Root/
1 | /* |
2 | * linux/mm/nommu.c |
3 | * |
4 | * Replacement code for mm functions to support CPU's that don't |
5 | * have any form of memory management unit (thus no virtual memory). |
6 | * |
7 | * See Documentation/nommu-mmap.txt |
8 | * |
9 | * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com> |
10 | * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com> |
11 | * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org> |
12 | * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com> |
13 | * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org> |
14 | */ |
15 | |
16 | #include <linux/export.h> |
17 | #include <linux/mm.h> |
18 | #include <linux/mman.h> |
19 | #include <linux/swap.h> |
20 | #include <linux/file.h> |
21 | #include <linux/highmem.h> |
22 | #include <linux/pagemap.h> |
23 | #include <linux/slab.h> |
24 | #include <linux/vmalloc.h> |
25 | #include <linux/blkdev.h> |
26 | #include <linux/backing-dev.h> |
27 | #include <linux/mount.h> |
28 | #include <linux/personality.h> |
29 | #include <linux/security.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/audit.h> |
32 | #include <linux/sched/sysctl.h> |
33 | |
34 | #include <asm/uaccess.h> |
35 | #include <asm/tlb.h> |
36 | #include <asm/tlbflush.h> |
37 | #include <asm/mmu_context.h> |
38 | #include "internal.h" |
39 | |
40 | #if 0 |
41 | #define kenter(FMT, ...) \ |
42 | printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) |
43 | #define kleave(FMT, ...) \ |
44 | printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) |
45 | #define kdebug(FMT, ...) \ |
46 | printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__) |
47 | #else |
48 | #define kenter(FMT, ...) \ |
49 | no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) |
50 | #define kleave(FMT, ...) \ |
51 | no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__) |
52 | #define kdebug(FMT, ...) \ |
53 | no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__) |
54 | #endif |
55 | |
56 | void *high_memory; |
57 | struct page *mem_map; |
58 | unsigned long max_mapnr; |
59 | unsigned long highest_memmap_pfn; |
60 | struct percpu_counter vm_committed_as; |
61 | int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */ |
62 | int sysctl_overcommit_ratio = 50; /* default is 50% */ |
63 | int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT; |
64 | int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS; |
65 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ |
66 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ |
67 | int heap_stack_gap = 0; |
68 | |
69 | atomic_long_t mmap_pages_allocated; |
70 | |
71 | /* |
72 | * The global memory commitment made in the system can be a metric |
73 | * that can be used to drive ballooning decisions when Linux is hosted |
74 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically |
75 | * balancing memory across competing virtual machines that are hosted. |
76 | * Several metrics drive this policy engine including the guest reported |
77 | * memory commitment. |
78 | */ |
79 | unsigned long vm_memory_committed(void) |
80 | { |
81 | return percpu_counter_read_positive(&vm_committed_as); |
82 | } |
83 | |
84 | EXPORT_SYMBOL_GPL(vm_memory_committed); |
85 | |
86 | EXPORT_SYMBOL(mem_map); |
87 | |
88 | /* list of mapped, potentially shareable regions */ |
89 | static struct kmem_cache *vm_region_jar; |
90 | struct rb_root nommu_region_tree = RB_ROOT; |
91 | DECLARE_RWSEM(nommu_region_sem); |
92 | |
93 | const struct vm_operations_struct generic_file_vm_ops = { |
94 | }; |
95 | |
96 | /* |
97 | * Return the total memory allocated for this pointer, not |
98 | * just what the caller asked for. |
99 | * |
100 | * Doesn't have to be accurate, i.e. may have races. |
101 | */ |
102 | unsigned int kobjsize(const void *objp) |
103 | { |
104 | struct page *page; |
105 | |
106 | /* |
107 | * If the object we have should not have ksize performed on it, |
108 | * return size of 0 |
109 | */ |
110 | if (!objp || !virt_addr_valid(objp)) |
111 | return 0; |
112 | |
113 | page = virt_to_head_page(objp); |
114 | |
115 | /* |
116 | * If the allocator sets PageSlab, we know the pointer came from |
117 | * kmalloc(). |
118 | */ |
119 | if (PageSlab(page)) |
120 | return ksize(objp); |
121 | |
122 | /* |
123 | * If it's not a compound page, see if we have a matching VMA |
124 | * region. This test is intentionally done in reverse order, |
125 | * so if there's no VMA, we still fall through and hand back |
126 | * PAGE_SIZE for 0-order pages. |
127 | */ |
128 | if (!PageCompound(page)) { |
129 | struct vm_area_struct *vma; |
130 | |
131 | vma = find_vma(current->mm, (unsigned long)objp); |
132 | if (vma) |
133 | return vma->vm_end - vma->vm_start; |
134 | } |
135 | |
136 | /* |
137 | * The ksize() function is only guaranteed to work for pointers |
138 | * returned by kmalloc(). So handle arbitrary pointers here. |
139 | */ |
140 | return PAGE_SIZE << compound_order(page); |
141 | } |
142 | |
143 | long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
144 | unsigned long start, unsigned long nr_pages, |
145 | unsigned int foll_flags, struct page **pages, |
146 | struct vm_area_struct **vmas, int *nonblocking) |
147 | { |
148 | struct vm_area_struct *vma; |
149 | unsigned long vm_flags; |
150 | int i; |
151 | |
152 | /* calculate required read or write permissions. |
153 | * If FOLL_FORCE is set, we only require the "MAY" flags. |
154 | */ |
155 | vm_flags = (foll_flags & FOLL_WRITE) ? |
156 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
157 | vm_flags &= (foll_flags & FOLL_FORCE) ? |
158 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); |
159 | |
160 | for (i = 0; i < nr_pages; i++) { |
161 | vma = find_vma(mm, start); |
162 | if (!vma) |
163 | goto finish_or_fault; |
164 | |
165 | /* protect what we can, including chardevs */ |
166 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || |
167 | !(vm_flags & vma->vm_flags)) |
168 | goto finish_or_fault; |
169 | |
170 | if (pages) { |
171 | pages[i] = virt_to_page(start); |
172 | if (pages[i]) |
173 | page_cache_get(pages[i]); |
174 | } |
175 | if (vmas) |
176 | vmas[i] = vma; |
177 | start = (start + PAGE_SIZE) & PAGE_MASK; |
178 | } |
179 | |
180 | return i; |
181 | |
182 | finish_or_fault: |
183 | return i ? : -EFAULT; |
184 | } |
185 | |
186 | /* |
187 | * get a list of pages in an address range belonging to the specified process |
188 | * and indicate the VMA that covers each page |
189 | * - this is potentially dodgy as we may end incrementing the page count of a |
190 | * slab page or a secondary page from a compound page |
191 | * - don't permit access to VMAs that don't support it, such as I/O mappings |
192 | */ |
193 | long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
194 | unsigned long start, unsigned long nr_pages, |
195 | int write, int force, struct page **pages, |
196 | struct vm_area_struct **vmas) |
197 | { |
198 | int flags = 0; |
199 | |
200 | if (write) |
201 | flags |= FOLL_WRITE; |
202 | if (force) |
203 | flags |= FOLL_FORCE; |
204 | |
205 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, |
206 | NULL); |
207 | } |
208 | EXPORT_SYMBOL(get_user_pages); |
209 | |
210 | /** |
211 | * follow_pfn - look up PFN at a user virtual address |
212 | * @vma: memory mapping |
213 | * @address: user virtual address |
214 | * @pfn: location to store found PFN |
215 | * |
216 | * Only IO mappings and raw PFN mappings are allowed. |
217 | * |
218 | * Returns zero and the pfn at @pfn on success, -ve otherwise. |
219 | */ |
220 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, |
221 | unsigned long *pfn) |
222 | { |
223 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
224 | return -EINVAL; |
225 | |
226 | *pfn = address >> PAGE_SHIFT; |
227 | return 0; |
228 | } |
229 | EXPORT_SYMBOL(follow_pfn); |
230 | |
231 | LIST_HEAD(vmap_area_list); |
232 | |
233 | void vfree(const void *addr) |
234 | { |
235 | kfree(addr); |
236 | } |
237 | EXPORT_SYMBOL(vfree); |
238 | |
239 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
240 | { |
241 | /* |
242 | * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc() |
243 | * returns only a logical address. |
244 | */ |
245 | return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM); |
246 | } |
247 | EXPORT_SYMBOL(__vmalloc); |
248 | |
249 | void *vmalloc_user(unsigned long size) |
250 | { |
251 | void *ret; |
252 | |
253 | ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, |
254 | PAGE_KERNEL); |
255 | if (ret) { |
256 | struct vm_area_struct *vma; |
257 | |
258 | down_write(¤t->mm->mmap_sem); |
259 | vma = find_vma(current->mm, (unsigned long)ret); |
