handled MPOL_F_LOCAL above |
1781 | */ |
1782 | return policy->v.preferred_node; |
1783 | |
1784 | case MPOL_INTERLEAVE: |
1785 | return interleave_nodes(policy); |
1786 | |
1787 | case MPOL_BIND: { |
1788 | /* |
1789 | * Follow bind policy behavior and start allocation at the |
1790 | * first node. |
1791 | */ |
1792 | struct zonelist *zonelist; |
1793 | struct zone *zone; |
1794 | enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL); |
1795 | zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0]; |
1796 | (void)first_zones_zonelist(zonelist, highest_zoneidx, |
1797 | &policy->v.nodes, |
1798 | &zone); |
1799 | return zone ? zone->node : numa_node_id(); |
1800 | } |
1801 | |
1802 | default: |
1803 | BUG(); |
1804 | } |
1805 | } |
1806 | |
1807 | /* Do static interleaving for a VMA with known offset. */ |
1808 | static unsigned offset_il_node(struct mempolicy *pol, |
1809 | struct vm_area_struct *vma, unsigned long off) |
1810 | { |
1811 | unsigned nnodes = nodes_weight(pol->v.nodes); |
1812 | unsigned target; |
1813 | int c; |
1814 | int nid = -1; |
1815 | |
1816 | if (!nnodes) |
1817 | return numa_node_id(); |
1818 | target = (unsigned int)off % nnodes; |
1819 | c = 0; |
1820 | do { |
1821 | nid = next_node(nid, pol->v.nodes); |
1822 | c++; |
1823 | } while (c <= target); |
1824 | return nid; |
1825 | } |
1826 | |
1827 | /* Determine a node number for interleave */ |
1828 | static inline unsigned interleave_nid(struct mempolicy *pol, |
1829 | struct vm_area_struct *vma, unsigned long addr, int shift) |
1830 | { |
1831 | if (vma) { |
1832 | unsigned long off; |
1833 | |
1834 | /* |
1835 | * for small pages, there is no difference between |
1836 | * shift and PAGE_SHIFT, so the bit-shift is safe. |
1837 | * for huge pages, since vm_pgoff is in units of small |
1838 | * pages, we need to shift off the always 0 bits to get |
1839 | * a useful offset. |
1840 | */ |
1841 | BUG_ON(shift < PAGE_SHIFT); |
1842 | off = vma->vm_pgoff >> (shift - PAGE_SHIFT); |
1843 | off += (addr - vma->vm_start) >> shift; |
1844 | return offset_il_node(pol, vma, off); |
1845 | } else |
1846 | return interleave_nodes(pol); |
1847 | } |
1848 | |
1849 | /* |
1850 | * Return the bit number of a random bit set in the nodemask. |
1851 | * (returns -1 if nodemask is empty) |
1852 | */ |
1853 | int node_random(const nodemask_t *maskp) |
1854 | { |
1855 | int w, bit = -1; |
1856 | |
1857 | w = nodes_weight(*maskp); |
1858 | if (w) |
1859 | bit = bitmap_ord_to_pos(maskp->bits, |
1860 | get_random_int() % w, MAX_NUMNODES); |
1861 | return bit; |
1862 | } |
1863 | |
1864 | #ifdef CONFIG_HUGETLBFS |
1865 | /* |
1866 | * huge_zonelist(@vma, @addr, @gfp_flags, @mpol) |
1867 | * @vma = virtual memory area whose policy is sought |
1868 | * @addr = address in @vma for shared policy lookup and interleave policy |
1869 | * @gfp_flags = for requested zone |
1870 | * @mpol = pointer to mempolicy pointer for reference counted mempolicy |
1871 | * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask |
1872 | * |
1873 | * Returns a zonelist suitable for a huge page allocation and a pointer |
1874 | * to the struct mempolicy for conditional unref after allocation. |
1875 | * If the effective policy is 'BIND, returns a pointer to the mempolicy's |
1876 | * @nodemask for filtering the zonelist. |
1877 | * |
1878 | * Must be protected by get_mems_allowed() |
1879 | */ |
1880 | struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, |
1881 | gfp_t gfp_flags, struct mempolicy **mpol, |
1882 | nodemask_t **nodemask) |
1883 | { |
1884 | struct zonelist *zl; |
1885 | |
1886 | *mpol = get_vma_policy(current, vma, addr); |
1887 | *nodemask = NULL; /* assume !MPOL_BIND */ |
1888 | |
1889 | if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) { |
1890 | zl = node_zonelist(interleave_nid(*mpol, vma, addr, |
1891 | huge_page_shift(hstate_vma(vma))), gfp_flags); |
1892 | } else { |
1893 | zl = policy_zonelist(gfp_flags, *mpol, numa_node_id()); |
1894 | if ((*mpol)->mode == MPOL_BIND) |
1895 | *nodemask = &(*mpol)->v.nodes; |
1896 | } |
1897 | return zl; |
1898 | } |
1899 | |
1900 | /* |
1901 | * init_nodemask_of_mempolicy |
1902 | * |
1903 | * If the current task's mempolicy is "default" [NULL], return 'false' |
1904 | * to indicate default policy. Otherwise, extract the policy nodemask |
1905 | * for 'bind' or 'interleave' policy into the argument nodemask, or |
1906 | * initialize the argument nodemask to contain the single node for |
1907 | * 'preferred' or 'local' policy and return 'true' to indicate presence |
