Root/mm/migrate.c

1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/hugetlb_cgroup.h>
37#include <linux/gfp.h>
38#include <linux/balloon_compaction.h>
39
40#include <asm/tlbflush.h>
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/migrate.h>
44
45#include "internal.h"
46
47/*
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
51 */
52int migrate_prep(void)
53{
54    /*
55     * Clear the LRU lists so pages can be isolated.
56     * Note that pages may be moved off the LRU after we have
57     * drained them. Those pages will fail to migrate like other
58     * pages that may be busy.
59     */
60    lru_add_drain_all();
61
62    return 0;
63}
64
65/* Do the necessary work of migrate_prep but not if it involves other CPUs */
66int migrate_prep_local(void)
67{
68    lru_add_drain();
69
70    return 0;
71}
72
73/*
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
76 */
77void putback_lru_pages(struct list_head *l)
78{
79    struct page *page;
80    struct page *page2;
81
82    list_for_each_entry_safe(page, page2, l, lru) {
83        list_del(&page->lru);
84        dec_zone_page_state(page, NR_ISOLATED_ANON +
85                page_is_file_cache(page));
86            putback_lru_page(page);
87    }
88}
89
90/*
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
93 *
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
96 */
97void putback_movable_pages(struct list_head *l)
98{
99    struct page *page;
100    struct page *page2;
101
102    list_for_each_entry_safe(page, page2, l, lru) {
103        if (unlikely(PageHuge(page))) {
104            putback_active_hugepage(page);
105            continue;
106        }
107        list_del(&page->lru);
108        dec_zone_page_state(page, NR_ISOLATED_ANON +
109                page_is_file_cache(page));
110        if (unlikely(isolated_balloon_page(page)))
111            balloon_page_putback(page);
112        else
113            putback_lru_page(page);
114    }
115}
116
117/*
118 * Restore a potential migration pte to a working pte entry
119 */
120static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121                 unsigned long addr, void *old)
122{
123    struct mm_struct *mm = vma->vm_mm;
124    swp_entry_t entry;
125     pmd_t *pmd;
126    pte_t *ptep, pte;
127     spinlock_t *ptl;
128
129    if (unlikely(PageHuge(new))) {
130        ptep = huge_pte_offset(mm, addr);
131        if (!ptep)
132            goto out;
133        ptl = &mm->page_table_lock;
134    } else {
135        pmd = mm_find_pmd(mm, addr);
136        if (!pmd)
137            goto out;
138        if (pmd_trans_huge(*pmd))
139            goto out;
140
141        ptep = pte_offset_map(pmd, addr);
142
143        /*
144         * Peek to check is_swap_pte() before taking ptlock? No, we
145         * can race mremap's move_ptes(), which skips anon_vma lock.
146         */
147
148        ptl = pte_lockptr(mm, pmd);
149    }
150
151     spin_lock(ptl);
152    pte = *ptep;
153    if (!is_swap_pte(pte))
154        goto unlock;
155
156    entry = pte_to_swp_entry(pte);
157
158    if (!is_migration_entry(entry) ||
159        migration_entry_to_page(entry) != old)
160        goto unlock;
161
162    get_page(new);
163    pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164    if (pte_swp_soft_dirty(*ptep))
165        pte = pte_mksoft_dirty(pte);
166    if (is_write_migration_entry(entry))
167        pte = pte_mkwrite(pte);
168#ifdef CONFIG_HUGETLB_PAGE
169    if (PageHuge(new)) {
170        pte = pte_mkhuge(pte);
171        pte = arch_make_huge_pte(pte, vma, new, 0);
172    }
173#endif
174    flush_dcache_page(new);
175    set_pte_at(mm, addr, ptep, pte);
176
177    if (PageHuge(new)) {
178        if (PageAnon(new))
179            hugepage_add_anon_rmap(new, vma, addr);
180        else
181            page_dup_rmap(new);
182    } else if (PageAnon(new))
183        page_add_anon_rmap(new, vma, addr);
184    else
185        page_add_file_rmap(new);
186
187    /* No need to invalidate - it was non-present before */
188    update_mmu_cache(vma, addr, ptep);
189unlock:
190    pte_unmap_unlock(ptep, ptl);
191out:
192    return SWAP_AGAIN;
193}
194
195/*
196 * Get rid of all migration entries and replace them by
197 * references to the indicated page.
198 */
199static void remove_migration_ptes(struct page *old, struct page *new)
200{
201    rmap_walk(new, remove_migration_pte, old);
202}
203
204/*
205 * Something used the pte of a page under migration. We need to
206 * get to the page and wait until migration is finished.
207 * When we return from this function the fault will be retried.
208 */
209static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210                spinlock_t *ptl)
211{
212    pte_t pte;
213    swp_entry_t entry;
214    struct page *page;
215
216    spin_lock(ptl);
217    pte = *ptep;
218    if (!is_swap_pte(pte))
219        goto out;
220
221    entry = pte_to_swp_entry(pte);
222    if (!is_migration_entry(entry))
223        goto out;
224
225    page = migration_entry_to_page(entry);
226
227    /*
228     * Once radix-tree replacement of page migration started, page_count
229     * *must* be zero. And, we don't want to call wait_on_page_locked()
230     * against a page without get_page().
231     * So, we use get_page_unless_zero(), here. Even failed, page fault
232     * will occur again.
233     */
234    if (!get_page_unless_zero(page))
235        goto out;
236    pte_unmap_unlock(ptep, ptl);
237    wait_on_page_locked(page);
238    put_page(page);
239    return;
240out:
241    pte_unmap_unlock(ptep, ptl);
242}
243
244void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245                unsigned long address)
246{
247    spinlock_t *ptl = pte_lockptr(mm, pmd);
248    pte_t *ptep = pte_offset_map(pmd, address);
249    __migration_entry_wait(mm, ptep, ptl);
250}
251
252void migration_entry_wait_huge(struct mm_struct *mm, pte_t *pte)
253{
254    spinlock_t *ptl = &(mm)->page_table_lock;
255    __migration_entry_wait(mm, pte, ptl);
256}
257
258#ifdef CONFIG_BLOCK
259/* Returns true if all buffers are successfully locked */
260static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261                            enum migrate_mode mode)
262{
263    struct buffer_head *bh = head;
264
265    /* Simple case, sync compaction */
266    if (mode != MIGRATE_ASYNC) {
267        do {
268            get_bh(bh);
269            lock_buffer(bh);
270            bh = bh->b_this_page;
271
272        } while (bh != head);
273
274        return true;
275    }
276
277    /* async case, we cannot block on lock_buffer so use trylock_buffer */
278    do {
279        get_bh(bh);
280        if (!trylock_buffer(bh)) {
281            /*
282             * We failed to lock the buffer and cannot stall in
283             * async migration. Release the taken locks
284             */
285            struct buffer_head *failed_bh = bh;
286            put_bh(failed_bh);
287            bh = head;
288            while (bh != failed_bh) {
289                unlock_buffer(bh);
290                put_bh(bh);
291                bh = bh->b_this_page;
292            }
293            return false;
294        }
295
296        bh = bh->b_this_page;
297    } while (bh != head);
298    return true;
299}
300#else
301static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
302                            enum migrate_mode mode)
303{
304    return true;
305}
306#endif /* CONFIG_BLOCK */
307
308/*
309 * Replace the page in the mapping.