260 | if (vma) |
261 | vma->vm_flags |= VM_USERMAP; |
262 | up_write(¤t->mm->mmap_sem); |
263 | } |
264 | |
265 | return ret; |
266 | } |
267 | EXPORT_SYMBOL(vmalloc_user); |
268 | |
269 | struct page *vmalloc_to_page(const void *addr) |
270 | { |
271 | return virt_to_page(addr); |
272 | } |
273 | EXPORT_SYMBOL(vmalloc_to_page); |
274 | |
275 | unsigned long vmalloc_to_pfn(const void *addr) |
276 | { |
277 | return page_to_pfn(virt_to_page(addr)); |
278 | } |
279 | EXPORT_SYMBOL(vmalloc_to_pfn); |
280 | |
281 | long vread(char *buf, char *addr, unsigned long count) |
282 | { |
283 | /* Don't allow overflow */ |
284 | if ((unsigned long) buf + count < count) |
285 | count = -(unsigned long) buf; |
286 | |
287 | memcpy(buf, addr, count); |
288 | return count; |
289 | } |
290 | |
291 | long vwrite(char *buf, char *addr, unsigned long count) |
292 | { |
293 | /* Don't allow overflow */ |
294 | if ((unsigned long) addr + count < count) |
295 | count = -(unsigned long) addr; |
296 | |
297 | memcpy(addr, buf, count); |
298 | return(count); |
299 | } |
300 | |
301 | /* |
302 | * vmalloc - allocate virtually continguos memory |
303 | * |
304 | * @size: allocation size |
305 | * |
306 | * Allocate enough pages to cover @size from the page level |
307 | * allocator and map them into continguos kernel virtual space. |
308 | * |
309 | * For tight control over page level allocator and protection flags |
310 | * use __vmalloc() instead. |
311 | */ |
312 | void *vmalloc(unsigned long size) |
313 | { |
314 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); |
315 | } |
316 | EXPORT_SYMBOL(vmalloc); |
317 | |
318 | /* |
319 | * vzalloc - allocate virtually continguos memory with zero fill |
320 | * |
321 | * @size: allocation size |
322 | * |
323 | * Allocate enough pages to cover @size from the page level |
324 | * allocator and map them into continguos kernel virtual space. |
325 | * The memory allocated is set to zero. |
326 | * |
327 | * For tight control over page level allocator and protection flags |
328 | * use __vmalloc() instead. |
329 | */ |
330 | void *vzalloc(unsigned long size) |
331 | { |
332 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, |
333 | PAGE_KERNEL); |
334 | } |
335 | EXPORT_SYMBOL(vzalloc); |
336 | |
337 | /** |
338 | * vmalloc_node - allocate memory on a specific node |
339 | * @size: allocation size |
340 | * @node: numa node |
341 | * |
342 | * Allocate enough pages to cover @size from the page level |
343 | * allocator and map them into contiguous kernel virtual space. |
344 | * |
345 | * For tight control over page level allocator and protection flags |
346 | * use __vmalloc() instead. |
347 | */ |
348 | void *vmalloc_node(unsigned long size, int node) |
349 | { |
350 | return vmalloc(size); |
351 | } |
352 | EXPORT_SYMBOL(vmalloc_node); |
353 | |
354 | /** |
355 | * vzalloc_node - allocate memory on a specific node with zero fill |
356 | * @size: allocation size |
357 | * @node: numa node |
358 | * |
359 | * Allocate enough pages to cover @size from the page level |
360 | * allocator and map them into contiguous kernel virtual space. |
361 | * The memory allocated is set to zero. |
362 | * |
363 | * For tight control over page level allocator and protection flags |
364 | * use __vmalloc() instead. |
365 | */ |
366 | void *vzalloc_node(unsigned long size, int node) |
367 | { |
368 | return vzalloc(size); |
369 | } |
370 | EXPORT_SYMBOL(vzalloc_node); |
371 | |
372 | #ifndef PAGE_KERNEL_EXEC |
373 | # define PAGE_KERNEL_EXEC PAGE_KERNEL |
374 | #endif |
375 | |
376 | /** |
377 | * vmalloc_exec - allocate virtually contiguous, executable memory |
378 | * @size: allocation size |
379 | * |
380 | * Kernel-internal function to allocate enough pages to cover @size |
381 | * the page level allocator and map them into contiguous and |
382 | * executable kernel virtual space. |
383 | * |
384 | * For tight control over page level allocator and protection flags |
385 | * use __vmalloc() instead. |
386 | */ |
387 | |
388 | void *vmalloc_exec(unsigned long size) |
389 | { |
390 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); |
391 | } |
392 | |
393 | /** |
394 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
395 | * @size: allocation size |
396 | * |
397 | * Allocate enough 32bit PA addressable pages to cover @size from the |
398 | * page level allocator and map them into continguos kernel virtual space. |
399 | */ |
400 | void *vmalloc_32(unsigned long size) |
401 | { |
402 | return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); |
403 | } |
404 | EXPORT_SYMBOL(vmalloc_32); |
405 | |
406 | /** |
407 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
408 | * @size: allocation size |
409 | * |
410 | * The resulting memory area is 32bit addressable and zeroed so it can be |
411 | * mapped to userspace without leaking data. |
412 | * |
413 | * VM_USERMAP is set on the corresponding VMA so that subsequent calls to |
414 | * remap_vmalloc_range() are permissible. |
415 | */ |
416 | void *vmalloc_32_user(unsigned long size) |
417 | { |
418 | /* |
419 | * We'll have to sort out the ZONE_DMA bits for 64-bit, |
420 | * but for now this can simply use vmalloc_user() directly. |
421 | */ |
422 | return vmalloc_user(size); |
423 | } |
424 | EXPORT_SYMBOL(vmalloc_32_user); |
425 | |
426 | void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot) |
427 | { |
428 | BUG(); |
429 | return NULL; |
430 | } |
431 | EXPORT_SYMBOL(vmap); |
432 | |
433 | void vunmap(const void *addr) |
434 | { |
435 | BUG(); |
436 | } |
437 | EXPORT_SYMBOL(vunmap); |
438 | |
439 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) |
440 | { |
441 | BUG(); |
442 | return NULL; |
443 | } |
444 | EXPORT_SYMBOL(vm_map_ram); |
445 | |
446 | void vm_unmap_ram(const void *mem, unsigned int count) |
447 | { |
448 | BUG(); |
449 | } |
450 | EXPORT_SYMBOL(vm_unmap_ram); |
451 | |
452 | void vm_unmap_aliases(void) |
453 | { |
454 | } |
455 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); |
456 | |
457 | /* |
458 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to |
459 | * have one. |
460 | */ |
461 | void __attribute__((weak)) vmalloc_sync_all(void) |
462 | { |
463 | } |
464 | |
465 | /** |
466 | * alloc_vm_area - allocate a range of kernel address space |
467 | * @size: size of the area |
468 | * |
469 | * Returns: NULL on failure, vm_struct on success |
470 | * |
471 | * This function reserves a range of kernel address space, and |
472 | * allocates pagetables to map that range. No actual mappings |
473 | * are created. If the kernel address space is not shared |
474 | * between processes, it syncs the pagetable across all |
475 | * processes. |
476 | */ |
477 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
478 | { |
479 | BUG(); |
480 | return NULL; |
481 | } |
482 | EXPORT_SYMBOL_GPL(alloc_vm_area); |
483 | |
484 | void free_vm_area(struct vm_struct *area) |
485 | { |
486 | BUG(); |
487 | } |
488 | EXPORT_SYMBOL_GPL(free_vm_area); |
489 | |
490 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
491 | struct page *page) |
492 | { |
493 | return -EINVAL; |
494 | } |
495 | EXPORT_SYMBOL(vm_insert_page); |
496 | |
497 | /* |
498 | * sys_brk() for the most part doesn't need the global kernel |
499 | * lock, except when an application is doing something nasty |
500 | * like trying to un-brk an area that has already been mapped |
501 | * to a regular file. in this case, the unmapping will need |
502 | * to invoke file system routines that need the global lock. |
503 | */ |
504 | SYSCALL_DEFINE1(brk, unsigned long, brk) |
505 | { |
506 | struct mm_struct *mm = current->mm; |
507 | |
508 | if (brk < mm->start_brk || brk > mm->context.end_brk) |
509 | return mm->brk; |
510 | |
511 | if (mm->brk == brk) |
512 | return mm->brk; |
513 | |
514 | /* |
515 | * Always allow shrinking brk |
516 | */ |
517 | if (brk <= mm->brk) { |
518 | mm->brk = brk; |
519 | return brk; |
520 | } |
521 | |
522 | /* |
523 | * Ok, looks good - let it rip. |
524 | */ |
525 | flush_icache_range(mm->brk, brk); |
526 | return mm->brk = brk; |
527 | } |
528 | |
529 | /* |
530 | * initialise the VMA and region record slabs |
531 | */ |
532 | void __init mmap_init(void) |
533 | { |
534 | int ret; |
535 | |
536 | ret = percpu_counter_init(&vm_committed_as, 0); |
537 | VM_BUG_ON(ret); |
538 | vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC); |
539 | } |
540 | |
541 | /* |
542 | * validate the region tree |
543 | * - the caller must hold the region lock |
544 | */ |
545 | #ifdef CONFIG_DEBUG_NOMMU_REGIONS |
546 | static noinline void validate_nommu_regions(void) |