1908 | * of non-default mempolicy. |
1909 | * |
1910 | * We don't bother with reference counting the mempolicy [mpol_get/put] |
1911 | * because the current task is examining it's own mempolicy and a task's |
1912 | * mempolicy is only ever changed by the task itself. |
1913 | * |
1914 | * N.B., it is the caller's responsibility to free a returned nodemask. |
1915 | */ |
1916 | bool init_nodemask_of_mempolicy(nodemask_t *mask) |
1917 | { |
1918 | struct mempolicy *mempolicy; |
1919 | int nid; |
1920 | |
1921 | if (!(mask && current->mempolicy)) |
1922 | return false; |
1923 | |
1924 | task_lock(current); |
1925 | mempolicy = current->mempolicy; |
1926 | switch (mempolicy->mode) { |
1927 | case MPOL_PREFERRED: |
1928 | if (mempolicy->flags & MPOL_F_LOCAL) |
1929 | nid = numa_node_id(); |
1930 | else |
1931 | nid = mempolicy->v.preferred_node; |
1932 | init_nodemask_of_node(mask, nid); |
1933 | break; |
1934 | |
1935 | case MPOL_BIND: |
1936 | /* Fall through */ |
1937 | case MPOL_INTERLEAVE: |
1938 | *mask = mempolicy->v.nodes; |
1939 | break; |
1940 | |
1941 | default: |
1942 | BUG(); |
1943 | } |
1944 | task_unlock(current); |
1945 | |
1946 | return true; |
1947 | } |
1948 | #endif |
1949 | |
1950 | /* |
1951 | * mempolicy_nodemask_intersects |
1952 | * |
1953 | * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default |
1954 | * policy. Otherwise, check for intersection between mask and the policy |
1955 | * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' |
1956 | * policy, always return true since it may allocate elsewhere on fallback. |
1957 | * |
1958 | * Takes task_lock(tsk) to prevent freeing of its mempolicy. |
1959 | */ |
1960 | bool mempolicy_nodemask_intersects(struct task_struct *tsk, |
1961 | const nodemask_t *mask) |
1962 | { |
1963 | struct mempolicy *mempolicy; |
1964 | bool ret = true; |
1965 | |
1966 | if (!mask) |
1967 | return ret; |
1968 | task_lock(tsk); |
1969 | mempolicy = tsk->mempolicy; |
1970 | if (!mempolicy) |
1971 | goto out; |
1972 | |
1973 | switch (mempolicy->mode) { |
1974 | case MPOL_PREFERRED: |
1975 | /* |
1976 | * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to |
1977 | * allocate from, they may fallback to other nodes when oom. |
1978 | * Thus, it's possible for tsk to have allocated memory from |
1979 | * nodes in mask. |
1980 | */ |
1981 | break; |
1982 | case MPOL_BIND: |
1983 | case MPOL_INTERLEAVE: |
1984 | ret = nodes_intersects(mempolicy->v.nodes, *mask); |
1985 | break; |
1986 | default: |
1987 | BUG(); |
1988 | } |
1989 | out: |
1990 | task_unlock(tsk); |
1991 | return ret; |
1992 | } |
1993 | |
1994 | /* Allocate a page in interleaved policy. |
1995 | Own path because it needs to do special accounting. */ |
1996 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, |
1997 | unsigned nid) |
1998 | { |
1999 | struct zonelist *zl; |
2000 | struct page *page; |
2001 | |
2002 | zl = node_zonelist(nid, gfp); |
2003 | page = __alloc_pages(gfp, order, zl); |
2004 | if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0])) |
2005 | inc_zone_page_state(page, NUMA_INTERLEAVE_HIT); |
2006 | return page; |
2007 | } |
2008 | |
2009 | /** |
2010 | * alloc_pages_vma - Allocate a page for a VMA. |
2011 | * |
2012 | * @gfp: |
2013 | * %GFP_USER user allocation. |
2014 | * %GFP_KERNEL kernel allocations, |
2015 | * %GFP_HIGHMEM highmem/user allocations, |
2016 | * %GFP_FS allocation should not call back into a file system. |
2017 | * %GFP_ATOMIC don't sleep. |
2018 | * |
2019 | * @order:Order of the GFP allocation. |
2020 | * @vma: Pointer to VMA or NULL if not available. |
2021 | * @addr: Virtual Address of the allocation. Must be inside the VMA. |
2022 | * |
2023 | * This function allocates a page from the kernel page pool and applies |
2024 | * a NUMA policy associated with the VMA or the current process. |
2025 | * When VMA is not NULL caller must hold down_read on the mmap_sem of the |
2026 | * mm_struct of the VMA to prevent it from going away. Should be used for |
2027 | * all allocations for pages that will be mapped into |
2028 | * user space. Returns NULL when no page can be allocated. |
2029 | * |
2030 | * Should be called with the mm_sem of the vma hold. |
2031 | */ |
2032 | struct page * |
2033 | alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, |
2034 | unsigned long addr, int node) |
2035 | { |
2036 | struct mempolicy *pol; |
2037 | struct page *page; |
2038 | unsigned int cpuset_mems_cookie; |
2039 | |
2040 | retry_cpuset: |
2041 | pol = get_vma_policy(current, vma, addr); |
