Root/mm/mlock.c

1/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8#include <linux/capability.h>
9#include <linux/mman.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
14#include <linux/pagevec.h>
15#include <linux/mempolicy.h>
16#include <linux/syscalls.h>
17#include <linux/sched.h>
18#include <linux/export.h>
19#include <linux/rmap.h>
20#include <linux/mmzone.h>
21#include <linux/hugetlb.h>
22#include <linux/memcontrol.h>
23#include <linux/mm_inline.h>
24
25#include "internal.h"
26
27int can_do_mlock(void)
28{
29    if (capable(CAP_IPC_LOCK))
30        return 1;
31    if (rlimit(RLIMIT_MEMLOCK) != 0)
32        return 1;
33    return 0;
34}
35EXPORT_SYMBOL(can_do_mlock);
36
37/*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54/*
55 * LRU accounting for clear_page_mlock()
56 */
57void clear_page_mlock(struct page *page)
58{
59    if (!TestClearPageMlocked(page))
60        return;
61
62    mod_zone_page_state(page_zone(page), NR_MLOCK,
63                -hpage_nr_pages(page));
64    count_vm_event(UNEVICTABLE_PGCLEARED);
65    if (!isolate_lru_page(page)) {
66        putback_lru_page(page);
67    } else {
68        /*
69         * We lost the race. the page already moved to evictable list.
70         */
71        if (PageUnevictable(page))
72            count_vm_event(UNEVICTABLE_PGSTRANDED);
73    }
74}
75
76/*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80void mlock_vma_page(struct page *page)
81{
82    BUG_ON(!PageLocked(page));
83
84    if (!TestSetPageMlocked(page)) {
85        mod_zone_page_state(page_zone(page), NR_MLOCK,
86                    hpage_nr_pages(page));
87        count_vm_event(UNEVICTABLE_PGMLOCKED);
88        if (!isolate_lru_page(page))
89            putback_lru_page(page);
90    }
91}
92
93/*
94 * Finish munlock after successful page isolation
95 *
96 * Page must be locked. This is a wrapper for try_to_munlock()
97 * and putback_lru_page() with munlock accounting.
98 */
99static void __munlock_isolated_page(struct page *page)
100{
101    int ret = SWAP_AGAIN;
102
103    /*
104     * Optimization: if the page was mapped just once, that's our mapping
105     * and we don't need to check all the other vmas.
106     */
107    if (page_mapcount(page) > 1)
108        ret = try_to_munlock(page);
109
110    /* Did try_to_unlock() succeed or punt? */
111    if (ret != SWAP_MLOCK)
112        count_vm_event(UNEVICTABLE_PGMUNLOCKED);
113
114    putback_lru_page(page);
115}
116
117/*
118 * Accounting for page isolation fail during munlock
119 *
120 * Performs accounting when page isolation fails in munlock. There is nothing
121 * else to do because it means some other task has already removed the page
122 * from the LRU. putback_lru_page() will take care of removing the page from
123 * the unevictable list, if necessary. vmscan [page_referenced()] will move
124 * the page back to the unevictable list if some other vma has it mlocked.
125 */
126static void __munlock_isolation_failed(struct page *page)
127{
128    if (PageUnevictable(page))
129        count_vm_event(UNEVICTABLE_PGSTRANDED);
130    else
131        count_vm_event(UNEVICTABLE_PGMUNLOCKED);
132}
133
134/**
135 * munlock_vma_page - munlock a vma page
136 * @page - page to be unlocked
137 *
138 * called from munlock()/munmap() path with page supposedly on the LRU.
139 * When we munlock a page, because the vma where we found the page is being
140 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
141 * page locked so that we can leave it on the unevictable lru list and not
142 * bother vmscan with it. However, to walk the page's rmap list in
143 * try_to_munlock() we must isolate the page from the LRU. If some other
144 * task has removed the page from the LRU, we won't be able to do that.
145 * So we clear the PageMlocked as we might not get another chance. If we
146 * can't isolate the page, we leave it for putback_lru_page() and vmscan
147 * [page_referenced()/try_to_unmap()] to deal with.