547 | { |
548 | struct vm_region *region, *last; |
549 | struct rb_node *p, *lastp; |
550 | |
551 | lastp = rb_first(&nommu_region_tree); |
552 | if (!lastp) |
553 | return; |
554 | |
555 | last = rb_entry(lastp, struct vm_region, vm_rb); |
556 | BUG_ON(unlikely(last->vm_end <= last->vm_start)); |
557 | BUG_ON(unlikely(last->vm_top < last->vm_end)); |
558 | |
559 | while ((p = rb_next(lastp))) { |
560 | region = rb_entry(p, struct vm_region, vm_rb); |
561 | last = rb_entry(lastp, struct vm_region, vm_rb); |
562 | |
563 | BUG_ON(unlikely(region->vm_end <= region->vm_start)); |
564 | BUG_ON(unlikely(region->vm_top < region->vm_end)); |
565 | BUG_ON(unlikely(region->vm_start < last->vm_top)); |
566 | |
567 | lastp = p; |
568 | } |
569 | } |
570 | #else |
571 | static void validate_nommu_regions(void) |
572 | { |
573 | } |
574 | #endif |
575 | |
576 | /* |
577 | * add a region into the global tree |
578 | */ |
579 | static void add_nommu_region(struct vm_region *region) |
580 | { |
581 | struct vm_region *pregion; |
582 | struct rb_node **p, *parent; |
583 | |
584 | validate_nommu_regions(); |
585 | |
586 | parent = NULL; |
587 | p = &nommu_region_tree.rb_node; |
588 | while (*p) { |
589 | parent = *p; |
590 | pregion = rb_entry(parent, struct vm_region, vm_rb); |
591 | if (region->vm_start < pregion->vm_start) |
592 | p = &(*p)->rb_left; |
593 | else if (region->vm_start > pregion->vm_start) |
594 | p = &(*p)->rb_right; |
595 | else if (pregion == region) |
596 | return; |
597 | else |
598 | BUG(); |
599 | } |
600 | |
601 | rb_link_node(®ion->vm_rb, parent, p); |
602 | rb_insert_color(®ion->vm_rb, &nommu_region_tree); |
603 | |
604 | validate_nommu_regions(); |
605 | } |
606 | |
607 | /* |
608 | * delete a region from the global tree |
609 | */ |
610 | static void delete_nommu_region(struct vm_region *region) |
611 | { |
612 | BUG_ON(!nommu_region_tree.rb_node); |
613 | |
614 | validate_nommu_regions(); |
615 | rb_erase(®ion->vm_rb, &nommu_region_tree); |
616 | validate_nommu_regions(); |
617 | } |
618 | |
619 | /* |
620 | * free a contiguous series of pages |
621 | */ |
622 | static void free_page_series(unsigned long from, unsigned long to) |
623 | { |
624 | for (; from < to; from += PAGE_SIZE) { |
625 | struct page *page = virt_to_page(from); |
626 | |
627 | kdebug("- free %lx", from); |
628 | atomic_long_dec(&mmap_pages_allocated); |
629 | if (page_count(page) != 1) |
630 | kdebug("free page %p: refcount not one: %d", |
631 | page, page_count(page)); |
632 | put_page(page); |
633 | } |
634 | } |
635 | |
636 | /* |
637 | * release a reference to a region |
638 | * - the caller must hold the region semaphore for writing, which this releases |
639 | * - the region may not have been added to the tree yet, in which case vm_top |
640 | * will equal vm_start |
641 | */ |
642 | static void __put_nommu_region(struct vm_region *region) |
643 | __releases(nommu_region_sem) |
644 | { |
645 | kenter("%p{%d}", region, region->vm_usage); |
646 | |
647 | BUG_ON(!nommu_region_tree.rb_node); |
648 | |
649 | if (--region->vm_usage == 0) { |
650 | if (region->vm_top > region->vm_start) |
651 | delete_nommu_region(region); |
652 | up_write(&nommu_region_sem); |
653 | |
654 | if (region->vm_file) |
655 | fput(region->vm_file); |
656 | |
657 | /* IO memory and memory shared directly out of the pagecache |
658 | * from ramfs/tmpfs mustn't be released here */ |
659 | if (region->vm_flags & VM_MAPPED_COPY) { |
660 | kdebug("free series"); |
661 | free_page_series(region->vm_start, region->vm_top); |
662 | } |
663 | kmem_cache_free(vm_region_jar, region); |
664 | } else { |
665 | up_write(&nommu_region_sem); |
666 | } |
667 | } |
668 | |
669 | /* |
670 | * release a reference to a region |
671 | */ |
672 | static void put_nommu_region(struct vm_region *region) |
673 | { |
674 | down_write(&nommu_region_sem); |
675 | __put_nommu_region(region); |
676 | } |
677 | |
678 | /* |
679 | * update protection on a vma |
680 | */ |
681 | static void protect_vma(struct vm_area_struct *vma, unsigned long flags) |
682 | { |
683 | #ifdef CONFIG_MPU |
684 | struct mm_struct *mm = vma->vm_mm; |
685 | long start = vma->vm_start & PAGE_MASK; |
686 | while (start < vma->vm_end) { |
687 | protect_page(mm, start, flags); |
688 | start += PAGE_SIZE; |
689 | } |
690 | update_protections(mm); |
691 | #endif |
692 | } |
693 | |
694 | /* |
695 | * add a VMA into a process's mm_struct in the appropriate place in the list |
696 | * and tree and add to the address space's page tree also if not an anonymous |
697 | * page |
698 | * - should be called with mm->mmap_sem held writelocked |
699 | */ |
700 | static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) |
701 | { |
702 | struct vm_area_struct *pvma, *prev; |
703 | struct address_space *mapping; |
704 | struct rb_node **p, *parent, *rb_prev; |
705 | |
706 | kenter(",%p", vma); |
707 | |
708 | BUG_ON(!vma->vm_region); |
709 | |
710 | mm->map_count++; |
711 | vma->vm_mm = mm; |
712 | |
713 | protect_vma(vma, vma->vm_flags); |
714 | |
715 | /* add the VMA to the mapping */ |
716 | if (vma->vm_file) { |
717 | mapping = vma->vm_file->f_mapping; |
718 | |
719 | mutex_lock(&mapping->i_mmap_mutex); |
720 | flush_dcache_mmap_lock(mapping); |
721 | vma_interval_tree_insert(vma, &mapping->i_mmap); |
722 | flush_dcache_mmap_unlock(mapping); |
723 | mutex_unlock(&mapping->i_mmap_mutex); |
724 | } |
725 | |
726 | /* add the VMA to the tree */ |
727 | parent = rb_prev = NULL; |
728 | p = &mm->mm_rb.rb_node; |
729 | while (*p) { |
730 | parent = *p; |
731 | pvma = rb_entry(parent, struct vm_area_struct, vm_rb); |
732 | |
733 | /* sort by: start addr, end addr, VMA struct addr in that order |
734 | * (the latter is necessary as we may get identical VMAs) */ |
735 | if (vma->vm_start < pvma->vm_start) |
736 | p = &(*p)->rb_left; |
737 | else if (vma->vm_start > pvma->vm_start) { |
738 | rb_prev = parent; |
739 | p = &(*p)->rb_right; |
740 | } else if (vma->vm_end < pvma->vm_end) |
741 | p = &(*p)->rb_left; |
742 | else if (vma->vm_end > pvma->vm_end) { |
743 | rb_prev = parent; |
744 | p = &(*p)->rb_right; |
745 | } else if (vma < pvma) |
746 | p = &(*p)->rb_left; |
747 | else if (vma > pvma) { |
748 | rb_prev = parent; |
749 | p = &(*p)->rb_right; |
750 | } else |
751 | BUG(); |
752 | } |
753 | |
754 | rb_link_node(&vma->vm_rb, parent, p); |
755 | rb_insert_color(&vma->vm_rb, &mm->mm_rb); |
756 | |
757 | /* add VMA to the VMA list also */ |
758 | prev = NULL; |
759 | if (rb_prev) |
760 | prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb); |
761 | |
762 | __vma_link_list(mm, vma, prev, parent); |
763 | } |
764 | |
765 | /* |
766 | * delete a VMA from its owning mm_struct and address space |
767 | */ |
768 | static void delete_vma_from_mm(struct vm_area_struct *vma) |
769 | { |
770 | struct address_space *mapping; |
771 | struct mm_struct *mm = vma->vm_mm; |
772 | |
773 | kenter("%p", vma); |
774 | |
775 | protect_vma(vma, 0); |
776 | |
777 | mm->map_count--; |
778 | if (mm->mmap_cache == vma) |
779 | mm->mmap_cache = NULL; |
780 | |
781 | /* remove the VMA from the mapping */ |
782 | if (vma->vm_file) { |
783 | mapping = vma->vm_file->f_mapping; |
784 | |
785 | mutex_lock(&mapping->i_mmap_mutex); |
786 | flush_dcache_mmap_lock(mapping); |
787 | vma_interval_tree_remove(vma, &mapping->i_mmap); |
788 | flush_dcache_mmap_unlock(mapping); |
789 | mutex_unlock(&mapping->i_mmap_mutex); |
790 | } |
791 | |
792 | /* remove from the MM's tree and list */ |
793 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
794 | |
795 | if (vma->vm_prev) |
796 | vma->vm_prev->vm_next = vma->vm_next; |
797 | else |
798 | mm->mmap = vma->vm_next; |
799 | |
800 | if (vma->vm_next) |
801 | vma->vm_next->vm_prev = vma->vm_prev; |
802 | } |
803 | |
804 | /* |
805 | * destroy a VMA record |
806 | */ |
807 | static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma) |
808 | { |
809 | kenter("%p", vma); |
810 | if (vma->vm_ops && vma->vm_ops->close) |
811 | vma->vm_ops->close(vma); |
812 | if (vma->vm_file) |
813 | fput(vma->vm_file); |
814 | put_nommu_region(vma->vm_region); |
815 | kmem_cache_free(vm_area_cachep, vma); |
816 | } |
817 | |
818 | /* |
819 | * look up the first VMA in which addr resides, NULL if none |
820 | * - should be called with mm->mmap_sem at least held readlocked |
821 | */ |
822 | struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr) |
823 | { |
824 | struct vm_area_struct *vma; |
825 | |
826 | /* check the cache first */ |
827 | vma = ACCESS_ONCE(mm->mmap_cache); |
828 | if (vma && vma->vm_start <= addr && vma->vm_end > addr) |
829 | return vma; |
830 | |