2042 | cpuset_mems_cookie = get_mems_allowed(); |
2043 | |
2044 | if (unlikely(pol->mode == MPOL_INTERLEAVE)) { |
2045 | unsigned nid; |
2046 | |
2047 | nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); |
2048 | mpol_cond_put(pol); |
2049 | page = alloc_page_interleave(gfp, order, nid); |
2050 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
2051 | goto retry_cpuset; |
2052 | |
2053 | return page; |
2054 | } |
2055 | page = __alloc_pages_nodemask(gfp, order, |
2056 | policy_zonelist(gfp, pol, node), |
2057 | policy_nodemask(gfp, pol)); |
2058 | if (unlikely(mpol_needs_cond_ref(pol))) |
2059 | __mpol_put(pol); |
2060 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
2061 | goto retry_cpuset; |
2062 | return page; |
2063 | } |
2064 | |
2065 | /** |
2066 | * alloc_pages_current - Allocate pages. |
2067 | * |
2068 | * @gfp: |
2069 | * %GFP_USER user allocation, |
2070 | * %GFP_KERNEL kernel allocation, |
2071 | * %GFP_HIGHMEM highmem allocation, |
2072 | * %GFP_FS don't call back into a file system. |
2073 | * %GFP_ATOMIC don't sleep. |
2074 | * @order: Power of two of allocation size in pages. 0 is a single page. |
2075 | * |
2076 | * Allocate a page from the kernel page pool. When not in |
2077 | * interrupt context and apply the current process NUMA policy. |
2078 | * Returns NULL when no page can be allocated. |
2079 | * |
2080 | * Don't call cpuset_update_task_memory_state() unless |
2081 | * 1) it's ok to take cpuset_sem (can WAIT), and |
2082 | * 2) allocating for current task (not interrupt). |
2083 | */ |
2084 | struct page *alloc_pages_current(gfp_t gfp, unsigned order) |
2085 | { |
2086 | struct mempolicy *pol = get_task_policy(current); |
2087 | struct page *page; |
2088 | unsigned int cpuset_mems_cookie; |
2089 | |
2090 | if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) |
2091 | pol = &default_policy; |
2092 | |
2093 | retry_cpuset: |
2094 | cpuset_mems_cookie = get_mems_allowed(); |
2095 | |
2096 | /* |
2097 | * No reference counting needed for current->mempolicy |
2098 | * nor system default_policy |
2099 | */ |
2100 | if (pol->mode == MPOL_INTERLEAVE) |
2101 | page = alloc_page_interleave(gfp, order, interleave_nodes(pol)); |
2102 | else |
2103 | page = __alloc_pages_nodemask(gfp, order, |
2104 | policy_zonelist(gfp, pol, numa_node_id()), |
2105 | policy_nodemask(gfp, pol)); |
2106 | |
2107 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
2108 | goto retry_cpuset; |
2109 | |
2110 | return page; |
2111 | } |
2112 | EXPORT_SYMBOL(alloc_pages_current); |
2113 | |
2114 | int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) |
2115 | { |
2116 | struct mempolicy *pol = mpol_dup(vma_policy(src)); |
2117 | |
2118 | if (IS_ERR(pol)) |
2119 | return PTR_ERR(pol); |
2120 | dst->vm_policy = pol; |
2121 | return 0; |
2122 | } |
2123 | |
2124 | /* |
2125 | * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it |
2126 | * rebinds the mempolicy its copying by calling mpol_rebind_policy() |
2127 | * with the mems_allowed returned by cpuset_mems_allowed(). This |
2128 | * keeps mempolicies cpuset relative after its cpuset moves. See |
2129 | * further kernel/cpuset.c update_nodemask(). |
2130 | * |
2131 | * current's mempolicy may be rebinded by the other task(the task that changes |
2132 | * cpuset's mems), so we needn't do rebind work for current task. |
2133 | */ |
2134 | |
2135 | /* Slow path of a mempolicy duplicate */ |
2136 | struct mempolicy *__mpol_dup(struct mempolicy *old) |
2137 | { |
2138 | struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
2139 | |
2140 | if (!new) |
2141 | return ERR_PTR(-ENOMEM); |
2142 | |
2143 | /* task's mempolicy is protected by alloc_lock */ |
2144 | if (old == current->mempolicy) { |
2145 | task_lock(current); |
2146 | *new = *old; |
2147 | task_unlock(current); |
2148 | } else |
2149 | *new = *old; |
2150 | |
2151 | rcu_read_lock(); |
2152 | if (current_cpuset_is_being_rebound()) { |
2153 | nodemask_t mems = cpuset_mems_allowed(current); |
2154 | if (new->flags & MPOL_F_REBINDING) |
2155 | mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2); |
2156 | else |
2157 | mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE); |
2158 | } |
2159 | rcu_read_unlock(); |
2160 | atomic_set(&new->refcnt, 1); |
2161 | return new; |
2162 | } |
2163 | |
2164 | /* Slow path of a mempolicy comparison */ |
2165 | bool __mpol_equal(struct mempolicy *a, struct mempolicy *b) |
2166 | { |
2167 | if (!a || !b) |
2168 | return false; |
2169 | if (a->mode != b->mode) |