148 */
149unsigned int munlock_vma_page(struct page *page)
150{
151    unsigned int page_mask = 0;
152
153    BUG_ON(!PageLocked(page));
154
155    if (TestClearPageMlocked(page)) {
156        unsigned int nr_pages = hpage_nr_pages(page);
157        mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
158        page_mask = nr_pages - 1;
159        if (!isolate_lru_page(page))
160            __munlock_isolated_page(page);
161        else
162            __munlock_isolation_failed(page);
163    }
164
165    return page_mask;
166}
167
168/**
169 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
170 * @vma: target vma
171 * @start: start address
172 * @end: end address
173 *
174 * This takes care of making the pages present too.
175 *
176 * return 0 on success, negative error code on error.
177 *
178 * vma->vm_mm->mmap_sem must be held for at least read.
179 */
180long __mlock_vma_pages_range(struct vm_area_struct *vma,
181        unsigned long start, unsigned long end, int *nonblocking)
182{
183    struct mm_struct *mm = vma->vm_mm;
184    unsigned long nr_pages = (end - start) / PAGE_SIZE;
185    int gup_flags;
186
187    VM_BUG_ON(start & ~PAGE_MASK);
188    VM_BUG_ON(end & ~PAGE_MASK);
189    VM_BUG_ON(start < vma->vm_start);
190    VM_BUG_ON(end > vma->vm_end);
191    VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
192
193    gup_flags = FOLL_TOUCH | FOLL_MLOCK;
194    /*
195     * We want to touch writable mappings with a write fault in order
196     * to break COW, except for shared mappings because these don't COW
197     * and we would not want to dirty them for nothing.
198     */
199    if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
200        gup_flags |= FOLL_WRITE;
201
202    /*
203     * We want mlock to succeed for regions that have any permissions
204     * other than PROT_NONE.
205     */
206    if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
207        gup_flags |= FOLL_FORCE;
208
209    /*
210     * We made sure addr is within a VMA, so the following will
211     * not result in a stack expansion that recurses back here.
212     */
213    return __get_user_pages(current, mm, start, nr_pages, gup_flags,
214                NULL, NULL, nonblocking);
215}
216
217/*
218 * convert get_user_pages() return value to posix mlock() error
219 */
220static int __mlock_posix_error_return(long retval)
221{
222    if (retval == -EFAULT)
223        retval = -ENOMEM;
224    else if (retval == -ENOMEM)
225        retval = -EAGAIN;
226    return retval;
227}
228
229/*
230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
231 *
232 * The fast path is available only for evictable pages with single mapping.
233 * Then we can bypass the per-cpu pvec and get better performance.
234 * when mapcount > 1 we need try_to_munlock() which can fail.
235 * when !page_evictable(), we need the full redo logic of putback_lru_page to
236 * avoid leaving evictable page in unevictable list.
237 *
238 * In case of success, @page is added to @pvec and @pgrescued is incremented
239 * in case that the page was previously unevictable. @page is also unlocked.
240 */
241static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
242        int *pgrescued)
243{
244    VM_BUG_ON(PageLRU(page));
245    VM_BUG_ON(!PageLocked(page));
246
247    if (page_mapcount(page) <= 1 && page_evictable(page)) {
248        pagevec_add(pvec, page);
249        if (TestClearPageUnevictable(page))
250            (*pgrescued)++;
251        unlock_page(page);
252        return true;
253    }
254
255    return false;
256}
257
258/*
259 * Putback multiple evictable pages to the LRU
260 *
261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
262 * the pages might have meanwhile become unevictable but that is OK.
263 */
264static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
265{
266    count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
267    /*
268     *__pagevec_lru_add() calls release_pages() so we don't call
269     * put_page() explicitly
270     */
271    __pagevec_lru_add(pvec);
272    count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
273}
274
275/*
276 * Munlock a batch of pages from the same zone
277 *
278 * The work is split to two main phases. First phase clears the Mlocked flag
279 * and attempts to isolate the pages, all under a single zone lru lock.