831 | /* trawl the list (there may be multiple mappings in which addr |
832 | * resides) */ |
833 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
834 | if (vma->vm_start > addr) |
835 | return NULL; |
836 | if (vma->vm_end > addr) { |
837 | mm->mmap_cache = vma; |
838 | return vma; |
839 | } |
840 | } |
841 | |
842 | return NULL; |
843 | } |
844 | EXPORT_SYMBOL(find_vma); |
845 | |
846 | /* |
847 | * find a VMA |
848 | * - we don't extend stack VMAs under NOMMU conditions |
849 | */ |
850 | struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr) |
851 | { |
852 | return find_vma(mm, addr); |
853 | } |
854 | |
855 | /* |
856 | * expand a stack to a given address |
857 | * - not supported under NOMMU conditions |
858 | */ |
859 | int expand_stack(struct vm_area_struct *vma, unsigned long address) |
860 | { |
861 | return -ENOMEM; |
862 | } |
863 | |
864 | /* |
865 | * look up the first VMA exactly that exactly matches addr |
866 | * - should be called with mm->mmap_sem at least held readlocked |
867 | */ |
868 | static struct vm_area_struct *find_vma_exact(struct mm_struct *mm, |
869 | unsigned long addr, |
870 | unsigned long len) |
871 | { |
872 | struct vm_area_struct *vma; |
873 | unsigned long end = addr + len; |
874 | |
875 | /* check the cache first */ |
876 | vma = mm->mmap_cache; |
877 | if (vma && vma->vm_start == addr && vma->vm_end == end) |
878 | return vma; |
879 | |
880 | /* trawl the list (there may be multiple mappings in which addr |
881 | * resides) */ |
882 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
883 | if (vma->vm_start < addr) |
884 | continue; |
885 | if (vma->vm_start > addr) |
886 | return NULL; |
887 | if (vma->vm_end == end) { |
888 | mm->mmap_cache = vma; |
889 | return vma; |
890 | } |
891 | } |
892 | |
893 | return NULL; |
894 | } |
895 | |
896 | /* |
897 | * determine whether a mapping should be permitted and, if so, what sort of |
898 | * mapping we're capable of supporting |
899 | */ |
900 | static int validate_mmap_request(struct file *file, |
901 | unsigned long addr, |
902 | unsigned long len, |
903 | unsigned long prot, |
904 | unsigned long flags, |
905 | unsigned long pgoff, |
906 | unsigned long *_capabilities) |
907 | { |
908 | unsigned long capabilities, rlen; |
909 | int ret; |
910 | |
911 | /* do the simple checks first */ |
912 | if (flags & MAP_FIXED) { |
913 | printk(KERN_DEBUG |
914 | "%d: Can't do fixed-address/overlay mmap of RAM\n", |
915 | current->pid); |
916 | return -EINVAL; |
917 | } |
918 | |
919 | if ((flags & MAP_TYPE) != MAP_PRIVATE && |
920 | (flags & MAP_TYPE) != MAP_SHARED) |
921 | return -EINVAL; |
922 | |
923 | if (!len) |
924 | return -EINVAL; |
925 | |
926 | /* Careful about overflows.. */ |
927 | rlen = PAGE_ALIGN(len); |
928 | if (!rlen || rlen > TASK_SIZE) |
929 | return -ENOMEM; |
930 | |
931 | /* offset overflow? */ |
932 | if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff) |
933 | return -EOVERFLOW; |
934 | |
935 | if (file) { |
936 | /* validate file mapping requests */ |
937 | struct address_space *mapping; |
938 | |
939 | /* files must support mmap */ |
940 | if (!file->f_op || !file->f_op->mmap) |
941 | return -ENODEV; |
942 | |
943 | /* work out if what we've got could possibly be shared |
944 | * - we support chardevs that provide their own "memory" |
945 | * - we support files/blockdevs that are memory backed |
946 | */ |
947 | mapping = file->f_mapping; |
948 | if (!mapping) |
949 | mapping = file_inode(file)->i_mapping; |
950 | |
951 | capabilities = 0; |
952 | if (mapping && mapping->backing_dev_info) |
953 | capabilities = mapping->backing_dev_info->capabilities; |
954 | |
955 | if (!capabilities) { |
956 | /* no explicit capabilities set, so assume some |
957 | * defaults */ |
958 | switch (file_inode(file)->i_mode & S_IFMT) { |
959 | case S_IFREG: |
960 | case S_IFBLK: |
961 | capabilities = BDI_CAP_MAP_COPY; |
962 | break; |
963 | |
964 | case S_IFCHR: |
965 | capabilities = |
966 | BDI_CAP_MAP_DIRECT | |
967 | BDI_CAP_READ_MAP | |
968 | BDI_CAP_WRITE_MAP; |
969 | break; |
970 | |
971 | default: |
972 | return -EINVAL; |
973 | } |
974 | } |
975 | |
976 | /* eliminate any capabilities that we can't support on this |
977 | * device */ |
978 | if (!file->f_op->get_unmapped_area) |
979 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
980 | if (!file->f_op->read) |
981 | capabilities &= ~BDI_CAP_MAP_COPY; |
982 | |
983 | /* The file shall have been opened with read permission. */ |
984 | if (!(file->f_mode & FMODE_READ)) |
985 | return -EACCES; |
986 | |
987 | if (flags & MAP_SHARED) { |
988 | /* do checks for writing, appending and locking */ |
989 | if ((prot & PROT_WRITE) && |
990 | !(file->f_mode & FMODE_WRITE)) |
991 | return -EACCES; |
992 | |
993 | if (IS_APPEND(file_inode(file)) && |
994 | (file->f_mode & FMODE_WRITE)) |
995 | return -EACCES; |
996 | |
997 | if (locks_verify_locked(file_inode(file))) |
998 | return -EAGAIN; |
999 | |
1000 | if (!(capabilities & BDI_CAP_MAP_DIRECT)) |
1001 | return -ENODEV; |
1002 | |
1003 | /* we mustn't privatise shared mappings */ |
1004 | capabilities &= ~BDI_CAP_MAP_COPY; |
1005 | } |
1006 | else { |
1007 | /* we're going to read the file into private memory we |
1008 | * allocate */ |
1009 | if (!(capabilities & BDI_CAP_MAP_COPY)) |
1010 | return -ENODEV; |
1011 | |
1012 | /* we don't permit a private writable mapping to be |
1013 | * shared with the backing device */ |
1014 | if (prot & PROT_WRITE) |
1015 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1016 | } |
1017 | |
1018 | if (capabilities & BDI_CAP_MAP_DIRECT) { |
1019 | if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) || |
1020 | ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) || |
1021 | ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP)) |
1022 | ) { |
1023 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1024 | if (flags & MAP_SHARED) { |
1025 | printk(KERN_WARNING |
1026 | "MAP_SHARED not completely supported on !MMU\n"); |
1027 | return -EINVAL; |
1028 | } |
1029 | } |
1030 | } |
1031 | |
1032 | /* handle executable mappings and implied executable |
1033 | * mappings */ |
1034 | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) { |
1035 | if (prot & PROT_EXEC) |
1036 | return -EPERM; |
1037 | } |
1038 | else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) { |
1039 | /* handle implication of PROT_EXEC by PROT_READ */ |
1040 | if (current->personality & READ_IMPLIES_EXEC) { |
1041 | if (capabilities & BDI_CAP_EXEC_MAP) |
1042 | prot |= PROT_EXEC; |
1043 | } |
1044 | } |
1045 | else if ((prot & PROT_READ) && |
1046 | (prot & PROT_EXEC) && |
1047 | !(capabilities & BDI_CAP_EXEC_MAP) |
1048 | ) { |
1049 | /* backing file is not executable, try to copy */ |
1050 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1051 | } |
1052 | } |
1053 | else { |
1054 | /* anonymous mappings are always memory backed and can be |
1055 | * privately mapped |
1056 | */ |
1057 | capabilities = BDI_CAP_MAP_COPY; |
1058 | |
1059 | /* handle PROT_EXEC implication by PROT_READ */ |
1060 | if ((prot & PROT_READ) && |
1061 | (current->personality & READ_IMPLIES_EXEC)) |
1062 | prot |= PROT_EXEC; |
1063 | } |
1064 | |
1065 | /* allow the security API to have its say */ |
1066 | ret = security_mmap_addr(addr); |
1067 | if (ret < 0) |
1068 | return ret; |
1069 | |
1070 | /* looks okay */ |
1071 | *_capabilities = capabilities; |
1072 | return 0; |
1073 | } |
1074 | |
1075 | /* |
1076 | * we've determined that we can make the mapping, now translate what we |
1077 | * now know into VMA flags |
1078 | */ |
1079 | static unsigned long determine_vm_flags(struct file *file, |
1080 | unsigned long prot, |
1081 | unsigned long flags, |
1082 | unsigned long capabilities) |
1083 | { |
1084 | unsigned long vm_flags; |
1085 | |
1086 | vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags); |
1087 | /* vm_flags |= mm->def_flags; */ |
1088 | |
1089 | if (!(capabilities & BDI_CAP_MAP_DIRECT)) { |
1090 | /* attempt to share read-only copies of mapped file chunks */ |
1091 | vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC; |
1092 | if (file && !(prot & PROT_WRITE)) |
1093 | vm_flags |= VM_MAYSHARE; |
1094 | } else { |
1095 | /* overlay a shareable mapping on the backing device or inode |
1096 | * if possible - used for chardevs, ramfs/tmpfs/shmfs and |
1097 | * romfs/cramfs */ |
1098 | vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS); |
1099 | if (flags & MAP_SHARED) |
1100 | vm_flags |= VM_SHARED; |
1101 | } |
1102 | |
1103 | /* refuse to let anyone share private mappings with this process if |
1104 | * it's being traced - otherwise breakpoints set in it may interfere |
