Root/
1 | /* |
2 | * linux/mm/mlock.c |
3 | * |
4 | * (C) Copyright 1995 Linus Torvalds |
5 | * (C) Copyright 2002 Christoph Hellwig |
6 | */ |
7 | |
8 | #include <linux/capability.h> |
9 | #include <linux/mman.h> |
10 | #include <linux/mm.h> |
11 | #include <linux/swap.h> |
12 | #include <linux/swapops.h> |
13 | #include <linux/pagemap.h> |
14 | #include <linux/pagevec.h> |
15 | #include <linux/mempolicy.h> |
16 | #include <linux/syscalls.h> |
17 | #include <linux/sched.h> |
18 | #include <linux/export.h> |
19 | #include <linux/rmap.h> |
20 | #include <linux/mmzone.h> |
21 | #include <linux/hugetlb.h> |
22 | #include <linux/memcontrol.h> |
23 | #include <linux/mm_inline.h> |
24 | |
25 | #include "internal.h" |
26 | |
27 | int can_do_mlock(void) |
28 | { |
29 | if (capable(CAP_IPC_LOCK)) |
30 | return 1; |
31 | if (rlimit(RLIMIT_MEMLOCK) != 0) |
32 | return 1; |
33 | return 0; |
34 | } |
35 | EXPORT_SYMBOL(can_do_mlock); |
36 | |
37 | /* |
38 | * Mlocked pages are marked with PageMlocked() flag for efficient testing |
39 | * in vmscan and, possibly, the fault path; and to support semi-accurate |
40 | * statistics. |
41 | * |
42 | * An mlocked page [PageMlocked(page)] is unevictable. As such, it will |
43 | * be placed on the LRU "unevictable" list, rather than the [in]active lists. |
44 | * The unevictable list is an LRU sibling list to the [in]active lists. |
45 | * PageUnevictable is set to indicate the unevictable state. |
46 | * |
47 | * When lazy mlocking via vmscan, it is important to ensure that the |
48 | * vma's VM_LOCKED status is not concurrently being modified, otherwise we |
49 | * may have mlocked a page that is being munlocked. So lazy mlock must take |
50 | * the mmap_sem for read, and verify that the vma really is locked |
51 | * (see mm/rmap.c). |
52 | */ |
53 | |
54 | /* |
55 | * LRU accounting for clear_page_mlock() |
56 | */ |
57 | void clear_page_mlock(struct page *page) |
58 | { |
59 | if (!TestClearPageMlocked(page)) |
60 | return; |
61 | |
62 | mod_zone_page_state(page_zone(page), NR_MLOCK, |
63 | -hpage_nr_pages(page)); |
64 | count_vm_event(UNEVICTABLE_PGCLEARED); |
65 | if (!isolate_lru_page(page)) { |
66 | putback_lru_page(page); |
67 | } else { |
68 | /* |
69 | * We lost the race. the page already moved to evictable list. |
70 | */ |
71 | if (PageUnevictable(page)) |
72 | count_vm_event(UNEVICTABLE_PGSTRANDED); |
73 | } |
74 | } |
75 | |
76 | /* |
77 | * Mark page as mlocked if not already. |
78 | * If page on LRU, isolate and putback to move to unevictable list. |
79 | */ |
80 | void mlock_vma_page(struct page *page) |
81 | { |
82 | BUG_ON(!PageLocked(page)); |
83 | |
84 | if (!TestSetPageMlocked(page)) { |
85 | mod_zone_page_state(page_zone(page), NR_MLOCK, |
86 | hpage_nr_pages(page)); |
87 | count_vm_event(UNEVICTABLE_PGMLOCKED); |
88 | if (!isolate_lru_page(page)) |
89 | putback_lru_page(page); |
90 | } |
91 | } |
92 | |
93 | /* |
94 | * Finish munlock after successful page isolation |
95 | * |
96 | * Page must be locked. This is a wrapper for try_to_munlock() |
97 | * and putback_lru_page() with munlock accounting. |
98 | */ |
99 | static void __munlock_isolated_page(struct page *page) |
100 | { |
101 | int ret = SWAP_AGAIN; |
102 | |
103 | /* |
104 | * Optimization: if the page was mapped just once, that's our mapping |
105 | * and we don't need to check all the other vmas. |
106 | */ |
107 | if (page_mapcount(page) > 1) |
108 | ret = try_to_munlock(page); |
109 | |
110 | /* Did try_to_unlock() succeed or punt? */ |
111 | if (ret != SWAP_MLOCK) |
112 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); |
113 | |
114 | putback_lru_page(page); |
115 | } |
116 | |
117 | /* |
118 | * Accounting for page isolation fail during munlock |
119 | * |
120 | * Performs accounting when page isolation fails in munlock. There is nothing |
