Root/mm/mmap.c

1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/backing-dev.h>
12#include <linux/mm.h>
13#include <linux/shm.h>
14#include <linux/mman.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/syscalls.h>
18#include <linux/capability.h>
19#include <linux/init.h>
20#include <linux/file.h>
21#include <linux/fs.h>
22#include <linux/personality.h>
23#include <linux/security.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
26#include <linux/export.h>
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
30#include <linux/mmu_notifier.h>
31#include <linux/perf_event.h>
32#include <linux/audit.h>
33#include <linux/khugepaged.h>
34#include <linux/uprobes.h>
35#include <linux/rbtree_augmented.h>
36#include <linux/sched/sysctl.h>
37#include <linux/notifier.h>
38#include <linux/memory.h>
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/tlb.h>
43#include <asm/mmu_context.h>
44
45#include "internal.h"
46
47#ifndef arch_mmap_check
48#define arch_mmap_check(addr, len, flags) (0)
49#endif
50
51#ifndef arch_rebalance_pgtables
52#define arch_rebalance_pgtables(addr, len) (addr)
53#endif
54
55static void unmap_region(struct mm_struct *mm,
56        struct vm_area_struct *vma, struct vm_area_struct *prev,
57        unsigned long start, unsigned long end);
58
59/* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74pgprot_t protection_map[16] = {
75    __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76    __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77};
78
79pgprot_t vm_get_page_prot(unsigned long vm_flags)
80{
81    return __pgprot(pgprot_val(protection_map[vm_flags &
82                (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83            pgprot_val(arch_vm_get_page_prot(vm_flags)));
84}
85EXPORT_SYMBOL(vm_get_page_prot);
86
87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92/*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98/*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106unsigned long vm_memory_committed(void)
107{
108    return percpu_counter_read_positive(&vm_committed_as);
109}
110EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112/*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129{
130    unsigned long free, allowed, reserve;
131
132    vm_acct_memory(pages);
133
134    /*
135     * Sometimes we want to use more memory than we have
136     */
137    if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138        return 0;
139
140    if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141        free = global_page_state(NR_FREE_PAGES);
142        free += global_page_state(NR_FILE_PAGES);
143
144        /*
145         * shmem pages shouldn't be counted as free in this
146         * case, they can't be purged, only swapped out, and
147         * that won't affect the overall amount of available
148         * memory in the system.
149         */
150        free -= global_page_state(NR_SHMEM);
151
152        free += get_nr_swap_pages();
153
154        /*
155         * Any slabs which are created with the
156         * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157         * which are reclaimable, under pressure. The dentry
158         * cache and most inode caches should fall into this
159         */
160        free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162        /*
163         * Leave reserved pages. The pages are not for anonymous pages.
164         */
165        if (free <= totalreserve_pages)
166            goto error;
167        else
168            free -= totalreserve_pages;
169
170        /*
171         * Reserve some for root
172         */
173        if (!cap_sys_admin)
174            free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176        if (free > pages)
177            return 0;
178
179        goto error;
180    }
181
182    allowed = (totalram_pages - hugetlb_total_pages())
183               * sysctl_overcommit_ratio / 100;
184    /*
185     * Reserve some for root
186     */
187    if (!cap_sys_admin)
188        allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189    allowed += total_swap_pages;
190
191    /*
192     * Don't let a single process grow so big a user can't recover
193     */
194    if (mm) {
195        reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196        allowed -= min(mm->total_vm / 32, reserve);
197    }
198
199    if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200        return 0;
201error:
202    vm_unacct_memory(pages);
203
204    return -ENOMEM;
205}
206
207/*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211        struct file *file, struct address_space *mapping)
212{
213    if (vma->vm_flags & VM_DENYWRITE)
214        atomic_inc(&file_inode(file)->i_writecount);
215    if (vma->vm_flags & VM_SHARED)
216        mapping->i_mmap_writable--;
217
218    flush_dcache_mmap_lock(mapping);
219    if (unlikely(vma->vm_flags & VM_NONLINEAR))
220        list_del_init(&vma->shared.nonlinear);
221    else
222        vma_interval_tree_remove(vma, &mapping->i_mmap);
223    flush_dcache_mmap_unlock(mapping);
224}
225
226/*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230void unlink_file_vma(struct vm_area_struct *vma)
231{
232    struct file *file = vma->vm_file;
233
234    if (file) {
235        struct address_space *mapping = file->f_mapping;
236        mutex_lock(&mapping->i_mmap_mutex);
237        __remove_shared_vm_struct(vma, file, mapping);
238        mutex_unlock(&mapping->i_mmap_mutex);
239    }
240}
241
242/*
243 * Close a vm structure and free it, returning the next.
244 */
245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246{
247    struct vm_area_struct *next = vma->vm_next;
248
249    might_sleep();
250    if (vma->vm_ops && vma->vm_ops->close)
251        vma->vm_ops->close(vma);
252    if (vma->vm_file)
253        fput(vma->vm_file);
254    mpol_put(vma_policy(vma));
255    kmem_cache_free(vm_area_cachep, vma);
256    return next;
257}
258
259static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261SYSCALL_DEFINE1(brk, unsigned long, brk)
262{
263    unsigned long rlim, retval;
264    unsigned long newbrk, oldbrk;
265    struct mm_struct *mm = current->mm;
266    unsigned long min_brk;
267    bool populate;
268
269    down_write(&mm->mmap_sem);
270
271#ifdef CONFIG_COMPAT_BRK
272    /*
273     * CONFIG_COMPAT_BRK can still be overridden by setting
274     * randomize_va_space to 2, which will still cause mm->start_brk
275     * to be arbitrarily shifted
276     */
277    if (current->brk_randomized)
278        min_brk = mm->start_brk;
279    else
280        min_brk = mm->end_data;
281#else
282    min_brk = mm->start_brk;
283#endif
284    if (brk < min_brk)
285        goto out;
286
287    /*
288     * Check against rlimit here. If this check is done later after the test
289     * of oldbrk with newbrk then it can escape the test and let the data
290     * segment grow beyond its set limit the in case where the limit is
291     * not page aligned -Ram Gupta
292     */
293    rlim = rlimit(RLIMIT_DATA);
294    if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295            (mm->end_data - mm->start_data) > rlim)
296        goto out;
297
298    newbrk = PAGE_ALIGN(brk);
299    oldbrk = PAGE_ALIGN(mm->brk);
300    if (oldbrk == newbrk)
301        goto set_brk;
302
303    /* Always allow shrinking brk. */
304    if (brk <= mm->brk) {
305        if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306            goto set_brk;
307        goto out;
308    }
309
310    /* Check against existing mmap mappings. */
311    if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312        goto out;
313
314    /* Ok, looks good - let it rip. */
315    if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316        goto out;
317
318set_brk:
319    mm->brk = brk;
320    populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321    up_write(&mm->mmap_sem);
322    if (populate)
323        mm_populate(oldbrk, newbrk - oldbrk);
324    return brk;
325
326out:
327    retval = mm->brk;
328    up_write(&mm->mmap_sem);
329    return retval;
330}
331
332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333{
334    unsigned long max, subtree_gap;
335    max = vma->vm_start;
336    if (vma->vm_prev)
337        max -= vma->vm_prev->vm_end;
338    if (vma->vm_rb.rb_left) {
339        subtree_gap = rb_entry(vma->vm_rb.rb_left,
340                struct vm_area_struct, vm_rb)->rb_subtree_gap;
341        if (subtree_gap > max)
342            max = subtree_gap;
343    }
344    if (vma->vm_rb.rb_right) {
345        subtree_gap = rb_entry(vma->vm_rb.rb_right,
346                struct vm_area_struct, vm_rb)->rb_subtree_gap;
347        if (subtree_gap > max)
348            max = subtree_gap;
349    }
350    return max;
351}
352
353#ifdef CONFIG_DEBUG_VM_RB
354static int browse_rb(struct rb_root *root)
355{
356    int i = 0, j, bug = 0;
357    struct rb_node *nd, *pn = NULL;
358    unsigned long prev = 0, pend = 0;
359
360    for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361        struct vm_area_struct *vma;
362        vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363        if (vma->vm_start < prev) {
364            printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365            bug = 1;
366        }
367        if (vma->vm_start < pend) {
368            printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369            bug = 1;
370        }
371        if (vma->vm_start > vma->vm_end) {
372            printk("vm_end %lx < vm_start %lx\n",
373                vma->vm_end, vma->vm_start);
374            bug = 1;
375        }
376        if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377            printk("free gap %lx, correct %lx\n",
378                   vma->rb_subtree_gap,
379                   vma_compute_subtree_gap(vma));
380            bug = 1;
381        }
382        i++;
383        pn = nd;
384        prev = vma->vm_start;
385        pend = vma->vm_end;
386    }
387    j = 0;
388    for (nd = pn; nd; nd = rb_prev(nd))
389        j++;
390    if (i != j) {
391        printk("backwards %d, forwards %d\n", j, i);
392        bug = 1;
393    }
394    return bug ? -1 : i;
395}
396
397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398{
399    struct rb_node *nd;
400
401    for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402        struct vm_area_struct *vma;
403        vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404        BUG_ON(vma != ignore &&
405               vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406    }
407}
408
409void validate_mm(struct mm_struct *mm)
410{
411    int bug = 0;
412    int i = 0;
413    unsigned long highest_address = 0;
414    struct vm_area_struct *vma = mm->mmap;
415    while (vma) {
416        struct anon_vma_chain *avc;
417        vma_lock_anon_vma(vma);
418        list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419            anon_vma_interval_tree_verify(avc);
420        vma_unlock_anon_vma(vma);
421        highest_address = vma->vm_end;
422        vma = vma->vm_next;
423        i++;
424    }
425    if (i != mm->map_count) {
426        printk("map_count %d vm_next %d\n", mm->map_count, i);
427        bug = 1;
428    }
429    if (highest_address != mm->highest_vm_end) {
430        printk("mm->highest_vm_end %lx, found %lx\n",
431               mm->highest_vm_end, highest_address);
432        bug = 1;
433    }
434    i = browse_rb(&mm->mm_rb);
435    if (i != mm->map_count) {
436        printk("map_count %d rb %d\n", mm->map_count, i);
437        bug = 1;
438    }
439    BUG_ON(bug);
440}
441#else
442#define validate_mm_rb(root, ignore) do { } while (0)
443#define validate_mm(mm) do { } while (0)
444#endif
445
446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447             unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449/*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454static void vma_gap_update(struct vm_area_struct *vma)
455{
456    /*
457     * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458     * function that does exacltly what we want.
459     */
460    vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461}
462
463static inline void vma_rb_insert(struct vm_area_struct *vma,
464                 struct rb_root *root)
465{
466    /* All rb_subtree_gap values must be consistent prior to insertion */
467    validate_mm_rb(root, NULL);
468
469    rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470}
471
472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473{
474    /*
475     * All rb_subtree_gap values must be consistent prior to erase,
476     * with the possible exception of the vma being erased.
477     */
478    validate_mm_rb(root, vma);
479
480    /*
481     * Note rb_erase_augmented is a fairly large inline function,
482     * so make sure we instantiate it only once with our desired
483     * augmented rbtree callbacks.
