Root/mm/page-writeback.c

1/*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/export.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
25#include <linux/task_io_accounting_ops.h>
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
28#include <linux/rmap.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36#include <linux/pagevec.h>
37#include <linux/timer.h>
38#include <linux/sched/rt.h>
39#include <linux/mm_inline.h>
40#include <trace/events/writeback.h>
41
42#include "internal.h"
43
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
60#define RATELIMIT_CALC_SHIFT 10
61
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73int dirty_background_ratio = 10;
74
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
90int vm_dirty_ratio = 20;
91
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
98/*
99 * The interval between `kupdate'-style writebacks
100 */
101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105/*
106 * The longest time for which data is allowed to remain dirty
107 */
108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
125unsigned long global_dirty_limit;
126
127/*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
143static struct fprop_global writeout_completions;
144
145static void writeout_period(unsigned long t);
146/* Timer for aging of writeout_completions */
147static struct timer_list writeout_period_timer =
148        TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149static unsigned long writeout_period_time = 0;
150
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157
158/*
159 * Work out the current dirty-memory clamping and background writeout
160 * thresholds.
161 *
162 * The main aim here is to lower them aggressively if there is a lot of mapped
163 * memory around. To avoid stressing page reclaim with lots of unreclaimable
164 * pages. It is better to clamp down on writers than to start swapping, and
165 * performing lots of scanning.
166 *
167 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
168 *
169 * We don't permit the clamping level to fall below 5% - that is getting rather
170 * excessive.
171 *
172 * We make sure that the background writeout level is below the adjusted
173 * clamping level.
174 */
175
176/*
177 * In a memory zone, there is a certain amount of pages we consider
178 * available for the page cache, which is essentially the number of
179 * free and reclaimable pages, minus some zone reserves to protect
180 * lowmem and the ability to uphold the zone's watermarks without
181 * requiring writeback.
182 *
183 * This number of dirtyable pages is the base value of which the
184 * user-configurable dirty ratio is the effictive number of pages that
185 * are allowed to be actually dirtied. Per individual zone, or
186 * globally by using the sum of dirtyable pages over all zones.
187 *
188 * Because the user is allowed to specify the dirty limit globally as
189 * absolute number of bytes, calculating the per-zone dirty limit can
190 * require translating the configured limit into a percentage of
191 * global dirtyable memory first.
192 */
193
194static unsigned long highmem_dirtyable_memory(unsigned long total)
195{
196#ifdef CONFIG_HIGHMEM
197    int node;
198    unsigned long x = 0;
199
200    for_each_node_state(node, N_HIGH_MEMORY) {
201        struct zone *z =
202            &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
203
204        x += zone_page_state(z, NR_FREE_PAGES) +
205             zone_reclaimable_pages(z) - z->dirty_balance_reserve;
206    }
207    /*
208     * Unreclaimable memory (kernel memory or anonymous memory
209     * without swap) can bring down the dirtyable pages below
210     * the zone's dirty balance reserve and the above calculation
211     * will underflow. However we still want to add in nodes
212     * which are below threshold (negative values) to get a more
213     * accurate calculation but make sure that the total never
214     * underflows.
215     */
216    if ((long)x < 0)
217        x = 0;
218
219    /*
220     * Make sure that the number of highmem pages is never larger
221     * than the number of the total dirtyable memory. This can only
222     * occur in very strange VM situations but we want to make sure
223     * that this does not occur.
224     */
225    return min(x, total);
226#else
227    return 0;
228#endif
229}
230
231/**
232 * global_dirtyable_memory - number of globally dirtyable pages
233 *
234 * Returns the global number of pages potentially available for dirty
235 * page cache. This is the base value for the global dirty limits.
236 */
237static unsigned long global_dirtyable_memory(void)
238{
239    unsigned long x;
240
241    x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
242    x -= min(x, dirty_balance_reserve);
243
244    if (!vm_highmem_is_dirtyable)
245        x -= highmem_dirtyable_memory(x);
246
247    return x + 1; /* Ensure that we never return 0 */
248}
249
250/*
251 * global_dirty_limits - background-writeback and dirty-throttling thresholds
252 *
253 * Calculate the dirty thresholds based on sysctl parameters
254 * - vm.dirty_background_ratio or vm.dirty_background_bytes
255 * - vm.dirty_ratio or vm.dirty_bytes
256 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
257 * real-time tasks.
258 */
259void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
260{
261    unsigned long background;
262    unsigned long dirty;
263    unsigned long uninitialized_var(available_memory);
264    struct task_struct *tsk;
265
266    if (!vm_dirty_bytes || !dirty_background_bytes)
267        available_memory = global_dirtyable_memory();
268
269    if (vm_dirty_bytes)
270        dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271    else
272        dirty = (vm_dirty_ratio * available_memory) / 100;
273
274    if (dirty_background_bytes)
275        background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276    else
277        background = (dirty_background_ratio * available_memory) / 100;
278
279    if (background >= dirty)
280        background = dirty / 2;
281    tsk = current;
282    if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283        background += background / 4;
284        dirty += dirty / 4;
285    }
286    *pbackground = background;
287    *pdirty = dirty;
288    trace_global_dirty_state(background, dirty);
289}
290
291/**
292 * zone_dirtyable_memory - number of dirtyable pages in a zone
293 * @zone: the zone
294 *
295 * Returns the zone's number of pages potentially available for dirty
296 * page cache. This is the base value for the per-zone dirty limits.
297 */
298static unsigned long zone_dirtyable_memory(struct zone *zone)
299{
300    /*
301     * The effective global number of dirtyable pages may exclude
302     * highmem as a big-picture measure to keep the ratio between
303     * dirty memory and lowmem reasonable.
304     *
305     * But this function is purely about the individual zone and a
306     * highmem zone can hold its share of dirty pages, so we don't
307     * care about vm_highmem_is_dirtyable here.
308     */
309    unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
310        zone_reclaimable_pages(zone);
311
312    /* don't allow this to underflow */
313    nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
314    return nr_pages;
315}
316
317/**
318 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
319 * @zone: the zone
320 *
321 * Returns the maximum number of dirty pages allowed in a zone, based
322 * on the zone's dirtyable memory.
323 */
324static unsigned long zone_dirty_limit(struct zone *zone)
325{
326    unsigned long zone_memory = zone_dirtyable_memory(zone);
327    struct task_struct *tsk = current;
328    unsigned long dirty;
329
330    if (vm_dirty_bytes)
331        dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
332            zone_memory / global_dirtyable_memory();
333    else
334        dirty = vm_dirty_ratio * zone_memory / 100;
335
336    if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
337        dirty += dirty / 4;
338
339    return dirty;
340}
341
342/**
343 * zone_dirty_ok - tells whether a zone is within its dirty limits
344 * @zone: the zone to check
345 *
346 * Returns %true when the dirty pages in @zone are within the zone's
347 * dirty limit, %false if the limit is exceeded.
348 */
349bool zone_dirty_ok(struct zone *zone)
350{
351    unsigned long limit = zone_dirty_limit(zone);
352
353    return zone_page_state(zone, NR_FILE_DIRTY) +
354           zone_page_state(zone, NR_UNSTABLE_NFS) +
355           zone_page_state(zone, NR_WRITEBACK) <= limit;
356}
357
358int dirty_background_ratio_handler(struct ctl_table *table, int write,
359        void __user *buffer, size_t *lenp,
360        loff_t *ppos)
361{
362    int ret;
363
364    ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
365    if (ret == 0 && write)
366        dirty_background_bytes = 0;
367    return ret;
368}
369
370int dirty_background_bytes_handler(struct ctl_table *table, int write,
371        void __user *buffer, size_t *lenp,
372        loff_t *ppos)
373{
374    int ret;
375
376    ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
377    if (ret == 0 && write)
378        dirty_background_ratio = 0;
379    return ret;
380}
381
382int dirty_ratio_handler(struct ctl_table *table, int write,
383        void __user *buffer, size_t *lenp,
384        loff_t *ppos)
385{
386    int old_ratio = vm_dirty_ratio;
387    int ret;
388
389    ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
390    if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
391        writeback_set_ratelimit();
392        vm_dirty_bytes = 0;
393    }
394    return ret;
395}
396
397int dirty_bytes_handler(struct ctl_table *table, int write,
398        void __user *buffer, size_t *lenp,
399        loff_t *ppos)
400{
401    unsigned long old_bytes = vm_dirty_bytes;
402    int ret;
403
404    ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
405    if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
406        writeback_set_ratelimit();
407        vm_dirty_ratio = 0;
408    }
409    return ret;
410}
411
412static unsigned long wp_next_time(unsigned long cur_time)
413{
414    cur_time += VM_COMPLETIONS_PERIOD_LEN;
415    /* 0 has a special meaning... */
416    if (!cur_time)
417        return 1;
418    return cur_time;
419}
420
421/*
422 * Increment the BDI's writeout completion count and the global writeout
423 * completion count. Called from test_clear_page_writeback().