280 * The second phase finishes the munlock only for pages where isolation
281 * succeeded.
282 *
283 * Note that the pagevec may be modified during the process.
284 */
285static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
286{
287    int i;
288    int nr = pagevec_count(pvec);
289    int delta_munlocked = -nr;
290    struct pagevec pvec_putback;
291    int pgrescued = 0;
292
293    /* Phase 1: page isolation */
294    spin_lock_irq(&zone->lru_lock);
295    for (i = 0; i < nr; i++) {
296        struct page *page = pvec->pages[i];
297
298        if (TestClearPageMlocked(page)) {
299            struct lruvec *lruvec;
300            int lru;
301
302            if (PageLRU(page)) {
303                lruvec = mem_cgroup_page_lruvec(page, zone);
304                lru = page_lru(page);
305                /*
306                 * We already have pin from follow_page_mask()
307                 * so we can spare the get_page() here.
308                 */
309                ClearPageLRU(page);
310                del_page_from_lru_list(page, lruvec, lru);
311            } else {
312                __munlock_isolation_failed(page);
313                goto skip_munlock;
314            }
315
316        } else {
317skip_munlock:
318            /*
319             * We won't be munlocking this page in the next phase
320             * but we still need to release the follow_page_mask()
321             * pin.
322             */
323            pvec->pages[i] = NULL;
324            put_page(page);
325            delta_munlocked++;
326        }
327    }
328    __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
329    spin_unlock_irq(&zone->lru_lock);
330
331    /* Phase 2: page munlock */
332    pagevec_init(&pvec_putback, 0);
333    for (i = 0; i < nr; i++) {
334        struct page *page = pvec->pages[i];
335
336        if (page) {
337            lock_page(page);
338            if (!__putback_lru_fast_prepare(page, &pvec_putback,
339                    &pgrescued)) {
340                /*
341                 * Slow path. We don't want to lose the last
342                 * pin before unlock_page()
343                 */
344                get_page(page); /* for putback_lru_page() */
345                __munlock_isolated_page(page);
346                unlock_page(page);
347                put_page(page); /* from follow_page_mask() */
348            }
349        }
350    }
351
352    /*
353     * Phase 3: page putback for pages that qualified for the fast path
354     * This will also call put_page() to return pin from follow_page_mask()
355     */
356    if (pagevec_count(&pvec_putback))
357        __putback_lru_fast(&pvec_putback, pgrescued);
358}
359
360/*
361 * Fill up pagevec for __munlock_pagevec using pte walk
362 *
363 * The function expects that the struct page corresponding to @start address is
364 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
365 *
366 * The rest of @pvec is filled by subsequent pages within the same pmd and same
367 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
368 * pages also get pinned.
369 *
370 * Returns the address of the next page that should be scanned. This equals
371 * @start + PAGE_SIZE when no page could be added by the pte walk.
372 */
373static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
374        struct vm_area_struct *vma, int zoneid, unsigned long start,
375        unsigned long end)
376{
377    pte_t *pte;
378    spinlock_t *ptl;
379
380    /*
381     * Initialize pte walk starting at the already pinned page where we
382     * are sure that there is a pte, as it was pinned under the same
383     * mmap_sem write op.
384     */
385    pte = get_locked_pte(vma->vm_mm, start, &ptl);
386    /* Make sure we do not cross the page table boundary */
387    end = pgd_addr_end(start, end);
388    end = pud_addr_end(start, end);
389    end = pmd_addr_end(start, end);
390
391    /* The page next to the pinned page is the first we will try to get */
392    start += PAGE_SIZE;
393    while (start < end) {
394        struct page *page = NULL;
395        pte++;
396        if (pte_present(*pte))
397            page = vm_normal_page(vma, start, *pte);
398        /*
399         * Break if page could not be obtained or the page's node+zone does not
400         * match
401         */
402        if (!page || page_zone_id(page) != zoneid)
403            break;
404
405        get_page(page);
406        /*
407         * Increase the address that will be returned *before* the
408         * eventual break due to pvec becoming full by adding the page
409         */
410        start += PAGE_SIZE;
411        if (pagevec_add(pvec, page) == 0)
412            break;
413    }
414    pte_unmap_unlock(pte, ptl);
415    return start;
416}
417
418/*
419 * munlock_vma_pages_range() - munlock all pages in the vma range.'