1105 | * with another untraced process |
1106 | */ |
1107 | if ((flags & MAP_PRIVATE) && current->ptrace) |
1108 | vm_flags &= ~VM_MAYSHARE; |
1109 | |
1110 | return vm_flags; |
1111 | } |
1112 | |
1113 | /* |
1114 | * set up a shared mapping on a file (the driver or filesystem provides and |
1115 | * pins the storage) |
1116 | */ |
1117 | static int do_mmap_shared_file(struct vm_area_struct *vma) |
1118 | { |
1119 | int ret; |
1120 | |
1121 | ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); |
1122 | if (ret == 0) { |
1123 | vma->vm_region->vm_top = vma->vm_region->vm_end; |
1124 | return 0; |
1125 | } |
1126 | if (ret != -ENOSYS) |
1127 | return ret; |
1128 | |
1129 | /* getting -ENOSYS indicates that direct mmap isn't possible (as |
1130 | * opposed to tried but failed) so we can only give a suitable error as |
1131 | * it's not possible to make a private copy if MAP_SHARED was given */ |
1132 | return -ENODEV; |
1133 | } |
1134 | |
1135 | /* |
1136 | * set up a private mapping or an anonymous shared mapping |
1137 | */ |
1138 | static int do_mmap_private(struct vm_area_struct *vma, |
1139 | struct vm_region *region, |
1140 | unsigned long len, |
1141 | unsigned long capabilities) |
1142 | { |
1143 | struct page *pages; |
1144 | unsigned long total, point, n; |
1145 | void *base; |
1146 | int ret, order; |
1147 | |
1148 | /* invoke the file's mapping function so that it can keep track of |
1149 | * shared mappings on devices or memory |
1150 | * - VM_MAYSHARE will be set if it may attempt to share |
1151 | */ |
1152 | if (capabilities & BDI_CAP_MAP_DIRECT) { |
1153 | ret = vma->vm_file->f_op->mmap(vma->vm_file, vma); |
1154 | if (ret == 0) { |
1155 | /* shouldn't return success if we're not sharing */ |
1156 | BUG_ON(!(vma->vm_flags & VM_MAYSHARE)); |
1157 | vma->vm_region->vm_top = vma->vm_region->vm_end; |
1158 | return 0; |
1159 | } |
1160 | if (ret != -ENOSYS) |
1161 | return ret; |
1162 | |
1163 | /* getting an ENOSYS error indicates that direct mmap isn't |
1164 | * possible (as opposed to tried but failed) so we'll try to |
1165 | * make a private copy of the data and map that instead */ |
1166 | } |
1167 | |
1168 | |
1169 | /* allocate some memory to hold the mapping |
1170 | * - note that this may not return a page-aligned address if the object |
1171 | * we're allocating is smaller than a page |
1172 | */ |
1173 | order = get_order(len); |
1174 | kdebug("alloc order %d for %lx", order, len); |
1175 | |
1176 | pages = alloc_pages(GFP_KERNEL, order); |
1177 | if (!pages) |
1178 | goto enomem; |
1179 | |
1180 | total = 1 << order; |
1181 | atomic_long_add(total, &mmap_pages_allocated); |
1182 | |
1183 | point = len >> PAGE_SHIFT; |
1184 | |
1185 | /* we allocated a power-of-2 sized page set, so we may want to trim off |
1186 | * the excess */ |
1187 | if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) { |
1188 | while (total > point) { |
1189 | order = ilog2(total - point); |
1190 | n = 1 << order; |
1191 | kdebug("shave %lu/%lu @%lu", n, total - point, total); |
1192 | atomic_long_sub(n, &mmap_pages_allocated); |
1193 | total -= n; |
1194 | set_page_refcounted(pages + total); |
1195 | __free_pages(pages + total, order); |
1196 | } |
1197 | } |
1198 | |
1199 | for (point = 1; point < total; point++) |
1200 | set_page_refcounted(&pages[point]); |
1201 | |
1202 | base = page_address(pages); |
1203 | region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY; |
1204 | region->vm_start = (unsigned long) base; |
1205 | region->vm_end = region->vm_start + len; |
1206 | region->vm_top = region->vm_start + (total << PAGE_SHIFT); |
1207 | |
1208 | vma->vm_start = region->vm_start; |
1209 | vma->vm_end = region->vm_start + len; |
1210 | |
1211 | if (vma->vm_file) { |
1212 | /* read the contents of a file into the copy */ |
1213 | mm_segment_t old_fs; |
1214 | loff_t fpos; |
1215 | |
1216 | fpos = vma->vm_pgoff; |
1217 | fpos <<= PAGE_SHIFT; |
1218 | |
1219 | old_fs = get_fs(); |
1220 | set_fs(KERNEL_DS); |
1221 | ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos); |
1222 | set_fs(old_fs); |
1223 | |
1224 | if (ret < 0) |
1225 | goto error_free; |
1226 | |
1227 | /* clear the last little bit */ |
1228 | if (ret < len) |
1229 | memset(base + ret, 0, len - ret); |
1230 | |
1231 | } |
1232 | |
1233 | return 0; |
1234 | |
1235 | error_free: |
1236 | free_page_series(region->vm_start, region->vm_top); |
1237 | region->vm_start = vma->vm_start = 0; |
1238 | region->vm_end = vma->vm_end = 0; |
1239 | region->vm_top = 0; |
1240 | return ret; |
1241 | |
1242 | enomem: |
1243 | printk("Allocation of length %lu from process %d (%s) failed\n", |
1244 | len, current->pid, current->comm); |
1245 | show_free_areas(0); |
1246 | return -ENOMEM; |
1247 | } |
1248 | |
1249 | /* |
1250 | * handle mapping creation for uClinux |
1251 | */ |
1252 | unsigned long do_mmap_pgoff(struct file *file, |
1253 | unsigned long addr, |
1254 | unsigned long len, |
1255 | unsigned long prot, |
1256 | unsigned long flags, |
1257 | unsigned long pgoff, |
1258 | unsigned long *populate) |
1259 | { |
1260 | struct vm_area_struct *vma; |
1261 | struct vm_region *region; |
1262 | struct rb_node *rb; |
1263 | unsigned long capabilities, vm_flags, result; |
1264 | int ret; |
1265 | |
1266 | kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff); |
1267 | |
1268 | *populate = 0; |
1269 | |
1270 | /* decide whether we should attempt the mapping, and if so what sort of |
1271 | * mapping */ |
1272 | ret = validate_mmap_request(file, addr, len, prot, flags, pgoff, |
1273 | &capabilities); |
1274 | if (ret < 0) { |
1275 | kleave(" = %d [val]", ret); |
1276 | return ret; |
1277 | } |
1278 | |
1279 | /* we ignore the address hint */ |
1280 | addr = 0; |
1281 | len = PAGE_ALIGN(len); |
1282 | |
1283 | /* we've determined that we can make the mapping, now translate what we |
1284 | * now know into VMA flags */ |
1285 | vm_flags = determine_vm_flags(file, prot, flags, capabilities); |
1286 | |
1287 | /* we're going to need to record the mapping */ |
1288 | region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL); |
1289 | if (!region) |
1290 | goto error_getting_region; |
1291 | |
1292 | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); |
1293 | if (!vma) |
1294 | goto error_getting_vma; |
1295 | |
1296 | region->vm_usage = 1; |
1297 | region->vm_flags = vm_flags; |
1298 | region->vm_pgoff = pgoff; |
1299 | |
1300 | INIT_LIST_HEAD(&vma->anon_vma_chain); |
1301 | vma->vm_flags = vm_flags; |
1302 | vma->vm_pgoff = pgoff; |
1303 | |
1304 | if (file) { |
1305 | region->vm_file = get_file(file); |
1306 | vma->vm_file = get_file(file); |
1307 | } |
1308 | |
1309 | down_write(&nommu_region_sem); |
1310 | |
1311 | /* if we want to share, we need to check for regions created by other |
1312 | * mmap() calls that overlap with our proposed mapping |
1313 | * - we can only share with a superset match on most regular files |
1314 | * - shared mappings on character devices and memory backed files are |
1315 | * permitted to overlap inexactly as far as we are concerned for in |
1316 | * these cases, sharing is handled in the driver or filesystem rather |
1317 | * than here |
1318 | */ |
1319 | if (vm_flags & VM_MAYSHARE) { |
1320 | struct vm_region *pregion; |
1321 | unsigned long pglen, rpglen, pgend, rpgend, start; |
1322 | |
1323 | pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1324 | pgend = pgoff + pglen; |
1325 | |
1326 | for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) { |
1327 | pregion = rb_entry(rb, struct vm_region, vm_rb); |
1328 | |
1329 | if (!(pregion->vm_flags & VM_MAYSHARE)) |
1330 | continue; |
1331 | |
1332 | /* search for overlapping mappings on the same file */ |
1333 | if (file_inode(pregion->vm_file) != |
1334 | file_inode(file)) |
1335 | continue; |
1336 | |
1337 | if (pregion->vm_pgoff >= pgend) |
1338 | continue; |
1339 | |
1340 | rpglen = pregion->vm_end - pregion->vm_start; |
1341 | rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1342 | rpgend = pregion->vm_pgoff + rpglen; |
1343 | if (pgoff >= rpgend) |
1344 | continue; |
1345 | |
1346 | /* handle inexactly overlapping matches between |
1347 | * mappings */ |
1348 | if ((pregion->vm_pgoff != pgoff || rpglen != pglen) && |
1349 | !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) { |
1350 | /* new mapping is not a subset of the region */ |
1351 | if (!(capabilities & BDI_CAP_MAP_DIRECT)) |
1352 | goto sharing_violation; |
1353 | continue; |
1354 | } |
1355 | |
1356 | /* we've found a region we can share */ |
1357 | pregion->vm_usage++; |
1358 | vma->vm_region = pregion; |