121 | * else to do because it means some other task has already removed the page |
122 | * from the LRU. putback_lru_page() will take care of removing the page from |
123 | * the unevictable list, if necessary. vmscan [page_referenced()] will move |
124 | * the page back to the unevictable list if some other vma has it mlocked. |
125 | */ |
126 | static void __munlock_isolation_failed(struct page *page) |
127 | { |
128 | if (PageUnevictable(page)) |
129 | count_vm_event(UNEVICTABLE_PGSTRANDED); |
130 | else |
131 | count_vm_event(UNEVICTABLE_PGMUNLOCKED); |
132 | } |
133 | |
134 | /** |
135 | * munlock_vma_page - munlock a vma page |
136 | * @page - page to be unlocked |
137 | * |
138 | * called from munlock()/munmap() path with page supposedly on the LRU. |
139 | * When we munlock a page, because the vma where we found the page is being |
140 | * munlock()ed or munmap()ed, we want to check whether other vmas hold the |
141 | * page locked so that we can leave it on the unevictable lru list and not |
142 | * bother vmscan with it. However, to walk the page's rmap list in |
143 | * try_to_munlock() we must isolate the page from the LRU. If some other |
144 | * task has removed the page from the LRU, we won't be able to do that. |
145 | * So we clear the PageMlocked as we might not get another chance. If we |
146 | * can't isolate the page, we leave it for putback_lru_page() and vmscan |
147 | * [page_referenced()/try_to_unmap()] to deal with. |
148 | */ |
149 | unsigned int munlock_vma_page(struct page *page) |
150 | { |
151 | unsigned int page_mask = 0; |
152 | |
153 | BUG_ON(!PageLocked(page)); |
154 | |
155 | if (TestClearPageMlocked(page)) { |
156 | unsigned int nr_pages = hpage_nr_pages(page); |
157 | mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); |
158 | page_mask = nr_pages - 1; |
159 | if (!isolate_lru_page(page)) |
160 | __munlock_isolated_page(page); |
161 | else |
162 | __munlock_isolation_failed(page); |
163 | } |
164 | |
165 | return page_mask; |
166 | } |
167 | |
168 | /** |
169 | * __mlock_vma_pages_range() - mlock a range of pages in the vma. |
170 | * @vma: target vma |
171 | * @start: start address |
172 | * @end: end address |
173 | * |
174 | * This takes care of making the pages present too. |
175 | * |
176 | * return 0 on success, negative error code on error. |
177 | * |
178 | * vma->vm_mm->mmap_sem must be held for at least read. |
179 | */ |
180 | long __mlock_vma_pages_range(struct vm_area_struct *vma, |
181 | unsigned long start, unsigned long end, int *nonblocking) |
182 | { |
183 | struct mm_struct *mm = vma->vm_mm; |
184 | unsigned long nr_pages = (end - start) / PAGE_SIZE; |
185 | int gup_flags; |
186 | |
187 | VM_BUG_ON(start & ~PAGE_MASK); |
188 | VM_BUG_ON(end & ~PAGE_MASK); |
189 | VM_BUG_ON(start < vma->vm_start); |
190 | VM_BUG_ON(end > vma->vm_end); |
191 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); |
192 | |
193 | gup_flags = FOLL_TOUCH | FOLL_MLOCK; |
194 | /* |
195 | * We want to touch writable mappings with a write fault in order |
196 | * to break COW, except for shared mappings because these don't COW |
197 | * and we would not want to dirty them for nothing. |
198 | */ |
199 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) |
200 | gup_flags |= FOLL_WRITE; |
201 | |
202 | /* |
203 | * We want mlock to succeed for regions that have any permissions |
204 | * other than PROT_NONE. |
205 | */ |
206 | if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) |
207 | gup_flags |= FOLL_FORCE; |
208 | |
209 | /* |
210 | * We made sure addr is within a VMA, so the following will |
211 | * not result in a stack expansion that recurses back here. |
212 | */ |
213 | return __get_user_pages(current, mm, start, nr_pages, gup_flags, |
214 | NULL, NULL, nonblocking); |
215 | } |
216 | |
217 | /* |
218 | * convert get_user_pages() return value to posix mlock() error |