424 */
425static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
426{
427    __inc_bdi_stat(bdi, BDI_WRITTEN);
428    __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
429                   bdi->max_prop_frac);
430    /* First event after period switching was turned off? */
431    if (!unlikely(writeout_period_time)) {
432        /*
433         * We can race with other __bdi_writeout_inc calls here but
434         * it does not cause any harm since the resulting time when
435         * timer will fire and what is in writeout_period_time will be
436         * roughly the same.
437         */
438        writeout_period_time = wp_next_time(jiffies);
439        mod_timer(&writeout_period_timer, writeout_period_time);
440    }
441}
442
443void bdi_writeout_inc(struct backing_dev_info *bdi)
444{
445    unsigned long flags;
446
447    local_irq_save(flags);
448    __bdi_writeout_inc(bdi);
449    local_irq_restore(flags);
450}
451EXPORT_SYMBOL_GPL(bdi_writeout_inc);
452
453/*
454 * Obtain an accurate fraction of the BDI's portion.
455 */
456static void bdi_writeout_fraction(struct backing_dev_info *bdi,
457        long *numerator, long *denominator)
458{
459    fprop_fraction_percpu(&writeout_completions, &bdi->completions,
460                numerator, denominator);
461}
462
463/*
464 * On idle system, we can be called long after we scheduled because we use
465 * deferred timers so count with missed periods.
466 */
467static void writeout_period(unsigned long t)
468{
469    int miss_periods = (jiffies - writeout_period_time) /
470                         VM_COMPLETIONS_PERIOD_LEN;
471
472    if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
473        writeout_period_time = wp_next_time(writeout_period_time +
474                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
475        mod_timer(&writeout_period_timer, writeout_period_time);
476    } else {
477        /*
478         * Aging has zeroed all fractions. Stop wasting CPU on period
479         * updates.
480         */
481        writeout_period_time = 0;
482    }
483}
484
485/*
486 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
487 * registered backing devices, which, for obvious reasons, can not
488 * exceed 100%.
489 */
490static unsigned int bdi_min_ratio;
491
492int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
493{
494    int ret = 0;
495
496    spin_lock_bh(&bdi_lock);
497    if (min_ratio > bdi->max_ratio) {
498        ret = -EINVAL;
499    } else {
500        min_ratio -= bdi->min_ratio;
501        if (bdi_min_ratio + min_ratio < 100) {
502            bdi_min_ratio += min_ratio;
503            bdi->min_ratio += min_ratio;
504        } else {
505            ret = -EINVAL;
506        }
507    }
508    spin_unlock_bh(&bdi_lock);
509
510    return ret;
511}
512
513int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
514{
515    int ret = 0;
516
517    if (max_ratio > 100)
518        return -EINVAL;
519
520    spin_lock_bh(&bdi_lock);
521    if (bdi->min_ratio > max_ratio) {
522        ret = -EINVAL;
523    } else {
524        bdi->max_ratio = max_ratio;
525        bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
526    }
527    spin_unlock_bh(&bdi_lock);
528
529    return ret;
530}
531EXPORT_SYMBOL(bdi_set_max_ratio);
532
533static unsigned long dirty_freerun_ceiling(unsigned long thresh,
534                       unsigned long bg_thresh)
535{
536    return (thresh + bg_thresh) / 2;
537}
538
539static unsigned long hard_dirty_limit(unsigned long thresh)
540{
541    return max(thresh, global_dirty_limit);
542}
543
544/**
545 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
546 * @bdi: the backing_dev_info to query
547 * @dirty: global dirty limit in pages
548 *
549 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
550 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
551 *
552 * Note that balance_dirty_pages() will only seriously take it as a hard limit
553 * when sleeping max_pause per page is not enough to keep the dirty pages under
554 * control. For example, when the device is completely stalled due to some error
555 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
556 * In the other normal situations, it acts more gently by throttling the tasks
557 * more (rather than completely block them) when the bdi dirty pages go high.
558 *
559 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
560 * - starving fast devices
561 * - piling up dirty pages (that will take long time to sync) on slow devices
562 *
563 * The bdi's share of dirty limit will be adapting to its throughput and
564 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
565 */
566unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
567{
568    u64 bdi_dirty;
569    long numerator, denominator;
570
571    /*
572     * Calculate this BDI's share of the dirty ratio.
573     */
574    bdi_writeout_fraction(bdi, &numerator, &denominator);
575
576    bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
577    bdi_dirty *= numerator;
578    do_div(bdi_dirty, denominator);
579
580    bdi_dirty += (dirty * bdi->min_ratio) / 100;
581    if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
582        bdi_dirty = dirty * bdi->max_ratio / 100;
583
584    return bdi_dirty;
585}
586
587/*
588 * setpoint - dirty 3
589 * f(dirty) := 1.0 + (----------------)
590 * limit - setpoint
591 *
592 * it's a 3rd order polynomial that subjects to
593 *
594 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
595 * (2) f(setpoint) = 1.0 => the balance point
596 * (3) f(limit) = 0 => the hard limit
597 * (4) df/dx <= 0 => negative feedback control
598 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
599 * => fast response on large errors; small oscillation near setpoint
600 */
601static inline long long pos_ratio_polynom(unsigned long setpoint,
602                      unsigned long dirty,
603                      unsigned long limit)
604{
605    long long pos_ratio;
606    long x;
607
608    x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
609            limit - setpoint + 1);
610    pos_ratio = x;
611    pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
612    pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
613    pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
614
615    return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
616}
617
618/*
619 * Dirty position control.
620 *
621 * (o) global/bdi setpoints
622 *
623 * We want the dirty pages be balanced around the global/bdi setpoints.
624 * When the number of dirty pages is higher/lower than the setpoint, the
625 * dirty position control ratio (and hence task dirty ratelimit) will be
626 * decreased/increased to bring the dirty pages back to the setpoint.
627 *
628 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
629 *
630 * if (dirty < setpoint) scale up pos_ratio
631 * if (dirty > setpoint) scale down pos_ratio
632 *
633 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
634 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
635 *
636 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
637 *
638 * (o) global control line
639 *
640 * ^ pos_ratio
641 * |
642 * | |<===== global dirty control scope ======>|
643 * 2.0 .............*
644 * | .*
645 * | . *
646 * | . *
647 * | . *
648 * | . *
649 * | . *
650 * 1.0 ................................*
651 * | . . *
652 * | . . *
653 * | . . *
654 * | . . *
655 * | . . *
656 * 0 +------------.------------------.----------------------*------------->
657 * freerun^ setpoint^ limit^ dirty pages
658 *
659 * (o) bdi control line
660 *
661 * ^ pos_ratio
662 * |
663 * | *
664 * | *
665 * | *
666 * | *
667 * | * |<=========== span ============>|
668 * 1.0 .......................*
669 * | . *
670 * | . *
671 * | . *
672 * | . *
673 * | . *
674 * | . *
675 * | . *
676 * | . *
677 * | . *
678 * | . *
679 * | . *
680 * 1/4 ...............................................* * * * * * * * * * * *
681 * | . .