310 *
311 * The number of remaining references must be:
312 * 1 for anonymous pages without a mapping
313 * 2 for pages with a mapping
314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
315 */
316int migrate_page_move_mapping(struct address_space *mapping,
317        struct page *newpage, struct page *page,
318        struct buffer_head *head, enum migrate_mode mode)
319{
320    int expected_count = 0;
321    void **pslot;
322
323    if (!mapping) {
324        /* Anonymous page without mapping */
325        if (page_count(page) != 1)
326            return -EAGAIN;
327        return MIGRATEPAGE_SUCCESS;
328    }
329
330    spin_lock_irq(&mapping->tree_lock);
331
332    pslot = radix_tree_lookup_slot(&mapping->page_tree,
333                     page_index(page));
334
335    expected_count = 2 + page_has_private(page);
336    if (page_count(page) != expected_count ||
337        radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
338        spin_unlock_irq(&mapping->tree_lock);
339        return -EAGAIN;
340    }
341
342    if (!page_freeze_refs(page, expected_count)) {
343        spin_unlock_irq(&mapping->tree_lock);
344        return -EAGAIN;
345    }
346
347    /*
348     * In the async migration case of moving a page with buffers, lock the
349     * buffers using trylock before the mapping is moved. If the mapping
350     * was moved, we later failed to lock the buffers and could not move
351     * the mapping back due to an elevated page count, we would have to
352     * block waiting on other references to be dropped.
353     */
354    if (mode == MIGRATE_ASYNC && head &&
355            !buffer_migrate_lock_buffers(head, mode)) {
356        page_unfreeze_refs(page, expected_count);
357        spin_unlock_irq(&mapping->tree_lock);
358        return -EAGAIN;
359    }
360
361    /*
362     * Now we know that no one else is looking at the page.
363     */
364    get_page(newpage); /* add cache reference */
365    if (PageSwapCache(page)) {
366        SetPageSwapCache(newpage);
367        set_page_private(newpage, page_private(page));
368    }
369
370    radix_tree_replace_slot(pslot, newpage);
371
372    /*
373     * Drop cache reference from old page by unfreezing
374     * to one less reference.
375     * We know this isn't the last reference.
376     */
377    page_unfreeze_refs(page, expected_count - 1);
378
379    /*
380     * If moved to a different zone then also account
381     * the page for that zone. Other VM counters will be
382     * taken care of when we establish references to the
383     * new page and drop references to the old page.
384     *
385     * Note that anonymous pages are accounted for
386     * via NR_FILE_PAGES and NR_ANON_PAGES if they
387     * are mapped to swap space.
388     */
389    __dec_zone_page_state(page, NR_FILE_PAGES);
390    __inc_zone_page_state(newpage, NR_FILE_PAGES);
391    if (!PageSwapCache(page) && PageSwapBacked(page)) {
392        __dec_zone_page_state(page, NR_SHMEM);
393        __inc_zone_page_state(newpage, NR_SHMEM);
394    }
395    spin_unlock_irq(&mapping->tree_lock);
396
397    return MIGRATEPAGE_SUCCESS;
398}
399
400/*
401 * The expected number of remaining references is the same as that
402 * of migrate_page_move_mapping().
403 */
404int migrate_huge_page_move_mapping(struct address_space *mapping,
405                   struct page *newpage, struct page *page)
406{
407    int expected_count;
408    void **pslot;
409
410    if (!mapping) {
411        if (page_count(page) != 1)
412            return -EAGAIN;
413        return MIGRATEPAGE_SUCCESS;
414    }
415
416    spin_lock_irq(&mapping->tree_lock);
417
418    pslot = radix_tree_lookup_slot(&mapping->page_tree,
419                    page_index(page));
420
421    expected_count = 2 + page_has_private(page);
422    if (page_count(page) != expected_count ||
423        radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
424        spin_unlock_irq(&mapping->tree_lock);
425        return -EAGAIN;
426    }
427
428    if (!page_freeze_refs(page, expected_count)) {
429        spin_unlock_irq(&mapping->tree_lock);
430        return -EAGAIN;
431    }
432
433    get_page(newpage);
434
435    radix_tree_replace_slot(pslot, newpage);
436
437    page_unfreeze_refs(page, expected_count - 1);
438
439    spin_unlock_irq(&mapping->tree_lock);
440    return MIGRATEPAGE_SUCCESS;
441}
442
443/*
444 * Copy the page to its new location
445 */
446void migrate_page_copy(struct page *newpage, struct page *page)
447{
448    if (PageHuge(page) || PageTransHuge(page))
449        copy_huge_page(newpage, page);
450    else
451        copy_highpage(newpage, page);
452
453    if (PageError(page))
454        SetPageError(newpage);
455    if (PageReferenced(page))
456        SetPageReferenced(newpage);
457    if (PageUptodate(page))
458        SetPageUptodate(newpage);
459    if (TestClearPageActive(page)) {
460        VM_BUG_ON(PageUnevictable(page));
461        SetPageActive(newpage);
462    } else if (TestClearPageUnevictable(page))
463        SetPageUnevictable(newpage);
464    if (PageChecked(page))
465        SetPageChecked(newpage);
466    if (PageMappedToDisk(page))
467        SetPageMappedToDisk(newpage);
468
469    if (PageDirty(page)) {
470        clear_page_dirty_for_io(page);
471        /*
472         * Want to mark the page and the radix tree as dirty, and
473         * redo the accounting that clear_page_dirty_for_io undid,
474         * but we can't use set_page_dirty because that function
475         * is actually a signal that all of the page has become dirty.
476         * Whereas only part of our page may be dirty.
477         */
478        if (PageSwapBacked(page))
479            SetPageDirty(newpage);
480        else
481            __set_page_dirty_nobuffers(newpage);
482     }
483
484    mlock_migrate_page(newpage, page);
485    ksm_migrate_page(newpage, page);
486    /*
487     * Please do not reorder this without considering how mm/ksm.c's
488     * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
489     */
490    ClearPageSwapCache(page);
491    ClearPagePrivate(page);
492    set_page_private(page, 0);
493
494    /*
495     * If any waiters have accumulated on the new page then
496     * wake them up.