484     */
485    rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486}
487
488/*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502static inline void
503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504{
505    struct anon_vma_chain *avc;
506
507    list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508        anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509}
510
511static inline void
512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513{
514    struct anon_vma_chain *avc;
515
516    list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517        anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518}
519
520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521        unsigned long end, struct vm_area_struct **pprev,
522        struct rb_node ***rb_link, struct rb_node **rb_parent)
523{
524    struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526    __rb_link = &mm->mm_rb.rb_node;
527    rb_prev = __rb_parent = NULL;
528
529    while (*__rb_link) {
530        struct vm_area_struct *vma_tmp;
531
532        __rb_parent = *__rb_link;
533        vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535        if (vma_tmp->vm_end > addr) {
536            /* Fail if an existing vma overlaps the area */
537            if (vma_tmp->vm_start < end)
538                return -ENOMEM;
539            __rb_link = &__rb_parent->rb_left;
540        } else {
541            rb_prev = __rb_parent;
542            __rb_link = &__rb_parent->rb_right;
543        }
544    }
545
546    *pprev = NULL;
547    if (rb_prev)
548        *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549    *rb_link = __rb_link;
550    *rb_parent = __rb_parent;
551    return 0;
552}
553
554static unsigned long count_vma_pages_range(struct mm_struct *mm,
555        unsigned long addr, unsigned long end)
556{
557    unsigned long nr_pages = 0;
558    struct vm_area_struct *vma;
559
560    /* Find first overlaping mapping */
561    vma = find_vma_intersection(mm, addr, end);
562    if (!vma)
563        return 0;
564
565    nr_pages = (min(end, vma->vm_end) -
566        max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568    /* Iterate over the rest of the overlaps */
569    for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570        unsigned long overlap_len;
571
572        if (vma->vm_start > end)
573            break;
574
575        overlap_len = min(end, vma->vm_end) - vma->vm_start;
576        nr_pages += overlap_len >> PAGE_SHIFT;
577    }
578
579    return nr_pages;
580}
581
582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583        struct rb_node **rb_link, struct rb_node *rb_parent)
584{
585    /* Update tracking information for the gap following the new vma. */
586    if (vma->vm_next)
587        vma_gap_update(vma->vm_next);
588    else
589        mm->highest_vm_end = vma->vm_end;
590
591    /*
592     * vma->vm_prev wasn't known when we followed the rbtree to find the
593     * correct insertion point for that vma. As a result, we could not
594     * update the vma vm_rb parents rb_subtree_gap values on the way down.
595     * So, we first insert the vma with a zero rb_subtree_gap value
596     * (to be consistent with what we did on the way down), and then
597     * immediately update the gap to the correct value. Finally we
598     * rebalance the rbtree after all augmented values have been set.
599     */
600    rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601    vma->rb_subtree_gap = 0;
602    vma_gap_update(vma);
603    vma_rb_insert(vma, &mm->mm_rb);
604}
605
606static void __vma_link_file(struct vm_area_struct *vma)
607{
608    struct file *file;
609
610    file = vma->vm_file;
611    if (file) {
612        struct address_space *mapping = file->f_mapping;
613
614        if (vma->vm_flags & VM_DENYWRITE)
615            atomic_dec(&file_inode(file)->i_writecount);
616        if (vma->vm_flags & VM_SHARED)
617            mapping->i_mmap_writable++;
618
619        flush_dcache_mmap_lock(mapping);
620        if (unlikely(vma->vm_flags & VM_NONLINEAR))
621            vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622        else
623            vma_interval_tree_insert(vma, &mapping->i_mmap);
624        flush_dcache_mmap_unlock(mapping);
625    }
626}
627
628static void
629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630    struct vm_area_struct *prev, struct rb_node **rb_link,
631    struct rb_node *rb_parent)
632{
633    __vma_link_list(mm, vma, prev, rb_parent);
634    __vma_link_rb(mm, vma, rb_link, rb_parent);
635}
636
637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638            struct vm_area_struct *prev, struct rb_node **rb_link,
639            struct rb_node *rb_parent)
640{
641    struct address_space *mapping = NULL;
642
643    if (vma->vm_file)
644        mapping = vma->vm_file->f_mapping;
645
646    if (mapping)
647        mutex_lock(&mapping->i_mmap_mutex);
648
649    __vma_link(mm, vma, prev, rb_link, rb_parent);
650    __vma_link_file(vma);
651
652    if (mapping)
653        mutex_unlock(&mapping->i_mmap_mutex);
654
655    mm->map_count++;
656    validate_mm(mm);
657}
658
659/*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664{
665    struct vm_area_struct *prev;
666    struct rb_node **rb_link, *rb_parent;
667
668    if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669               &prev, &rb_link, &rb_parent))
670        BUG();
671    __vma_link(mm, vma, prev, rb_link, rb_parent);
672    mm->map_count++;
673}
674
675static inline void
676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677        struct vm_area_struct *prev)
678{
679    struct vm_area_struct *next;
680
681    vma_rb_erase(vma, &mm->mm_rb);
682    prev->vm_next = next = vma->vm_next;
683    if (next)
684        next->vm_prev = prev;
685    if (mm->mmap_cache == vma)
686        mm->mmap_cache = prev;
687}
688
689/*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
696int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697    unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698{
699    struct mm_struct *mm = vma->vm_mm;
700    struct vm_area_struct *next = vma->vm_next;
701    struct vm_area_struct *importer = NULL;
702    struct address_space *mapping = NULL;
703    struct rb_root *root = NULL;
704    struct anon_vma *anon_vma = NULL;
705    struct file *file = vma->vm_file;
706    bool start_changed = false, end_changed = false;
707    long adjust_next = 0;
708    int remove_next = 0;
709
710    if (next && !insert) {
711        struct vm_area_struct *exporter = NULL;
712
713        if (end >= next->vm_end) {
714            /*
715             * vma expands, overlapping all the next, and
716             * perhaps the one after too (mprotect case 6).
717             */
718again: remove_next = 1 + (end > next->vm_end);
719            end = next->vm_end;
720            exporter = next;
721            importer = vma;
722        } else if (end > next->vm_start) {
723            /*
724             * vma expands, overlapping part of the next:
725             * mprotect case 5 shifting the boundary up.
726             */
727            adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728            exporter = next;
729            importer = vma;
730        } else if (end < vma->vm_end) {
731            /*
732             * vma shrinks, and !insert tells it's not
733             * split_vma inserting another: so it must be
734             * mprotect case 4 shifting the boundary down.
735             */
736            adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737            exporter = vma;
738            importer = next;
739        }
740
741        /*
742         * Easily overlooked: when mprotect shifts the boundary,
743         * make sure the expanding vma has anon_vma set if the
744         * shrinking vma had, to cover any anon pages imported.
745         */
746        if (exporter && exporter->anon_vma && !importer->anon_vma) {
747            if (anon_vma_clone(importer, exporter))
748                return -ENOMEM;
749            importer->anon_vma = exporter->anon_vma;
750        }
751    }
752
753    if (file) {
754        mapping = file->f_mapping;
755        if (!(vma->vm_flags & VM_NONLINEAR)) {
756            root = &mapping->i_mmap;
757            uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759            if (adjust_next)
760                uprobe_munmap(next, next->vm_start,
761                            next->vm_end);
762        }
763
764        mutex_lock(&mapping->i_mmap_mutex);
765        if (insert) {
766            /*
767             * Put into interval tree now, so instantiated pages
768             * are visible to arm/parisc __flush_dcache_page
769             * throughout; but we cannot insert into address
770             * space until vma start or end is updated.
771             */
772            __vma_link_file(insert);
773        }
774    }
775
776    vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778    anon_vma = vma->anon_vma;
779    if (!anon_vma && adjust_next)
780        anon_vma = next->anon_vma;
781    if (anon_vma) {
782        VM_BUG_ON(adjust_next && next->anon_vma &&
783              anon_vma != next->anon_vma);
784        anon_vma_lock_write(anon_vma);
785        anon_vma_interval_tree_pre_update_vma(vma);
786        if (adjust_next)
787            anon_vma_interval_tree_pre_update_vma(next);
788    }
789
790    if (root) {
791        flush_dcache_mmap_lock(mapping);
792        vma_interval_tree_remove(vma, root);
793        if (adjust_next)
794            vma_interval_tree_remove(next, root);
795    }
796
797    if (start != vma->vm_start) {
798        vma->vm_start = start;
799        start_changed = true;
800    }
801    if (end != vma->vm_end) {
802        vma->vm_end = end;
803        end_changed = true;
804    }
805    vma->vm_pgoff = pgoff;
806    if (adjust_next) {
807        next->vm_start += adjust_next << PAGE_SHIFT;
808        next->vm_pgoff += adjust_next;
809    }
810
811    if (root) {
812        if (adjust_next)
813            vma_interval_tree_insert(next, root);
814        vma_interval_tree_insert(vma, root);
815        flush_dcache_mmap_unlock(mapping);
816    }
817
818    if (remove_next) {
819        /*
820         * vma_merge has merged next into vma, and needs
821         * us to remove next before dropping the locks.
822         */
823        __vma_unlink(mm, next, vma);
824        if (file)
825            __remove_shared_vm_struct(next, file, mapping);
826    } else if (insert) {
827        /*
828         * split_vma has split insert from vma, and needs
829         * us to insert it before dropping the locks
830         * (it may either follow vma or precede it).
831         */
832        __insert_vm_struct(mm, insert);
833    } else {
834        if (start_changed)
835            vma_gap_update(vma);
836        if (end_changed) {
837            if (!next)
838                mm->highest_vm_end = end;
839            else if (!adjust_next)
840                vma_gap_update(next);
841        }
842    }
843
844    if (anon_vma) {
845        anon_vma_interval_tree_post_update_vma(vma);
846        if (adjust_next)
847            anon_vma_interval_tree_post_update_vma(next);
848        anon_vma_unlock_write(anon_vma);
849    }
850    if (mapping)
851        mutex_unlock(&mapping->i_mmap_mutex);
852
853    if (root) {
854        uprobe_mmap(vma);
855
856        if (adjust_next)
857            uprobe_mmap(next);
858    }
859
860    if (remove_next) {
861        if (file) {
862            uprobe_munmap(next, next->vm_start, next->vm_end);
863            fput(file);
864        }
865        if (next->anon_vma)
866            anon_vma_merge(vma, next);
867        mm->map_count--;
868        mpol_put(vma_policy(next));
869        kmem_cache_free(vm_area_cachep, next);
870        /*
871         * In mprotect's case 6 (see comments on vma_merge),
872         * we must remove another next too. It would clutter
873         * up the code too much to do both in one go.
874         */
875        next = vma->vm_next;
876        if (remove_next == 2)
877            goto again;
878        else if (next)
879            vma_gap_update(next);
880        else
881            mm->highest_vm_end = end;
882    }
883    if (insert && file)
884        uprobe_mmap(insert);
885
886    validate_mm(mm);
887
888    return 0;
889}
890
891/*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
895static inline int is_mergeable_vma(struct vm_area_struct *vma,
896            struct file *file, unsigned long vm_flags)
897{
898    if (vma->vm_flags ^ vm_flags)
899        return 0;
900    if (vma->vm_file != file)
901        return 0;
902    if (vma->vm_ops && vma->vm_ops->close)
903        return 0;
904    return 1;
905}
906
907static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908                    struct anon_vma *anon_vma2,
909                    struct vm_area_struct *vma)
910{
911    /*
912     * The list_is_singular() test is to avoid merging VMA cloned from
913     * parents. This can improve scalability caused by anon_vma lock.
914     */
915    if ((!anon_vma1 || !anon_vma2) && (!vma ||
916        list_is_singular(&vma->anon_vma_chain)))
917        return 1;
918    return anon_vma1 == anon_vma2;
919}
920
921/*
922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923 * in front of (at a lower virtual address and file offset than) the vma.
924 *
925 * We cannot merge two vmas if they have differently assigned (non-NULL)
926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 *
928 * We don't check here for the merged mmap wrapping around the end of pagecache
929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930 * wrap, nor mmaps which cover the final page at index -1UL.
931 */
932static int
933can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934    struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935{
936    if (is_mergeable_vma(vma, file, vm_flags) &&
937        is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938        if (vma->vm_pgoff == vm_pgoff)
939            return 1;
940    }
941    return 0;
942}
943
944/*
945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946 * beyond (at a higher virtual address and file offset than) the vma.
947 *
948 * We cannot merge two vmas if they have differently assigned (non-NULL)
949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 */
951static int
952can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953    struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954{
955    if (is_mergeable_vma(vma, file, vm_flags) &&
956        is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957        pgoff_t vm_pglen;
958        vm_pglen = vma_pages(vma);
959        if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960            return 1;
961    }
962    return 0;
963}
964
965/*
966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967 * whether that can be merged with its predecessor or its successor.
968 * Or both (it neatly fills a hole).
969 *
970 * In most cases - when called for mmap, brk or mremap - [addr,end) is
971 * certain not to be mapped by the time vma_merge is called; but when
972 * called for mprotect, it is certain to be already mapped (either at
973 * an offset within prev, or at the start of next), and the flags of
974 * this area are about to be changed to vm_flags - and the no-change
975 * case has already been eliminated.