682 * | . .
683 * | . .
684 * 0 +----------------------.-------------------------------.------------->
685 * bdi_setpoint^ x_intercept^
686 *
687 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
688 * be smoothly throttled down to normal if it starts high in situations like
689 * - start writing to a slow SD card and a fast disk at the same time. The SD
690 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
691 * - the bdi dirty thresh drops quickly due to change of JBOD workload
692 */
693static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
694                    unsigned long thresh,
695                    unsigned long bg_thresh,
696                    unsigned long dirty,
697                    unsigned long bdi_thresh,
698                    unsigned long bdi_dirty)
699{
700    unsigned long write_bw = bdi->avg_write_bandwidth;
701    unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
702    unsigned long limit = hard_dirty_limit(thresh);
703    unsigned long x_intercept;
704    unsigned long setpoint; /* dirty pages' target balance point */
705    unsigned long bdi_setpoint;
706    unsigned long span;
707    long long pos_ratio; /* for scaling up/down the rate limit */
708    long x;
709
710    if (unlikely(dirty >= limit))
711        return 0;
712
713    /*
714     * global setpoint
715     *
716     * See comment for pos_ratio_polynom().
717     */
718    setpoint = (freerun + limit) / 2;
719    pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
720
721    /*
722     * The strictlimit feature is a tool preventing mistrusted filesystems
723     * from growing a large number of dirty pages before throttling. For
724     * such filesystems balance_dirty_pages always checks bdi counters
725     * against bdi limits. Even if global "nr_dirty" is under "freerun".
726     * This is especially important for fuse which sets bdi->max_ratio to
727     * 1% by default. Without strictlimit feature, fuse writeback may
728     * consume arbitrary amount of RAM because it is accounted in
729     * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
730     *
731     * Here, in bdi_position_ratio(), we calculate pos_ratio based on
732     * two values: bdi_dirty and bdi_thresh. Let's consider an example:
733     * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
734     * limits are set by default to 10% and 20% (background and throttle).
735     * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
736     * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
737     * about ~6K pages (as the average of background and throttle bdi
738     * limits). The 3rd order polynomial will provide positive feedback if
739     * bdi_dirty is under bdi_setpoint and vice versa.
740     *
741     * Note, that we cannot use global counters in these calculations
742     * because we want to throttle process writing to a strictlimit BDI
743     * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
744     * in the example above).
745     */
746    if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
747        long long bdi_pos_ratio;
748        unsigned long bdi_bg_thresh;
749
750        if (bdi_dirty < 8)
751            return min_t(long long, pos_ratio * 2,
752                     2 << RATELIMIT_CALC_SHIFT);
753
754        if (bdi_dirty >= bdi_thresh)
755            return 0;
756
757        bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
758        bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
759                             bdi_bg_thresh);
760
761        if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
762            return 0;
763
764        bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
765                          bdi_thresh);
766
767        /*
768         * Typically, for strictlimit case, bdi_setpoint << setpoint
769         * and pos_ratio >> bdi_pos_ratio. In the other words global
770         * state ("dirty") is not limiting factor and we have to
771         * make decision based on bdi counters. But there is an
772         * important case when global pos_ratio should get precedence:
773         * global limits are exceeded (e.g. due to activities on other
774         * BDIs) while given strictlimit BDI is below limit.
775         *
776         * "pos_ratio * bdi_pos_ratio" would work for the case above,
777         * but it would look too non-natural for the case of all
778         * activity in the system coming from a single strictlimit BDI
779         * with bdi->max_ratio == 100%.
780         *
781         * Note that min() below somewhat changes the dynamics of the
782         * control system. Normally, pos_ratio value can be well over 3
783         * (when globally we are at freerun and bdi is well below bdi
784         * setpoint). Now the maximum pos_ratio in the same situation
785         * is 2. We might want to tweak this if we observe the control
786         * system is too slow to adapt.
787         */
788        return min(pos_ratio, bdi_pos_ratio);
789    }
790
791    /*
792     * We have computed basic pos_ratio above based on global situation. If
793     * the bdi is over/under its share of dirty pages, we want to scale
794     * pos_ratio further down/up. That is done by the following mechanism.
795     */
796
797    /*
798     * bdi setpoint
799     *
800     * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
801     *
802     * x_intercept - bdi_dirty
803     * := --------------------------
804     * x_intercept - bdi_setpoint
805     *
806     * The main bdi control line is a linear function that subjects to
807     *
808     * (1) f(bdi_setpoint) = 1.0
809     * (2) k = - 1 / (8 * write_bw) (in single bdi case)
810     * or equally: x_intercept = bdi_setpoint + 8 * write_bw
811     *
812     * For single bdi case, the dirty pages are observed to fluctuate
813     * regularly within range
814     * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
815     * for various filesystems, where (2) can yield in a reasonable 12.5%
816     * fluctuation range for pos_ratio.
817     *
818     * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
819     * own size, so move the slope over accordingly and choose a slope that
820     * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
821     */
822    if (unlikely(bdi_thresh > thresh))
823        bdi_thresh = thresh;
824    /*
825     * It's very possible that bdi_thresh is close to 0 not because the
826     * device is slow, but that it has remained inactive for long time.
827     * Honour such devices a reasonable good (hopefully IO efficient)
828     * threshold, so that the occasional writes won't be blocked and active
829     * writes can rampup the threshold quickly.
830     */
831    bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
832    /*
833     * scale global setpoint to bdi's:
834     * bdi_setpoint = setpoint * bdi_thresh / thresh
835     */
836    x = div_u64((u64)bdi_thresh << 16, thresh + 1);
837    bdi_setpoint = setpoint * (u64)x >> 16;
838    /*
839     * Use span=(8*write_bw) in single bdi case as indicated by
840     * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
841     *
842     * bdi_thresh thresh - bdi_thresh
843     * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
844     * thresh thresh
845     */
846    span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
847    x_intercept = bdi_setpoint + span;
848
849    if (bdi_dirty < x_intercept - span / 4) {
850        pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
851                    x_intercept - bdi_setpoint + 1);
852    } else
853        pos_ratio /= 4;
854
855    /*
856     * bdi reserve area, safeguard against dirty pool underrun and disk idle
857     * It may push the desired control point of global dirty pages higher
858     * than setpoint.
859     */
860    x_intercept = bdi_thresh / 2;
861    if (bdi_dirty < x_intercept) {
862        if (bdi_dirty > x_intercept / 8)
863            pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
864        else
865            pos_ratio *= 8;
866    }
867
868    return pos_ratio;
869}
870
871static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
872                       unsigned long elapsed,
873                       unsigned long written)
874{
875    const unsigned long period = roundup_pow_of_two(3 * HZ);
876    unsigned long avg = bdi->avg_write_bandwidth;
877    unsigned long old = bdi->write_bandwidth;
878    u64 bw;
879
880    /*
881     * bw = written * HZ / elapsed
882     *
883     * bw * elapsed + write_bandwidth * (period - elapsed)
884     * write_bandwidth = ---------------------------------------------------
885     * period
886     */
887    bw = written - bdi->written_stamp;
888    bw *= HZ;
889    if (unlikely(elapsed > period)) {
890        do_div(bw, elapsed);
891        avg = bw;
892        goto out;
893    }
894    bw += (u64)bdi->write_bandwidth * (period - elapsed);
895    bw >>= ilog2(period);
896
897    /*
898     * one more level of smoothing, for filtering out sudden spikes
899     */
900    if (avg > old && old >= (unsigned long)bw)
901        avg -= (avg - old) >> 3;
902
903    if (avg < old && old <= (unsigned long)bw)
904        avg += (old - avg) >> 3;
905
906out:
907    bdi->write_bandwidth = bw;
908    bdi->avg_write_bandwidth = avg;
909}
910
911/*
912 * The global dirtyable memory and dirty threshold could be suddenly knocked
913 * down by a large amount (eg. on the startup of KVM in a swapless system).