1359 | start = pregion->vm_start; |
1360 | start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT; |
1361 | vma->vm_start = start; |
1362 | vma->vm_end = start + len; |
1363 | |
1364 | if (pregion->vm_flags & VM_MAPPED_COPY) { |
1365 | kdebug("share copy"); |
1366 | vma->vm_flags |= VM_MAPPED_COPY; |
1367 | } else { |
1368 | kdebug("share mmap"); |
1369 | ret = do_mmap_shared_file(vma); |
1370 | if (ret < 0) { |
1371 | vma->vm_region = NULL; |
1372 | vma->vm_start = 0; |
1373 | vma->vm_end = 0; |
1374 | pregion->vm_usage--; |
1375 | pregion = NULL; |
1376 | goto error_just_free; |
1377 | } |
1378 | } |
1379 | fput(region->vm_file); |
1380 | kmem_cache_free(vm_region_jar, region); |
1381 | region = pregion; |
1382 | result = start; |
1383 | goto share; |
1384 | } |
1385 | |
1386 | /* obtain the address at which to make a shared mapping |
1387 | * - this is the hook for quasi-memory character devices to |
1388 | * tell us the location of a shared mapping |
1389 | */ |
1390 | if (capabilities & BDI_CAP_MAP_DIRECT) { |
1391 | addr = file->f_op->get_unmapped_area(file, addr, len, |
1392 | pgoff, flags); |
1393 | if (IS_ERR_VALUE(addr)) { |
1394 | ret = addr; |
1395 | if (ret != -ENOSYS) |
1396 | goto error_just_free; |
1397 | |
1398 | /* the driver refused to tell us where to site |
1399 | * the mapping so we'll have to attempt to copy |
1400 | * it */ |
1401 | ret = -ENODEV; |
1402 | if (!(capabilities & BDI_CAP_MAP_COPY)) |
1403 | goto error_just_free; |
1404 | |
1405 | capabilities &= ~BDI_CAP_MAP_DIRECT; |
1406 | } else { |
1407 | vma->vm_start = region->vm_start = addr; |
1408 | vma->vm_end = region->vm_end = addr + len; |
1409 | } |
1410 | } |
1411 | } |
1412 | |
1413 | vma->vm_region = region; |
1414 | |
1415 | /* set up the mapping |
1416 | * - the region is filled in if BDI_CAP_MAP_DIRECT is still set |
1417 | */ |
1418 | if (file && vma->vm_flags & VM_SHARED) |
1419 | ret = do_mmap_shared_file(vma); |
1420 | else |
1421 | ret = do_mmap_private(vma, region, len, capabilities); |
1422 | if (ret < 0) |
1423 | goto error_just_free; |
1424 | add_nommu_region(region); |
1425 | |
1426 | /* clear anonymous mappings that don't ask for uninitialized data */ |
1427 | if (!vma->vm_file && !(flags & MAP_UNINITIALIZED)) |
1428 | memset((void *)region->vm_start, 0, |
1429 | region->vm_end - region->vm_start); |
1430 | |
1431 | /* okay... we have a mapping; now we have to register it */ |
1432 | result = vma->vm_start; |
1433 | |
1434 | current->mm->total_vm += len >> PAGE_SHIFT; |
1435 | |
1436 | share: |
1437 | add_vma_to_mm(current->mm, vma); |
1438 | |
1439 | /* we flush the region from the icache only when the first executable |
1440 | * mapping of it is made */ |
1441 | if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) { |
1442 | flush_icache_range(region->vm_start, region->vm_end); |
1443 | region->vm_icache_flushed = true; |
1444 | } |
1445 | |
1446 | up_write(&nommu_region_sem); |
1447 | |
1448 | kleave(" = %lx", result); |
1449 | return result; |
1450 | |
1451 | error_just_free: |
1452 | up_write(&nommu_region_sem); |
1453 | error: |
1454 | if (region->vm_file) |
1455 | fput(region->vm_file); |
1456 | kmem_cache_free(vm_region_jar, region); |
1457 | if (vma->vm_file) |
1458 | fput(vma->vm_file); |
1459 | kmem_cache_free(vm_area_cachep, vma); |
1460 | kleave(" = %d", ret); |
1461 | return ret; |
1462 | |
1463 | sharing_violation: |
1464 | up_write(&nommu_region_sem); |
1465 | printk(KERN_WARNING "Attempt to share mismatched mappings\n"); |
1466 | ret = -EINVAL; |
1467 | goto error; |
1468 | |
1469 | error_getting_vma: |
1470 | kmem_cache_free(vm_region_jar, region); |
1471 | printk(KERN_WARNING "Allocation of vma for %lu byte allocation" |
1472 | " from process %d failed\n", |
1473 | len, current->pid); |
1474 | show_free_areas(0); |
1475 | return -ENOMEM; |
1476 | |
1477 | error_getting_region: |
1478 | printk(KERN_WARNING "Allocation of vm region for %lu byte allocation" |
1479 | " from process %d failed\n", |
1480 | len, current->pid); |
1481 | show_free_areas(0); |
1482 | return -ENOMEM; |
1483 | } |
1484 | |
1485 | SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, |
1486 | unsigned long, prot, unsigned long, flags, |
1487 | unsigned long, fd, unsigned long, pgoff) |
1488 | { |
1489 | struct file *file = NULL; |
1490 | unsigned long retval = -EBADF; |
1491 | |
1492 | audit_mmap_fd(fd, flags); |
1493 | if (!(flags & MAP_ANONYMOUS)) { |
1494 | file = fget(fd); |
1495 | if (!file) |
1496 | goto out; |
1497 | } |
1498 | |
1499 | flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); |
1500 | |
1501 | retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff); |
1502 | |
1503 | if (file) |
1504 | fput(file); |
1505 | out: |
1506 | return retval; |
1507 | } |
1508 | |
1509 | #ifdef __ARCH_WANT_SYS_OLD_MMAP |
1510 | struct mmap_arg_struct { |
1511 | unsigned long addr; |
1512 | unsigned long len; |
1513 | unsigned long prot; |
1514 | unsigned long flags; |
1515 | unsigned long fd; |
1516 | unsigned long offset; |
1517 | }; |
1518 | |
1519 | SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg) |
1520 | { |
1521 | struct mmap_arg_struct a; |
1522 | |
1523 | if (copy_from_user(&a, arg, sizeof(a))) |
1524 | return -EFAULT; |
1525 | if (a.offset & ~PAGE_MASK) |
1526 | return -EINVAL; |
1527 | |
1528 | return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd, |
1529 | a.offset >> PAGE_SHIFT); |
1530 | } |
1531 | #endif /* __ARCH_WANT_SYS_OLD_MMAP */ |
1532 | |
1533 | /* |
1534 | * split a vma into two pieces at address 'addr', a new vma is allocated either |
1535 | * for the first part or the tail. |
1536 | */ |
1537 | int split_vma(struct mm_struct *mm, struct vm_area_struct *vma, |
1538 | unsigned long addr, int new_below) |
1539 | { |
1540 | struct vm_area_struct *new; |
1541 | struct vm_region *region; |
1542 | unsigned long npages; |
1543 | |
1544 | kenter(""); |
1545 | |
1546 | /* we're only permitted to split anonymous regions (these should have |
1547 | * only a single usage on the region) */ |
1548 | if (vma->vm_file) |
1549 | return -ENOMEM; |
1550 | |
1551 | if (mm->map_count >= sysctl_max_map_count) |
1552 | return -ENOMEM; |
1553 | |
1554 | region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL); |
1555 | if (!region) |
1556 | return -ENOMEM; |
1557 | |
1558 | new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); |
1559 | if (!new) { |
1560 | kmem_cache_free(vm_region_jar, region); |
1561 | return -ENOMEM; |
1562 | } |
1563 | |
1564 | /* most fields are the same, copy all, and then fixup */ |
1565 | *new = *vma; |
1566 | *region = *vma->vm_region; |
1567 | new->vm_region = region; |
1568 | |
1569 | npages = (addr - vma->vm_start) >> PAGE_SHIFT; |
1570 | |
1571 | if (new_below) { |
1572 | region->vm_top = region->vm_end = new->vm_end = addr; |
1573 | } else { |
1574 | region->vm_start = new->vm_start = addr; |
1575 | region->vm_pgoff = new->vm_pgoff += npages; |
1576 | } |
1577 | |
1578 | if (new->vm_ops && new->vm_ops->open) |
1579 | new->vm_ops->open(new); |
1580 | |
1581 | delete_vma_from_mm(vma); |
1582 | down_write(&nommu_region_sem); |
1583 | delete_nommu_region(vma->vm_region); |
1584 | if (new_below) { |
1585 | vma->vm_region->vm_start = vma->vm_start = addr; |
1586 | vma->vm_region->vm_pgoff = vma->vm_pgoff += npages; |
1587 | } else { |
1588 | vma->vm_region->vm_end = vma->vm_end = addr; |
1589 | vma->vm_region->vm_top = addr; |
1590 | } |
1591 | add_nommu_region(vma->vm_region); |
1592 | add_nommu_region(new->vm_region); |
1593 | up_write(&nommu_region_sem); |
1594 | add_vma_to_mm(mm, vma); |
1595 | add_vma_to_mm(mm, new); |
1596 | return 0; |
1597 | } |
1598 | |
1599 | /* |
1600 | * shrink a VMA by removing the specified chunk from either the beginning or |
1601 | * the end |
1602 | */ |
1603 | static int shrink_vma(struct mm_struct *mm, |
1604 | struct vm_area_struct *vma, |
1605 | unsigned long from, unsigned long to) |
1606 | { |
1607 | struct vm_region *region; |
1608 | |
1609 | kenter(""); |
1610 | |
1611 | /* adjust the VMA's pointers, which may reposition it in the MM's tree |
1612 | * and list */ |
1613 | delete_vma_from_mm(vma); |
1614 | if (from > vma->vm_start) |
1615 | vma->vm_end = from; |
1616 | else |
1617 | vma->vm_start = to; |
1618 | add_vma_to_mm(mm, vma); |
1619 | |
1620 | /* cut the backing region down to size */ |
1621 | region = vma->vm_region; |
1622 | BUG_ON(region->vm_usage != 1); |
1623 | |
1624 | down_write(&nommu_region_sem); |
1625 | delete_nommu_region(region); |
1626 | if (from > region->vm_start) { |
1627 | to = region->vm_top; |
1628 | region->vm_top = region->vm_end = from; |