976 *
977 * The following mprotect cases have to be considered, where AAAA is
978 * the area passed down from mprotect_fixup, never extending beyond one
979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980 *
981 * AAAA AAAA AAAA AAAA
982 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
983 * cannot merge might become might become might become
984 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
985 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
986 * mremap move: PPPPNNNNNNNN 8
987 * AAAA
988 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
989 * might become case 1 below case 2 below case 3 below
990 *
991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993 */
994struct vm_area_struct *vma_merge(struct mm_struct *mm,
995            struct vm_area_struct *prev, unsigned long addr,
996            unsigned long end, unsigned long vm_flags,
997                 struct anon_vma *anon_vma, struct file *file,
998            pgoff_t pgoff, struct mempolicy *policy)
999{
1000    pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001    struct vm_area_struct *area, *next;
1002    int err;
1003
1004    /*
1005     * We later require that vma->vm_flags == vm_flags,
1006     * so this tests vma->vm_flags & VM_SPECIAL, too.
1007     */
1008    if (vm_flags & VM_SPECIAL)
1009        return NULL;
1010
1011    if (prev)
1012        next = prev->vm_next;
1013    else
1014        next = mm->mmap;
1015    area = next;
1016    if (next && next->vm_end == end) /* cases 6, 7, 8 */
1017        next = next->vm_next;
1018
1019    /*
1020     * Can it merge with the predecessor?
1021     */
1022    if (prev && prev->vm_end == addr &&
1023              mpol_equal(vma_policy(prev), policy) &&
1024            can_vma_merge_after(prev, vm_flags,
1025                        anon_vma, file, pgoff)) {
1026        /*
1027         * OK, it can. Can we now merge in the successor as well?
1028         */
1029        if (next && end == next->vm_start &&
1030                mpol_equal(policy, vma_policy(next)) &&
1031                can_vma_merge_before(next, vm_flags,
1032                    anon_vma, file, pgoff+pglen) &&
1033                is_mergeable_anon_vma(prev->anon_vma,
1034                              next->anon_vma, NULL)) {
1035                            /* cases 1, 6 */
1036            err = vma_adjust(prev, prev->vm_start,
1037                next->vm_end, prev->vm_pgoff, NULL);
1038        } else /* cases 2, 5, 7 */
1039            err = vma_adjust(prev, prev->vm_start,
1040                end, prev->vm_pgoff, NULL);
1041        if (err)
1042            return NULL;
1043        khugepaged_enter_vma_merge(prev);
1044        return prev;
1045    }
1046
1047    /*
1048     * Can this new request be merged in front of next?
1049     */
1050    if (next && end == next->vm_start &&
1051             mpol_equal(policy, vma_policy(next)) &&
1052            can_vma_merge_before(next, vm_flags,
1053                    anon_vma, file, pgoff+pglen)) {
1054        if (prev && addr < prev->vm_end) /* case 4 */
1055            err = vma_adjust(prev, prev->vm_start,
1056                addr, prev->vm_pgoff, NULL);
1057        else /* cases 3, 8 */
1058            err = vma_adjust(area, addr, next->vm_end,
1059                next->vm_pgoff - pglen, NULL);
1060        if (err)
1061            return NULL;
1062        khugepaged_enter_vma_merge(area);
1063        return area;
1064    }
1065
1066    return NULL;
1067}
1068
1069/*
1070 * Rough compatbility check to quickly see if it's even worth looking
1071 * at sharing an anon_vma.
1072 *
1073 * They need to have the same vm_file, and the flags can only differ
1074 * in things that mprotect may change.
1075 *
1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077 * we can merge the two vma's. For example, we refuse to merge a vma if
1078 * there is a vm_ops->close() function, because that indicates that the
1079 * driver is doing some kind of reference counting. But that doesn't
1080 * really matter for the anon_vma sharing case.
1081 */
1082static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083{
1084    return a->vm_end == b->vm_start &&
1085        mpol_equal(vma_policy(a), vma_policy(b)) &&
1086        a->vm_file == b->vm_file &&
1087        !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088        b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089}
1090
1091/*
1092 * Do some basic sanity checking to see if we can re-use the anon_vma
1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094 * the same as 'old', the other will be the new one that is trying
1095 * to share the anon_vma.
1096 *
1097 * NOTE! This runs with mm_sem held for reading, so it is possible that
1098 * the anon_vma of 'old' is concurrently in the process of being set up
1099 * by another page fault trying to merge _that_. But that's ok: if it
1100 * is being set up, that automatically means that it will be a singleton
1101 * acceptable for merging, so we can do all of this optimistically. But
1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103 *
1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106 * is to return an anon_vma that is "complex" due to having gone through
1107 * a fork).
1108 *
1109 * We also make sure that the two vma's are compatible (adjacent,
1110 * and with the same memory policies). That's all stable, even with just
1111 * a read lock on the mm_sem.
1112 */
1113static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114{
1115    if (anon_vma_compatible(a, b)) {
1116        struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118        if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119            return anon_vma;
1120    }
1121    return NULL;
1122}
1123
1124/*
1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126 * neighbouring vmas for a suitable anon_vma, before it goes off
1127 * to allocate a new anon_vma. It checks because a repetitive
1128 * sequence of mprotects and faults may otherwise lead to distinct
1129 * anon_vmas being allocated, preventing vma merge in subsequent
1130 * mprotect.
1131 */
1132struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133{
1134    struct anon_vma *anon_vma;
1135    struct vm_area_struct *near;
1136
1137    near = vma->vm_next;
1138    if (!near)
1139        goto try_prev;
1140
1141    anon_vma = reusable_anon_vma(near, vma, near);
1142    if (anon_vma)
1143        return anon_vma;
1144try_prev:
1145    near = vma->vm_prev;
1146    if (!near)
1147        goto none;
1148
1149    anon_vma = reusable_anon_vma(near, near, vma);
1150    if (anon_vma)
1151        return anon_vma;
1152none:
1153    /*
1154     * There's no absolute need to look only at touching neighbours:
1155     * we could search further afield for "compatible" anon_vmas.
1156     * But it would probably just be a waste of time searching,
1157     * or lead to too many vmas hanging off the same anon_vma.
1158     * We're trying to allow mprotect remerging later on,
1159     * not trying to minimize memory used for anon_vmas.
1160     */
1161    return NULL;
1162}
1163
1164#ifdef CONFIG_PROC_FS
1165void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166                        struct file *file, long pages)
1167{
1168    const unsigned long stack_flags
1169        = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
1171    mm->total_vm += pages;
1172
1173    if (file) {
1174        mm->shared_vm += pages;
1175        if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176            mm->exec_vm += pages;
1177    } else if (flags & stack_flags)
1178        mm->stack_vm += pages;
1179}
1180#endif /* CONFIG_PROC_FS */
1181
1182/*
1183 * If a hint addr is less than mmap_min_addr change hint to be as
1184 * low as possible but still greater than mmap_min_addr
1185 */
1186static inline unsigned long round_hint_to_min(unsigned long hint)
1187{
1188    hint &= PAGE_MASK;
1189    if (((void *)hint != NULL) &&
1190        (hint < mmap_min_addr))
1191        return PAGE_ALIGN(mmap_min_addr);
1192    return hint;
1193}
1194
1195/*
1196 * The caller must hold down_write(&current->mm->mmap_sem).
1197 */
1198
1199unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200            unsigned long len, unsigned long prot,
1201            unsigned long flags, unsigned long pgoff,
1202            unsigned long *populate)
1203{
1204    struct mm_struct * mm = current->mm;
1205    vm_flags_t vm_flags;
1206
1207    *populate = 0;
1208
1209    /*
1210     * Does the application expect PROT_READ to imply PROT_EXEC?
1211     *
1212     * (the exception is when the underlying filesystem is noexec
1213     * mounted, in which case we dont add PROT_EXEC.)
1214     */
1215    if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1216        if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1217            prot |= PROT_EXEC;
1218
1219    if (!len)
1220        return -EINVAL;
1221
1222    if (!(flags & MAP_FIXED))
1223        addr = round_hint_to_min(addr);
1224
1225    /* Careful about overflows.. */
1226    len = PAGE_ALIGN(len);
1227    if (!len)
1228        return -ENOMEM;
1229
1230    /* offset overflow? */
1231    if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1232               return -EOVERFLOW;
1233
1234    /* Too many mappings? */
1235    if (mm->map_count > sysctl_max_map_count)
1236        return -ENOMEM;
1237
1238    /* Obtain the address to map to. we verify (or select) it and ensure
1239     * that it represents a valid section of the address space.
1240     */
1241    addr = get_unmapped_area(file, addr, len, pgoff, flags);
1242    if (addr & ~PAGE_MASK)
1243        return addr;
1244
1245    /* Do simple checking here so the lower-level routines won't have
1246     * to. we assume access permissions have been handled by the open
1247     * of the memory object, so we don't do any here.
1248     */
1249    vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1250            mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251
1252    if (flags & MAP_LOCKED)
1253        if (!can_do_mlock())
1254            return -EPERM;
1255
1256    /* mlock MCL_FUTURE? */
1257    if (vm_flags & VM_LOCKED) {
1258        unsigned long locked, lock_limit;
1259        locked = len >> PAGE_SHIFT;
1260        locked += mm->locked_vm;
1261        lock_limit = rlimit(RLIMIT_MEMLOCK);
1262        lock_limit >>= PAGE_SHIFT;
1263        if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1264            return -EAGAIN;
1265    }
1266
1267    if (file) {
1268        struct inode *inode = file_inode(file);
1269
1270        switch (flags & MAP_TYPE) {
1271        case MAP_SHARED:
1272            if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1273                return -EACCES;
1274
1275            /*
1276             * Make sure we don't allow writing to an append-only
1277             * file..
1278             */
1279            if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1280                return -EACCES;
1281
1282            /*
1283             * Make sure there are no mandatory locks on the file.
1284             */
1285            if (locks_verify_locked(inode))
1286                return -EAGAIN;
1287
1288            vm_flags |= VM_SHARED | VM_MAYSHARE;
1289            if (!(file->f_mode & FMODE_WRITE))
1290                vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1291
1292            /* fall through */
1293        case MAP_PRIVATE:
1294            if (!(file->f_mode & FMODE_READ))
1295                return -EACCES;
1296            if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1297                if (vm_flags & VM_EXEC)
1298                    return -EPERM;
1299                vm_flags &= ~VM_MAYEXEC;
1300            }
1301
1302            if (!file->f_op || !file->f_op->mmap)
1303                return -ENODEV;
1304            if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1305                return -EINVAL;
1306            break;
1307
1308        default:
1309            return -EINVAL;
1310        }
1311    } else {
1312        switch (flags & MAP_TYPE) {
1313        case MAP_SHARED:
1314            if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1315                return -EINVAL;
1316            /*
1317             * Ignore pgoff.
1318             */
1319            pgoff = 0;
1320            vm_flags |= VM_SHARED | VM_MAYSHARE;
1321            break;
1322        case MAP_PRIVATE:
1323            /*
1324             * Set pgoff according to addr for anon_vma.
1325             */
1326            pgoff = addr >> PAGE_SHIFT;
1327            break;
1328        default:
1329            return -EINVAL;
1330        }
1331    }
1332
1333    /*
1334     * Set 'VM_NORESERVE' if we should not account for the
1335     * memory use of this mapping.