914 * This may throw the system into deep dirty exceeded state and throttle
915 * heavy/light dirtiers alike. To retain good responsiveness, maintain
916 * global_dirty_limit for tracking slowly down to the knocked down dirty
917 * threshold.
918 */
919static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
920{
921    unsigned long limit = global_dirty_limit;
922
923    /*
924     * Follow up in one step.
925     */
926    if (limit < thresh) {
927        limit = thresh;
928        goto update;
929    }
930
931    /*
932     * Follow down slowly. Use the higher one as the target, because thresh
933     * may drop below dirty. This is exactly the reason to introduce
934     * global_dirty_limit which is guaranteed to lie above the dirty pages.
935     */
936    thresh = max(thresh, dirty);
937    if (limit > thresh) {
938        limit -= (limit - thresh) >> 5;
939        goto update;
940    }
941    return;
942update:
943    global_dirty_limit = limit;
944}
945
946static void global_update_bandwidth(unsigned long thresh,
947                    unsigned long dirty,
948                    unsigned long now)
949{
950    static DEFINE_SPINLOCK(dirty_lock);
951    static unsigned long update_time;
952
953    /*
954     * check locklessly first to optimize away locking for the most time
955     */
956    if (time_before(now, update_time + BANDWIDTH_INTERVAL))
957        return;
958
959    spin_lock(&dirty_lock);
960    if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
961        update_dirty_limit(thresh, dirty);
962        update_time = now;
963    }
964    spin_unlock(&dirty_lock);
965}
966
967/*
968 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
969 *
970 * Normal bdi tasks will be curbed at or below it in long term.
971 * Obviously it should be around (write_bw / N) when there are N dd tasks.
972 */
973static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
974                       unsigned long thresh,
975                       unsigned long bg_thresh,
976                       unsigned long dirty,
977                       unsigned long bdi_thresh,
978                       unsigned long bdi_dirty,
979                       unsigned long dirtied,
980                       unsigned long elapsed)
981{
982    unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
983    unsigned long limit = hard_dirty_limit(thresh);
984    unsigned long setpoint = (freerun + limit) / 2;
985    unsigned long write_bw = bdi->avg_write_bandwidth;
986    unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
987    unsigned long dirty_rate;
988    unsigned long task_ratelimit;
989    unsigned long balanced_dirty_ratelimit;
990    unsigned long pos_ratio;
991    unsigned long step;
992    unsigned long x;
993
994    /*
995     * The dirty rate will match the writeout rate in long term, except
996     * when dirty pages are truncated by userspace or re-dirtied by FS.
997     */
998    dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
999
1000    pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
1001                       bdi_thresh, bdi_dirty);
1002    /*
1003     * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1004     */
1005    task_ratelimit = (u64)dirty_ratelimit *
1006                    pos_ratio >> RATELIMIT_CALC_SHIFT;
1007    task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1008
1009    /*
1010     * A linear estimation of the "balanced" throttle rate. The theory is,
1011     * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
1012     * dirty_rate will be measured to be (N * task_ratelimit). So the below
1013     * formula will yield the balanced rate limit (write_bw / N).
1014     *
1015     * Note that the expanded form is not a pure rate feedback:
1016     * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1017     * but also takes pos_ratio into account:
1018     * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1019     *
1020     * (1) is not realistic because pos_ratio also takes part in balancing
1021     * the dirty rate. Consider the state
1022     * pos_ratio = 0.5 (3)
1023     * rate = 2 * (write_bw / N) (4)
1024     * If (1) is used, it will stuck in that state! Because each dd will
1025     * be throttled at
1026     * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1027     * yielding
1028     * dirty_rate = N * task_ratelimit = write_bw (6)
1029     * put (6) into (1) we get
1030     * rate_(i+1) = rate_(i) (7)
1031     *
1032     * So we end up using (2) to always keep
1033     * rate_(i+1) ~= (write_bw / N) (8)
1034     * regardless of the value of pos_ratio. As long as (8) is satisfied,
1035     * pos_ratio is able to drive itself to 1.0, which is not only where
1036     * the dirty count meet the setpoint, but also where the slope of
1037     * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1038     */
1039    balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1040                       dirty_rate | 1);
1041    /*
1042     * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1043     */
1044    if (unlikely(balanced_dirty_ratelimit > write_bw))
1045        balanced_dirty_ratelimit = write_bw;
1046
1047    /*
1048     * We could safely do this and return immediately:
1049     *
1050     * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1051     *
1052     * However to get a more stable dirty_ratelimit, the below elaborated
1053     * code makes use of task_ratelimit to filter out singular points and
1054     * limit the step size.
1055     *
1056     * The below code essentially only uses the relative value of
1057     *
1058     * task_ratelimit - dirty_ratelimit
1059     * = (pos_ratio - 1) * dirty_ratelimit
1060     *
1061     * which reflects the direction and size of dirty position error.
1062     */
1063
1064    /*
1065     * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1066     * task_ratelimit is on the same side of dirty_ratelimit, too.
1067     * For example, when
1068     * - dirty_ratelimit > balanced_dirty_ratelimit
1069     * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1070     * lowering dirty_ratelimit will help meet both the position and rate
1071     * control targets. Otherwise, don't update dirty_ratelimit if it will
1072     * only help meet the rate target. After all, what the users ultimately
1073     * feel and care are stable dirty rate and small position error.
1074     *
1075     * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1076     * and filter out the singular points of balanced_dirty_ratelimit. Which
1077     * keeps jumping around randomly and can even leap far away at times
1078     * due to the small 200ms estimation period of dirty_rate (we want to
1079     * keep that period small to reduce time lags).
1080     */
1081    step = 0;
1082
1083    /*
1084     * For strictlimit case, calculations above were based on bdi counters
1085     * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1086     * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1087     * Hence, to calculate "step" properly, we have to use bdi_dirty as
1088     * "dirty" and bdi_setpoint as "setpoint".
1089     *
1090     * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1091     * it's possible that bdi_thresh is close to zero due to inactivity
1092     * of backing device (see the implementation of bdi_dirty_limit()).
1093     */
1094    if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1095        dirty = bdi_dirty;
1096        if (bdi_dirty < 8)
1097            setpoint = bdi_dirty + 1;
1098        else
1099            setpoint = (bdi_thresh +
1100                    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1101    }
1102
1103    if (dirty < setpoint) {
1104        x = min(bdi->balanced_dirty_ratelimit,
1105             min(balanced_dirty_ratelimit, task_ratelimit));
1106        if (dirty_ratelimit < x)
1107            step = x - dirty_ratelimit;
1108    } else {
1109        x = max(bdi->balanced_dirty_ratelimit,
1110             max(balanced_dirty_ratelimit, task_ratelimit));
1111        if (dirty_ratelimit > x)
1112            step = dirty_ratelimit - x;
1113    }
1114
1115    /*
1116     * Don't pursue 100% rate matching. It's impossible since the balanced
1117     * rate itself is constantly fluctuating. So decrease the track speed
1118     * when it gets close to the target. Helps eliminate pointless tremors.
1119     */
1120    step >>= dirty_ratelimit / (2 * step + 1);
1121    /*
1122     * Limit the tracking speed to avoid overshooting.
1123     */
1124    step = (step + 7) / 8;
1125
1126    if (dirty_ratelimit < balanced_dirty_ratelimit)
1127        dirty_ratelimit += step;
1128    else
1129        dirty_ratelimit -= step;
1130
1131    bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1132    bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1133
1134    trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1135}
1136
1137void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1138                unsigned long thresh,
1139                unsigned long bg_thresh,
1140                unsigned long dirty,
1141                unsigned long bdi_thresh,
1142                unsigned long bdi_dirty,
1143                unsigned long start_time)
1144{
1145    unsigned long now = jiffies;
1146    unsigned long elapsed = now - bdi->bw_time_stamp;
1147    unsigned long dirtied;
1148    unsigned long written;
1149
1150    /*
1151     * rate-limit, only update once every 200ms.