1629 | } else { |
1630 | region->vm_start = to; |
1631 | } |
1632 | add_nommu_region(region); |
1633 | up_write(&nommu_region_sem); |
1634 | |
1635 | free_page_series(from, to); |
1636 | return 0; |
1637 | } |
1638 | |
1639 | /* |
1640 | * release a mapping |
1641 | * - under NOMMU conditions the chunk to be unmapped must be backed by a single |
1642 | * VMA, though it need not cover the whole VMA |
1643 | */ |
1644 | int do_munmap(struct mm_struct *mm, unsigned long start, size_t len) |
1645 | { |
1646 | struct vm_area_struct *vma; |
1647 | unsigned long end; |
1648 | int ret; |
1649 | |
1650 | kenter(",%lx,%zx", start, len); |
1651 | |
1652 | len = PAGE_ALIGN(len); |
1653 | if (len == 0) |
1654 | return -EINVAL; |
1655 | |
1656 | end = start + len; |
1657 | |
1658 | /* find the first potentially overlapping VMA */ |
1659 | vma = find_vma(mm, start); |
1660 | if (!vma) { |
1661 | static int limit = 0; |
1662 | if (limit < 5) { |
1663 | printk(KERN_WARNING |
1664 | "munmap of memory not mmapped by process %d" |
1665 | " (%s): 0x%lx-0x%lx\n", |
1666 | current->pid, current->comm, |
1667 | start, start + len - 1); |
1668 | limit++; |
1669 | } |
1670 | return -EINVAL; |
1671 | } |
1672 | |
1673 | /* we're allowed to split an anonymous VMA but not a file-backed one */ |
1674 | if (vma->vm_file) { |
1675 | do { |
1676 | if (start > vma->vm_start) { |
1677 | kleave(" = -EINVAL [miss]"); |
1678 | return -EINVAL; |
1679 | } |
1680 | if (end == vma->vm_end) |
1681 | goto erase_whole_vma; |
1682 | vma = vma->vm_next; |
1683 | } while (vma); |
1684 | kleave(" = -EINVAL [split file]"); |
1685 | return -EINVAL; |
1686 | } else { |
1687 | /* the chunk must be a subset of the VMA found */ |
1688 | if (start == vma->vm_start && end == vma->vm_end) |
1689 | goto erase_whole_vma; |
1690 | if (start < vma->vm_start || end > vma->vm_end) { |
1691 | kleave(" = -EINVAL [superset]"); |
1692 | return -EINVAL; |
1693 | } |
1694 | if (start & ~PAGE_MASK) { |
1695 | kleave(" = -EINVAL [unaligned start]"); |
1696 | return -EINVAL; |
1697 | } |
1698 | if (end != vma->vm_end && end & ~PAGE_MASK) { |
1699 | kleave(" = -EINVAL [unaligned split]"); |
1700 | return -EINVAL; |
1701 | } |
1702 | if (start != vma->vm_start && end != vma->vm_end) { |
1703 | ret = split_vma(mm, vma, start, 1); |
1704 | if (ret < 0) { |
1705 | kleave(" = %d [split]", ret); |
1706 | return ret; |
1707 | } |
1708 | } |
1709 | return shrink_vma(mm, vma, start, end); |
1710 | } |
1711 | |
1712 | erase_whole_vma: |
1713 | delete_vma_from_mm(vma); |
1714 | delete_vma(mm, vma); |
1715 | kleave(" = 0"); |
1716 | return 0; |
1717 | } |
1718 | EXPORT_SYMBOL(do_munmap); |
1719 | |
1720 | int vm_munmap(unsigned long addr, size_t len) |
1721 | { |
1722 | struct mm_struct *mm = current->mm; |
1723 | int ret; |
1724 | |
1725 | down_write(&mm->mmap_sem); |
1726 | ret = do_munmap(mm, addr, len); |
1727 | up_write(&mm->mmap_sem); |
1728 | return ret; |
1729 | } |
1730 | EXPORT_SYMBOL(vm_munmap); |
1731 | |
1732 | SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len) |
1733 | { |
1734 | return vm_munmap(addr, len); |
1735 | } |
1736 | |
1737 | /* |
1738 | * release all the mappings made in a process's VM space |
1739 | */ |
1740 | void exit_mmap(struct mm_struct *mm) |
1741 | { |
1742 | struct vm_area_struct *vma; |
1743 | |
1744 | if (!mm) |
1745 | return; |
1746 | |
1747 | kenter(""); |
1748 | |
1749 | mm->total_vm = 0; |
1750 | |
1751 | while ((vma = mm->mmap)) { |
1752 | mm->mmap = vma->vm_next; |
1753 | delete_vma_from_mm(vma); |
1754 | delete_vma(mm, vma); |
1755 | cond_resched(); |
1756 | } |
1757 | |
1758 | kleave(""); |
1759 | } |
1760 | |
1761 | unsigned long vm_brk(unsigned long addr, unsigned long len) |
1762 | { |
1763 | return -ENOMEM; |
1764 | } |
1765 | |
1766 | /* |
1767 | * expand (or shrink) an existing mapping, potentially moving it at the same |
1768 | * time (controlled by the MREMAP_MAYMOVE flag and available VM space) |
1769 | * |
1770 | * under NOMMU conditions, we only permit changing a mapping's size, and only |
1771 | * as long as it stays within the region allocated by do_mmap_private() and the |
1772 | * block is not shareable |
1773 | * |
1774 | * MREMAP_FIXED is not supported under NOMMU conditions |
1775 | */ |
1776 | static unsigned long do_mremap(unsigned long addr, |
1777 | unsigned long old_len, unsigned long new_len, |
1778 | unsigned long flags, unsigned long new_addr) |
1779 | { |
1780 | struct vm_area_struct *vma; |
1781 | |
1782 | /* insanity checks first */ |
1783 | old_len = PAGE_ALIGN(old_len); |
1784 | new_len = PAGE_ALIGN(new_len); |
1785 | if (old_len == 0 || new_len == 0) |
1786 | return (unsigned long) -EINVAL; |
1787 | |
1788 | if (addr & ~PAGE_MASK) |
1789 | return -EINVAL; |
1790 | |
1791 | if (flags & MREMAP_FIXED && new_addr != addr) |
1792 | return (unsigned long) -EINVAL; |
1793 | |
1794 | vma = find_vma_exact(current->mm, addr, old_len); |
1795 | if (!vma) |
1796 | return (unsigned long) -EINVAL; |
1797 | |
1798 | if (vma->vm_end != vma->vm_start + old_len) |
1799 | return (unsigned long) -EFAULT; |
1800 | |
1801 | if (vma->vm_flags & VM_MAYSHARE) |
1802 | return (unsigned long) -EPERM; |
1803 | |
1804 | if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start) |
1805 | return (unsigned long) -ENOMEM; |
1806 | |
1807 | /* all checks complete - do it */ |
1808 | vma->vm_end = vma->vm_start + new_len; |
1809 | return vma->vm_start; |
1810 | } |
1811 | |
1812 | SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len, |
1813 | unsigned long, new_len, unsigned long, flags, |
1814 | unsigned long, new_addr) |
1815 | { |
1816 | unsigned long ret; |
1817 | |
1818 | down_write(¤t->mm->mmap_sem); |
1819 | ret = do_mremap(addr, old_len, new_len, flags, new_addr); |
1820 | up_write(¤t->mm->mmap_sem); |
1821 | return ret; |
1822 | } |
1823 | |
1824 | struct page *follow_page_mask(struct vm_area_struct *vma, |
1825 | unsigned long address, unsigned int flags, |
1826 | unsigned int *page_mask) |
1827 | { |
1828 | *page_mask = 0; |
1829 | return NULL; |
1830 | } |
1831 | |
1832 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1833 | unsigned long pfn, unsigned long size, pgprot_t prot) |
1834 | { |
1835 | if (addr != (pfn << PAGE_SHIFT)) |
1836 | return -EINVAL; |
1837 | |
1838 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1839 | return 0; |
1840 | } |
1841 | EXPORT_SYMBOL(remap_pfn_range); |
1842 | |
1843 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) |
1844 | { |
1845 | unsigned long pfn = start >> PAGE_SHIFT; |
1846 | unsigned long vm_len = vma->vm_end - vma->vm_start; |
1847 | |
1848 | pfn += vma->vm_pgoff; |
1849 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); |
1850 | } |
1851 | EXPORT_SYMBOL(vm_iomap_memory); |
1852 | |
1853 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, |
1854 | unsigned long pgoff) |
1855 | { |
1856 | unsigned int size = vma->vm_end - vma->vm_start; |
1857 | |
1858 | if (!(vma->vm_flags & VM_USERMAP)) |
1859 | return -EINVAL; |
1860 | |
1861 | vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT)); |
1862 | vma->vm_end = vma->vm_start + size; |
1863 | |
1864 | return 0; |
1865 | } |
1866 | EXPORT_SYMBOL(remap_vmalloc_range); |
1867 | |
1868 | unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr, |
1869 | unsigned long len, unsigned long pgoff, unsigned long flags) |
1870 | { |
1871 | return -ENOMEM; |
1872 | } |
1873 | |
1874 | void unmap_mapping_range(struct address_space *mapping, |
1875 | loff_t const holebegin, loff_t const holelen, |
1876 | int even_cows) |
1877 | { |
1878 | } |
1879 | EXPORT_SYMBOL(unmap_mapping_range); |
1880 | |
1881 | /* |
1882 | * Check that a process has enough memory to allocate a new virtual |
1883 | * mapping. 0 means there is enough memory for the allocation to |
1884 | * succeed and -ENOMEM implies there is not. |
1885 | * |
1886 | * We currently support three overcommit policies, which are set via the |
1887 | * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting |
1888 | * |
1889 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. |
1890 | * Additional code 2002 Jul 20 by Robert Love. |
1891 | * |
1892 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. |
1893 | * |
1894 | * Note this is a helper function intended to be used by LSMs which |
1895 | * wish to use this logic. |
1896 | */ |
1897 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) |
1898 | { |
1899 | unsigned long free, allowed, reserve; |
1900 | |
1901 | vm_acct_memory(pages); |
1902 | |
1903 | /* |
1904 | * Sometimes we want to use more memory than we have |
1905 | */ |