2170 | return false; |
2171 | if (a->flags != b->flags) |
2172 | return false; |
2173 | if (mpol_store_user_nodemask(a)) |
2174 | if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask)) |
2175 | return false; |
2176 | |
2177 | switch (a->mode) { |
2178 | case MPOL_BIND: |
2179 | /* Fall through */ |
2180 | case MPOL_INTERLEAVE: |
2181 | return !!nodes_equal(a->v.nodes, b->v.nodes); |
2182 | case MPOL_PREFERRED: |
2183 | return a->v.preferred_node == b->v.preferred_node; |
2184 | default: |
2185 | BUG(); |
2186 | return false; |
2187 | } |
2188 | } |
2189 | |
2190 | /* |
2191 | * Shared memory backing store policy support. |
2192 | * |
2193 | * Remember policies even when nobody has shared memory mapped. |
2194 | * The policies are kept in Red-Black tree linked from the inode. |
2195 | * They are protected by the sp->lock spinlock, which should be held |
2196 | * for any accesses to the tree. |
2197 | */ |
2198 | |
2199 | /* lookup first element intersecting start-end */ |
2200 | /* Caller holds sp->lock */ |
2201 | static struct sp_node * |
2202 | sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) |
2203 | { |
2204 | struct rb_node *n = sp->root.rb_node; |
2205 | |
2206 | while (n) { |
2207 | struct sp_node *p = rb_entry(n, struct sp_node, nd); |
2208 | |
2209 | if (start >= p->end) |
2210 | n = n->rb_right; |
2211 | else if (end <= p->start) |
2212 | n = n->rb_left; |
2213 | else |
2214 | break; |
2215 | } |
2216 | if (!n) |
2217 | return NULL; |
2218 | for (;;) { |
2219 | struct sp_node *w = NULL; |
2220 | struct rb_node *prev = rb_prev(n); |
2221 | if (!prev) |
2222 | break; |
2223 | w = rb_entry(prev, struct sp_node, nd); |
2224 | if (w->end <= start) |
2225 | break; |
2226 | n = prev; |
2227 | } |
2228 | return rb_entry(n, struct sp_node, nd); |
2229 | } |
2230 | |
2231 | /* Insert a new shared policy into the list. */ |
2232 | /* Caller holds sp->lock */ |
2233 | static void sp_insert(struct shared_policy *sp, struct sp_node *new) |
2234 | { |
2235 | struct rb_node **p = &sp->root.rb_node; |
2236 | struct rb_node *parent = NULL; |
2237 | struct sp_node *nd; |
2238 | |
2239 | while (*p) { |
2240 | parent = *p; |
2241 | nd = rb_entry(parent, struct sp_node, nd); |
2242 | if (new->start < nd->start) |
2243 | p = &(*p)->rb_left; |
2244 | else if (new->end > nd->end) |
2245 | p = &(*p)->rb_right; |
2246 | else |
2247 | BUG(); |
2248 | } |
2249 | rb_link_node(&new->nd, parent, p); |
2250 | rb_insert_color(&new->nd, &sp->root); |
2251 | pr_debug("inserting %lx-%lx: %d\n", new->start, new->end, |
2252 | new->policy ? new->policy->mode : 0); |
2253 | } |
2254 | |
2255 | /* Find shared policy intersecting idx */ |
2256 | struct mempolicy * |
2257 | mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) |
2258 | { |
2259 | struct mempolicy *pol = NULL; |
2260 | struct sp_node *sn; |
2261 | |
2262 | if (!sp->root.rb_node) |
2263 | return NULL; |
2264 | spin_lock(&sp->lock); |
2265 | sn = sp_lookup(sp, idx, idx+1); |
2266 | if (sn) { |
2267 | mpol_get(sn->policy); |
2268 | pol = sn->policy; |
2269 | } |
2270 | spin_unlock(&sp->lock); |
2271 | return pol; |
2272 | } |
2273 | |
2274 | static void sp_free(struct sp_node *n) |
2275 | { |
2276 | mpol_put(n->policy); |
2277 | kmem_cache_free(sn_cache, n); |
2278 | } |
2279 | |
2280 | /** |
2281 | * mpol_misplaced - check whether current page node is valid in policy |
2282 | * |
2283 | * @page - page to be checked |
2284 | * @vma - vm area where page mapped |
2285 | * @addr - virtual address where page mapped |
2286 | * |
2287 | * Lookup current policy node id for vma,addr and "compare to" page's |
2288 | * node id. |
2289 | * |
2290 | * Returns: |
2291 | * -1 - not misplaced, page is in the right node |
2292 | * node - node id where the page should be |
2293 | * |
2294 | * Policy determination "mimics" alloc_page_vma(). |
2295 | * Called from fault path where we know the vma and faulting address. |
2296 | */ |
2297 | int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr) |
2298 | { |
2299 | struct mempolicy *pol; |
2300 | struct zone *zone; |
2301 | int curnid = page_to_nid(page); |
2302 | unsigned long pgoff; |
2303 | int polnid = -1; |
2304 | int ret = -1; |
2305 | |
2306 | BUG_ON(!vma); |
2307 | |
2308 | pol = get_vma_policy(current, vma, addr); |
2309 | if (!(pol->flags & MPOL_F_MOF)) |
2310 | goto out; |
2311 | |
2312 | switch (pol->mode) { |
2313 | case MPOL_INTERLEAVE: |
2314 | BUG_ON(addr >= vma->vm_end); |
2315 | BUG_ON(addr < vma->vm_start); |
2316 | |
2317 | pgoff = vma->vm_pgoff; |