1336     */
1337    if (flags & MAP_NORESERVE) {
1338        /* We honor MAP_NORESERVE if allowed to overcommit */
1339        if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1340            vm_flags |= VM_NORESERVE;
1341
1342        /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1343        if (file && is_file_hugepages(file))
1344            vm_flags |= VM_NORESERVE;
1345    }
1346
1347    addr = mmap_region(file, addr, len, vm_flags, pgoff);
1348    if (!IS_ERR_VALUE(addr) &&
1349        ((vm_flags & VM_LOCKED) ||
1350         (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1351        *populate = len;
1352    return addr;
1353}
1354
1355SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356        unsigned long, prot, unsigned long, flags,
1357        unsigned long, fd, unsigned long, pgoff)
1358{
1359    struct file *file = NULL;
1360    unsigned long retval = -EBADF;
1361
1362    if (!(flags & MAP_ANONYMOUS)) {
1363        audit_mmap_fd(fd, flags);
1364        file = fget(fd);
1365        if (!file)
1366            goto out;
1367        if (is_file_hugepages(file))
1368            len = ALIGN(len, huge_page_size(hstate_file(file)));
1369        retval = -EINVAL;
1370        if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1371            goto out_fput;
1372    } else if (flags & MAP_HUGETLB) {
1373        struct user_struct *user = NULL;
1374        struct hstate *hs;
1375
1376        hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1377        if (!hs)
1378            return -EINVAL;
1379
1380        len = ALIGN(len, huge_page_size(hs));
1381        /*
1382         * VM_NORESERVE is used because the reservations will be
1383         * taken when vm_ops->mmap() is called
1384         * A dummy user value is used because we are not locking
1385         * memory so no accounting is necessary
1386         */
1387        file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1388                VM_NORESERVE,
1389                &user, HUGETLB_ANONHUGE_INODE,
1390                (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1391        if (IS_ERR(file))
1392            return PTR_ERR(file);
1393    }
1394
1395    flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1396
1397    retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1398out_fput:
1399    if (file)
1400        fput(file);
1401out:
1402    return retval;
1403}
1404
1405#ifdef __ARCH_WANT_SYS_OLD_MMAP
1406struct mmap_arg_struct {
1407    unsigned long addr;
1408    unsigned long len;
1409    unsigned long prot;
1410    unsigned long flags;
1411    unsigned long fd;
1412    unsigned long offset;
1413};
1414
1415SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1416{
1417    struct mmap_arg_struct a;
1418
1419    if (copy_from_user(&a, arg, sizeof(a)))
1420        return -EFAULT;
1421    if (a.offset & ~PAGE_MASK)
1422        return -EINVAL;
1423
1424    return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1425                  a.offset >> PAGE_SHIFT);
1426}
1427#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1428
1429/*
1430 * Some shared mappigns will want the pages marked read-only
1431 * to track write events. If so, we'll downgrade vm_page_prot
1432 * to the private version (using protection_map[] without the
1433 * VM_SHARED bit).
1434 */
1435int vma_wants_writenotify(struct vm_area_struct *vma)
1436{
1437    vm_flags_t vm_flags = vma->vm_flags;
1438
1439    /* If it was private or non-writable, the write bit is already clear */
1440    if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1441        return 0;
1442
1443    /* The backer wishes to know when pages are first written to? */
1444    if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1445        return 1;
1446
1447    /* The open routine did something to the protections already? */
1448    if (pgprot_val(vma->vm_page_prot) !=
1449        pgprot_val(vm_get_page_prot(vm_flags)))
1450        return 0;
1451
1452    /* Specialty mapping? */
1453    if (vm_flags & VM_PFNMAP)
1454        return 0;
1455
1456    /* Can the mapping track the dirty pages? */
1457    return vma->vm_file && vma->vm_file->f_mapping &&
1458        mapping_cap_account_dirty(vma->vm_file->f_mapping);
1459}
1460
1461/*
1462 * We account for memory if it's a private writeable mapping,
1463 * not hugepages and VM_NORESERVE wasn't set.
1464 */
1465static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1466{
1467    /*
1468     * hugetlb has its own accounting separate from the core VM
1469     * VM_HUGETLB may not be set yet so we cannot check for that flag.
1470     */
1471    if (file && is_file_hugepages(file))
1472        return 0;
1473
1474    return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1475}
1476
1477unsigned long mmap_region(struct file *file, unsigned long addr,
1478        unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1479{
1480    struct mm_struct *mm = current->mm;
1481    struct vm_area_struct *vma, *prev;
1482    int error;
1483    struct rb_node **rb_link, *rb_parent;
1484    unsigned long charged = 0;
1485
1486    /* Check against address space limit. */
1487    if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1488        unsigned long nr_pages;
1489
1490        /*
1491         * MAP_FIXED may remove pages of mappings that intersects with
1492         * requested mapping. Account for the pages it would unmap.
1493         */
1494        if (!(vm_flags & MAP_FIXED))
1495            return -ENOMEM;
1496
1497        nr_pages = count_vma_pages_range(mm, addr, addr + len);
1498
1499        if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1500            return -ENOMEM;
1501    }
1502
1503    /* Clear old maps */
1504    error = -ENOMEM;
1505munmap_back:
1506    if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1507        if (do_munmap(mm, addr, len))
1508            return -ENOMEM;
1509        goto munmap_back;
1510    }
1511
1512    /*
1513     * Private writable mapping: check memory availability
1514     */
1515    if (accountable_mapping(file, vm_flags)) {
1516        charged = len >> PAGE_SHIFT;
1517        if (security_vm_enough_memory_mm(mm, charged))
1518            return -ENOMEM;
1519        vm_flags |= VM_ACCOUNT;
1520    }
1521
1522    /*
1523     * Can we just expand an old mapping?
1524     */
1525    vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1526    if (vma)
1527        goto out;
1528
1529    /*
1530     * Determine the object being mapped and call the appropriate
1531     * specific mapper. the address has already been validated, but
1532     * not unmapped, but the maps are removed from the list.
1533     */
1534    vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1535    if (!vma) {
1536        error = -ENOMEM;
1537        goto unacct_error;
1538    }
1539
1540    vma->vm_mm = mm;
1541    vma->vm_start = addr;
1542    vma->vm_end = addr + len;
1543    vma->vm_flags = vm_flags;
1544    vma->vm_page_prot = vm_get_page_prot(vm_flags);
1545    vma->vm_pgoff = pgoff;
1546    INIT_LIST_HEAD(&vma->anon_vma_chain);
1547
1548    if (file) {
1549        if (vm_flags & VM_DENYWRITE) {
1550            error = deny_write_access(file);
1551            if (error)
1552                goto free_vma;
1553        }
1554        vma->vm_file = get_file(file);
1555        error = file->f_op->mmap(file, vma);
1556        if (error)
1557            goto unmap_and_free_vma;
1558
1559        /* Can addr have changed??
1560         *
1561         * Answer: Yes, several device drivers can do it in their
1562         * f_op->mmap method. -DaveM
1563         * Bug: If addr is changed, prev, rb_link, rb_parent should
1564         * be updated for vma_link()
1565         */
1566        WARN_ON_ONCE(addr != vma->vm_start);
1567
1568        addr = vma->vm_start;
1569        vm_flags = vma->vm_flags;
1570    } else if (vm_flags & VM_SHARED) {
1571        error = shmem_zero_setup(vma);
1572        if (error)
1573            goto free_vma;
1574    }
1575
1576    if (vma_wants_writenotify(vma)) {
1577        pgprot_t pprot = vma->vm_page_prot;
1578
1579        /* Can vma->vm_page_prot have changed??
1580         *
1581         * Answer: Yes, drivers may have changed it in their
1582         * f_op->mmap method.
1583         *
1584         * Ensures that vmas marked as uncached stay that way.
1585         */
1586        vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1587        if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1588            vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1589    }
1590
1591    vma_link(mm, vma, prev, rb_link, rb_parent);
1592    /* Once vma denies write, undo our temporary denial count */
1593    if (vm_flags & VM_DENYWRITE)
1594        allow_write_access(file);
1595    file = vma->vm_file;
1596out:
1597    perf_event_mmap(vma);
1598
1599    vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1600    if (vm_flags & VM_LOCKED) {
1601        if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1602                    vma == get_gate_vma(current->mm)))
1603            mm->locked_vm += (len >> PAGE_SHIFT);
1604        else
1605            vma->vm_flags &= ~VM_LOCKED;
1606    }
1607
1608    if (file)
1609        uprobe_mmap(vma);
1610
1611    /*
1612     * New (or expanded) vma always get soft dirty status.
1613     * Otherwise user-space soft-dirty page tracker won't
1614     * be able to distinguish situation when vma area unmapped,
1615     * then new mapped in-place (which must be aimed as
1616     * a completely new data area).
1617     */
1618    vma->vm_flags |= VM_SOFTDIRTY;
1619
1620    return addr;
1621
1622unmap_and_free_vma:
1623    if (vm_flags & VM_DENYWRITE)
1624        allow_write_access(file);
1625    vma->vm_file = NULL;
1626    fput(file);
1627
1628    /* Undo any partial mapping done by a device driver. */
1629    unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1630    charged = 0;
1631free_vma:
1632    kmem_cache_free(vm_area_cachep, vma);
1633unacct_error:
1634    if (charged)
1635        vm_unacct_memory(charged);
1636    return error;
1637}
1638
1639unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1640{
1641    /*
1642     * We implement the search by looking for an rbtree node that
1643     * immediately follows a suitable gap. That is,
1644     * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1645     * - gap_end = vma->vm_start >= info->low_limit + length;
1646     * - gap_end - gap_start >= length
1647     */
1648
1649    struct mm_struct *mm = current->mm;
1650    struct vm_area_struct *vma;
1651    unsigned long length, low_limit, high_limit, gap_start, gap_end;
1652
1653    /* Adjust search length to account for worst case alignment overhead */
1654    length = info->length + info->align_mask;
1655    if (length < info->length)
1656        return -ENOMEM;
1657
1658    /* Adjust search limits by the desired length */
1659    if (info->high_limit < length)
1660        return -ENOMEM;
1661    high_limit = info->high_limit - length;
1662
1663    if (info->low_limit > high_limit)
1664        return -ENOMEM;
1665    low_limit = info->low_limit + length;
1666
1667    /* Check if rbtree root looks promising */
1668    if (RB_EMPTY_ROOT(&mm->mm_rb))
1669        goto check_highest;
1670    vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1671    if (vma->rb_subtree_gap < length)
1672        goto check_highest;
1673
1674    while (true) {
1675        /* Visit left subtree if it looks promising */
1676        gap_end = vma->vm_start;
1677        if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1678            struct vm_area_struct *left =
1679                rb_entry(vma->vm_rb.rb_left,
1680                     struct vm_area_struct, vm_rb);
1681            if (left->rb_subtree_gap >= length) {
1682                vma = left;
1683                continue;
1684            }
1685        }
1686
1687        gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1688check_current:
1689        /* Check if current node has a suitable gap */
1690        if (gap_start > high_limit)
1691            return -ENOMEM;
1692        if (gap_end >= low_limit && gap_end - gap_start >= length)
1693            goto found;
1694
1695        /* Visit right subtree if it looks promising */
1696        if (vma->vm_rb.rb_right) {
1697            struct vm_area_struct *right =
1698                rb_entry(vma->vm_rb.rb_right,
1699                     struct vm_area_struct, vm_rb);
1700            if (right->rb_subtree_gap >= length) {
1701                vma = right;
1702                continue;
1703            }
1704        }
1705
1706        /* Go back up the rbtree to find next candidate node */
1707        while (true) {
1708            struct rb_node *prev = &vma->vm_rb;
1709            if (!rb_parent(prev))
1710                goto check_highest;
1711            vma = rb_entry(rb_parent(prev),
1712                       struct vm_area_struct, vm_rb);
1713            if (prev == vma->vm_rb.rb_left) {
1714                gap_start = vma->vm_prev->vm_end;
1715                gap_end = vma->vm_start;
1716                goto check_current;
1717            }
1718        }
1719    }
1720
1721check_highest:
1722    /* Check highest gap, which does not precede any rbtree node */
1723    gap_start = mm->highest_vm_end;
1724    gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1725    if (gap_start > high_limit)
1726        return -ENOMEM;
1727
1728found:
1729    /* We found a suitable gap. Clip it with the original low_limit. */
1730    if (gap_start < info->low_limit)
1731        gap_start = info->low_limit;
1732
1733    /* Adjust gap address to the desired alignment */
1734    gap_start += (info->align_offset - gap_start) & info->align_mask;
1735
1736    VM_BUG_ON(gap_start + info->length > info->high_limit);
1737    VM_BUG_ON(gap_start + info->length > gap_end);
1738    return gap_start;
1739}
1740
1741unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1742{
1743    struct mm_struct *mm = current->mm;
1744    struct vm_area_struct *vma;
1745    unsigned long length, low_limit, high_limit, gap_start, gap_end;
1746
1747    /* Adjust search length to account for worst case alignment overhead */
1748    length = info->length + info->align_mask;
1749    if (length < info->length)
1750        return -ENOMEM;
1751
1752    /*
1753     * Adjust search limits by the desired length.