219 | */ |
220 | static int __mlock_posix_error_return(long retval) |
221 | { |
222 | if (retval == -EFAULT) |
223 | retval = -ENOMEM; |
224 | else if (retval == -ENOMEM) |
225 | retval = -EAGAIN; |
226 | return retval; |
227 | } |
228 | |
229 | /* |
230 | * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() |
231 | * |
232 | * The fast path is available only for evictable pages with single mapping. |
233 | * Then we can bypass the per-cpu pvec and get better performance. |
234 | * when mapcount > 1 we need try_to_munlock() which can fail. |
235 | * when !page_evictable(), we need the full redo logic of putback_lru_page to |
236 | * avoid leaving evictable page in unevictable list. |
237 | * |
238 | * In case of success, @page is added to @pvec and @pgrescued is incremented |
239 | * in case that the page was previously unevictable. @page is also unlocked. |
240 | */ |
241 | static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, |
242 | int *pgrescued) |
243 | { |
244 | VM_BUG_ON(PageLRU(page)); |
245 | VM_BUG_ON(!PageLocked(page)); |
246 | |
247 | if (page_mapcount(page) <= 1 && page_evictable(page)) { |
248 | pagevec_add(pvec, page); |
249 | if (TestClearPageUnevictable(page)) |
250 | (*pgrescued)++; |
251 | unlock_page(page); |
252 | return true; |
253 | } |
254 | |
255 | return false; |
256 | } |
257 | |
258 | /* |
259 | * Putback multiple evictable pages to the LRU |
260 | * |
261 | * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of |
262 | * the pages might have meanwhile become unevictable but that is OK. |
263 | */ |
264 | static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) |
265 | { |
266 | count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); |
267 | /* |
268 | *__pagevec_lru_add() calls release_pages() so we don't call |
269 | * put_page() explicitly |
270 | */ |
271 | __pagevec_lru_add(pvec); |
272 | count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
273 | } |
274 | |
275 | /* |
276 | * Munlock a batch of pages from the same zone |
277 | * |
278 | * The work is split to two main phases. First phase clears the Mlocked flag |
279 | * and attempts to isolate the pages, all under a single zone lru lock. |
280 | * The second phase finishes the munlock only for pages where isolation |
281 | * succeeded. |
282 | * |
283 | * Note that the pagevec may be modified during the process. |
284 | */ |
285 | static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) |
286 | { |
287 | int i; |
288 | int nr = pagevec_count(pvec); |
289 | int delta_munlocked = -nr; |
290 | struct pagevec pvec_putback; |
291 | int pgrescued = 0; |
292 | |
293 | /* Phase 1: page isolation */ |
294 | spin_lock_irq(&zone->lru_lock); |
295 | for (i = 0; i < nr; i++) { |
296 | struct page *page = pvec->pages[i]; |
297 | |
298 | if (TestClearPageMlocked(page)) { |
299 | struct lruvec *lruvec; |
300 | int lru; |
301 | |
302 | if (PageLRU(page)) { |
303 | lruvec = mem_cgroup_page_lruvec(page, zone); |
304 | lru = page_lru(page); |
305 | /* |
306 | * We already have pin from follow_page_mask() |
307 | * so we can spare the get_page() here. |
308 | */ |
309 | ClearPageLRU(page); |
310 | del_page_from_lru_list(page, lruvec, lru); |
311 | } else { |
312 | __munlock_isolation_failed(page); |
313 | goto skip_munlock; |
314 | } |
315 | |
316 | } else { |
317 | skip_munlock: |
318 | /* |
319 | * We won't be munlocking this page in the next phase |
320 | * but we still need to release the follow_page_mask() |
321 | * pin. |
322 | */ |
323 | pvec->pages[i] = NULL; |
324 | put_page(page); |
325 | delta_munlocked++; |
326 | } |
327 | } |
328 | __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); |
329 | spin_unlock_irq(&zone->lru_lock); |
330 | |
331 | /* Phase 2: page munlock */ |
332 | pagevec_init(&pvec_putback, 0); |
333 | for (i = 0; i < nr; i++) { |