2318 | pgoff += (addr - vma->vm_start) >> PAGE_SHIFT; |
2319 | polnid = offset_il_node(pol, vma, pgoff); |
2320 | break; |
2321 | |
2322 | case MPOL_PREFERRED: |
2323 | if (pol->flags & MPOL_F_LOCAL) |
2324 | polnid = numa_node_id(); |
2325 | else |
2326 | polnid = pol->v.preferred_node; |
2327 | break; |
2328 | |
2329 | case MPOL_BIND: |
2330 | /* |
2331 | * allows binding to multiple nodes. |
2332 | * use current page if in policy nodemask, |
2333 | * else select nearest allowed node, if any. |
2334 | * If no allowed nodes, use current [!misplaced]. |
2335 | */ |
2336 | if (node_isset(curnid, pol->v.nodes)) |
2337 | goto out; |
2338 | (void)first_zones_zonelist( |
2339 | node_zonelist(numa_node_id(), GFP_HIGHUSER), |
2340 | gfp_zone(GFP_HIGHUSER), |
2341 | &pol->v.nodes, &zone); |
2342 | polnid = zone->node; |
2343 | break; |
2344 | |
2345 | default: |
2346 | BUG(); |
2347 | } |
2348 | |
2349 | /* Migrate the page towards the node whose CPU is referencing it */ |
2350 | if (pol->flags & MPOL_F_MORON) { |
2351 | int last_nid; |
2352 | |
2353 | polnid = numa_node_id(); |
2354 | |
2355 | /* |
2356 | * Multi-stage node selection is used in conjunction |
2357 | * with a periodic migration fault to build a temporal |
2358 | * task<->page relation. By using a two-stage filter we |
2359 | * remove short/unlikely relations. |
2360 | * |
2361 | * Using P(p) ~ n_p / n_t as per frequentist |
2362 | * probability, we can equate a task's usage of a |
2363 | * particular page (n_p) per total usage of this |
2364 | * page (n_t) (in a given time-span) to a probability. |
2365 | * |
2366 | * Our periodic faults will sample this probability and |
2367 | * getting the same result twice in a row, given these |
2368 | * samples are fully independent, is then given by |
2369 | * P(n)^2, provided our sample period is sufficiently |
2370 | * short compared to the usage pattern. |
2371 | * |
2372 | * This quadric squishes small probabilities, making |
2373 | * it less likely we act on an unlikely task<->page |
2374 | * relation. |
2375 | */ |
2376 | last_nid = page_nid_xchg_last(page, polnid); |
2377 | if (last_nid != polnid) |
2378 | goto out; |
2379 | } |
2380 | |
2381 | if (curnid != polnid) |
2382 | ret = polnid; |
2383 | out: |
2384 | mpol_cond_put(pol); |
2385 | |
2386 | return ret; |
2387 | } |
2388 | |
2389 | static void sp_delete(struct shared_policy *sp, struct sp_node *n) |
2390 | { |
2391 | pr_debug("deleting %lx-l%lx\n", n->start, n->end); |
2392 | rb_erase(&n->nd, &sp->root); |
2393 | sp_free(n); |
2394 | } |
2395 | |
2396 | static void sp_node_init(struct sp_node *node, unsigned long start, |
2397 | unsigned long end, struct mempolicy *pol) |
2398 | { |
2399 | node->start = start; |
2400 | node->end = end; |
2401 | node->policy = pol; |
2402 | } |
2403 | |
2404 | static struct sp_node *sp_alloc(unsigned long start, unsigned long end, |
2405 | struct mempolicy *pol) |
2406 | { |
2407 | struct sp_node *n; |
2408 | struct mempolicy *newpol; |
2409 | |
2410 | n = kmem_cache_alloc(sn_cache, GFP_KERNEL); |
2411 | if (!n) |
2412 | return NULL; |
2413 | |
2414 | newpol = mpol_dup(pol); |
2415 | if (IS_ERR(newpol)) { |
2416 | kmem_cache_free(sn_cache, n); |
2417 | return NULL; |
2418 | } |
2419 | newpol->flags |= MPOL_F_SHARED; |
2420 | sp_node_init(n, start, end, newpol); |
2421 | |
2422 | return n; |
2423 | } |
2424 | |
2425 | /* Replace a policy range. */ |
2426 | static int shared_policy_replace(struct shared_policy *sp, unsigned long start, |
2427 | unsigned long end, struct sp_node *new) |
2428 | { |
2429 | struct sp_node *n; |
2430 | struct sp_node *n_new = NULL; |
2431 | struct mempolicy *mpol_new = NULL; |
2432 | int ret = 0; |
2433 | |
2434 | restart: |
2435 | spin_lock(&sp->lock); |
2436 | n = sp_lookup(sp, start, end); |
2437 | /* Take care of old policies in the same range. */ |
2438 | while (n && n->start < end) { |
2439 | struct rb_node *next = rb_next(&n->nd); |
2440 | if (n->start >= start) { |
2441 | if (n->end <= end) |
2442 | sp_delete(sp, n); |
2443 | else |
2444 | n->start = end; |
2445 | } else { |
2446 | /* Old policy spanning whole new range. */ |
2447 | if (n->end > end) { |
2448 | if (!n_new) |
2449 | goto alloc_new; |
2450 | |
2451 | *mpol_new = *n->policy; |
2452 | atomic_set(&mpol_new->refcnt, 1); |
2453 | sp_node_init(n_new, end, n->end, mpol_new); |
2454 | n->end = start; |
2455 | sp_insert(sp, n_new); |
2456 | n_new = NULL; |
2457 | mpol_new = NULL; |
2458 | break; |
2459 | } else |
2460 | n->end = start; |
2461 | } |
2462 | if (!next) |