1754     * See implementation comment at top of unmapped_area().
1755     */
1756    gap_end = info->high_limit;
1757    if (gap_end < length)
1758        return -ENOMEM;
1759    high_limit = gap_end - length;
1760
1761    if (info->low_limit > high_limit)
1762        return -ENOMEM;
1763    low_limit = info->low_limit + length;
1764
1765    /* Check highest gap, which does not precede any rbtree node */
1766    gap_start = mm->highest_vm_end;
1767    if (gap_start <= high_limit)
1768        goto found_highest;
1769
1770    /* Check if rbtree root looks promising */
1771    if (RB_EMPTY_ROOT(&mm->mm_rb))
1772        return -ENOMEM;
1773    vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1774    if (vma->rb_subtree_gap < length)
1775        return -ENOMEM;
1776
1777    while (true) {
1778        /* Visit right subtree if it looks promising */
1779        gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1780        if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1781            struct vm_area_struct *right =
1782                rb_entry(vma->vm_rb.rb_right,
1783                     struct vm_area_struct, vm_rb);
1784            if (right->rb_subtree_gap >= length) {
1785                vma = right;
1786                continue;
1787            }
1788        }
1789
1790check_current:
1791        /* Check if current node has a suitable gap */
1792        gap_end = vma->vm_start;
1793        if (gap_end < low_limit)
1794            return -ENOMEM;
1795        if (gap_start <= high_limit && gap_end - gap_start >= length)
1796            goto found;
1797
1798        /* Visit left subtree if it looks promising */
1799        if (vma->vm_rb.rb_left) {
1800            struct vm_area_struct *left =
1801                rb_entry(vma->vm_rb.rb_left,
1802                     struct vm_area_struct, vm_rb);
1803            if (left->rb_subtree_gap >= length) {
1804                vma = left;
1805                continue;
1806            }
1807        }
1808
1809        /* Go back up the rbtree to find next candidate node */
1810        while (true) {
1811            struct rb_node *prev = &vma->vm_rb;
1812            if (!rb_parent(prev))
1813                return -ENOMEM;
1814            vma = rb_entry(rb_parent(prev),
1815                       struct vm_area_struct, vm_rb);
1816            if (prev == vma->vm_rb.rb_right) {
1817                gap_start = vma->vm_prev ?
1818                    vma->vm_prev->vm_end : 0;
1819                goto check_current;
1820            }
1821        }
1822    }
1823
1824found:
1825    /* We found a suitable gap. Clip it with the original high_limit. */
1826    if (gap_end > info->high_limit)
1827        gap_end = info->high_limit;
1828
1829found_highest:
1830    /* Compute highest gap address at the desired alignment */
1831    gap_end -= info->length;
1832    gap_end -= (gap_end - info->align_offset) & info->align_mask;
1833
1834    VM_BUG_ON(gap_end < info->low_limit);
1835    VM_BUG_ON(gap_end < gap_start);
1836    return gap_end;
1837}
1838
1839/* Get an address range which is currently unmapped.
1840 * For shmat() with addr=0.
1841 *
1842 * Ugly calling convention alert:
1843 * Return value with the low bits set means error value,
1844 * ie
1845 * if (ret & ~PAGE_MASK)
1846 * error = ret;
1847 *
1848 * This function "knows" that -ENOMEM has the bits set.
1849 */
1850#ifndef HAVE_ARCH_UNMAPPED_AREA
1851unsigned long
1852arch_get_unmapped_area(struct file *filp, unsigned long addr,
1853        unsigned long len, unsigned long pgoff, unsigned long flags)
1854{
1855    struct mm_struct *mm = current->mm;
1856    struct vm_area_struct *vma;
1857    struct vm_unmapped_area_info info;
1858
1859    if (len > TASK_SIZE)
1860        return -ENOMEM;
1861
1862    if (flags & MAP_FIXED)
1863        return addr;
1864
1865    if (addr) {
1866        addr = PAGE_ALIGN(addr);
1867        vma = find_vma(mm, addr);
1868        if (TASK_SIZE - len >= addr &&
1869            (!vma || addr + len <= vma->vm_start))
1870            return addr;
1871    }
1872
1873    info.flags = 0;
1874    info.length = len;
1875    info.low_limit = TASK_UNMAPPED_BASE;
1876    info.high_limit = TASK_SIZE;
1877    info.align_mask = 0;
1878    return vm_unmapped_area(&info);
1879}
1880#endif
1881
1882/*
1883 * This mmap-allocator allocates new areas top-down from below the
1884 * stack's low limit (the base):
1885 */
1886#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1887unsigned long
1888arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1889              const unsigned long len, const unsigned long pgoff,
1890              const unsigned long flags)
1891{
1892    struct vm_area_struct *vma;
1893    struct mm_struct *mm = current->mm;
1894    unsigned long addr = addr0;
1895    struct vm_unmapped_area_info info;
1896
1897    /* requested length too big for entire address space */
1898    if (len > TASK_SIZE)
1899        return -ENOMEM;
1900
1901    if (flags & MAP_FIXED)
1902        return addr;
1903
1904    /* requesting a specific address */
1905    if (addr) {
1906        addr = PAGE_ALIGN(addr);
1907        vma = find_vma(mm, addr);
1908        if (TASK_SIZE - len >= addr &&
1909                (!vma || addr + len <= vma->vm_start))
1910            return addr;
1911    }
1912
1913    info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1914    info.length = len;
1915    info.low_limit = PAGE_SIZE;
1916    info.high_limit = mm->mmap_base;
1917    info.align_mask = 0;
1918    addr = vm_unmapped_area(&info);
1919
1920    /*
1921     * A failed mmap() very likely causes application failure,
1922     * so fall back to the bottom-up function here. This scenario
1923     * can happen with large stack limits and large mmap()
1924     * allocations.
1925     */
1926    if (addr & ~PAGE_MASK) {
1927        VM_BUG_ON(addr != -ENOMEM);
1928        info.flags = 0;
1929        info.low_limit = TASK_UNMAPPED_BASE;
1930        info.high_limit = TASK_SIZE;
1931        addr = vm_unmapped_area(&info);
1932    }
1933
1934    return addr;
1935}
1936#endif
1937
1938unsigned long
1939get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1940        unsigned long pgoff, unsigned long flags)
1941{
1942    unsigned long (*get_area)(struct file *, unsigned long,
1943                  unsigned long, unsigned long, unsigned long);
1944
1945    unsigned long error = arch_mmap_check(addr, len, flags);
1946    if (error)
1947        return error;
1948
1949    /* Careful about overflows.. */
1950    if (len > TASK_SIZE)
1951        return -ENOMEM;
1952
1953    get_area = current->mm->get_unmapped_area;
1954    if (file && file->f_op && file->f_op->get_unmapped_area)
1955        get_area = file->f_op->get_unmapped_area;
1956    addr = get_area(file, addr, len, pgoff, flags);
1957    if (IS_ERR_VALUE(addr))
1958        return addr;
1959
1960    if (addr > TASK_SIZE - len)
1961        return -ENOMEM;
1962    if (addr & ~PAGE_MASK)
1963        return -EINVAL;
1964
1965    addr = arch_rebalance_pgtables(addr, len);
1966    error = security_mmap_addr(addr);
1967    return error ? error : addr;
1968}
1969
1970EXPORT_SYMBOL(get_unmapped_area);
1971
1972/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1973struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1974{
1975    struct vm_area_struct *vma = NULL;
1976
1977    /* Check the cache first. */
1978    /* (Cache hit rate is typically around 35%.) */
1979    vma = ACCESS_ONCE(mm->mmap_cache);
1980    if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1981        struct rb_node *rb_node;
1982
1983        rb_node = mm->mm_rb.rb_node;
1984        vma = NULL;
1985
1986        while (rb_node) {
1987            struct vm_area_struct *vma_tmp;
1988
1989            vma_tmp = rb_entry(rb_node,
1990                       struct vm_area_struct, vm_rb);
1991
1992            if (vma_tmp->vm_end > addr) {
1993                vma = vma_tmp;
1994                if (vma_tmp->vm_start <= addr)
1995                    break;
1996                rb_node = rb_node->rb_left;
1997            } else
1998                rb_node = rb_node->rb_right;
1999        }
2000        if (vma)
2001            mm->mmap_cache = vma;
2002    }
2003    return vma;
2004}
2005
2006EXPORT_SYMBOL(find_vma);
2007
2008/*
2009 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2010 */
2011struct vm_area_struct *
2012find_vma_prev(struct mm_struct *mm, unsigned long addr,
2013            struct vm_area_struct **pprev)
2014{
2015    struct vm_area_struct *vma;
2016
2017    vma = find_vma(mm, addr);
2018    if (vma) {
2019        *pprev = vma->vm_prev;
2020    } else {
2021        struct rb_node *rb_node = mm->mm_rb.rb_node;
2022        *pprev = NULL;
2023        while (rb_node) {
2024            *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2025            rb_node = rb_node->rb_right;
2026        }
2027    }
2028    return vma;
2029}
2030
2031/*
2032 * Verify that the stack growth is acceptable and
2033 * update accounting. This is shared with both the
2034 * grow-up and grow-down cases.
2035 */
2036static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2037{
2038    struct mm_struct *mm = vma->vm_mm;
2039    struct rlimit *rlim = current->signal->rlim;
2040    unsigned long new_start;
2041
2042    /* address space limit tests */
2043    if (!may_expand_vm(mm, grow))
2044        return -ENOMEM;
2045
2046    /* Stack limit test */
2047    if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2048        return -ENOMEM;
2049
2050    /* mlock limit tests */
2051    if (vma->vm_flags & VM_LOCKED) {
2052        unsigned long locked;
2053        unsigned long limit;
2054        locked = mm->locked_vm + grow;
2055        limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2056        limit >>= PAGE_SHIFT;
2057        if (locked > limit && !capable(CAP_IPC_LOCK))
2058            return -ENOMEM;
2059    }
2060
2061    /* Check to ensure the stack will not grow into a hugetlb-only region */
2062    new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2063            vma->vm_end - size;
2064    if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2065        return -EFAULT;
2066
2067    /*
2068     * Overcommit.. This must be the final test, as it will
2069     * update security statistics.
2070     */
2071    if (security_vm_enough_memory_mm(mm, grow))
2072        return -ENOMEM;
2073
2074    /* Ok, everything looks good - let it rip */
2075    if (vma->vm_flags & VM_LOCKED)
2076        mm->locked_vm += grow;
2077    vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2078    return 0;
2079}
2080
2081#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2082/*
2083 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2084 * vma is the last one with address > vma->vm_end. Have to extend vma.
2085 */
2086int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2087{
2088    int error;
2089
2090    if (!(vma->vm_flags & VM_GROWSUP))
2091        return -EFAULT;
2092
2093    /*
2094     * We must make sure the anon_vma is allocated
2095     * so that the anon_vma locking is not a noop.
2096     */
2097    if (unlikely(anon_vma_prepare(vma)))
2098        return -ENOMEM;
2099    vma_lock_anon_vma(vma);
2100
2101    /*
2102     * vma->vm_start/vm_end cannot change under us because the caller
2103     * is required to hold the mmap_sem in read mode. We need the
2104     * anon_vma lock to serialize against concurrent expand_stacks.
2105     * Also guard against wrapping around to address 0.