334 | struct page *page = pvec->pages[i]; |
335 | |
336 | if (page) { |
337 | lock_page(page); |
338 | if (!__putback_lru_fast_prepare(page, &pvec_putback, |
339 | &pgrescued)) { |
340 | /* |
341 | * Slow path. We don't want to lose the last |
342 | * pin before unlock_page() |
343 | */ |
344 | get_page(page); /* for putback_lru_page() */ |
345 | __munlock_isolated_page(page); |
346 | unlock_page(page); |
347 | put_page(page); /* from follow_page_mask() */ |
348 | } |
349 | } |
350 | } |
351 | |
352 | /* |
353 | * Phase 3: page putback for pages that qualified for the fast path |
354 | * This will also call put_page() to return pin from follow_page_mask() |
355 | */ |
356 | if (pagevec_count(&pvec_putback)) |
357 | __putback_lru_fast(&pvec_putback, pgrescued); |
358 | } |
359 | |
360 | /* |
361 | * Fill up pagevec for __munlock_pagevec using pte walk |
362 | * |
363 | * The function expects that the struct page corresponding to @start address is |
364 | * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. |
365 | * |
366 | * The rest of @pvec is filled by subsequent pages within the same pmd and same |
367 | * zone, as long as the pte's are present and vm_normal_page() succeeds. These |
368 | * pages also get pinned. |
369 | * |
370 | * Returns the address of the next page that should be scanned. This equals |
371 | * @start + PAGE_SIZE when no page could be added by the pte walk. |
372 | */ |
373 | static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, |
374 | struct vm_area_struct *vma, int zoneid, unsigned long start, |
375 | unsigned long end) |
376 | { |
377 | pte_t *pte; |
378 | spinlock_t *ptl; |
379 | |
380 | /* |
381 | * Initialize pte walk starting at the already pinned page where we |
382 | * are sure that there is a pte, as it was pinned under the same |
383 | * mmap_sem write op. |
384 | */ |
385 | pte = get_locked_pte(vma->vm_mm, start, &ptl); |
386 | /* Make sure we do not cross the page table boundary */ |
387 | end = pgd_addr_end(start, end); |
388 | end = pud_addr_end(start, end); |
389 | end = pmd_addr_end(start, end); |
390 | |
391 | /* The page next to the pinned page is the first we will try to get */ |
392 | start += PAGE_SIZE; |
393 | while (start < end) { |
394 | struct page *page = NULL; |
395 | pte++; |
396 | if (pte_present(*pte)) |
397 | page = vm_normal_page(vma, start, *pte); |
398 | /* |
399 | * Break if page could not be obtained or the page's node+zone does not |
400 | * match |
401 | */ |
402 | if (!page || page_zone_id(page) != zoneid) |
403 | break; |
404 | |
405 | get_page(page); |
406 | /* |
407 | * Increase the address that will be returned *before* the |
408 | * eventual break due to pvec becoming full by adding the page |
409 | */ |
410 | start += PAGE_SIZE; |
411 | if (pagevec_add(pvec, page) == 0) |
412 | break; |
413 | } |
414 | pte_unmap_unlock(pte, ptl); |
415 | return start; |
416 | } |
417 | |
418 | /* |
419 | * munlock_vma_pages_range() - munlock all pages in the vma range.' |
420 | * @vma - vma containing range to be munlock()ed. |
421 | * @start - start address in @vma of the range |
422 | * @end - end of range in @vma. |
423 | * |
424 | * For mremap(), munmap() and exit(). |
425 | * |
426 | * Called with @vma VM_LOCKED. |
427 | * |
428 | * Returns with VM_LOCKED cleared. Callers must be prepared to |
429 | * deal with this. |
430 | * |
431 | * We don't save and restore VM_LOCKED here because pages are |
432 | * still on lru. In unmap path, pages might be scanned by reclaim |
433 | * and re-mlocked by try_to_{munlock|unmap} before we unmap and |
434 | * free them. This will result in freeing mlocked pages. |
435 | */ |
436 | void munlock_vma_pages_range(struct vm_area_struct *vma, |
437 | unsigned long start, unsigned long end) |
438 | { |
439 | vma->vm_flags &= ~VM_LOCKED; |
440 | |
441 | while (start < end) { |
442 | struct page *page = NULL; |