2463 | break; |
2464 | n = rb_entry(next, struct sp_node, nd); |
2465 | } |
2466 | if (new) |
2467 | sp_insert(sp, new); |
2468 | spin_unlock(&sp->lock); |
2469 | ret = 0; |
2470 | |
2471 | err_out: |
2472 | if (mpol_new) |
2473 | mpol_put(mpol_new); |
2474 | if (n_new) |
2475 | kmem_cache_free(sn_cache, n_new); |
2476 | |
2477 | return ret; |
2478 | |
2479 | alloc_new: |
2480 | spin_unlock(&sp->lock); |
2481 | ret = -ENOMEM; |
2482 | n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL); |
2483 | if (!n_new) |
2484 | goto err_out; |
2485 | mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL); |
2486 | if (!mpol_new) |
2487 | goto err_out; |
2488 | goto restart; |
2489 | } |
2490 | |
2491 | /** |
2492 | * mpol_shared_policy_init - initialize shared policy for inode |
2493 | * @sp: pointer to inode shared policy |
2494 | * @mpol: struct mempolicy to install |
2495 | * |
2496 | * Install non-NULL @mpol in inode's shared policy rb-tree. |
2497 | * On entry, the current task has a reference on a non-NULL @mpol. |
2498 | * This must be released on exit. |
2499 | * This is called at get_inode() calls and we can use GFP_KERNEL. |
2500 | */ |
2501 | void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) |
2502 | { |
2503 | int ret; |
2504 | |
2505 | sp->root = RB_ROOT; /* empty tree == default mempolicy */ |
2506 | spin_lock_init(&sp->lock); |
2507 | |
2508 | if (mpol) { |
2509 | struct vm_area_struct pvma; |
2510 | struct mempolicy *new; |
2511 | NODEMASK_SCRATCH(scratch); |
2512 | |
2513 | if (!scratch) |
2514 | goto put_mpol; |
2515 | /* contextualize the tmpfs mount point mempolicy */ |
2516 | new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask); |
2517 | if (IS_ERR(new)) |
2518 | goto free_scratch; /* no valid nodemask intersection */ |
2519 | |
2520 | task_lock(current); |
2521 | ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch); |
2522 | task_unlock(current); |
2523 | if (ret) |
2524 | goto put_new; |
2525 | |
2526 | /* Create pseudo-vma that contains just the policy */ |
2527 | memset(&pvma, 0, sizeof(struct vm_area_struct)); |
2528 | pvma.vm_end = TASK_SIZE; /* policy covers entire file */ |
2529 | mpol_set_shared_policy(sp, &pvma, new); /* adds ref */ |
2530 | |
2531 | put_new: |
2532 | mpol_put(new); /* drop initial ref */ |
2533 | free_scratch: |
2534 | NODEMASK_SCRATCH_FREE(scratch); |
2535 | put_mpol: |
2536 | mpol_put(mpol); /* drop our incoming ref on sb mpol */ |
2537 | } |
2538 | } |
2539 | |
2540 | int mpol_set_shared_policy(struct shared_policy *info, |
2541 | struct vm_area_struct *vma, struct mempolicy *npol) |
2542 | { |
2543 | int err; |
2544 | struct sp_node *new = NULL; |
2545 | unsigned long sz = vma_pages(vma); |
2546 | |
2547 | pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n", |
2548 | vma->vm_pgoff, |
2549 | sz, npol ? npol->mode : -1, |
2550 | npol ? npol->flags : -1, |
2551 | npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE); |
2552 | |
2553 | if (npol) { |
2554 | new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol); |
2555 | if (!new) |
2556 | return -ENOMEM; |
2557 | } |
2558 | err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); |
2559 | if (err && new) |
2560 | sp_free(new); |
2561 | return err; |
2562 | } |
2563 | |
2564 | /* Free a backing policy store on inode delete. */ |
2565 | void mpol_free_shared_policy(struct shared_policy *p) |
2566 | { |
2567 | struct sp_node *n; |
2568 | struct rb_node *next; |
2569 | |
2570 | if (!p->root.rb_node) |
2571 | return; |
2572 | spin_lock(&p->lock); |
2573 | next = rb_first(&p->root); |
2574 | while (next) { |
2575 | n = rb_entry(next, struct sp_node, nd); |
2576 | next = rb_next(&n->nd); |
2577 | sp_delete(p, n); |
2578 | } |
2579 | spin_unlock(&p->lock); |
2580 | } |
2581 | |
2582 | #ifdef CONFIG_NUMA_BALANCING |
2583 | static bool __initdata numabalancing_override; |
2584 | |
2585 | static void __init check_numabalancing_enable(void) |
2586 | { |
2587 | bool numabalancing_default = false; |
2588 | |
2589 | if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED)) |
2590 | numabalancing_default = true; |
2591 | |
2592 | if (nr_node_ids > 1 && !numabalancing_override) { |
2593 | printk(KERN_INFO "Enabling automatic NUMA balancing. " |
2594 | "Configure with numa_balancing= or sysctl"); |
2595 | set_numabalancing_state(numabalancing_default); |
2596 | } |
2597 | } |
2598 | |
2599 | static int __init setup_numabalancing(char *str) |
2600 | { |
2601 | int ret = 0; |
2602 | if (!str) |
2603 | goto out; |
2604 | numabalancing_override = true; |