1152     */
1153    if (elapsed < BANDWIDTH_INTERVAL)
1154        return;
1155
1156    dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1157    written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1158
1159    /*
1160     * Skip quiet periods when disk bandwidth is under-utilized.
1161     * (at least 1s idle time between two flusher runs)
1162     */
1163    if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1164        goto snapshot;
1165
1166    if (thresh) {
1167        global_update_bandwidth(thresh, dirty, now);
1168        bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1169                       bdi_thresh, bdi_dirty,
1170                       dirtied, elapsed);
1171    }
1172    bdi_update_write_bandwidth(bdi, elapsed, written);
1173
1174snapshot:
1175    bdi->dirtied_stamp = dirtied;
1176    bdi->written_stamp = written;
1177    bdi->bw_time_stamp = now;
1178}
1179
1180static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1181                 unsigned long thresh,
1182                 unsigned long bg_thresh,
1183                 unsigned long dirty,
1184                 unsigned long bdi_thresh,
1185                 unsigned long bdi_dirty,
1186                 unsigned long start_time)
1187{
1188    if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1189        return;
1190    spin_lock(&bdi->wb.list_lock);
1191    __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1192                   bdi_thresh, bdi_dirty, start_time);
1193    spin_unlock(&bdi->wb.list_lock);
1194}
1195
1196/*
1197 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1198 * will look to see if it needs to start dirty throttling.
1199 *
1200 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1201 * global_page_state() too often. So scale it near-sqrt to the safety margin
1202 * (the number of pages we may dirty without exceeding the dirty limits).
1203 */
1204static unsigned long dirty_poll_interval(unsigned long dirty,
1205                     unsigned long thresh)
1206{
1207    if (thresh > dirty)
1208        return 1UL << (ilog2(thresh - dirty) >> 1);
1209
1210    return 1;
1211}
1212
1213static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1214                   unsigned long bdi_dirty)
1215{
1216    unsigned long bw = bdi->avg_write_bandwidth;
1217    unsigned long t;
1218
1219    /*
1220     * Limit pause time for small memory systems. If sleeping for too long
1221     * time, a small pool of dirty/writeback pages may go empty and disk go
1222     * idle.
1223     *
1224     * 8 serves as the safety ratio.
1225     */
1226    t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1227    t++;
1228
1229    return min_t(unsigned long, t, MAX_PAUSE);
1230}
1231
1232static long bdi_min_pause(struct backing_dev_info *bdi,
1233              long max_pause,
1234              unsigned long task_ratelimit,
1235              unsigned long dirty_ratelimit,
1236              int *nr_dirtied_pause)
1237{
1238    long hi = ilog2(bdi->avg_write_bandwidth);
1239    long lo = ilog2(bdi->dirty_ratelimit);
1240    long t; /* target pause */
1241    long pause; /* estimated next pause */
1242    int pages; /* target nr_dirtied_pause */
1243
1244    /* target for 10ms pause on 1-dd case */
1245    t = max(1, HZ / 100);
1246
1247    /*
1248     * Scale up pause time for concurrent dirtiers in order to reduce CPU
1249     * overheads.
1250     *
1251     * (N * 10ms) on 2^N concurrent tasks.
1252     */
1253    if (hi > lo)
1254        t += (hi - lo) * (10 * HZ) / 1024;
1255
1256    /*
1257     * This is a bit convoluted. We try to base the next nr_dirtied_pause
1258     * on the much more stable dirty_ratelimit. However the next pause time
1259     * will be computed based on task_ratelimit and the two rate limits may
1260     * depart considerably at some time. Especially if task_ratelimit goes
1261     * below dirty_ratelimit/2 and the target pause is max_pause, the next
1262     * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1263     * result task_ratelimit won't be executed faithfully, which could
1264     * eventually bring down dirty_ratelimit.
1265     *
1266     * We apply two rules to fix it up:
1267     * 1) try to estimate the next pause time and if necessary, use a lower
1268     * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1269     * nr_dirtied_pause will be "dancing" with task_ratelimit.
1270     * 2) limit the target pause time to max_pause/2, so that the normal
1271     * small fluctuations of task_ratelimit won't trigger rule (1) and
1272     * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1273     */
1274    t = min(t, 1 + max_pause / 2);
1275    pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1276
1277    /*
1278     * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1279     * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1280     * When the 16 consecutive reads are often interrupted by some dirty
1281     * throttling pause during the async writes, cfq will go into idles
1282     * (deadline is fine). So push nr_dirtied_pause as high as possible
1283     * until reaches DIRTY_POLL_THRESH=32 pages.
1284     */
1285    if (pages < DIRTY_POLL_THRESH) {
1286        t = max_pause;
1287        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1288        if (pages > DIRTY_POLL_THRESH) {
1289            pages = DIRTY_POLL_THRESH;
1290            t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1291        }
1292    }
1293
1294    pause = HZ * pages / (task_ratelimit + 1);
1295    if (pause > max_pause) {
1296        t = max_pause;
1297        pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1298    }
1299
1300    *nr_dirtied_pause = pages;
1301    /*
1302     * The minimal pause time will normally be half the target pause time.
1303     */
1304    return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1305}
1306
1307static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1308                    unsigned long dirty_thresh,
1309                    unsigned long background_thresh,
1310                    unsigned long *bdi_dirty,
1311                    unsigned long *bdi_thresh,
1312                    unsigned long *bdi_bg_thresh)
1313{
1314    unsigned long bdi_reclaimable;
1315
1316    /*
1317     * bdi_thresh is not treated as some limiting factor as
1318     * dirty_thresh, due to reasons
1319     * - in JBOD setup, bdi_thresh can fluctuate a lot
1320     * - in a system with HDD and USB key, the USB key may somehow
1321     * go into state (bdi_dirty >> bdi_thresh) either because
1322     * bdi_dirty starts high, or because bdi_thresh drops low.
1323     * In this case we don't want to hard throttle the USB key
1324     * dirtiers for 100 seconds until bdi_dirty drops under
1325     * bdi_thresh. Instead the auxiliary bdi control line in
1326     * bdi_position_ratio() will let the dirtier task progress
1327     * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1328     */
1329    *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1330
1331    if (bdi_bg_thresh)
1332        *bdi_bg_thresh = div_u64((u64)*bdi_thresh *
1333                     background_thresh,
1334                     dirty_thresh);
1335
1336    /*
1337     * In order to avoid the stacked BDI deadlock we need
1338     * to ensure we accurately count the 'dirty' pages when
1339     * the threshold is low.
1340     *
1341     * Otherwise it would be possible to get thresh+n pages
1342     * reported dirty, even though there are thresh-m pages
1343     * actually dirty; with m+n sitting in the percpu
1344     * deltas.
1345     */
1346    if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1347        bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1348        *bdi_dirty = bdi_reclaimable +
1349            bdi_stat_sum(bdi, BDI_WRITEBACK);
1350    } else {
1351        bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1352        *bdi_dirty = bdi_reclaimable +
1353            bdi_stat(bdi, BDI_WRITEBACK);
1354    }
1355}
1356
1357/*
1358 * balance_dirty_pages() must be called by processes which are generating dirty
1359 * data. It looks at the number of dirty pages in the machine and will force
1360 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1361 * If we're over `background_thresh' then the writeback threads are woken to
1362 * perform some writeout.
1363 */
1364static void balance_dirty_pages(struct address_space *mapping,
1365                unsigned long pages_dirtied)
1366{
1367    unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1368    unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1369    unsigned long background_thresh;
1370    unsigned long dirty_thresh;
1371    long period;
1372    long pause;
1373    long max_pause;
1374    long min_pause;
1375    int nr_dirtied_pause;
1376    bool dirty_exceeded = false;
1377    unsigned long task_ratelimit;
1378    unsigned long dirty_ratelimit;
1379    unsigned long pos_ratio;
1380    struct backing_dev_info *bdi = mapping->backing_dev_info;
1381    bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1382    unsigned long start_time = jiffies;
1383
1384    for (;;) {
1385        unsigned long now = jiffies;
1386        unsigned long uninitialized_var(bdi_thresh);
1387        unsigned long thresh;
1388        unsigned long uninitialized_var(bdi_dirty);
1389        unsigned long dirty;
1390        unsigned long bg_thresh;
1391
1392        /*
1393         * Unstable writes are a feature of certain networked
1394         * filesystems (i.e. NFS) in which data may have been
1395         * written to the server's write cache, but has not yet
1396         * been flushed to permanent storage.