497     */
498    if (PageWriteback(newpage))
499        end_page_writeback(newpage);
500}
501
502/************************************************************
503 * Migration functions
504 ***********************************************************/
505
506/* Always fail migration. Used for mappings that are not movable */
507int fail_migrate_page(struct address_space *mapping,
508            struct page *newpage, struct page *page)
509{
510    return -EIO;
511}
512EXPORT_SYMBOL(fail_migrate_page);
513
514/*
515 * Common logic to directly migrate a single page suitable for
516 * pages that do not use PagePrivate/PagePrivate2.
517 *
518 * Pages are locked upon entry and exit.
519 */
520int migrate_page(struct address_space *mapping,
521        struct page *newpage, struct page *page,
522        enum migrate_mode mode)
523{
524    int rc;
525
526    BUG_ON(PageWriteback(page)); /* Writeback must be complete */
527
528    rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
529
530    if (rc != MIGRATEPAGE_SUCCESS)
531        return rc;
532
533    migrate_page_copy(newpage, page);
534    return MIGRATEPAGE_SUCCESS;
535}
536EXPORT_SYMBOL(migrate_page);
537
538#ifdef CONFIG_BLOCK
539/*
540 * Migration function for pages with buffers. This function can only be used
541 * if the underlying filesystem guarantees that no other references to "page"
542 * exist.
543 */
544int buffer_migrate_page(struct address_space *mapping,
545        struct page *newpage, struct page *page, enum migrate_mode mode)
546{
547    struct buffer_head *bh, *head;
548    int rc;
549
550    if (!page_has_buffers(page))
551        return migrate_page(mapping, newpage, page, mode);
552
553    head = page_buffers(page);
554
555    rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
556
557    if (rc != MIGRATEPAGE_SUCCESS)
558        return rc;
559
560    /*
561     * In the async case, migrate_page_move_mapping locked the buffers
562     * with an IRQ-safe spinlock held. In the sync case, the buffers
563     * need to be locked now
564     */
565    if (mode != MIGRATE_ASYNC)
566        BUG_ON(!buffer_migrate_lock_buffers(head, mode));
567
568    ClearPagePrivate(page);
569    set_page_private(newpage, page_private(page));
570    set_page_private(page, 0);
571    put_page(page);
572    get_page(newpage);
573
574    bh = head;
575    do {
576        set_bh_page(bh, newpage, bh_offset(bh));
577        bh = bh->b_this_page;
578
579    } while (bh != head);
580
581    SetPagePrivate(newpage);
582
583    migrate_page_copy(newpage, page);
584
585    bh = head;
586    do {
587        unlock_buffer(bh);
588         put_bh(bh);
589        bh = bh->b_this_page;
590
591    } while (bh != head);
592
593    return MIGRATEPAGE_SUCCESS;
594}
595EXPORT_SYMBOL(buffer_migrate_page);
596#endif
597
598/*
599 * Writeback a page to clean the dirty state
600 */
601static int writeout(struct address_space *mapping, struct page *page)
602{
603    struct writeback_control wbc = {
604        .sync_mode = WB_SYNC_NONE,
605        .nr_to_write = 1,
606        .range_start = 0,
607        .range_end = LLONG_MAX,
608        .for_reclaim = 1
609    };
610    int rc;
611
612    if (!mapping->a_ops->writepage)
613        /* No write method for the address space */
614        return -EINVAL;
615
616    if (!clear_page_dirty_for_io(page))
617        /* Someone else already triggered a write */
618        return -EAGAIN;
619
620    /*
621     * A dirty page may imply that the underlying filesystem has
622     * the page on some queue. So the page must be clean for
623     * migration. Writeout may mean we loose the lock and the
624     * page state is no longer what we checked for earlier.
625     * At this point we know that the migration attempt cannot
626     * be successful.
627     */
628    remove_migration_ptes(page, page);
629
630    rc = mapping->a_ops->writepage(page, &wbc);
631
632    if (rc != AOP_WRITEPAGE_ACTIVATE)
633        /* unlocked. Relock */
634        lock_page(page);
635
636    return (rc < 0) ? -EIO : -EAGAIN;
637}
638
639/*
640 * Default handling if a filesystem does not provide a migration function.
641 */
642static int fallback_migrate_page(struct address_space *mapping,
643    struct page *newpage, struct page *page, enum migrate_mode mode)
644{
645    if (PageDirty(page)) {
646        /* Only writeback pages in full synchronous migration */
647        if (mode != MIGRATE_SYNC)
648            return -EBUSY;
649        return writeout(mapping, page);
650    }
651
652    /*
653     * Buffers may be managed in a filesystem specific way.
654     * We must have no buffers or drop them.
655     */
656    if (page_has_private(page) &&
657        !try_to_release_page(page, GFP_KERNEL))
658        return -EAGAIN;
659
660    return migrate_page(mapping, newpage, page, mode);
661}
662
663/*
664 * Move a page to a newly allocated page
665 * The page is locked and all ptes have been successfully removed.
666 *
667 * The new page will have replaced the old page if this function
668 * is successful.
669 *
670 * Return value:
671 * < 0 - error code
672 * MIGRATEPAGE_SUCCESS - success
673 */
674static int move_to_new_page(struct page *newpage, struct page *page,
675                int remap_swapcache, enum migrate_mode mode)
676{
677    struct address_space *mapping;
678    int rc;
679
680    /*
681     * Block others from accessing the page when we get around to
682     * establishing additional references. We are the only one
683     * holding a reference to the new page at this point.
684     */
685    if (!trylock_page(newpage))
686        BUG();
687
688    /* Prepare mapping for the new page.*/
689    newpage->index = page->index;
690    newpage->mapping = page->mapping;
691    if (PageSwapBacked(page))
692        SetPageSwapBacked(newpage);
693
694    mapping = page_mapping(page);
695    if (!mapping)
696        rc = migrate_page(mapping, newpage, page, mode);
697    else if (mapping->a_ops->migratepage)
698        /*
699         * Most pages have a mapping and most filesystems provide a
700         * migratepage callback. Anonymous pages are part of swap
701         * space which also has its own migratepage callback. This
702         * is the most common path for page migration.