1906 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) |
1907 | return 0; |
1908 | |
1909 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { |
1910 | free = global_page_state(NR_FREE_PAGES); |
1911 | free += global_page_state(NR_FILE_PAGES); |
1912 | |
1913 | /* |
1914 | * shmem pages shouldn't be counted as free in this |
1915 | * case, they can't be purged, only swapped out, and |
1916 | * that won't affect the overall amount of available |
1917 | * memory in the system. |
1918 | */ |
1919 | free -= global_page_state(NR_SHMEM); |
1920 | |
1921 | free += get_nr_swap_pages(); |
1922 | |
1923 | /* |
1924 | * Any slabs which are created with the |
1925 | * SLAB_RECLAIM_ACCOUNT flag claim to have contents |
1926 | * which are reclaimable, under pressure. The dentry |
1927 | * cache and most inode caches should fall into this |
1928 | */ |
1929 | free += global_page_state(NR_SLAB_RECLAIMABLE); |
1930 | |
1931 | /* |
1932 | * Leave reserved pages. The pages are not for anonymous pages. |
1933 | */ |
1934 | if (free <= totalreserve_pages) |
1935 | goto error; |
1936 | else |
1937 | free -= totalreserve_pages; |
1938 | |
1939 | /* |
1940 | * Reserve some for root |
1941 | */ |
1942 | if (!cap_sys_admin) |
1943 | free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
1944 | |
1945 | if (free > pages) |
1946 | return 0; |
1947 | |
1948 | goto error; |
1949 | } |
1950 | |
1951 | allowed = totalram_pages * sysctl_overcommit_ratio / 100; |
1952 | /* |
1953 | * Reserve some 3% for root |
1954 | */ |
1955 | if (!cap_sys_admin) |
1956 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); |
1957 | allowed += total_swap_pages; |
1958 | |
1959 | /* |
1960 | * Don't let a single process grow so big a user can't recover |
1961 | */ |
1962 | if (mm) { |
1963 | reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
1964 | allowed -= min(mm->total_vm / 32, reserve); |
1965 | } |
1966 | |
1967 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) |
1968 | return 0; |
1969 | |
1970 | error: |
1971 | vm_unacct_memory(pages); |
1972 | |
1973 | return -ENOMEM; |
1974 | } |
1975 | |
1976 | int in_gate_area_no_mm(unsigned long addr) |
1977 | { |
1978 | return 0; |
1979 | } |
1980 | |
1981 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1982 | { |
1983 | BUG(); |
1984 | return 0; |
1985 | } |
1986 | EXPORT_SYMBOL(filemap_fault); |
1987 | |
1988 | int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr, |
1989 | unsigned long size, pgoff_t pgoff) |
1990 | { |
1991 | BUG(); |
1992 | return 0; |
1993 | } |
1994 | EXPORT_SYMBOL(generic_file_remap_pages); |
1995 | |
1996 | static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
1997 | unsigned long addr, void *buf, int len, int write) |
1998 | { |
1999 | struct vm_area_struct *vma; |
2000 | |
2001 | down_read(&mm->mmap_sem); |
2002 | |
2003 | /* the access must start within one of the target process's mappings */ |
2004 | vma = find_vma(mm, addr); |
2005 | if (vma) { |
2006 | /* don't overrun this mapping */ |
2007 | if (addr + len >= vma->vm_end) |
2008 | len = vma->vm_end - addr; |
2009 | |
2010 | /* only read or write mappings where it is permitted */ |
2011 | if (write && vma->vm_flags & VM_MAYWRITE) |
2012 | copy_to_user_page(vma, NULL, addr, |
2013 | (void *) addr, buf, len); |
2014 | else if (!write && vma->vm_flags & VM_MAYREAD) |
2015 | copy_from_user_page(vma, NULL, addr, |
2016 | buf, (void *) addr, len); |
2017 | else |
2018 | len = 0; |
2019 | } else { |
2020 | len = 0; |
2021 | } |
2022 | |
2023 | up_read(&mm->mmap_sem); |
2024 | |
2025 | return len; |
2026 | } |
2027 | |
2028 | /** |
2029 | * @access_remote_vm - access another process' address space |
2030 | * @mm: the mm_struct of the target address space |
2031 | * @addr: start address to access |
2032 | * @buf: source or destination buffer |
2033 | * @len: number of bytes to transfer |
2034 | * @write: whether the access is a write |
2035 | * |
2036 | * The caller must hold a reference on @mm. |
2037 | */ |
2038 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, |
2039 | void *buf, int len, int write) |
2040 | { |
2041 | return __access_remote_vm(NULL, mm, addr, buf, len, write); |
2042 | } |
2043 | |
2044 | /* |
2045 | * Access another process' address space. |
2046 | * - source/target buffer must be kernel space |
2047 | */ |
2048 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) |
2049 | { |
2050 | struct mm_struct *mm; |
2051 | |
2052 | if (addr + len < addr) |
2053 | return 0; |
2054 | |
2055 | mm = get_task_mm(tsk); |
2056 | if (!mm) |
2057 | return 0; |
2058 | |
2059 | len = __access_remote_vm(tsk, mm, addr, buf, len, write); |
2060 | |
2061 | mmput(mm); |
2062 | return len; |
2063 | } |
2064 | |
2065 | /** |
2066 | * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode |
2067 | * @inode: The inode to check |
2068 | * @size: The current filesize of the inode |
2069 | * @newsize: The proposed filesize of the inode |
2070 | * |
2071 | * Check the shared mappings on an inode on behalf of a shrinking truncate to |
2072 | * make sure that that any outstanding VMAs aren't broken and then shrink the |
2073 | * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't |
2074 | * automatically grant mappings that are too large. |
2075 | */ |
2076 | int nommu_shrink_inode_mappings(struct inode *inode, size_t size, |
2077 | size_t newsize) |
2078 | { |
2079 | struct vm_area_struct *vma; |
2080 | struct vm_region *region; |
2081 | pgoff_t low, high; |
2082 | size_t r_size, r_top; |
2083 | |
2084 | low = newsize >> PAGE_SHIFT; |
2085 | high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
2086 | |
2087 | down_write(&nommu_region_sem); |
2088 | mutex_lock(&inode->i_mapping->i_mmap_mutex); |
2089 | |
2090 | /* search for VMAs that fall within the dead zone */ |
2091 | vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) { |
2092 | /* found one - only interested if it's shared out of the page |
2093 | * cache */ |
2094 | if (vma->vm_flags & VM_SHARED) { |
2095 | mutex_unlock(&inode->i_mapping->i_mmap_mutex); |
2096 | up_write(&nommu_region_sem); |
2097 | return -ETXTBSY; /* not quite true, but near enough */ |
2098 | } |
2099 | } |
2100 | |
2101 | /* reduce any regions that overlap the dead zone - if in existence, |
2102 | * these will be pointed to by VMAs that don't overlap the dead zone |
2103 | * |
2104 | * we don't check for any regions that start beyond the EOF as there |
2105 | * shouldn't be any |
2106 | */ |
2107 | vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, |
2108 | 0, ULONG_MAX) { |
2109 | if (!(vma->vm_flags & VM_SHARED)) |
2110 | continue; |
2111 | |
2112 | region = vma->vm_region; |
2113 | r_size = region->vm_top - region->vm_start; |
2114 | r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size; |
2115 | |
2116 | if (r_top > newsize) { |
2117 | region->vm_top -= r_top - newsize; |
2118 | if (region->vm_end > region->vm_top) |
2119 | region->vm_end = region->vm_top; |
2120 | } |
2121 | } |
2122 | |
2123 | mutex_unlock(&inode->i_mapping->i_mmap_mutex); |
2124 | up_write(&nommu_region_sem); |
2125 | return 0; |
2126 | } |
2127 | |
2128 | /* |
2129 | * Initialise sysctl_user_reserve_kbytes. |
2130 | * |
2131 | * This is intended to prevent a user from starting a single memory hogging |
2132 | * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER |
2133 | * mode. |
2134 | * |
2135 | * The default value is min(3% of free memory, 128MB) |
2136 | * 128MB is enough to recover with sshd/login, bash, and top/kill. |
2137 | */ |
2138 | static int __meminit init_user_reserve(void) |
2139 | { |
2140 | unsigned long free_kbytes; |
2141 | |
2142 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); |
2143 | |
2144 | sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17); |
2145 | return 0; |
2146 | } |
2147 | module_init(init_user_reserve) |
2148 | |
2149 | /* |
2150 | * Initialise sysctl_admin_reserve_kbytes. |
2151 | * |
2152 | * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin |
2153 | * to log in and kill a memory hogging process. |
2154 | * |
2155 | * Systems with more than 256MB will reserve 8MB, enough to recover |
2156 | * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will |
2157 | * only reserve 3% of free pages by default. |
2158 | */ |
2159 | static int __meminit init_admin_reserve(void) |
2160 | { |
2161 | unsigned long free_kbytes; |
2162 | |
2163 | free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10); |
2164 | |
2165 | sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13); |
2166 | return 0; |
2167 | } |
2168 | module_init(init_admin_reserve) |
2169 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9