2605 | |
2606 | if (!strcmp(str, "enable")) { |
2607 | set_numabalancing_state(true); |
2608 | ret = 1; |
2609 | } else if (!strcmp(str, "disable")) { |
2610 | set_numabalancing_state(false); |
2611 | ret = 1; |
2612 | } |
2613 | out: |
2614 | if (!ret) |
2615 | printk(KERN_WARNING "Unable to parse numa_balancing=\n"); |
2616 | |
2617 | return ret; |
2618 | } |
2619 | __setup("numa_balancing=", setup_numabalancing); |
2620 | #else |
2621 | static inline void __init check_numabalancing_enable(void) |
2622 | { |
2623 | } |
2624 | #endif /* CONFIG_NUMA_BALANCING */ |
2625 | |
2626 | /* assumes fs == KERNEL_DS */ |
2627 | void __init numa_policy_init(void) |
2628 | { |
2629 | nodemask_t interleave_nodes; |
2630 | unsigned long largest = 0; |
2631 | int nid, prefer = 0; |
2632 | |
2633 | policy_cache = kmem_cache_create("numa_policy", |
2634 | sizeof(struct mempolicy), |
2635 | 0, SLAB_PANIC, NULL); |
2636 | |
2637 | sn_cache = kmem_cache_create("shared_policy_node", |
2638 | sizeof(struct sp_node), |
2639 | 0, SLAB_PANIC, NULL); |
2640 | |
2641 | for_each_node(nid) { |
2642 | preferred_node_policy[nid] = (struct mempolicy) { |
2643 | .refcnt = ATOMIC_INIT(1), |
2644 | .mode = MPOL_PREFERRED, |
2645 | .flags = MPOL_F_MOF | MPOL_F_MORON, |
2646 | .v = { .preferred_node = nid, }, |
2647 | }; |
2648 | } |
2649 | |
2650 | /* |
2651 | * Set interleaving policy for system init. Interleaving is only |
2652 | * enabled across suitably sized nodes (default is >= 16MB), or |
2653 | * fall back to the largest node if they're all smaller. |
2654 | */ |
2655 | nodes_clear(interleave_nodes); |
2656 | for_each_node_state(nid, N_MEMORY) { |
2657 | unsigned long total_pages = node_present_pages(nid); |
2658 | |
2659 | /* Preserve the largest node */ |
2660 | if (largest < total_pages) { |
2661 | largest = total_pages; |
2662 | prefer = nid; |
2663 | } |
2664 | |
2665 | /* Interleave this node? */ |
2666 | if ((total_pages << PAGE_SHIFT) >= (16 << 20)) |
2667 | node_set(nid, interleave_nodes); |
2668 | } |
2669 | |
2670 | /* All too small, use the largest */ |
2671 | if (unlikely(nodes_empty(interleave_nodes))) |
2672 | node_set(prefer, interleave_nodes); |
2673 | |
2674 | if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes)) |
2675 | printk("numa_policy_init: interleaving failed\n"); |
2676 | |
2677 | check_numabalancing_enable(); |
2678 | } |
2679 | |
2680 | /* Reset policy of current process to default */ |
2681 | void numa_default_policy(void) |
2682 | { |
2683 | do_set_mempolicy(MPOL_DEFAULT, 0, NULL); |
2684 | } |
2685 | |
2686 | /* |
2687 | * Parse and format mempolicy from/to strings |
2688 | */ |
2689 | |
2690 | /* |
2691 | * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag. |
2692 | */ |
2693 | static const char * const policy_modes[] = |
2694 | { |
2695 | [MPOL_DEFAULT] = "default", |
2696 | [MPOL_PREFERRED] = "prefer", |
2697 | [MPOL_BIND] = "bind", |
2698 | [MPOL_INTERLEAVE] = "interleave", |
2699 | [MPOL_LOCAL] = "local", |
2700 | }; |
2701 | |
2702 | |
2703 | #ifdef CONFIG_TMPFS |
2704 | /** |
2705 | * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option. |
2706 | * @str: string containing mempolicy to parse |
2707 | * @mpol: pointer to struct mempolicy pointer, returned on success. |
2708 | * |
2709 | * Format of input: |
2710 | * <mode>[=<flags>][:<nodelist>] |
2711 | * |
2712 | * On success, returns 0, else 1 |
2713 | */ |
2714 | int mpol_parse_str(char *str, struct mempolicy **mpol) |
2715 | { |
2716 | struct mempolicy *new = NULL; |
2717 | unsigned short mode; |
2718 | unsigned short mode_flags; |
2719 | nodemask_t nodes; |
2720 | char *nodelist = strchr(str, ':'); |
2721 | char *flags = strchr(str, '='); |
2722 | int err = 1; |
2723 | |
2724 | if (nodelist) { |
2725 | /* NUL-terminate mode or flags string */ |
2726 | *nodelist++ = '\0'; |
2727 | if (nodelist_parse(nodelist, nodes)) |
2728 | goto out; |
2729 | if (!nodes_subset(nodes, node_states[N_MEMORY])) |
2730 | goto out; |
2731 | } else |
2732 | nodes_clear(nodes); |
2733 | |
2734 | if (flags) |
2735 | *flags++ = '\0'; /* terminate mode string */ |
2736 | |
2737 | for (mode = 0; mode < MPOL_MAX; mode++) { |
2738 | if (!strcmp(str, policy_modes[mode])) { |
2739 | break; |
2740 | } |
2741 | } |
2742 | if (mode >= MPOL_MAX) |
2743 | goto out; |
2744 | |
2745 | switch (mode) { |
2746 | case MPOL_PREFERRED: |
2747 | /* |
2748 | * Insist on a nodelist of one node only |
2749 | */ |
2750 | if (nodelist) { |
2751 | char *rest = nodelist; |
2752 | while (isdigit(*rest)) |