420 * @vma - vma containing range to be munlock()ed.
421 * @start - start address in @vma of the range
422 * @end - end of range in @vma.
423 *
424 * For mremap(), munmap() and exit().
425 *
426 * Called with @vma VM_LOCKED.
427 *
428 * Returns with VM_LOCKED cleared. Callers must be prepared to
429 * deal with this.
430 *
431 * We don't save and restore VM_LOCKED here because pages are
432 * still on lru. In unmap path, pages might be scanned by reclaim
433 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
434 * free them. This will result in freeing mlocked pages.
435 */
436void munlock_vma_pages_range(struct vm_area_struct *vma,
437                 unsigned long start, unsigned long end)
438{
439    vma->vm_flags &= ~VM_LOCKED;
440
441    while (start < end) {
442        struct page *page = NULL;
443        unsigned int page_mask, page_increm;
444        struct pagevec pvec;
445        struct zone *zone;
446        int zoneid;
447
448        pagevec_init(&pvec, 0);
449        /*
450         * Although FOLL_DUMP is intended for get_dump_page(),
451         * it just so happens that its special treatment of the
452         * ZERO_PAGE (returning an error instead of doing get_page)
453         * suits munlock very well (and if somehow an abnormal page
454         * has sneaked into the range, we won't oops here: great).
455         */
456        page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
457                &page_mask);
458
459        if (page && !IS_ERR(page)) {
460            if (PageTransHuge(page)) {
461                lock_page(page);
462                /*
463                 * Any THP page found by follow_page_mask() may
464                 * have gotten split before reaching
465                 * munlock_vma_page(), so we need to recompute
466                 * the page_mask here.
467                 */
468                page_mask = munlock_vma_page(page);
469                unlock_page(page);
470                put_page(page); /* follow_page_mask() */
471            } else {
472                /*
473                 * Non-huge pages are handled in batches via
474                 * pagevec. The pin from follow_page_mask()
475                 * prevents them from collapsing by THP.
476                 */
477                pagevec_add(&pvec, page);
478                zone = page_zone(page);
479                zoneid = page_zone_id(page);
480
481                /*
482                 * Try to fill the rest of pagevec using fast
483                 * pte walk. This will also update start to
484                 * the next page to process. Then munlock the
485                 * pagevec.
486                 */
487                start = __munlock_pagevec_fill(&pvec, vma,
488                        zoneid, start, end);
489                __munlock_pagevec(&pvec, zone);
490                goto next;
491            }
492        }
493        page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
494        start += page_increm * PAGE_SIZE;
495next:
496        cond_resched();
497    }
498}
499
500/*
501 * mlock_fixup - handle mlock[all]/munlock[all] requests.
502 *
503 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
504 * munlock is a no-op. However, for some special vmas, we go ahead and
505 * populate the ptes.
506 *
507 * For vmas that pass the filters, merge/split as appropriate.
508 */
509static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
510    unsigned long start, unsigned long end, vm_flags_t newflags)
511{
512    struct mm_struct *mm = vma->vm_mm;
513    pgoff_t pgoff;
514    int nr_pages;
515    int ret = 0;
516    int lock = !!(newflags & VM_LOCKED);
517
518    if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
519        is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
520        goto out; /* don't set VM_LOCKED, don't count */
521
522    pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
523    *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
524              vma->vm_file, pgoff, vma_policy(vma));
525    if (*prev) {
526        vma = *prev;
527        goto success;
528    }
529
530    if (start != vma->vm_start) {
531        ret = split_vma(mm, vma, start, 1);
532        if (ret)
533            goto out;
534    }
535
536    if (end != vma->vm_end) {
537        ret = split_vma(mm, vma, end, 0);
538        if (ret)
539            goto out;
540    }
541
542success:
543    /*
544     * Keep track of amount of locked VM.