703         */
704        rc = mapping->a_ops->migratepage(mapping,
705                        newpage, page, mode);
706    else
707        rc = fallback_migrate_page(mapping, newpage, page, mode);
708
709    if (rc != MIGRATEPAGE_SUCCESS) {
710        newpage->mapping = NULL;
711    } else {
712        if (remap_swapcache)
713            remove_migration_ptes(page, newpage);
714        page->mapping = NULL;
715    }
716
717    unlock_page(newpage);
718
719    return rc;
720}
721
722static int __unmap_and_move(struct page *page, struct page *newpage,
723                int force, enum migrate_mode mode)
724{
725    int rc = -EAGAIN;
726    int remap_swapcache = 1;
727    struct mem_cgroup *mem;
728    struct anon_vma *anon_vma = NULL;
729
730    if (!trylock_page(page)) {
731        if (!force || mode == MIGRATE_ASYNC)
732            goto out;
733
734        /*
735         * It's not safe for direct compaction to call lock_page.
736         * For example, during page readahead pages are added locked
737         * to the LRU. Later, when the IO completes the pages are
738         * marked uptodate and unlocked. However, the queueing
739         * could be merging multiple pages for one bio (e.g.
740         * mpage_readpages). If an allocation happens for the
741         * second or third page, the process can end up locking
742         * the same page twice and deadlocking. Rather than
743         * trying to be clever about what pages can be locked,
744         * avoid the use of lock_page for direct compaction
745         * altogether.
746         */
747        if (current->flags & PF_MEMALLOC)
748            goto out;
749
750        lock_page(page);
751    }
752
753    /* charge against new page */
754    mem_cgroup_prepare_migration(page, newpage, &mem);
755
756    if (PageWriteback(page)) {
757        /*
758         * Only in the case of a full synchronous migration is it
759         * necessary to wait for PageWriteback. In the async case,
760         * the retry loop is too short and in the sync-light case,
761         * the overhead of stalling is too much
762         */
763        if (mode != MIGRATE_SYNC) {
764            rc = -EBUSY;
765            goto uncharge;
766        }
767        if (!force)
768            goto uncharge;
769        wait_on_page_writeback(page);
770    }
771    /*
772     * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
773     * we cannot notice that anon_vma is freed while we migrates a page.
774     * This get_anon_vma() delays freeing anon_vma pointer until the end
775     * of migration. File cache pages are no problem because of page_lock()
776     * File Caches may use write_page() or lock_page() in migration, then,
777     * just care Anon page here.
778     */
779    if (PageAnon(page) && !PageKsm(page)) {
780        /*
781         * Only page_lock_anon_vma_read() understands the subtleties of
782         * getting a hold on an anon_vma from outside one of its mms.
783         */
784        anon_vma = page_get_anon_vma(page);
785        if (anon_vma) {
786            /*
787             * Anon page
788             */
789        } else if (PageSwapCache(page)) {
790            /*
791             * We cannot be sure that the anon_vma of an unmapped
792             * swapcache page is safe to use because we don't
793             * know in advance if the VMA that this page belonged
794             * to still exists. If the VMA and others sharing the
795             * data have been freed, then the anon_vma could
796             * already be invalid.
797             *
798             * To avoid this possibility, swapcache pages get
799             * migrated but are not remapped when migration
800             * completes
801             */
802            remap_swapcache = 0;
803        } else {
804            goto uncharge;
805        }
806    }
807
808    if (unlikely(balloon_page_movable(page))) {
809        /*
810         * A ballooned page does not need any special attention from
811         * physical to virtual reverse mapping procedures.
812         * Skip any attempt to unmap PTEs or to remap swap cache,
813         * in order to avoid burning cycles at rmap level, and perform
814         * the page migration right away (proteced by page lock).
815         */
816        rc = balloon_page_migrate(newpage, page, mode);
817        goto uncharge;
818    }
819
820    /*
821     * Corner case handling:
822     * 1. When a new swap-cache page is read into, it is added to the LRU
823     * and treated as swapcache but it has no rmap yet.
824     * Calling try_to_unmap() against a page->mapping==NULL page will
825     * trigger a BUG. So handle it here.
826     * 2. An orphaned page (see truncate_complete_page) might have
827     * fs-private metadata. The page can be picked up due to memory
828     * offlining. Everywhere else except page reclaim, the page is
829     * invisible to the vm, so the page can not be migrated. So try to
830     * free the metadata, so the page can be freed.
831     */
832    if (!page->mapping) {
833        VM_BUG_ON(PageAnon(page));
834        if (page_has_private(page)) {
835            try_to_free_buffers(page);
836            goto uncharge;
837        }
838        goto skip_unmap;
839    }
840
841    /* Establish migration ptes or remove ptes */
842    try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
843
844skip_unmap:
845    if (!page_mapped(page))
846        rc = move_to_new_page(newpage, page, remap_swapcache, mode);
847
848    if (rc && remap_swapcache)
849        remove_migration_ptes(page, page);
850
851    /* Drop an anon_vma reference if we took one */
852    if (anon_vma)
853        put_anon_vma(anon_vma);
854
855uncharge:
856    mem_cgroup_end_migration(mem, page, newpage,
857                 (rc == MIGRATEPAGE_SUCCESS ||
858                  rc == MIGRATEPAGE_BALLOON_SUCCESS));
859    unlock_page(page);
860out:
861    return rc;
862}
863
864/*
865 * Obtain the lock on page, remove all ptes and migrate the page
866 * to the newly allocated page in newpage.
867 */
868static int unmap_and_move(new_page_t get_new_page, unsigned long private,
869            struct page *page, int force, enum migrate_mode mode)
870{
871    int rc = 0;
872    int *result = NULL;
873    struct page *newpage = get_new_page(page, private, &result);
874
875    if (!newpage)
876        return -ENOMEM;
877
878    if (page_count(page) == 1) {
879        /* page was freed from under us. So we are done. */
880        goto out;
881    }
882
883    if (unlikely(PageTransHuge(page)))
884        if (unlikely(split_huge_page(page)))
885            goto out;
886
887    rc = __unmap_and_move(page, newpage, force, mode);
888
889    if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
890        /*
891         * A ballooned page has been migrated already.
892         * Now, it's the time to wrap-up counters,
893         * handle the page back to Buddy and return.
894         */
895        dec_zone_page_state(page, NR_ISOLATED_ANON +
896                    page_is_file_cache(page));
897        balloon_page_free(page);
898        return MIGRATEPAGE_SUCCESS;
899    }
900out:
901    if (rc != -EAGAIN) {
902        /*
903         * A page that has been migrated has all references
904         * removed and will be freed. A page that has not been
905         * migrated will have kepts its references and be
906         * restored.