2753 | rest++; |
2754 | if (*rest) |
2755 | goto out; |
2756 | } |
2757 | break; |
2758 | case MPOL_INTERLEAVE: |
2759 | /* |
2760 | * Default to online nodes with memory if no nodelist |
2761 | */ |
2762 | if (!nodelist) |
2763 | nodes = node_states[N_MEMORY]; |
2764 | break; |
2765 | case MPOL_LOCAL: |
2766 | /* |
2767 | * Don't allow a nodelist; mpol_new() checks flags |
2768 | */ |
2769 | if (nodelist) |
2770 | goto out; |
2771 | mode = MPOL_PREFERRED; |
2772 | break; |
2773 | case MPOL_DEFAULT: |
2774 | /* |
2775 | * Insist on a empty nodelist |
2776 | */ |
2777 | if (!nodelist) |
2778 | err = 0; |
2779 | goto out; |
2780 | case MPOL_BIND: |
2781 | /* |
2782 | * Insist on a nodelist |
2783 | */ |
2784 | if (!nodelist) |
2785 | goto out; |
2786 | } |
2787 | |
2788 | mode_flags = 0; |
2789 | if (flags) { |
2790 | /* |
2791 | * Currently, we only support two mutually exclusive |
2792 | * mode flags. |
2793 | */ |
2794 | if (!strcmp(flags, "static")) |
2795 | mode_flags |= MPOL_F_STATIC_NODES; |
2796 | else if (!strcmp(flags, "relative")) |
2797 | mode_flags |= MPOL_F_RELATIVE_NODES; |
2798 | else |
2799 | goto out; |
2800 | } |
2801 | |
2802 | new = mpol_new(mode, mode_flags, &nodes); |
2803 | if (IS_ERR(new)) |
2804 | goto out; |
2805 | |
2806 | /* |
2807 | * Save nodes for mpol_to_str() to show the tmpfs mount options |
2808 | * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo. |
2809 | */ |
2810 | if (mode != MPOL_PREFERRED) |
2811 | new->v.nodes = nodes; |
2812 | else if (nodelist) |
2813 | new->v.preferred_node = first_node(nodes); |
2814 | else |
2815 | new->flags |= MPOL_F_LOCAL; |
2816 | |
2817 | /* |
2818 | * Save nodes for contextualization: this will be used to "clone" |
2819 | * the mempolicy in a specific context [cpuset] at a later time. |
2820 | */ |
2821 | new->w.user_nodemask = nodes; |
2822 | |
2823 | err = 0; |
2824 | |
2825 | out: |
2826 | /* Restore string for error message */ |
2827 | if (nodelist) |
2828 | *--nodelist = ':'; |
2829 | if (flags) |
2830 | *--flags = '='; |
2831 | if (!err) |
2832 | *mpol = new; |
2833 | return err; |
2834 | } |
2835 | #endif /* CONFIG_TMPFS */ |
2836 | |
2837 | /** |
2838 | * mpol_to_str - format a mempolicy structure for printing |
2839 | * @buffer: to contain formatted mempolicy string |
2840 | * @maxlen: length of @buffer |
2841 | * @pol: pointer to mempolicy to be formatted |
2842 | * |
2843 | * Convert a mempolicy into a string. |
2844 | * Returns the number of characters in buffer (if positive) |
2845 | * or an error (negative) |
2846 | */ |
2847 | int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) |
2848 | { |
2849 | char *p = buffer; |
2850 | int l; |
2851 | nodemask_t nodes; |
2852 | unsigned short mode; |
2853 | unsigned short flags = pol ? pol->flags : 0; |
2854 | |
2855 | /* |
2856 | * Sanity check: room for longest mode, flag and some nodes |
2857 | */ |
2858 | VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16); |
2859 | |
2860 | if (!pol || pol == &default_policy) |
2861 | mode = MPOL_DEFAULT; |
2862 | else |
2863 | mode = pol->mode; |
2864 | |
2865 | switch (mode) { |
2866 | case MPOL_DEFAULT: |
2867 | nodes_clear(nodes); |
2868 | break; |
2869 | |
2870 | case MPOL_PREFERRED: |
2871 | nodes_clear(nodes); |
2872 | if (flags & MPOL_F_LOCAL) |
2873 | mode = MPOL_LOCAL; |
2874 | else |
2875 | node_set(pol->v.preferred_node, nodes); |
2876 | break; |
2877 | |
2878 | case MPOL_BIND: |
2879 | /* Fall through */ |
2880 | case MPOL_INTERLEAVE: |
2881 | nodes = pol->v.nodes; |
2882 | break; |
2883 | |
2884 | default: |
2885 | return -EINVAL; |
2886 | } |
2887 | |
2888 | l = strlen(policy_modes[mode]); |
2889 | if (buffer + maxlen < p + l + 1) |
2890 | return -ENOSPC; |
2891 | |
2892 | strcpy(p, policy_modes[mode]); |
2893 | p += l; |
2894 | |
2895 | if (flags & MPOL_MODE_FLAGS) { |
2896 | if (buffer + maxlen < p + 2) |
2897 | return -ENOSPC; |
2898 | *p++ = '='; |
2899 | |
2900 | /* |
2901 | * Currently, the only defined flags are mutually exclusive |
2902 | */ |
2903 | if (flags & MPOL_F_STATIC_NODES) |
2904 | p += snprintf(p, buffer + maxlen - p, "static"); |
2905 | else if (flags & MPOL_F_RELATIVE_NODES) |
2906 | p += snprintf(p, buffer + maxlen - p, "relative"); |
2907 | } |
2908 | |
2909 | if (!nodes_empty(nodes)) { |
2910 | if (buffer + maxlen < p + 2) |
2911 | return -ENOSPC; |
2912 | *p++ = ':'; |
2913 | p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); |
2914 | } |
2915 | return p - buffer; |
2916 | } |
2917 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9