545     */
546    nr_pages = (end - start) >> PAGE_SHIFT;
547    if (!lock)
548        nr_pages = -nr_pages;
549    mm->locked_vm += nr_pages;
550
551    /*
552     * vm_flags is protected by the mmap_sem held in write mode.
553     * It's okay if try_to_unmap_one unmaps a page just after we
554     * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
555     */
556
557    if (lock)
558        vma->vm_flags = newflags;
559    else
560        munlock_vma_pages_range(vma, start, end);
561
562out:
563    *prev = vma;
564    return ret;
565}
566
567static int do_mlock(unsigned long start, size_t len, int on)
568{
569    unsigned long nstart, end, tmp;
570    struct vm_area_struct * vma, * prev;
571    int error;
572
573    VM_BUG_ON(start & ~PAGE_MASK);
574    VM_BUG_ON(len != PAGE_ALIGN(len));
575    end = start + len;
576    if (end < start)
577        return -EINVAL;
578    if (end == start)
579        return 0;
580    vma = find_vma(current->mm, start);
581    if (!vma || vma->vm_start > start)
582        return -ENOMEM;
583
584    prev = vma->vm_prev;
585    if (start > vma->vm_start)
586        prev = vma;
587
588    for (nstart = start ; ; ) {
589        vm_flags_t newflags;
590
591        /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
592
593        newflags = vma->vm_flags & ~VM_LOCKED;
594        if (on)
595            newflags |= VM_LOCKED;
596
597        tmp = vma->vm_end;
598        if (tmp > end)
599            tmp = end;
600        error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
601        if (error)
602            break;
603        nstart = tmp;
604        if (nstart < prev->vm_end)
605            nstart = prev->vm_end;
606        if (nstart >= end)
607            break;
608
609        vma = prev->vm_next;
610        if (!vma || vma->vm_start != nstart) {
611            error = -ENOMEM;
612            break;
613        }
614    }
615    return error;
616}
617
618/*
619 * __mm_populate - populate and/or mlock pages within a range of address space.
620 *
621 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
622 * flags. VMAs must be already marked with the desired vm_flags, and
623 * mmap_sem must not be held.
624 */
625int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
626{
627    struct mm_struct *mm = current->mm;
628    unsigned long end, nstart, nend;
629    struct vm_area_struct *vma = NULL;
630    int locked = 0;
631    long ret = 0;
632
633    VM_BUG_ON(start & ~PAGE_MASK);
634    VM_BUG_ON(len != PAGE_ALIGN(len));
635    end = start + len;
636
637    for (nstart = start; nstart < end; nstart = nend) {
638        /*
639         * We want to fault in pages for [nstart; end) address range.
640         * Find first corresponding VMA.
641         */
642        if (!locked) {
643            locked = 1;
644            down_read(&mm->mmap_sem);
645            vma = find_vma(mm, nstart);
646        } else if (nstart >= vma->vm_end)
647            vma = vma->vm_next;
648        if (!vma || vma->vm_start >= end)
649            break;
650        /*
651         * Set [nstart; nend) to intersection of desired address
652         * range with the first VMA. Also, skip undesirable VMA types.
653         */
654        nend = min(end, vma->vm_end);
655        if (vma->vm_flags & (VM_IO | VM_PFNMAP))
656            continue;
657        if (nstart < vma->vm_start)
658            nstart = vma->vm_start;
659        /*
660         * Now fault in a range of pages. __mlock_vma_pages_range()
661         * double checks the vma flags, so that it won't mlock pages
662         * if the vma was already munlocked.