1397         */
1398        nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1399                    global_page_state(NR_UNSTABLE_NFS);
1400        nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1401
1402        global_dirty_limits(&background_thresh, &dirty_thresh);
1403
1404        if (unlikely(strictlimit)) {
1405            bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1406                     &bdi_dirty, &bdi_thresh, &bg_thresh);
1407
1408            dirty = bdi_dirty;
1409            thresh = bdi_thresh;
1410        } else {
1411            dirty = nr_dirty;
1412            thresh = dirty_thresh;
1413            bg_thresh = background_thresh;
1414        }
1415
1416        /*
1417         * Throttle it only when the background writeback cannot
1418         * catch-up. This avoids (excessively) small writeouts
1419         * when the bdi limits are ramping up in case of !strictlimit.
1420         *
1421         * In strictlimit case make decision based on the bdi counters
1422         * and limits. Small writeouts when the bdi limits are ramping
1423         * up are the price we consciously pay for strictlimit-ing.
1424         */
1425        if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1426            current->dirty_paused_when = now;
1427            current->nr_dirtied = 0;
1428            current->nr_dirtied_pause =
1429                dirty_poll_interval(dirty, thresh);
1430            break;
1431        }
1432
1433        if (unlikely(!writeback_in_progress(bdi)))
1434            bdi_start_background_writeback(bdi);
1435
1436        if (!strictlimit)
1437            bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1438                     &bdi_dirty, &bdi_thresh, NULL);
1439
1440        dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1441                 ((nr_dirty > dirty_thresh) || strictlimit);
1442        if (dirty_exceeded && !bdi->dirty_exceeded)
1443            bdi->dirty_exceeded = 1;
1444
1445        bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1446                     nr_dirty, bdi_thresh, bdi_dirty,
1447                     start_time);
1448
1449        dirty_ratelimit = bdi->dirty_ratelimit;
1450        pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1451                           background_thresh, nr_dirty,
1452                           bdi_thresh, bdi_dirty);
1453        task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1454                            RATELIMIT_CALC_SHIFT;
1455        max_pause = bdi_max_pause(bdi, bdi_dirty);
1456        min_pause = bdi_min_pause(bdi, max_pause,
1457                      task_ratelimit, dirty_ratelimit,
1458                      &nr_dirtied_pause);
1459
1460        if (unlikely(task_ratelimit == 0)) {
1461            period = max_pause;
1462            pause = max_pause;
1463            goto pause;
1464        }
1465        period = HZ * pages_dirtied / task_ratelimit;
1466        pause = period;
1467        if (current->dirty_paused_when)
1468            pause -= now - current->dirty_paused_when;
1469        /*
1470         * For less than 1s think time (ext3/4 may block the dirtier
1471         * for up to 800ms from time to time on 1-HDD; so does xfs,
1472         * however at much less frequency), try to compensate it in
1473         * future periods by updating the virtual time; otherwise just
1474         * do a reset, as it may be a light dirtier.
1475         */
1476        if (pause < min_pause) {
1477            trace_balance_dirty_pages(bdi,
1478                          dirty_thresh,
1479                          background_thresh,
1480                          nr_dirty,
1481                          bdi_thresh,
1482                          bdi_dirty,
1483                          dirty_ratelimit,
1484                          task_ratelimit,
1485                          pages_dirtied,
1486                          period,
1487                          min(pause, 0L),
1488                          start_time);
1489            if (pause < -HZ) {
1490                current->dirty_paused_when = now;
1491                current->nr_dirtied = 0;
1492            } else if (period) {
1493                current->dirty_paused_when += period;
1494                current->nr_dirtied = 0;
1495            } else if (current->nr_dirtied_pause <= pages_dirtied)
1496                current->nr_dirtied_pause += pages_dirtied;
1497            break;
1498        }
1499        if (unlikely(pause > max_pause)) {
1500            /* for occasional dropped task_ratelimit */
1501            now += min(pause - max_pause, max_pause);
1502            pause = max_pause;
1503        }
1504
1505pause:
1506        trace_balance_dirty_pages(bdi,
1507                      dirty_thresh,
1508                      background_thresh,
1509                      nr_dirty,
1510                      bdi_thresh,
1511                      bdi_dirty,
1512                      dirty_ratelimit,
1513                      task_ratelimit,
1514                      pages_dirtied,
1515                      period,
1516                      pause,
1517                      start_time);
1518        __set_current_state(TASK_KILLABLE);
1519        io_schedule_timeout(pause);
1520
1521        current->dirty_paused_when = now + pause;
1522        current->nr_dirtied = 0;
1523        current->nr_dirtied_pause = nr_dirtied_pause;
1524
1525        /*
1526         * This is typically equal to (nr_dirty < dirty_thresh) and can
1527         * also keep "1000+ dd on a slow USB stick" under control.
1528         */
1529        if (task_ratelimit)
1530            break;
1531
1532        /*
1533         * In the case of an unresponding NFS server and the NFS dirty
1534         * pages exceeds dirty_thresh, give the other good bdi's a pipe
1535         * to go through, so that tasks on them still remain responsive.
1536         *
1537         * In theory 1 page is enough to keep the comsumer-producer
1538         * pipe going: the flusher cleans 1 page => the task dirties 1
1539         * more page. However bdi_dirty has accounting errors. So use
1540         * the larger and more IO friendly bdi_stat_error.
1541         */
1542        if (bdi_dirty <= bdi_stat_error(bdi))
1543            break;
1544
1545        if (fatal_signal_pending(current))
1546            break;
1547    }
1548
1549    if (!dirty_exceeded && bdi->dirty_exceeded)
1550        bdi->dirty_exceeded = 0;
1551
1552    if (writeback_in_progress(bdi))
1553        return;
1554
1555    /*
1556     * In laptop mode, we wait until hitting the higher threshold before
1557     * starting background writeout, and then write out all the way down
1558     * to the lower threshold. So slow writers cause minimal disk activity.
1559     *
1560     * In normal mode, we start background writeout at the lower
1561     * background_thresh, to keep the amount of dirty memory low.
1562     */
1563    if (laptop_mode)
1564        return;
1565
1566    if (nr_reclaimable > background_thresh)
1567        bdi_start_background_writeback(bdi);
1568}
1569
1570void set_page_dirty_balance(struct page *page, int page_mkwrite)
1571{
1572    if (set_page_dirty(page) || page_mkwrite) {
1573        struct address_space *mapping = page_mapping(page);
1574
1575        if (mapping)
1576            balance_dirty_pages_ratelimited(mapping);
1577    }
1578}
1579
1580static DEFINE_PER_CPU(int, bdp_ratelimits);
1581
1582/*
1583 * Normal tasks are throttled by
1584 * loop {
1585 * dirty tsk->nr_dirtied_pause pages;
1586 * take a snap in balance_dirty_pages();
1587 * }
1588 * However there is a worst case. If every task exit immediately when dirtied
1589 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1590 * called to throttle the page dirties. The solution is to save the not yet
1591 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1592 * randomly into the running tasks. This works well for the above worst case,
1593 * as the new task will pick up and accumulate the old task's leaked dirty
1594 * count and eventually get throttled.
1595 */
1596DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1597
1598/**
1599 * balance_dirty_pages_ratelimited - balance dirty memory state
1600 * @mapping: address_space which was dirtied
1601 *
1602 * Processes which are dirtying memory should call in here once for each page
1603 * which was newly dirtied. The function will periodically check the system's
1604 * dirty state and will initiate writeback if needed.