443 | unsigned int page_mask, page_increm; |
444 | struct pagevec pvec; |
445 | struct zone *zone; |
446 | int zoneid; |
447 | |
448 | pagevec_init(&pvec, 0); |
449 | /* |
450 | * Although FOLL_DUMP is intended for get_dump_page(), |
451 | * it just so happens that its special treatment of the |
452 | * ZERO_PAGE (returning an error instead of doing get_page) |
453 | * suits munlock very well (and if somehow an abnormal page |
454 | * has sneaked into the range, we won't oops here: great). |
455 | */ |
456 | page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, |
457 | &page_mask); |
458 | |
459 | if (page && !IS_ERR(page)) { |
460 | if (PageTransHuge(page)) { |
461 | lock_page(page); |
462 | /* |
463 | * Any THP page found by follow_page_mask() may |
464 | * have gotten split before reaching |
465 | * munlock_vma_page(), so we need to recompute |
466 | * the page_mask here. |
467 | */ |
468 | page_mask = munlock_vma_page(page); |
469 | unlock_page(page); |
470 | put_page(page); /* follow_page_mask() */ |
471 | } else { |
472 | /* |
473 | * Non-huge pages are handled in batches via |
474 | * pagevec. The pin from follow_page_mask() |
475 | * prevents them from collapsing by THP. |
476 | */ |
477 | pagevec_add(&pvec, page); |
478 | zone = page_zone(page); |
479 | zoneid = page_zone_id(page); |
480 | |
481 | /* |
482 | * Try to fill the rest of pagevec using fast |
483 | * pte walk. This will also update start to |
484 | * the next page to process. Then munlock the |
485 | * pagevec. |
486 | */ |
487 | start = __munlock_pagevec_fill(&pvec, vma, |
488 | zoneid, start, end); |
489 | __munlock_pagevec(&pvec, zone); |
490 | goto next; |
491 | } |
492 | } |
493 | page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); |
494 | start += page_increm * PAGE_SIZE; |
495 | next: |
496 | cond_resched(); |
497 | } |
498 | } |
499 | |
500 | /* |
501 | * mlock_fixup - handle mlock[all]/munlock[all] requests. |
502 | * |
503 | * Filters out "special" vmas -- VM_LOCKED never gets set for these, and |
504 | * munlock is a no-op. However, for some special vmas, we go ahead and |
505 | * populate the ptes. |
506 | * |
507 | * For vmas that pass the filters, merge/split as appropriate. |
508 | */ |
509 | static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev, |
510 | unsigned long start, unsigned long end, vm_flags_t newflags) |
511 | { |
512 | struct mm_struct *mm = vma->vm_mm; |
513 | pgoff_t pgoff; |
514 | int nr_pages; |
515 | int ret = 0; |
516 | int lock = !!(newflags & VM_LOCKED); |
517 | |
518 | if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) || |
519 | is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm)) |
520 | goto out; /* don't set VM_LOCKED, don't count */ |
521 | |
522 | pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); |
523 | *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma, |
524 | vma->vm_file, pgoff, vma_policy(vma)); |
525 | if (*prev) { |
526 | vma = *prev; |
527 | goto success; |
528 | } |
529 | |
530 | if (start != vma->vm_start) { |
531 | ret = split_vma(mm, vma, start, 1); |
532 | if (ret) |
533 | goto out; |
534 | } |
535 | |
536 | if (end != vma->vm_end) { |
537 | ret = split_vma(mm, vma, end, 0); |
538 | if (ret) |
539 | goto out; |
540 | } |
541 | |
542 | success: |
543 | /* |
544 | * Keep track of amount of locked VM. |
545 | */ |
546 | nr_pages = (end - start) >> PAGE_SHIFT; |
547 | if (!lock) |
548 | nr_pages = -nr_pages; |
549 | mm->locked_vm += nr_pages; |
550 | |
551 | /* |
552 | * vm_flags is protected by the mmap_sem held in write mode. |
553 | * It's okay if try_to_unmap_one unmaps a page just after we |
554 | * set VM_LOCKED, __mlock_vma_pages_range will bring it back. |
555 | */ |
556 | |
557 | if (lock) |
558 | vma->vm_flags = newflags; |
559 | else |
560 | munlock_vma_pages_range(vma, start, end); |
561 | |
562 | out: |