907         */
908        list_del(&page->lru);
909        dec_zone_page_state(page, NR_ISOLATED_ANON +
910                page_is_file_cache(page));
911        putback_lru_page(page);
912    }
913    /*
914     * Move the new page to the LRU. If migration was not successful
915     * then this will free the page.
916     */
917    putback_lru_page(newpage);
918    if (result) {
919        if (rc)
920            *result = rc;
921        else
922            *result = page_to_nid(newpage);
923    }
924    return rc;
925}
926
927/*
928 * Counterpart of unmap_and_move_page() for hugepage migration.
929 *
930 * This function doesn't wait the completion of hugepage I/O
931 * because there is no race between I/O and migration for hugepage.
932 * Note that currently hugepage I/O occurs only in direct I/O
933 * where no lock is held and PG_writeback is irrelevant,
934 * and writeback status of all subpages are counted in the reference
935 * count of the head page (i.e. if all subpages of a 2MB hugepage are
936 * under direct I/O, the reference of the head page is 512 and a bit more.)
937 * This means that when we try to migrate hugepage whose subpages are
938 * doing direct I/O, some references remain after try_to_unmap() and
939 * hugepage migration fails without data corruption.
940 *
941 * There is also no race when direct I/O is issued on the page under migration,
942 * because then pte is replaced with migration swap entry and direct I/O code
943 * will wait in the page fault for migration to complete.
944 */
945static int unmap_and_move_huge_page(new_page_t get_new_page,
946                unsigned long private, struct page *hpage,
947                int force, enum migrate_mode mode)
948{
949    int rc = 0;
950    int *result = NULL;
951    struct page *new_hpage = get_new_page(hpage, private, &result);
952    struct anon_vma *anon_vma = NULL;
953
954    /*
955     * Movability of hugepages depends on architectures and hugepage size.
956     * This check is necessary because some callers of hugepage migration
957     * like soft offline and memory hotremove don't walk through page
958     * tables or check whether the hugepage is pmd-based or not before
959     * kicking migration.
960     */
961    if (!hugepage_migration_support(page_hstate(hpage)))
962        return -ENOSYS;
963
964    if (!new_hpage)
965        return -ENOMEM;
966
967    rc = -EAGAIN;
968
969    if (!trylock_page(hpage)) {
970        if (!force || mode != MIGRATE_SYNC)
971            goto out;
972        lock_page(hpage);
973    }
974
975    if (PageAnon(hpage))
976        anon_vma = page_get_anon_vma(hpage);
977
978    try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
979
980    if (!page_mapped(hpage))
981        rc = move_to_new_page(new_hpage, hpage, 1, mode);
982
983    if (rc)
984        remove_migration_ptes(hpage, hpage);
985
986    if (anon_vma)
987        put_anon_vma(anon_vma);
988
989    if (!rc)
990        hugetlb_cgroup_migrate(hpage, new_hpage);
991
992    unlock_page(hpage);
993out:
994    if (rc != -EAGAIN)
995        putback_active_hugepage(hpage);
996    put_page(new_hpage);
997    if (result) {
998        if (rc)
999            *result = rc;
1000        else
1001            *result = page_to_nid(new_hpage);
1002    }
1003    return rc;
1004}
1005
1006/*
1007 * migrate_pages - migrate the pages specified in a list, to the free pages
1008 * supplied as the target for the page migration
1009 *
1010 * @from: The list of pages to be migrated.
1011 * @get_new_page: The function used to allocate free pages to be used
1012 * as the target of the page migration.
1013 * @private: Private data to be passed on to get_new_page()
1014 * @mode: The migration mode that specifies the constraints for
1015 * page migration, if any.
1016 * @reason: The reason for page migration.
1017 *
1018 * The function returns after 10 attempts or if no pages are movable any more
1019 * because the list has become empty or no retryable pages exist any more.
1020 * The caller should call putback_lru_pages() to return pages to the LRU
1021 * or free list only if ret != 0.
1022 *
1023 * Returns the number of pages that were not migrated, or an error code.
1024 */
1025int migrate_pages(struct list_head *from, new_page_t get_new_page,
1026        unsigned long private, enum migrate_mode mode, int reason)
1027{
1028    int retry = 1;
1029    int nr_failed = 0;
1030    int nr_succeeded = 0;
1031    int pass = 0;
1032    struct page *page;
1033    struct page *page2;
1034    int swapwrite = current->flags & PF_SWAPWRITE;
1035    int rc;
1036
1037    if (!swapwrite)
1038        current->flags |= PF_SWAPWRITE;
1039
1040    for(pass = 0; pass < 10 && retry; pass++) {
1041        retry = 0;
1042
1043        list_for_each_entry_safe(page, page2, from, lru) {
1044            cond_resched();
1045
1046            if (PageHuge(page))
1047                rc = unmap_and_move_huge_page(get_new_page,
1048                        private, page, pass > 2, mode);
1049            else
1050                rc = unmap_and_move(get_new_page, private,
1051                        page, pass > 2, mode);
1052
1053            switch(rc) {
1054            case -ENOMEM:
1055                goto out;
1056            case -EAGAIN:
1057                retry++;
1058                break;
1059            case MIGRATEPAGE_SUCCESS:
1060                nr_succeeded++;
1061                break;
1062            default:
1063                /* Permanent failure */
1064                nr_failed++;
1065                break;
1066            }
1067        }
1068    }
1069    rc = nr_failed + retry;
1070out:
1071    if (nr_succeeded)
1072        count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1073    if (nr_failed)
1074        count_vm_events(PGMIGRATE_FAIL, nr_failed);
1075    trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1076
1077    if (!swapwrite)
1078        current->flags &= ~PF_SWAPWRITE;
1079
1080    return rc;
1081}
1082
1083#ifdef CONFIG_NUMA
1084/*
1085 * Move a list of individual pages
1086 */
1087struct page_to_node {
1088    unsigned long addr;
1089    struct page *page;
1090    int node;
1091    int status;
1092};
1093
1094static struct page *new_page_node(struct page *p, unsigned long private,
1095        int **result)
1096{
1097    struct page_to_node *pm = (struct page_to_node *)private;
1098
1099    while (pm->node != MAX_NUMNODES && pm->page != p)
1100        pm++;
1101
1102    if (pm->node == MAX_NUMNODES)
1103        return NULL;
1104
1105    *result = &pm->status;
1106
1107    if (PageHuge(p))
1108        return alloc_huge_page_node(page_hstate(compound_head(p)),
1109                    pm->node);
1110    else
1111        return alloc_pages_exact_node(pm->node,
1112                GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1113}
1114
1115/*
1116 * Move a set of pages as indicated in the pm array. The addr
1117 * field must be set to the virtual address of the page to be moved
1118 * and the node number must contain a valid target node.