1605 *
1606 * On really big machines, get_writeback_state is expensive, so try to avoid
1607 * calling it too often (ratelimiting). But once we're over the dirty memory
1608 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1609 * from overshooting the limit by (ratelimit_pages) each.
1610 */
1611void balance_dirty_pages_ratelimited(struct address_space *mapping)
1612{
1613    struct backing_dev_info *bdi = mapping->backing_dev_info;
1614    int ratelimit;
1615    int *p;
1616
1617    if (!bdi_cap_account_dirty(bdi))
1618        return;
1619
1620    ratelimit = current->nr_dirtied_pause;
1621    if (bdi->dirty_exceeded)
1622        ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1623
1624    preempt_disable();
1625    /*
1626     * This prevents one CPU to accumulate too many dirtied pages without
1627     * calling into balance_dirty_pages(), which can happen when there are
1628     * 1000+ tasks, all of them start dirtying pages at exactly the same
1629     * time, hence all honoured too large initial task->nr_dirtied_pause.
1630     */
1631    p = &__get_cpu_var(bdp_ratelimits);
1632    if (unlikely(current->nr_dirtied >= ratelimit))
1633        *p = 0;
1634    else if (unlikely(*p >= ratelimit_pages)) {
1635        *p = 0;
1636        ratelimit = 0;
1637    }
1638    /*
1639     * Pick up the dirtied pages by the exited tasks. This avoids lots of
1640     * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1641     * the dirty throttling and livelock other long-run dirtiers.
1642     */
1643    p = &__get_cpu_var(dirty_throttle_leaks);
1644    if (*p > 0 && current->nr_dirtied < ratelimit) {
1645        unsigned long nr_pages_dirtied;
1646        nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1647        *p -= nr_pages_dirtied;
1648        current->nr_dirtied += nr_pages_dirtied;
1649    }
1650    preempt_enable();
1651
1652    if (unlikely(current->nr_dirtied >= ratelimit))
1653        balance_dirty_pages(mapping, current->nr_dirtied);
1654}
1655EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1656
1657void throttle_vm_writeout(gfp_t gfp_mask)
1658{
1659    unsigned long background_thresh;
1660    unsigned long dirty_thresh;
1661
1662        for ( ; ; ) {
1663        global_dirty_limits(&background_thresh, &dirty_thresh);
1664        dirty_thresh = hard_dirty_limit(dirty_thresh);
1665
1666                /*
1667                 * Boost the allowable dirty threshold a bit for page
1668                 * allocators so they don't get DoS'ed by heavy writers
1669                 */
1670                dirty_thresh += dirty_thresh / 10; /* wheeee... */
1671
1672                if (global_page_state(NR_UNSTABLE_NFS) +
1673            global_page_state(NR_WRITEBACK) <= dirty_thresh)
1674                            break;
1675                congestion_wait(BLK_RW_ASYNC, HZ/10);
1676
1677        /*
1678         * The caller might hold locks which can prevent IO completion
1679         * or progress in the filesystem. So we cannot just sit here
1680         * waiting for IO to complete.
1681         */
1682        if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1683            break;
1684        }
1685}
1686
1687/*
1688 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1689 */
1690int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1691    void __user *buffer, size_t *length, loff_t *ppos)
1692{
1693    proc_dointvec(table, write, buffer, length, ppos);
1694    return 0;
1695}
1696
1697#ifdef CONFIG_BLOCK
1698void laptop_mode_timer_fn(unsigned long data)
1699{
1700    struct request_queue *q = (struct request_queue *)data;
1701    int nr_pages = global_page_state(NR_FILE_DIRTY) +
1702        global_page_state(NR_UNSTABLE_NFS);
1703
1704    /*
1705     * We want to write everything out, not just down to the dirty
1706     * threshold
1707     */
1708    if (bdi_has_dirty_io(&q->backing_dev_info))
1709        bdi_start_writeback(&q->backing_dev_info, nr_pages,
1710                    WB_REASON_LAPTOP_TIMER);
1711}
1712
1713/*
1714 * We've spun up the disk and we're in laptop mode: schedule writeback
1715 * of all dirty data a few seconds from now. If the flush is already scheduled
1716 * then push it back - the user is still using the disk.
1717 */
1718void laptop_io_completion(struct backing_dev_info *info)
1719{
1720    mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1721}
1722
1723/*
1724 * We're in laptop mode and we've just synced. The sync's writes will have
1725 * caused another writeback to be scheduled by laptop_io_completion.
1726 * Nothing needs to be written back anymore, so we unschedule the writeback.
1727 */
1728void laptop_sync_completion(void)
1729{
1730    struct backing_dev_info *bdi;
1731
1732    rcu_read_lock();
1733
1734    list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1735        del_timer(&bdi->laptop_mode_wb_timer);
1736
1737    rcu_read_unlock();
1738}
1739#endif
1740
1741/*
1742 * If ratelimit_pages is too high then we can get into dirty-data overload
1743 * if a large number of processes all perform writes at the same time.
1744 * If it is too low then SMP machines will call the (expensive)
1745 * get_writeback_state too often.
1746 *
1747 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1748 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1749 * thresholds.
1750 */
1751
1752void writeback_set_ratelimit(void)
1753{
1754    unsigned long background_thresh;
1755    unsigned long dirty_thresh;
1756    global_dirty_limits(&background_thresh, &dirty_thresh);
1757    global_dirty_limit = dirty_thresh;
1758    ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1759    if (ratelimit_pages < 16)
1760        ratelimit_pages = 16;
1761}
1762
1763static int
1764ratelimit_handler(struct notifier_block *self, unsigned long action,
1765          void *hcpu)
1766{
1767
1768    switch (action & ~CPU_TASKS_FROZEN) {
1769    case CPU_ONLINE:
1770    case CPU_DEAD:
1771        writeback_set_ratelimit();
1772        return NOTIFY_OK;
1773    default:
1774        return NOTIFY_DONE;
1775    }
1776}
1777
1778static struct notifier_block ratelimit_nb = {
1779    .notifier_call = ratelimit_handler,
1780    .next = NULL,
1781};
1782
1783/*
1784 * Called early on to tune the page writeback dirty limits.
1785 *
1786 * We used to scale dirty pages according to how total memory
1787 * related to pages that could be allocated for buffers (by
1788 * comparing nr_free_buffer_pages() to vm_total_pages.
1789 *
1790 * However, that was when we used "dirty_ratio" to scale with
1791 * all memory, and we don't do that any more. "dirty_ratio"
1792 * is now applied to total non-HIGHPAGE memory (by subtracting
1793 * totalhigh_pages from vm_total_pages), and as such we can't
1794 * get into the old insane situation any more where we had
1795 * large amounts of dirty pages compared to a small amount of
1796 * non-HIGHMEM memory.
1797 *
1798 * But we might still want to scale the dirty_ratio by how
1799 * much memory the box has..
1800 */
1801void __init page_writeback_init(void)
1802{
1803    writeback_set_ratelimit();
1804    register_cpu_notifier(&ratelimit_nb);
1805
1806    fprop_global_init(&writeout_completions);
1807}
1808
1809/**
1810 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1811 * @mapping: address space structure to write
1812 * @start: starting page index
1813 * @end: ending page index (inclusive)
1814 *
1815 * This function scans the page range from @start to @end (inclusive) and tags
1816 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1817 * that write_cache_pages (or whoever calls this function) will then use
1818 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1819 * used to avoid livelocking of writeback by a process steadily creating new
1820 * dirty pages in the file (thus it is important for this function to be quick
1821 * so that it can tag pages faster than a dirtying process can create them).