2106     */
2107    if (address < PAGE_ALIGN(address+4))
2108        address = PAGE_ALIGN(address+4);
2109    else {
2110        vma_unlock_anon_vma(vma);
2111        return -ENOMEM;
2112    }
2113    error = 0;
2114
2115    /* Somebody else might have raced and expanded it already */
2116    if (address > vma->vm_end) {
2117        unsigned long size, grow;
2118
2119        size = address - vma->vm_start;
2120        grow = (address - vma->vm_end) >> PAGE_SHIFT;
2121
2122        error = -ENOMEM;
2123        if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2124            error = acct_stack_growth(vma, size, grow);
2125            if (!error) {
2126                /*
2127                 * vma_gap_update() doesn't support concurrent
2128                 * updates, but we only hold a shared mmap_sem
2129                 * lock here, so we need to protect against
2130                 * concurrent vma expansions.
2131                 * vma_lock_anon_vma() doesn't help here, as
2132                 * we don't guarantee that all growable vmas
2133                 * in a mm share the same root anon vma.
2134                 * So, we reuse mm->page_table_lock to guard
2135                 * against concurrent vma expansions.
2136                 */
2137                spin_lock(&vma->vm_mm->page_table_lock);
2138                anon_vma_interval_tree_pre_update_vma(vma);
2139                vma->vm_end = address;
2140                anon_vma_interval_tree_post_update_vma(vma);
2141                if (vma->vm_next)
2142                    vma_gap_update(vma->vm_next);
2143                else
2144                    vma->vm_mm->highest_vm_end = address;
2145                spin_unlock(&vma->vm_mm->page_table_lock);
2146
2147                perf_event_mmap(vma);
2148            }
2149        }
2150    }
2151    vma_unlock_anon_vma(vma);
2152    khugepaged_enter_vma_merge(vma);
2153    validate_mm(vma->vm_mm);
2154    return error;
2155}
2156#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2157
2158/*
2159 * vma is the first one with address < vma->vm_start. Have to extend vma.
2160 */
2161int expand_downwards(struct vm_area_struct *vma,
2162                   unsigned long address)
2163{
2164    int error;
2165
2166    /*
2167     * We must make sure the anon_vma is allocated
2168     * so that the anon_vma locking is not a noop.
2169     */
2170    if (unlikely(anon_vma_prepare(vma)))
2171        return -ENOMEM;
2172
2173    address &= PAGE_MASK;
2174    error = security_mmap_addr(address);
2175    if (error)
2176        return error;
2177
2178    vma_lock_anon_vma(vma);
2179
2180    /*
2181     * vma->vm_start/vm_end cannot change under us because the caller
2182     * is required to hold the mmap_sem in read mode. We need the
2183     * anon_vma lock to serialize against concurrent expand_stacks.
2184     */
2185
2186    /* Somebody else might have raced and expanded it already */
2187    if (address < vma->vm_start) {
2188        unsigned long size, grow;
2189
2190        size = vma->vm_end - address;
2191        grow = (vma->vm_start - address) >> PAGE_SHIFT;
2192
2193        error = -ENOMEM;
2194        if (grow <= vma->vm_pgoff) {
2195            error = acct_stack_growth(vma, size, grow);
2196            if (!error) {
2197                /*
2198                 * vma_gap_update() doesn't support concurrent
2199                 * updates, but we only hold a shared mmap_sem
2200                 * lock here, so we need to protect against
2201                 * concurrent vma expansions.
2202                 * vma_lock_anon_vma() doesn't help here, as
2203                 * we don't guarantee that all growable vmas
2204                 * in a mm share the same root anon vma.
2205                 * So, we reuse mm->page_table_lock to guard
2206                 * against concurrent vma expansions.
2207                 */
2208                spin_lock(&vma->vm_mm->page_table_lock);
2209                anon_vma_interval_tree_pre_update_vma(vma);
2210                vma->vm_start = address;
2211                vma->vm_pgoff -= grow;
2212                anon_vma_interval_tree_post_update_vma(vma);
2213                vma_gap_update(vma);
2214                spin_unlock(&vma->vm_mm->page_table_lock);
2215
2216                perf_event_mmap(vma);
2217            }
2218        }
2219    }
2220    vma_unlock_anon_vma(vma);
2221    khugepaged_enter_vma_merge(vma);
2222    validate_mm(vma->vm_mm);
2223    return error;
2224}
2225
2226/*
2227 * Note how expand_stack() refuses to expand the stack all the way to
2228 * abut the next virtual mapping, *unless* that mapping itself is also
2229 * a stack mapping. We want to leave room for a guard page, after all
2230 * (the guard page itself is not added here, that is done by the
2231 * actual page faulting logic)
2232 *
2233 * This matches the behavior of the guard page logic (see mm/memory.c:
2234 * check_stack_guard_page()), which only allows the guard page to be
2235 * removed under these circumstances.
2236 */
2237#ifdef CONFIG_STACK_GROWSUP
2238int expand_stack(struct vm_area_struct *vma, unsigned long address)
2239{
2240    struct vm_area_struct *next;
2241
2242    address &= PAGE_MASK;
2243    next = vma->vm_next;
2244    if (next && next->vm_start == address + PAGE_SIZE) {
2245        if (!(next->vm_flags & VM_GROWSUP))
2246            return -ENOMEM;
2247    }
2248    return expand_upwards(vma, address);
2249}
2250
2251struct vm_area_struct *
2252find_extend_vma(struct mm_struct *mm, unsigned long addr)
2253{
2254    struct vm_area_struct *vma, *prev;
2255
2256    addr &= PAGE_MASK;
2257    vma = find_vma_prev(mm, addr, &prev);
2258    if (vma && (vma->vm_start <= addr))
2259        return vma;
2260    if (!prev || expand_stack(prev, addr))
2261        return NULL;
2262    if (prev->vm_flags & VM_LOCKED)
2263        __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2264    return prev;
2265}
2266#else
2267int expand_stack(struct vm_area_struct *vma, unsigned long address)
2268{
2269    struct vm_area_struct *prev;
2270
2271    address &= PAGE_MASK;
2272    prev = vma->vm_prev;
2273    if (prev && prev->vm_end == address) {
2274        if (!(prev->vm_flags & VM_GROWSDOWN))
2275            return -ENOMEM;
2276    }
2277    return expand_downwards(vma, address);
2278}
2279
2280struct vm_area_struct *
2281find_extend_vma(struct mm_struct * mm, unsigned long addr)
2282{
2283    struct vm_area_struct * vma;
2284    unsigned long start;
2285
2286    addr &= PAGE_MASK;
2287    vma = find_vma(mm,addr);
2288    if (!vma)
2289        return NULL;
2290    if (vma->vm_start <= addr)
2291        return vma;
2292    if (!(vma->vm_flags & VM_GROWSDOWN))
2293        return NULL;
2294    start = vma->vm_start;
2295    if (expand_stack(vma, addr))
2296        return NULL;
2297    if (vma->vm_flags & VM_LOCKED)
2298        __mlock_vma_pages_range(vma, addr, start, NULL);
2299    return vma;
2300}
2301#endif
2302
2303/*
2304 * Ok - we have the memory areas we should free on the vma list,
2305 * so release them, and do the vma updates.
2306 *
2307 * Called with the mm semaphore held.
2308 */
2309static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2310{
2311    unsigned long nr_accounted = 0;
2312
2313    /* Update high watermark before we lower total_vm */
2314    update_hiwater_vm(mm);
2315    do {
2316        long nrpages = vma_pages(vma);
2317
2318        if (vma->vm_flags & VM_ACCOUNT)
2319            nr_accounted += nrpages;
2320        vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2321        vma = remove_vma(vma);
2322    } while (vma);
2323    vm_unacct_memory(nr_accounted);
2324    validate_mm(mm);
2325}
2326
2327/*
2328 * Get rid of page table information in the indicated region.
2329 *
2330 * Called with the mm semaphore held.
2331 */
2332static void unmap_region(struct mm_struct *mm,
2333        struct vm_area_struct *vma, struct vm_area_struct *prev,
2334        unsigned long start, unsigned long end)
2335{
2336    struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2337    struct mmu_gather tlb;
2338
2339    lru_add_drain();
2340    tlb_gather_mmu(&tlb, mm, start, end);
2341    update_hiwater_rss(mm);
2342    unmap_vmas(&tlb, vma, start, end);
2343    free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2344                 next ? next->vm_start : USER_PGTABLES_CEILING);
2345    tlb_finish_mmu(&tlb, start, end);
2346}
2347
2348/*
2349 * Create a list of vma's touched by the unmap, removing them from the mm's
2350 * vma list as we go..
2351 */
2352static void
2353detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2354    struct vm_area_struct *prev, unsigned long end)
2355{
2356    struct vm_area_struct **insertion_point;
2357    struct vm_area_struct *tail_vma = NULL;
2358
2359    insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2360    vma->vm_prev = NULL;
2361    do {
2362        vma_rb_erase(vma, &mm->mm_rb);
2363        mm->map_count--;
2364        tail_vma = vma;
2365        vma = vma->vm_next;
2366    } while (vma && vma->vm_start < end);
2367    *insertion_point = vma;
2368    if (vma) {
2369        vma->vm_prev = prev;
2370        vma_gap_update(vma);
2371    } else
2372        mm->highest_vm_end = prev ? prev->vm_end : 0;
2373    tail_vma->vm_next = NULL;
2374    mm->mmap_cache = NULL; /* Kill the cache. */
2375}
2376
2377/*
2378 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2379 * munmap path where it doesn't make sense to fail.
2380 */
2381static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2382          unsigned long addr, int new_below)
2383{
2384    struct vm_area_struct *new;
2385    int err = -ENOMEM;
2386
2387    if (is_vm_hugetlb_page(vma) && (addr &
2388                    ~(huge_page_mask(hstate_vma(vma)))))
2389        return -EINVAL;
2390
2391    new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2392    if (!new)
2393        goto out_err;
2394
2395    /* most fields are the same, copy all, and then fixup */
2396    *new = *vma;
2397
2398    INIT_LIST_HEAD(&new->anon_vma_chain);
2399
2400    if (new_below)
2401        new->vm_end = addr;
2402    else {
2403        new->vm_start = addr;
2404        new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2405    }
2406
2407    err = vma_dup_policy(vma, new);
2408    if (err)
2409        goto out_free_vma;
2410
2411    if (anon_vma_clone(new, vma))
2412        goto out_free_mpol;
2413
2414    if (new->vm_file)
2415        get_file(new->vm_file);
2416
2417    if (new->vm_ops && new->vm_ops->open)
2418        new->vm_ops->open(new);
2419
2420    if (new_below)
2421        err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2422            ((addr - new->vm_start) >> PAGE_SHIFT), new);
2423    else
2424        err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2425
2426    /* Success. */
2427    if (!err)
2428        return 0;
2429
2430    /* Clean everything up if vma_adjust failed. */
2431    if (new->vm_ops && new->vm_ops->close)
2432        new->vm_ops->close(new);
2433    if (new->vm_file)
2434        fput(new->vm_file);
2435    unlink_anon_vmas(new);
2436 out_free_mpol:
2437    mpol_put(vma_policy(new));
2438 out_free_vma:
2439    kmem_cache_free(vm_area_cachep, new);
2440 out_err:
2441    return err;
2442}
2443
2444/*
2445 * Split a vma into two pieces at address 'addr', a new vma is allocated
2446 * either for the first part or the tail.
2447 */
2448int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2449          unsigned long addr, int new_below)
2450{
2451    if (mm->map_count >= sysctl_max_map_count)
2452        return -ENOMEM;
2453
2454    return __split_vma(mm, vma, addr, new_below);
2455}
2456
2457/* Munmap is split into 2 main parts -- this part which finds
2458 * what needs doing, and the areas themselves, which do the
2459 * work. This now handles partial unmappings.
2460 * Jeremy Fitzhardinge <jeremy@goop.org>
2461 */
2462int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2463{
2464    unsigned long end;
2465    struct vm_area_struct *vma, *prev, *last;
2466
2467    if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2468        return -EINVAL;
2469
2470    if ((len = PAGE_ALIGN(len)) == 0)
2471        return -EINVAL;
2472
2473    /* Find the first overlapping VMA */
2474    vma = find_vma(mm, start);
2475    if (!vma)
2476        return 0;
2477    prev = vma->vm_prev;
2478    /* we have start < vma->vm_end */
2479
2480    /* if it doesn't overlap, we have nothing.. */
2481    end = start + len;
2482    if (vma->vm_start >= end)
2483        return 0;
2484
2485    /*
2486     * If we need to split any vma, do it now to save pain later.