1119 * The pm array ends with node = MAX_NUMNODES.
1120 */
1121static int do_move_page_to_node_array(struct mm_struct *mm,
1122                      struct page_to_node *pm,
1123                      int migrate_all)
1124{
1125    int err;
1126    struct page_to_node *pp;
1127    LIST_HEAD(pagelist);
1128
1129    down_read(&mm->mmap_sem);
1130
1131    /*
1132     * Build a list of pages to migrate
1133     */
1134    for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1135        struct vm_area_struct *vma;
1136        struct page *page;
1137
1138        err = -EFAULT;
1139        vma = find_vma(mm, pp->addr);
1140        if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1141            goto set_status;
1142
1143        page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1144
1145        err = PTR_ERR(page);
1146        if (IS_ERR(page))
1147            goto set_status;
1148
1149        err = -ENOENT;
1150        if (!page)
1151            goto set_status;
1152
1153        /* Use PageReserved to check for zero page */
1154        if (PageReserved(page))
1155            goto put_and_set;
1156
1157        pp->page = page;
1158        err = page_to_nid(page);
1159
1160        if (err == pp->node)
1161            /*
1162             * Node already in the right place
1163             */
1164            goto put_and_set;
1165
1166        err = -EACCES;
1167        if (page_mapcount(page) > 1 &&
1168                !migrate_all)
1169            goto put_and_set;
1170
1171        if (PageHuge(page)) {
1172            isolate_huge_page(page, &pagelist);
1173            goto put_and_set;
1174        }
1175
1176        err = isolate_lru_page(page);
1177        if (!err) {
1178            list_add_tail(&page->lru, &pagelist);
1179            inc_zone_page_state(page, NR_ISOLATED_ANON +
1180                        page_is_file_cache(page));
1181        }
1182put_and_set:
1183        /*
1184         * Either remove the duplicate refcount from
1185         * isolate_lru_page() or drop the page ref if it was
1186         * not isolated.
1187         */
1188        put_page(page);
1189set_status:
1190        pp->status = err;
1191    }
1192
1193    err = 0;
1194    if (!list_empty(&pagelist)) {
1195        err = migrate_pages(&pagelist, new_page_node,
1196                (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1197        if (err)
1198            putback_movable_pages(&pagelist);
1199    }
1200
1201    up_read(&mm->mmap_sem);
1202    return err;
1203}
1204
1205/*
1206 * Migrate an array of page address onto an array of nodes and fill
1207 * the corresponding array of status.
1208 */
1209static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1210             unsigned long nr_pages,
1211             const void __user * __user *pages,
1212             const int __user *nodes,
1213             int __user *status, int flags)
1214{
1215    struct page_to_node *pm;
1216    unsigned long chunk_nr_pages;
1217    unsigned long chunk_start;
1218    int err;
1219
1220    err = -ENOMEM;
1221    pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1222    if (!pm)
1223        goto out;
1224
1225    migrate_prep();
1226
1227    /*
1228     * Store a chunk of page_to_node array in a page,
1229     * but keep the last one as a marker
1230     */
1231    chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1232
1233    for (chunk_start = 0;
1234         chunk_start < nr_pages;
1235         chunk_start += chunk_nr_pages) {
1236        int j;
1237
1238        if (chunk_start + chunk_nr_pages > nr_pages)
1239            chunk_nr_pages = nr_pages - chunk_start;
1240
1241        /* fill the chunk pm with addrs and nodes from user-space */
1242        for (j = 0; j < chunk_nr_pages; j++) {
1243            const void __user *p;
1244            int node;
1245
1246            err = -EFAULT;
1247            if (get_user(p, pages + j + chunk_start))
1248                goto out_pm;
1249            pm[j].addr = (unsigned long) p;
1250
1251            if (get_user(node, nodes + j + chunk_start))
1252                goto out_pm;
1253
1254            err = -ENODEV;
1255            if (node < 0 || node >= MAX_NUMNODES)
1256                goto out_pm;
1257
1258            if (!node_state(node, N_MEMORY))
1259                goto out_pm;
1260
1261            err = -EACCES;
1262            if (!node_isset(node, task_nodes))
1263                goto out_pm;
1264
1265            pm[j].node = node;
1266        }
1267
1268        /* End marker for this chunk */
1269        pm[chunk_nr_pages].node = MAX_NUMNODES;
1270
1271        /* Migrate this chunk */
1272        err = do_move_page_to_node_array(mm, pm,
1273                         flags & MPOL_MF_MOVE_ALL);
1274        if (err < 0)
1275            goto out_pm;
1276
1277        /* Return status information */
1278        for (j = 0; j < chunk_nr_pages; j++)
1279            if (put_user(pm[j].status, status + j + chunk_start)) {
1280                err = -EFAULT;
1281                goto out_pm;
1282            }
1283    }
1284    err = 0;
1285
1286out_pm:
1287    free_page((unsigned long)pm);
1288out:
1289    return err;
1290}
1291
1292/*
1293 * Determine the nodes of an array of pages and store it in an array of status.
1294 */
1295static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1296                const void __user **pages, int *status)
1297{
1298    unsigned long i;
1299
1300    down_read(&mm->mmap_sem);
1301
1302    for (i = 0; i < nr_pages; i++) {
1303        unsigned long addr = (unsigned long)(*pages);
1304        struct vm_area_struct *vma;
1305        struct page *page;
1306        int err = -EFAULT;
1307
1308        vma = find_vma(mm, addr);
1309        if (!vma || addr < vma->vm_start)
1310            goto set_status;
1311
1312        page = follow_page(vma, addr, 0);
1313
1314        err = PTR_ERR(page);
1315        if (IS_ERR(page))
1316            goto set_status;
1317
1318        err = -ENOENT;
1319        /* Use PageReserved to check for zero page */
1320        if (!page || PageReserved(page))
1321            goto set_status;
1322
1323        err = page_to_nid(page);
1324set_status:
1325        *status = err;
1326
1327        pages++;
1328        status++;
1329    }
1330
1331    up_read(&mm->mmap_sem);
1332}
1333
1334/*
1335 * Determine the nodes of a user array of pages and store it in
1336 * a user array of status.
1337 */
1338static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1339             const void __user * __user *pages,
1340             int __user *status)
1341{
1342#define DO_PAGES_STAT_CHUNK_NR 16
1343    const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1344    int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1345
1346    while (nr_pages) {
1347        unsigned long chunk_nr;
1348
1349        chunk_nr = nr_pages;
1350        if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1351            chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1352
1353        if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1354            break;
1355
1356        do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1357
1358        if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1359            break;
1360
1361        pages += chunk_nr;
1362        status += chunk_nr;
1363        nr_pages -= chunk_nr;
1364    }
1365    return nr_pages ? -EFAULT : 0;
1366}
1367
1368/*
1369 * Move a list of pages in the address space of the currently executing
1370 * process.