563 | *prev = vma; |
564 | return ret; |
565 | } |
566 | |
567 | static int do_mlock(unsigned long start, size_t len, int on) |
568 | { |
569 | unsigned long nstart, end, tmp; |
570 | struct vm_area_struct * vma, * prev; |
571 | int error; |
572 | |
573 | VM_BUG_ON(start & ~PAGE_MASK); |
574 | VM_BUG_ON(len != PAGE_ALIGN(len)); |
575 | end = start + len; |
576 | if (end < start) |
577 | return -EINVAL; |
578 | if (end == start) |
579 | return 0; |
580 | vma = find_vma(current->mm, start); |
581 | if (!vma || vma->vm_start > start) |
582 | return -ENOMEM; |
583 | |
584 | prev = vma->vm_prev; |
585 | if (start > vma->vm_start) |
586 | prev = vma; |
587 | |
588 | for (nstart = start ; ; ) { |
589 | vm_flags_t newflags; |
590 | |
591 | /* Here we know that vma->vm_start <= nstart < vma->vm_end. */ |
592 | |
593 | newflags = vma->vm_flags & ~VM_LOCKED; |
594 | if (on) |
595 | newflags |= VM_LOCKED; |
596 | |
597 | tmp = vma->vm_end; |
598 | if (tmp > end) |
599 | tmp = end; |
600 | error = mlock_fixup(vma, &prev, nstart, tmp, newflags); |
601 | if (error) |
602 | break; |
603 | nstart = tmp; |
604 | if (nstart < prev->vm_end) |
605 | nstart = prev->vm_end; |
606 | if (nstart >= end) |
607 | break; |
608 | |
609 | vma = prev->vm_next; |
610 | if (!vma || vma->vm_start != nstart) { |
611 | error = -ENOMEM; |
612 | break; |
613 | } |
614 | } |
615 | return error; |
616 | } |
617 | |
618 | /* |
619 | * __mm_populate - populate and/or mlock pages within a range of address space. |
620 | * |
621 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap |
622 | * flags. VMAs must be already marked with the desired vm_flags, and |
623 | * mmap_sem must not be held. |
624 | */ |
625 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) |
626 | { |
627 | struct mm_struct *mm = current->mm; |
628 | unsigned long end, nstart, nend; |
629 | struct vm_area_struct *vma = NULL; |
630 | int locked = 0; |
631 | long ret = 0; |
632 | |
633 | VM_BUG_ON(start & ~PAGE_MASK); |
634 | VM_BUG_ON(len != PAGE_ALIGN(len)); |
635 | end = start + len; |
636 | |
637 | for (nstart = start; nstart < end; nstart = nend) { |
638 | /* |
639 | * We want to fault in pages for [nstart; end) address range. |
640 | * Find first corresponding VMA. |
641 | */ |
642 | if (!locked) { |
643 | locked = 1; |
644 | down_read(&mm->mmap_sem); |
645 | vma = find_vma(mm, nstart); |
646 | } else if (nstart >= vma->vm_end) |
647 | vma = vma->vm_next; |
648 | if (!vma || vma->vm_start >= end) |
649 | break; |
650 | /* |
651 | * Set [nstart; nend) to intersection of desired address |
652 | * range with the first VMA. Also, skip undesirable VMA types. |
653 | */ |
654 | nend = min(end, vma->vm_end); |
655 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
656 | continue; |
657 | if (nstart < vma->vm_start) |
658 | nstart = vma->vm_start; |
659 | /* |
660 | * Now fault in a range of pages. __mlock_vma_pages_range() |
661 | * double checks the vma flags, so that it won't mlock pages |
662 | * if the vma was already munlocked. |
663 | */ |
664 | ret = __mlock_vma_pages_range(vma, nstart, nend, &locked); |
665 | if (ret < 0) { |
666 | if (ignore_errors) { |
667 | ret = 0; |
668 | continue; /* continue at next VMA */ |
669 | } |
670 | ret = __mlock_posix_error_return(ret); |
671 | break; |
672 | } |
673 | nend = nstart + ret * PAGE_SIZE; |
674 | ret = 0; |
675 | } |
676 | if (locked) |
677 | up_read(&mm->mmap_sem); |
678 | return ret; /* 0 or negative error code */ |
679 | } |
680 | |
681 | SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len) |
682 | { |
683 | unsigned long locked; |
684 | unsigned long lock_limit; |
685 | int error = -ENOMEM; |
686 | |
687 | if (!can_do_mlock()) |
688 | return -EPERM; |
689 | |
690 | lru_add_drain_all(); /* flush pagevec */ |
691 | |
692 | down_write(¤t->mm->mmap_sem); |
693 | len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); |