663         */
664        ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
665        if (ret < 0) {
666            if (ignore_errors) {
667                ret = 0;
668                continue; /* continue at next VMA */
669            }
670            ret = __mlock_posix_error_return(ret);
671            break;
672        }
673        nend = nstart + ret * PAGE_SIZE;
674        ret = 0;
675    }
676    if (locked)
677        up_read(&mm->mmap_sem);
678    return ret; /* 0 or negative error code */
679}
680
681SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
682{
683    unsigned long locked;
684    unsigned long lock_limit;
685    int error = -ENOMEM;
686
687    if (!can_do_mlock())
688        return -EPERM;
689
690    lru_add_drain_all(); /* flush pagevec */
691
692    down_write(&current->mm->mmap_sem);
693    len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
694    start &= PAGE_MASK;
695
696    locked = len >> PAGE_SHIFT;
697    locked += current->mm->locked_vm;
698
699    lock_limit = rlimit(RLIMIT_MEMLOCK);
700    lock_limit >>= PAGE_SHIFT;
701
702    /* check against resource limits */
703    if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
704        error = do_mlock(start, len, 1);
705    up_write(&current->mm->mmap_sem);
706    if (!error)
707        error = __mm_populate(start, len, 0);
708    return error;
709}
710
711SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
712{
713    int ret;
714
715    down_write(&current->mm->mmap_sem);
716    len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
717    start &= PAGE_MASK;
718    ret = do_mlock(start, len, 0);
719    up_write(&current->mm->mmap_sem);
720    return ret;
721}
722
723static int do_mlockall(int flags)
724{
725    struct vm_area_struct * vma, * prev = NULL;
726
727    if (flags & MCL_FUTURE)
728        current->mm->def_flags |= VM_LOCKED;
729    else
730        current->mm->def_flags &= ~VM_LOCKED;
731    if (flags == MCL_FUTURE)
732        goto out;
733
734    for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
735        vm_flags_t newflags;
736
737        newflags = vma->vm_flags & ~VM_LOCKED;
738        if (flags & MCL_CURRENT)
739            newflags |= VM_LOCKED;
740
741        /* Ignore errors */
742        mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
743        cond_resched();
744    }
745out:
746    return 0;
747}
748
749SYSCALL_DEFINE1(mlockall, int, flags)
750{
751    unsigned long lock_limit;
752    int ret = -EINVAL;
753
754    if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
755        goto out;
756
757    ret = -EPERM;
758    if (!can_do_mlock())
759        goto out;
760
761    if (flags & MCL_CURRENT)
762        lru_add_drain_all(); /* flush pagevec */
763
764    down_write(&current->mm->mmap_sem);
765
766    lock_limit = rlimit(RLIMIT_MEMLOCK);
767    lock_limit >>= PAGE_SHIFT;
768
769    ret = -ENOMEM;
770    if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
771        capable(CAP_IPC_LOCK))
772        ret = do_mlockall(flags);
773    up_write(&current->mm->mmap_sem);
774    if (!ret && (flags & MCL_CURRENT))
775        mm_populate(0, TASK_SIZE);
776out:
777    return ret;
778}
779
780SYSCALL_DEFINE0(munlockall)
781{
782    int ret;
783
784    down_write(&current->mm->mmap_sem);
785    ret = do_mlockall(0);
786    up_write(&current->mm->mmap_sem);
787    return ret;
788}
789
790/*
791 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
792 * shm segments) get accounted against the user_struct instead.
793 */
794static DEFINE_SPINLOCK(shmlock_user_lock);
795
796int user_shm_lock(size_t size, struct user_struct *user)
797{
798    unsigned long lock_limit, locked;
799    int allowed = 0;
800
801    locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
802    lock_limit = rlimit(RLIMIT_MEMLOCK);
803    if (lock_limit == RLIM_INFINITY)
804        allowed = 1;
805    lock_limit >>= PAGE_SHIFT;
806    spin_lock(&shmlock_user_lock);
807    if (!allowed &&
808        locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
809        goto out;
810    get_uid(user);
811    user->locked_shm += locked;
812    allowed = 1;
813out:
814    spin_unlock(&shmlock_user_lock);
815    return allowed;
816}
817
818void user_shm_unlock(size_t size, struct user_struct *user)
819{
820    spin_lock(&shmlock_user_lock);
821    user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
822    spin_unlock(&shmlock_user_lock);
823    free_uid(user);
824}
825

Archive Download this file



interactive