2487     *
2488     * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2489     * unmapped vm_area_struct will remain in use: so lower split_vma
2490     * places tmp vma above, and higher split_vma places tmp vma below.
2491     */
2492    if (start > vma->vm_start) {
2493        int error;
2494
2495        /*
2496         * Make sure that map_count on return from munmap() will
2497         * not exceed its limit; but let map_count go just above
2498         * its limit temporarily, to help free resources as expected.
2499         */
2500        if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2501            return -ENOMEM;
2502
2503        error = __split_vma(mm, vma, start, 0);
2504        if (error)
2505            return error;
2506        prev = vma;
2507    }
2508
2509    /* Does it split the last one? */
2510    last = find_vma(mm, end);
2511    if (last && end > last->vm_start) {
2512        int error = __split_vma(mm, last, end, 1);
2513        if (error)
2514            return error;
2515    }
2516    vma = prev? prev->vm_next: mm->mmap;
2517
2518    /*
2519     * unlock any mlock()ed ranges before detaching vmas
2520     */
2521    if (mm->locked_vm) {
2522        struct vm_area_struct *tmp = vma;
2523        while (tmp && tmp->vm_start < end) {
2524            if (tmp->vm_flags & VM_LOCKED) {
2525                mm->locked_vm -= vma_pages(tmp);
2526                munlock_vma_pages_all(tmp);
2527            }
2528            tmp = tmp->vm_next;
2529        }
2530    }
2531
2532    /*
2533     * Remove the vma's, and unmap the actual pages
2534     */
2535    detach_vmas_to_be_unmapped(mm, vma, prev, end);
2536    unmap_region(mm, vma, prev, start, end);
2537
2538    /* Fix up all other VM information */
2539    remove_vma_list(mm, vma);
2540
2541    return 0;
2542}
2543
2544int vm_munmap(unsigned long start, size_t len)
2545{
2546    int ret;
2547    struct mm_struct *mm = current->mm;
2548
2549    down_write(&mm->mmap_sem);
2550    ret = do_munmap(mm, start, len);
2551    up_write(&mm->mmap_sem);
2552    return ret;
2553}
2554EXPORT_SYMBOL(vm_munmap);
2555
2556SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2557{
2558    profile_munmap(addr);
2559    return vm_munmap(addr, len);
2560}
2561
2562static inline void verify_mm_writelocked(struct mm_struct *mm)
2563{
2564#ifdef CONFIG_DEBUG_VM
2565    if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2566        WARN_ON(1);
2567        up_read(&mm->mmap_sem);
2568    }
2569#endif
2570}
2571
2572/*
2573 * this is really a simplified "do_mmap". it only handles
2574 * anonymous maps. eventually we may be able to do some
2575 * brk-specific accounting here.
2576 */
2577static unsigned long do_brk(unsigned long addr, unsigned long len)
2578{
2579    struct mm_struct * mm = current->mm;
2580    struct vm_area_struct * vma, * prev;
2581    unsigned long flags;
2582    struct rb_node ** rb_link, * rb_parent;
2583    pgoff_t pgoff = addr >> PAGE_SHIFT;
2584    int error;
2585
2586    len = PAGE_ALIGN(len);
2587    if (!len)
2588        return addr;
2589
2590    flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2591
2592    error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2593    if (error & ~PAGE_MASK)
2594        return error;
2595
2596    /*
2597     * mlock MCL_FUTURE?
2598     */
2599    if (mm->def_flags & VM_LOCKED) {
2600        unsigned long locked, lock_limit;
2601        locked = len >> PAGE_SHIFT;
2602        locked += mm->locked_vm;
2603        lock_limit = rlimit(RLIMIT_MEMLOCK);
2604        lock_limit >>= PAGE_SHIFT;
2605        if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2606            return -EAGAIN;
2607    }
2608
2609    /*
2610     * mm->mmap_sem is required to protect against another thread
2611     * changing the mappings in case we sleep.
2612     */
2613    verify_mm_writelocked(mm);
2614
2615    /*
2616     * Clear old maps. this also does some error checking for us
2617     */
2618 munmap_back:
2619    if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2620        if (do_munmap(mm, addr, len))
2621            return -ENOMEM;
2622        goto munmap_back;
2623    }
2624
2625    /* Check against address space limits *after* clearing old maps... */
2626    if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2627        return -ENOMEM;
2628
2629    if (mm->map_count > sysctl_max_map_count)
2630        return -ENOMEM;
2631
2632    if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2633        return -ENOMEM;
2634
2635    /* Can we just expand an old private anonymous mapping? */
2636    vma = vma_merge(mm, prev, addr, addr + len, flags,
2637                    NULL, NULL, pgoff, NULL);
2638    if (vma)
2639        goto out;
2640
2641    /*
2642     * create a vma struct for an anonymous mapping
2643     */
2644    vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2645    if (!vma) {
2646        vm_unacct_memory(len >> PAGE_SHIFT);
2647        return -ENOMEM;
2648    }
2649
2650    INIT_LIST_HEAD(&vma->anon_vma_chain);
2651    vma->vm_mm = mm;
2652    vma->vm_start = addr;
2653    vma->vm_end = addr + len;
2654    vma->vm_pgoff = pgoff;
2655    vma->vm_flags = flags;
2656    vma->vm_page_prot = vm_get_page_prot(flags);
2657    vma_link(mm, vma, prev, rb_link, rb_parent);
2658out:
2659    perf_event_mmap(vma);
2660    mm->total_vm += len >> PAGE_SHIFT;
2661    if (flags & VM_LOCKED)
2662        mm->locked_vm += (len >> PAGE_SHIFT);
2663    vma->vm_flags |= VM_SOFTDIRTY;
2664    return addr;
2665}
2666
2667unsigned long vm_brk(unsigned long addr, unsigned long len)
2668{
2669    struct mm_struct *mm = current->mm;
2670    unsigned long ret;
2671    bool populate;
2672
2673    down_write(&mm->mmap_sem);
2674    ret = do_brk(addr, len);
2675    populate = ((mm->def_flags & VM_LOCKED) != 0);
2676    up_write(&mm->mmap_sem);
2677    if (populate)
2678        mm_populate(addr, len);
2679    return ret;
2680}
2681EXPORT_SYMBOL(vm_brk);
2682
2683/* Release all mmaps. */
2684void exit_mmap(struct mm_struct *mm)
2685{
2686    struct mmu_gather tlb;
2687    struct vm_area_struct *vma;
2688    unsigned long nr_accounted = 0;
2689
2690    /* mm's last user has gone, and its about to be pulled down */
2691    mmu_notifier_release(mm);
2692
2693    if (mm->locked_vm) {
2694        vma = mm->mmap;
2695        while (vma) {
2696            if (vma->vm_flags & VM_LOCKED)
2697                munlock_vma_pages_all(vma);
2698            vma = vma->vm_next;
2699        }
2700    }
2701
2702    arch_exit_mmap(mm);
2703
2704    vma = mm->mmap;
2705    if (!vma) /* Can happen if dup_mmap() received an OOM */
2706        return;
2707
2708    lru_add_drain();
2709    flush_cache_mm(mm);
2710    tlb_gather_mmu(&tlb, mm, 0, -1);
2711    /* update_hiwater_rss(mm) here? but nobody should be looking */
2712    /* Use -1 here to ensure all VMAs in the mm are unmapped */
2713    unmap_vmas(&tlb, vma, 0, -1);
2714
2715    free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2716    tlb_finish_mmu(&tlb, 0, -1);
2717
2718    /*
2719     * Walk the list again, actually closing and freeing it,
2720     * with preemption enabled, without holding any MM locks.
2721     */
2722    while (vma) {
2723        if (vma->vm_flags & VM_ACCOUNT)
2724            nr_accounted += vma_pages(vma);
2725        vma = remove_vma(vma);
2726    }
2727    vm_unacct_memory(nr_accounted);
2728
2729    WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2730}
2731
2732/* Insert vm structure into process list sorted by address
2733 * and into the inode's i_mmap tree. If vm_file is non-NULL
2734 * then i_mmap_mutex is taken here.
2735 */
2736int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2737{
2738    struct vm_area_struct *prev;
2739    struct rb_node **rb_link, *rb_parent;
2740
2741    /*
2742     * The vm_pgoff of a purely anonymous vma should be irrelevant
2743     * until its first write fault, when page's anon_vma and index
2744     * are set. But now set the vm_pgoff it will almost certainly
2745     * end up with (unless mremap moves it elsewhere before that
2746     * first wfault), so /proc/pid/maps tells a consistent story.
2747     *
2748     * By setting it to reflect the virtual start address of the
2749     * vma, merges and splits can happen in a seamless way, just
2750     * using the existing file pgoff checks and manipulations.
2751     * Similarly in do_mmap_pgoff and in do_brk.
2752     */
2753    if (!vma->vm_file) {
2754        BUG_ON(vma->anon_vma);
2755        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2756    }
2757    if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2758               &prev, &rb_link, &rb_parent))
2759        return -ENOMEM;
2760    if ((vma->vm_flags & VM_ACCOUNT) &&
2761         security_vm_enough_memory_mm(mm, vma_pages(vma)))
2762        return -ENOMEM;
2763
2764    vma_link(mm, vma, prev, rb_link, rb_parent);
2765    return 0;
2766}
2767
2768/*
2769 * Copy the vma structure to a new location in the same mm,
2770 * prior to moving page table entries, to effect an mremap move.
2771 */
2772struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2773    unsigned long addr, unsigned long len, pgoff_t pgoff,
2774    bool *need_rmap_locks)
2775{
2776    struct vm_area_struct *vma = *vmap;
2777    unsigned long vma_start = vma->vm_start;
2778    struct mm_struct *mm = vma->vm_mm;
2779    struct vm_area_struct *new_vma, *prev;
2780    struct rb_node **rb_link, *rb_parent;
2781    bool faulted_in_anon_vma = true;
2782
2783    /*
2784     * If anonymous vma has not yet been faulted, update new pgoff
2785     * to match new location, to increase its chance of merging.
2786     */
2787    if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2788        pgoff = addr >> PAGE_SHIFT;
2789        faulted_in_anon_vma = false;
2790    }
2791
2792    if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2793        return NULL; /* should never get here */
2794    new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2795            vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2796    if (new_vma) {
2797        /*
2798         * Source vma may have been merged into new_vma
2799         */
2800        if (unlikely(vma_start >= new_vma->vm_start &&
2801                 vma_start < new_vma->vm_end)) {
2802            /*
2803             * The only way we can get a vma_merge with
2804             * self during an mremap is if the vma hasn't
2805             * been faulted in yet and we were allowed to
2806             * reset the dst vma->vm_pgoff to the
2807             * destination address of the mremap to allow
2808             * the merge to happen. mremap must change the
2809             * vm_pgoff linearity between src and dst vmas
2810             * (in turn preventing a vma_merge) to be
2811             * safe. It is only safe to keep the vm_pgoff
2812             * linear if there are no pages mapped yet.
2813             */
2814            VM_BUG_ON(faulted_in_anon_vma);
2815            *vmap = vma = new_vma;
2816        }
2817        *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2818    } else {
2819        new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2820        if (new_vma) {
2821            *new_vma = *vma;
2822            new_vma->vm_start = addr;
2823            new_vma->vm_end = addr + len;
2824            new_vma->vm_pgoff = pgoff;
2825            if (vma_dup_policy(vma, new_vma))
2826                goto out_free_vma;
2827            INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2828            if (anon_vma_clone(new_vma, vma))
2829                goto out_free_mempol;
2830            if (new_vma->vm_file)
2831                get_file(new_vma->vm_file);
2832            if (new_vma->vm_ops && new_vma->vm_ops->open)
2833                new_vma->vm_ops->open(new_vma);
2834            vma_link(mm, new_vma, prev, rb_link, rb_parent);
2835            *need_rmap_locks = false;
2836        }
2837    }
2838    return new_vma;
2839
2840 out_free_mempol:
2841    mpol_put(vma_policy(new_vma));
2842 out_free_vma:
2843    kmem_cache_free(vm_area_cachep, new_vma);
2844    return NULL;
2845}
2846
2847/*
2848 * Return true if the calling process may expand its vm space by the passed
2849 * number of pages
2850 */
2851int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2852{
2853    unsigned long cur = mm->total_vm; /* pages */
2854    unsigned long lim;
2855
2856    lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2857
2858    if (cur + npages > lim)
2859        return 0;
2860    return 1;
2861}
2862
2863
2864static int special_mapping_fault(struct vm_area_struct *vma,
2865                struct vm_fault *vmf)
2866{
2867    pgoff_t pgoff;
2868    struct page **pages;
2869
2870    /*
2871     * special mappings have no vm_file, and in that case, the mm
2872     * uses vm_pgoff internally. So we have to subtract it from here.