694 | start &= PAGE_MASK; |
695 | |
696 | locked = len >> PAGE_SHIFT; |
697 | locked += current->mm->locked_vm; |
698 | |
699 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
700 | lock_limit >>= PAGE_SHIFT; |
701 | |
702 | /* check against resource limits */ |
703 | if ((locked <= lock_limit) || capable(CAP_IPC_LOCK)) |
704 | error = do_mlock(start, len, 1); |
705 | up_write(¤t->mm->mmap_sem); |
706 | if (!error) |
707 | error = __mm_populate(start, len, 0); |
708 | return error; |
709 | } |
710 | |
711 | SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len) |
712 | { |
713 | int ret; |
714 | |
715 | down_write(¤t->mm->mmap_sem); |
716 | len = PAGE_ALIGN(len + (start & ~PAGE_MASK)); |
717 | start &= PAGE_MASK; |
718 | ret = do_mlock(start, len, 0); |
719 | up_write(¤t->mm->mmap_sem); |
720 | return ret; |
721 | } |
722 | |
723 | static int do_mlockall(int flags) |
724 | { |
725 | struct vm_area_struct * vma, * prev = NULL; |
726 | |
727 | if (flags & MCL_FUTURE) |
728 | current->mm->def_flags |= VM_LOCKED; |
729 | else |
730 | current->mm->def_flags &= ~VM_LOCKED; |
731 | if (flags == MCL_FUTURE) |
732 | goto out; |
733 | |
734 | for (vma = current->mm->mmap; vma ; vma = prev->vm_next) { |
735 | vm_flags_t newflags; |
736 | |
737 | newflags = vma->vm_flags & ~VM_LOCKED; |
738 | if (flags & MCL_CURRENT) |
739 | newflags |= VM_LOCKED; |
740 | |
741 | /* Ignore errors */ |
742 | mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags); |
743 | cond_resched(); |
744 | } |
745 | out: |
746 | return 0; |
747 | } |
748 | |
749 | SYSCALL_DEFINE1(mlockall, int, flags) |
750 | { |
751 | unsigned long lock_limit; |
752 | int ret = -EINVAL; |
753 | |
754 | if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE))) |
755 | goto out; |
756 | |
757 | ret = -EPERM; |
758 | if (!can_do_mlock()) |
759 | goto out; |
760 | |
761 | if (flags & MCL_CURRENT) |
762 | lru_add_drain_all(); /* flush pagevec */ |
763 | |
764 | down_write(¤t->mm->mmap_sem); |
765 | |
766 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
767 | lock_limit >>= PAGE_SHIFT; |
768 | |
769 | ret = -ENOMEM; |
770 | if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) || |
771 | capable(CAP_IPC_LOCK)) |
772 | ret = do_mlockall(flags); |
773 | up_write(¤t->mm->mmap_sem); |
774 | if (!ret && (flags & MCL_CURRENT)) |
775 | mm_populate(0, TASK_SIZE); |
776 | out: |
777 | return ret; |
778 | } |
779 | |
780 | SYSCALL_DEFINE0(munlockall) |
781 | { |
782 | int ret; |
783 | |
784 | down_write(¤t->mm->mmap_sem); |
785 | ret = do_mlockall(0); |
786 | up_write(¤t->mm->mmap_sem); |
787 | return ret; |
788 | } |
789 | |
790 | /* |
791 | * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB |
792 | * shm segments) get accounted against the user_struct instead. |
793 | */ |
794 | static DEFINE_SPINLOCK(shmlock_user_lock); |
795 | |
796 | int user_shm_lock(size_t size, struct user_struct *user) |
797 | { |
798 | unsigned long lock_limit, locked; |
799 | int allowed = 0; |
800 | |
801 | locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
802 | lock_limit = rlimit(RLIMIT_MEMLOCK); |
803 | if (lock_limit == RLIM_INFINITY) |
804 | allowed = 1; |
805 | lock_limit >>= PAGE_SHIFT; |
806 | spin_lock(&shmlock_user_lock); |
807 | if (!allowed && |
808 | locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK)) |
809 | goto out; |
810 | get_uid(user); |
811 | user->locked_shm += locked; |
812 | allowed = 1; |
813 | out: |
814 | spin_unlock(&shmlock_user_lock); |
815 | return allowed; |
816 | } |
817 | |
818 | void user_shm_unlock(size_t size, struct user_struct *user) |
819 | { |
820 | spin_lock(&shmlock_user_lock); |
821 | user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
822 | spin_unlock(&shmlock_user_lock); |
823 | free_uid(user); |
824 | } |
825 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9