1371 */
1372SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1373        const void __user * __user *, pages,
1374        const int __user *, nodes,
1375        int __user *, status, int, flags)
1376{
1377    const struct cred *cred = current_cred(), *tcred;
1378    struct task_struct *task;
1379    struct mm_struct *mm;
1380    int err;
1381    nodemask_t task_nodes;
1382
1383    /* Check flags */
1384    if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1385        return -EINVAL;
1386
1387    if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1388        return -EPERM;
1389
1390    /* Find the mm_struct */
1391    rcu_read_lock();
1392    task = pid ? find_task_by_vpid(pid) : current;
1393    if (!task) {
1394        rcu_read_unlock();
1395        return -ESRCH;
1396    }
1397    get_task_struct(task);
1398
1399    /*
1400     * Check if this process has the right to modify the specified
1401     * process. The right exists if the process has administrative
1402     * capabilities, superuser privileges or the same
1403     * userid as the target process.
1404     */
1405    tcred = __task_cred(task);
1406    if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1407        !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1408        !capable(CAP_SYS_NICE)) {
1409        rcu_read_unlock();
1410        err = -EPERM;
1411        goto out;
1412    }
1413    rcu_read_unlock();
1414
1415     err = security_task_movememory(task);
1416     if (err)
1417        goto out;
1418
1419    task_nodes = cpuset_mems_allowed(task);
1420    mm = get_task_mm(task);
1421    put_task_struct(task);
1422
1423    if (!mm)
1424        return -EINVAL;
1425
1426    if (nodes)
1427        err = do_pages_move(mm, task_nodes, nr_pages, pages,
1428                    nodes, status, flags);
1429    else
1430        err = do_pages_stat(mm, nr_pages, pages, status);
1431
1432    mmput(mm);
1433    return err;
1434
1435out:
1436    put_task_struct(task);
1437    return err;
1438}
1439
1440/*
1441 * Call migration functions in the vma_ops that may prepare
1442 * memory in a vm for migration. migration functions may perform
1443 * the migration for vmas that do not have an underlying page struct.
1444 */
1445int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1446    const nodemask_t *from, unsigned long flags)
1447{
1448     struct vm_area_struct *vma;
1449     int err = 0;
1450
1451    for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1452         if (vma->vm_ops && vma->vm_ops->migrate) {
1453             err = vma->vm_ops->migrate(vma, to, from, flags);
1454             if (err)
1455                 break;
1456         }
1457     }
1458     return err;
1459}
1460
1461#ifdef CONFIG_NUMA_BALANCING
1462/*
1463 * Returns true if this is a safe migration target node for misplaced NUMA
1464 * pages. Currently it only checks the watermarks which crude
1465 */
1466static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1467                   unsigned long nr_migrate_pages)
1468{
1469    int z;
1470    for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1471        struct zone *zone = pgdat->node_zones + z;
1472
1473        if (!populated_zone(zone))
1474            continue;
1475
1476        if (!zone_reclaimable(zone))
1477            continue;
1478
1479        /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1480        if (!zone_watermark_ok(zone, 0,
1481                       high_wmark_pages(zone) +
1482                       nr_migrate_pages,
1483                       0, 0))
1484            continue;
1485        return true;
1486    }
1487    return false;
1488}
1489
1490static struct page *alloc_misplaced_dst_page(struct page *page,
1491                       unsigned long data,
1492                       int **result)
1493{
1494    int nid = (int) data;
1495    struct page *newpage;
1496
1497    newpage = alloc_pages_exact_node(nid,
1498                     (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1499                      __GFP_NOMEMALLOC | __GFP_NORETRY |
1500                      __GFP_NOWARN) &
1501                     ~GFP_IOFS, 0);
1502    if (newpage)
1503        page_nid_xchg_last(newpage, page_nid_last(page));
1504
1505    return newpage;
1506}
1507
1508/*
1509 * page migration rate limiting control.
1510 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1511 * window of time. Default here says do not migrate more than 1280M per second.
1512 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1513 * as it is faults that reset the window, pte updates will happen unconditionally
1514 * if there has not been a fault since @pteupdate_interval_millisecs after the
1515 * throttle window closed.
1516 */
1517static unsigned int migrate_interval_millisecs __read_mostly = 100;
1518static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1519static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1520
1521/* Returns true if NUMA migration is currently rate limited */
1522bool migrate_ratelimited(int node)
1523{
1524    pg_data_t *pgdat = NODE_DATA(node);
1525
1526    if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1527                msecs_to_jiffies(pteupdate_interval_millisecs)))
1528        return false;
1529
1530    if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1531        return false;
1532
1533    return true;
1534}
1535
1536/* Returns true if the node is migrate rate-limited after the update */
1537bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1538{
1539    bool rate_limited = false;
1540
1541    /*
1542     * Rate-limit the amount of data that is being migrated to a node.
1543     * Optimal placement is no good if the memory bus is saturated and
1544     * all the time is being spent migrating!
1545     */
1546    spin_lock(&pgdat->numabalancing_migrate_lock);
1547    if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1548        pgdat->numabalancing_migrate_nr_pages = 0;
1549        pgdat->numabalancing_migrate_next_window = jiffies +
1550            msecs_to_jiffies(migrate_interval_millisecs);
1551    }
1552    if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1553        rate_limited = true;
1554    else
1555        pgdat->numabalancing_migrate_nr_pages += nr_pages;
1556    spin_unlock(&pgdat->numabalancing_migrate_lock);
1557    
1558    return rate_limited;
1559}
1560
1561int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1562{
1563    int page_lru;
1564
1565    VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1566
1567    /* Avoid migrating to a node that is nearly full */
1568    if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1569        return 0;
1570
1571    if (isolate_lru_page(page))
1572        return 0;
1573
1574    /*
1575     * migrate_misplaced_transhuge_page() skips page migration's usual
1576     * check on page_count(), so we must do it here, now that the page
1577     * has been isolated: a GUP pin, or any other pin, prevents migration.
1578     * The expected page count is 3: 1 for page's mapcount and 1 for the
1579     * caller's pin and 1 for the reference taken by isolate_lru_page().
1580     */
1581    if (PageTransHuge(page) && page_count(page) != 3) {
1582        putback_lru_page(page);
1583        return 0;
1584    }
1585
1586    page_lru = page_is_file_cache(page);
1587    mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1588                hpage_nr_pages(page));
1589
1590    /*
1591     * Isolating the page has taken another reference, so the
1592     * caller's reference can be safely dropped without the page
1593     * disappearing underneath us during migration.