2873     * We are allowed to do this because we are the mm; do not copy
2874     * this code into drivers!
2875     */
2876    pgoff = vmf->pgoff - vma->vm_pgoff;
2877
2878    for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2879        pgoff--;
2880
2881    if (*pages) {
2882        struct page *page = *pages;
2883        get_page(page);
2884        vmf->page = page;
2885        return 0;
2886    }
2887
2888    return VM_FAULT_SIGBUS;
2889}
2890
2891/*
2892 * Having a close hook prevents vma merging regardless of flags.
2893 */
2894static void special_mapping_close(struct vm_area_struct *vma)
2895{
2896}
2897
2898static const struct vm_operations_struct special_mapping_vmops = {
2899    .close = special_mapping_close,
2900    .fault = special_mapping_fault,
2901};
2902
2903/*
2904 * Called with mm->mmap_sem held for writing.
2905 * Insert a new vma covering the given region, with the given flags.
2906 * Its pages are supplied by the given array of struct page *.
2907 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2908 * The region past the last page supplied will always produce SIGBUS.
2909 * The array pointer and the pages it points to are assumed to stay alive
2910 * for as long as this mapping might exist.
2911 */
2912int install_special_mapping(struct mm_struct *mm,
2913                unsigned long addr, unsigned long len,
2914                unsigned long vm_flags, struct page **pages)
2915{
2916    int ret;
2917    struct vm_area_struct *vma;
2918
2919    vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2920    if (unlikely(vma == NULL))
2921        return -ENOMEM;
2922
2923    INIT_LIST_HEAD(&vma->anon_vma_chain);
2924    vma->vm_mm = mm;
2925    vma->vm_start = addr;
2926    vma->vm_end = addr + len;
2927
2928    vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2929    vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2930
2931    vma->vm_ops = &special_mapping_vmops;
2932    vma->vm_private_data = pages;
2933
2934    ret = insert_vm_struct(mm, vma);
2935    if (ret)
2936        goto out;
2937
2938    mm->total_vm += len >> PAGE_SHIFT;
2939
2940    perf_event_mmap(vma);
2941
2942    return 0;
2943
2944out:
2945    kmem_cache_free(vm_area_cachep, vma);
2946    return ret;
2947}
2948
2949static DEFINE_MUTEX(mm_all_locks_mutex);
2950
2951static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2952{
2953    if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2954        /*
2955         * The LSB of head.next can't change from under us
2956         * because we hold the mm_all_locks_mutex.
2957         */
2958        down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2959        /*
2960         * We can safely modify head.next after taking the
2961         * anon_vma->root->rwsem. If some other vma in this mm shares
2962         * the same anon_vma we won't take it again.
2963         *
2964         * No need of atomic instructions here, head.next
2965         * can't change from under us thanks to the
2966         * anon_vma->root->rwsem.
2967         */
2968        if (__test_and_set_bit(0, (unsigned long *)
2969                       &anon_vma->root->rb_root.rb_node))
2970            BUG();
2971    }
2972}
2973
2974static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2975{
2976    if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2977        /*
2978         * AS_MM_ALL_LOCKS can't change from under us because
2979         * we hold the mm_all_locks_mutex.
2980         *
2981         * Operations on ->flags have to be atomic because
2982         * even if AS_MM_ALL_LOCKS is stable thanks to the
2983         * mm_all_locks_mutex, there may be other cpus
2984         * changing other bitflags in parallel to us.
2985         */
2986        if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2987            BUG();
2988        mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2989    }
2990}
2991
2992/*
2993 * This operation locks against the VM for all pte/vma/mm related
2994 * operations that could ever happen on a certain mm. This includes
2995 * vmtruncate, try_to_unmap, and all page faults.
2996 *
2997 * The caller must take the mmap_sem in write mode before calling
2998 * mm_take_all_locks(). The caller isn't allowed to release the
2999 * mmap_sem until mm_drop_all_locks() returns.
3000 *
3001 * mmap_sem in write mode is required in order to block all operations
3002 * that could modify pagetables and free pages without need of
3003 * altering the vma layout (for example populate_range() with
3004 * nonlinear vmas). It's also needed in write mode to avoid new
3005 * anon_vmas to be associated with existing vmas.
3006 *
3007 * A single task can't take more than one mm_take_all_locks() in a row
3008 * or it would deadlock.
3009 *
3010 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3011 * mapping->flags avoid to take the same lock twice, if more than one
3012 * vma in this mm is backed by the same anon_vma or address_space.
3013 *
3014 * We can take all the locks in random order because the VM code
3015 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3016 * takes more than one of them in a row. Secondly we're protected
3017 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3018 *
3019 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3020 * that may have to take thousand of locks.
3021 *
3022 * mm_take_all_locks() can fail if it's interrupted by signals.
3023 */
3024int mm_take_all_locks(struct mm_struct *mm)
3025{
3026    struct vm_area_struct *vma;
3027    struct anon_vma_chain *avc;
3028
3029    BUG_ON(down_read_trylock(&mm->mmap_sem));
3030
3031    mutex_lock(&mm_all_locks_mutex);
3032
3033    for (vma = mm->mmap; vma; vma = vma->vm_next) {
3034        if (signal_pending(current))
3035            goto out_unlock;
3036        if (vma->vm_file && vma->vm_file->f_mapping)
3037            vm_lock_mapping(mm, vma->vm_file->f_mapping);
3038    }
3039
3040    for (vma = mm->mmap; vma; vma = vma->vm_next) {
3041        if (signal_pending(current))
3042            goto out_unlock;
3043        if (vma->anon_vma)
3044            list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3045                vm_lock_anon_vma(mm, avc->anon_vma);
3046    }
3047
3048    return 0;
3049
3050out_unlock:
3051    mm_drop_all_locks(mm);
3052    return -EINTR;
3053}
3054
3055static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3056{
3057    if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3058        /*
3059         * The LSB of head.next can't change to 0 from under
3060         * us because we hold the mm_all_locks_mutex.
3061         *
3062         * We must however clear the bitflag before unlocking
3063         * the vma so the users using the anon_vma->rb_root will
3064         * never see our bitflag.
3065         *
3066         * No need of atomic instructions here, head.next
3067         * can't change from under us until we release the
3068         * anon_vma->root->rwsem.
3069         */
3070        if (!__test_and_clear_bit(0, (unsigned long *)
3071                      &anon_vma->root->rb_root.rb_node))
3072            BUG();
3073        anon_vma_unlock_write(anon_vma);
3074    }
3075}
3076
3077static void vm_unlock_mapping(struct address_space *mapping)
3078{
3079    if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3080        /*
3081         * AS_MM_ALL_LOCKS can't change to 0 from under us
3082         * because we hold the mm_all_locks_mutex.
3083         */
3084        mutex_unlock(&mapping->i_mmap_mutex);
3085        if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3086                    &mapping->flags))
3087            BUG();
3088    }
3089}
3090
3091/*
3092 * The mmap_sem cannot be released by the caller until
3093 * mm_drop_all_locks() returns.
3094 */
3095void mm_drop_all_locks(struct mm_struct *mm)
3096{
3097    struct vm_area_struct *vma;
3098    struct anon_vma_chain *avc;
3099
3100    BUG_ON(down_read_trylock(&mm->mmap_sem));
3101    BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3102
3103    for (vma = mm->mmap; vma; vma = vma->vm_next) {
3104        if (vma->anon_vma)
3105            list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3106                vm_unlock_anon_vma(avc->anon_vma);
3107        if (vma->vm_file && vma->vm_file->f_mapping)
3108            vm_unlock_mapping(vma->vm_file->f_mapping);
3109    }
3110
3111    mutex_unlock(&mm_all_locks_mutex);
3112}
3113
3114/*
3115 * initialise the VMA slab
3116 */
3117void __init mmap_init(void)
3118{
3119    int ret;
3120
3121    ret = percpu_counter_init(&vm_committed_as, 0);
3122    VM_BUG_ON(ret);
3123}
3124
3125/*
3126 * Initialise sysctl_user_reserve_kbytes.
3127 *
3128 * This is intended to prevent a user from starting a single memory hogging
3129 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3130 * mode.
3131 *
3132 * The default value is min(3% of free memory, 128MB)
3133 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3134 */
3135static int init_user_reserve(void)
3136{
3137    unsigned long free_kbytes;
3138
3139    free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3140
3141    sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3142    return 0;
3143}
3144module_init(init_user_reserve)
3145
3146/*
3147 * Initialise sysctl_admin_reserve_kbytes.
3148 *
3149 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3150 * to log in and kill a memory hogging process.
3151 *
3152 * Systems with more than 256MB will reserve 8MB, enough to recover
3153 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3154 * only reserve 3% of free pages by default.
3155 */
3156static int init_admin_reserve(void)
3157{
3158    unsigned long free_kbytes;
3159
3160    free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3161
3162    sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3163    return 0;
3164}
3165module_init(init_admin_reserve)
3166
3167/*
3168 * Reinititalise user and admin reserves if memory is added or removed.
3169 *
3170 * The default user reserve max is 128MB, and the default max for the
3171 * admin reserve is 8MB. These are usually, but not always, enough to
3172 * enable recovery from a memory hogging process using login/sshd, a shell,
3173 * and tools like top. It may make sense to increase or even disable the
3174 * reserve depending on the existence of swap or variations in the recovery
3175 * tools. So, the admin may have changed them.
3176 *
3177 * If memory is added and the reserves have been eliminated or increased above
3178 * the default max, then we'll trust the admin.
3179 *
3180 * If memory is removed and there isn't enough free memory, then we
3181 * need to reset the reserves.
3182 *
3183 * Otherwise keep the reserve set by the admin.
3184 */
3185static int reserve_mem_notifier(struct notifier_block *nb,
3186                 unsigned long action, void *data)
3187{
3188    unsigned long tmp, free_kbytes;
3189
3190    switch (action) {
3191    case MEM_ONLINE:
3192        /* Default max is 128MB. Leave alone if modified by operator. */
3193        tmp = sysctl_user_reserve_kbytes;
3194        if (0 < tmp && tmp < (1UL << 17))
3195            init_user_reserve();
3196
3197        /* Default max is 8MB. Leave alone if modified by operator. */
3198        tmp = sysctl_admin_reserve_kbytes;
3199        if (0 < tmp && tmp < (1UL << 13))
3200            init_admin_reserve();
3201
3202        break;
3203    case MEM_OFFLINE:
3204        free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3205
3206        if (sysctl_user_reserve_kbytes > free_kbytes) {
3207            init_user_reserve();
3208            pr_info("vm.user_reserve_kbytes reset to %lu\n",
3209                sysctl_user_reserve_kbytes);
3210        }
3211
3212        if (sysctl_admin_reserve_kbytes > free_kbytes) {
3213            init_admin_reserve();
3214            pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3215                sysctl_admin_reserve_kbytes);
3216        }
3217        break;
3218    default:
3219        break;
3220    }
3221    return NOTIFY_OK;
3222}
3223
3224static struct notifier_block reserve_mem_nb = {
3225    .notifier_call = reserve_mem_notifier,
3226};
3227
3228static int __meminit init_reserve_notifier(void)
3229{
3230    if (register_hotmemory_notifier(&reserve_mem_nb))
3231        printk("Failed registering memory add/remove notifier for admin reserve");
3232
3233    return 0;
3234}
3235module_init(init_reserve_notifier)
3236

Archive Download this file



interactive