1594     */
1595    put_page(page);
1596    return 1;
1597}
1598
1599/*
1600 * Attempt to migrate a misplaced page to the specified destination
1601 * node. Caller is expected to have an elevated reference count on
1602 * the page that will be dropped by this function before returning.
1603 */
1604int migrate_misplaced_page(struct page *page, int node)
1605{
1606    pg_data_t *pgdat = NODE_DATA(node);
1607    int isolated;
1608    int nr_remaining;
1609    LIST_HEAD(migratepages);
1610
1611    /*
1612     * Don't migrate pages that are mapped in multiple processes.
1613     * TODO: Handle false sharing detection instead of this hammer
1614     */
1615    if (page_mapcount(page) != 1)
1616        goto out;
1617
1618    /*
1619     * Rate-limit the amount of data that is being migrated to a node.
1620     * Optimal placement is no good if the memory bus is saturated and
1621     * all the time is being spent migrating!
1622     */
1623    if (numamigrate_update_ratelimit(pgdat, 1))
1624        goto out;
1625
1626    isolated = numamigrate_isolate_page(pgdat, page);
1627    if (!isolated)
1628        goto out;
1629
1630    list_add(&page->lru, &migratepages);
1631    nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1632                     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1633    if (nr_remaining) {
1634        putback_lru_pages(&migratepages);
1635        isolated = 0;
1636    } else
1637        count_vm_numa_event(NUMA_PAGE_MIGRATE);
1638    BUG_ON(!list_empty(&migratepages));
1639    return isolated;
1640
1641out:
1642    put_page(page);
1643    return 0;
1644}
1645#endif /* CONFIG_NUMA_BALANCING */
1646
1647#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1648/*
1649 * Migrates a THP to a given target node. page must be locked and is unlocked
1650 * before returning.
1651 */
1652int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1653                struct vm_area_struct *vma,
1654                pmd_t *pmd, pmd_t entry,
1655                unsigned long address,
1656                struct page *page, int node)
1657{
1658    unsigned long haddr = address & HPAGE_PMD_MASK;
1659    pg_data_t *pgdat = NODE_DATA(node);
1660    int isolated = 0;
1661    struct page *new_page = NULL;
1662    struct mem_cgroup *memcg = NULL;
1663    int page_lru = page_is_file_cache(page);
1664
1665    /*
1666     * Don't migrate pages that are mapped in multiple processes.
1667     * TODO: Handle false sharing detection instead of this hammer
1668     */
1669    if (page_mapcount(page) != 1)
1670        goto out_dropref;
1671
1672    /*
1673     * Rate-limit the amount of data that is being migrated to a node.
1674     * Optimal placement is no good if the memory bus is saturated and
1675     * all the time is being spent migrating!
1676     */
1677    if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1678        goto out_dropref;
1679
1680    new_page = alloc_pages_node(node,
1681        (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1682    if (!new_page)
1683        goto out_fail;
1684
1685    page_nid_xchg_last(new_page, page_nid_last(page));
1686
1687    isolated = numamigrate_isolate_page(pgdat, page);
1688    if (!isolated) {
1689        put_page(new_page);
1690        goto out_fail;
1691    }
1692
1693    /* Prepare a page as a migration target */
1694    __set_page_locked(new_page);
1695    SetPageSwapBacked(new_page);
1696
1697    /* anon mapping, we can simply copy page->mapping to the new page: */
1698    new_page->mapping = page->mapping;
1699    new_page->index = page->index;
1700    migrate_page_copy(new_page, page);
1701    WARN_ON(PageLRU(new_page));
1702
1703    /* Recheck the target PMD */
1704    spin_lock(&mm->page_table_lock);
1705    if (unlikely(!pmd_same(*pmd, entry))) {
1706        spin_unlock(&mm->page_table_lock);
1707
1708        /* Reverse changes made by migrate_page_copy() */
1709        if (TestClearPageActive(new_page))
1710            SetPageActive(page);
1711        if (TestClearPageUnevictable(new_page))
1712            SetPageUnevictable(page);
1713        mlock_migrate_page(page, new_page);
1714
1715        unlock_page(new_page);
1716        put_page(new_page); /* Free it */
1717
1718        /* Retake the callers reference and putback on LRU */
1719        get_page(page);
1720        putback_lru_page(page);
1721        mod_zone_page_state(page_zone(page),
1722             NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1723        goto out_fail;
1724    }
1725
1726    /*
1727     * Traditional migration needs to prepare the memcg charge
1728     * transaction early to prevent the old page from being
1729     * uncharged when installing migration entries. Here we can
1730     * save the potential rollback and start the charge transfer
1731     * only when migration is already known to end successfully.
1732     */
1733    mem_cgroup_prepare_migration(page, new_page, &memcg);
1734
1735    entry = mk_pmd(new_page, vma->vm_page_prot);
1736    entry = pmd_mknonnuma(entry);
1737    entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1738    entry = pmd_mkhuge(entry);
1739
1740    pmdp_clear_flush(vma, haddr, pmd);
1741    set_pmd_at(mm, haddr, pmd, entry);
1742    page_add_new_anon_rmap(new_page, vma, haddr);
1743    update_mmu_cache_pmd(vma, address, &entry);
1744    page_remove_rmap(page);
1745    /*
1746     * Finish the charge transaction under the page table lock to
1747     * prevent split_huge_page() from dividing up the charge
1748     * before it's fully transferred to the new page.
1749     */
1750    mem_cgroup_end_migration(memcg, page, new_page, true);
1751    spin_unlock(&mm->page_table_lock);
1752
1753    unlock_page(new_page);
1754    unlock_page(page);
1755    put_page(page); /* Drop the rmap reference */
1756    put_page(page); /* Drop the LRU isolation reference */
1757
1758    count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1759    count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1760
1761    mod_zone_page_state(page_zone(page),
1762            NR_ISOLATED_ANON + page_lru,
1763            -HPAGE_PMD_NR);
1764    return isolated;
1765
1766out_fail:
1767    count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1768out_dropref:
1769    entry = pmd_mknonnuma(entry);
1770    set_pmd_at(mm, haddr, pmd, entry);
1771    update_mmu_cache_pmd(vma, address, &entry);
1772
1773    unlock_page(page);
1774    put_page(page);
1775    return 0;
1776}
1777#endif /* CONFIG_NUMA_BALANCING */
1778
1779#endif /* CONFIG_NUMA */
1780

Archive Download this file



interactive