1822 */
1823/*
1824 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1825 */
1826void tag_pages_for_writeback(struct address_space *mapping,
1827                 pgoff_t start, pgoff_t end)
1828{
1829#define WRITEBACK_TAG_BATCH 4096
1830    unsigned long tagged;
1831
1832    do {
1833        spin_lock_irq(&mapping->tree_lock);
1834        tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1835                &start, end, WRITEBACK_TAG_BATCH,
1836                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1837        spin_unlock_irq(&mapping->tree_lock);
1838        WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1839        cond_resched();
1840        /* We check 'start' to handle wrapping when end == ~0UL */
1841    } while (tagged >= WRITEBACK_TAG_BATCH && start);
1842}
1843EXPORT_SYMBOL(tag_pages_for_writeback);
1844
1845/**
1846 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1849 * @writepage: function called for each page
1850 * @data: data passed to writepage function
1851 *
1852 * If a page is already under I/O, write_cache_pages() skips it, even
1853 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1854 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1855 * and msync() need to guarantee that all the data which was dirty at the time
1856 * the call was made get new I/O started against them. If wbc->sync_mode is
1857 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1858 * existing IO to complete.
1859 *
1860 * To avoid livelocks (when other process dirties new pages), we first tag
1861 * pages which should be written back with TOWRITE tag and only then start
1862 * writing them. For data-integrity sync we have to be careful so that we do
1863 * not miss some pages (e.g., because some other process has cleared TOWRITE
1864 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1865 * by the process clearing the DIRTY tag (and submitting the page for IO).
1866 */
1867int write_cache_pages(struct address_space *mapping,
1868              struct writeback_control *wbc, writepage_t writepage,
1869              void *data)
1870{
1871    int ret = 0;
1872    int done = 0;
1873    struct pagevec pvec;
1874    int nr_pages;
1875    pgoff_t uninitialized_var(writeback_index);
1876    pgoff_t index;
1877    pgoff_t end; /* Inclusive */
1878    pgoff_t done_index;
1879    int cycled;
1880    int range_whole = 0;
1881    int tag;
1882
1883    pagevec_init(&pvec, 0);
1884    if (wbc->range_cyclic) {
1885        writeback_index = mapping->writeback_index; /* prev offset */
1886        index = writeback_index;
1887        if (index == 0)
1888            cycled = 1;
1889        else
1890            cycled = 0;
1891        end = -1;
1892    } else {
1893        index = wbc->range_start >> PAGE_CACHE_SHIFT;
1894        end = wbc->range_end >> PAGE_CACHE_SHIFT;
1895        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1896            range_whole = 1;
1897        cycled = 1; /* ignore range_cyclic tests */
1898    }
1899    if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1900        tag = PAGECACHE_TAG_TOWRITE;
1901    else
1902        tag = PAGECACHE_TAG_DIRTY;
1903retry:
1904    if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1905        tag_pages_for_writeback(mapping, index, end);
1906    done_index = index;
1907    while (!done && (index <= end)) {
1908        int i;
1909
1910        nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1911                  min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1912        if (nr_pages == 0)
1913            break;
1914
1915        for (i = 0; i < nr_pages; i++) {
1916            struct page *page = pvec.pages[i];
1917
1918            /*
1919             * At this point, the page may be truncated or
1920             * invalidated (changing page->mapping to NULL), or
1921             * even swizzled back from swapper_space to tmpfs file
1922             * mapping. However, page->index will not change
1923             * because we have a reference on the page.
1924             */
1925            if (page->index > end) {
1926                /*
1927                 * can't be range_cyclic (1st pass) because
1928                 * end == -1 in that case.
1929                 */
1930                done = 1;
1931                break;
1932            }
1933
1934            done_index = page->index;
1935
1936            lock_page(page);
1937
1938            /*
1939             * Page truncated or invalidated. We can freely skip it
1940             * then, even for data integrity operations: the page
1941             * has disappeared concurrently, so there could be no
1942             * real expectation of this data interity operation
1943             * even if there is now a new, dirty page at the same
1944             * pagecache address.
1945             */
1946            if (unlikely(page->mapping != mapping)) {
1947continue_unlock:
1948                unlock_page(page);
1949                continue;
1950            }
1951
1952            if (!PageDirty(page)) {
1953                /* someone wrote it for us */
1954                goto continue_unlock;
1955            }
1956
1957            if (PageWriteback(page)) {
1958                if (wbc->sync_mode != WB_SYNC_NONE)
1959                    wait_on_page_writeback(page);
1960                else
1961                    goto continue_unlock;
1962            }
1963
1964            BUG_ON(PageWriteback(page));
1965            if (!clear_page_dirty_for_io(page))
1966                goto continue_unlock;
1967
1968            trace_wbc_writepage(wbc, mapping->backing_dev_info);
1969            ret = (*writepage)(page, wbc, data);
1970            if (unlikely(ret)) {
1971                if (ret == AOP_WRITEPAGE_ACTIVATE) {
1972                    unlock_page(page);
1973                    ret = 0;
1974                } else {
1975                    /*
1976                     * done_index is set past this page,
1977                     * so media errors will not choke
1978                     * background writeout for the entire
1979                     * file. This has consequences for
1980                     * range_cyclic semantics (ie. it may
1981                     * not be suitable for data integrity
1982                     * writeout).
1983                     */
1984                    done_index = page->index + 1;
1985                    done = 1;
1986                    break;
1987                }
1988            }
1989
1990            /*
1991             * We stop writing back only if we are not doing
1992             * integrity sync. In case of integrity sync we have to
1993             * keep going until we have written all the pages
1994             * we tagged for writeback prior to entering this loop.
1995             */
1996            if (--wbc->nr_to_write <= 0 &&
1997                wbc->sync_mode == WB_SYNC_NONE) {
1998                done = 1;
1999                break;
2000            }
2001        }
2002        pagevec_release(&pvec);
2003        cond_resched();
2004    }
2005    if (!cycled && !done) {
2006        /*
2007         * range_cyclic:
2008         * We hit the last page and there is more work to be done: wrap
2009         * back to the start of the file
2010         */
2011        cycled = 1;
2012        index = 0;
2013        end = writeback_index - 1;
2014        goto retry;
2015    }
2016    if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2017        mapping->writeback_index = done_index;
2018
2019    return ret;
2020}
2021EXPORT_SYMBOL(write_cache_pages);
2022
2023/*
2024 * Function used by generic_writepages to call the real writepage
2025 * function and set the mapping flags on error
2026 */
2027static int __writepage(struct page *page, struct writeback_control *wbc,
2028               void *data)
2029{
2030    struct address_space *mapping = data;
2031    int ret = mapping->a_ops->writepage(page, wbc);
2032    mapping_set_error(mapping, ret);
2033    return ret;
2034}
2035
2036/**
2037 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2038 * @mapping: address space structure to write
2039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2040 *
2041 * This is a library function, which implements the writepages()
2042 * address_space_operation.
2043 */
2044int generic_writepages(struct address_space *mapping,
2045               struct writeback_control *wbc)
2046{
2047    struct blk_plug plug;
2048    int ret;
2049
2050    /* deal with chardevs and other special file */
2051    if (!mapping->a_ops->writepage)
2052        return 0;
2053
2054    blk_start_plug(&plug);
2055    ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2056    blk_finish_plug(&plug);
2057    return ret;
2058}
2059
2060EXPORT_SYMBOL(generic_writepages);
2061
2062int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2063{
2064    int ret;
2065
2066    if (wbc->nr_to_write <= 0)
2067        return 0;
2068    if (mapping->a_ops->writepages)
2069        ret = mapping->a_ops->writepages(mapping, wbc);
2070    else
2071        ret = generic_writepages(mapping, wbc);
2072    return ret;
2073}
2074
2075/**
2076 * write_one_page - write out a single page and optionally wait on I/O
2077 * @page: the page to write
2078 * @wait: if true, wait on writeout
2079 *
2080 * The page must be locked by the caller and will be unlocked upon return.
2081 *
2082 * write_one_page() returns a negative error code if I/O failed.
2083 */
2084int write_one_page(struct page *page, int wait)
2085{
2086    struct address_space *mapping = page->mapping;
2087    int ret = 0;
2088    struct writeback_control wbc = {
2089        .sync_mode = WB_SYNC_ALL,
2090        .nr_to_write = 1,
2091    };
2092
2093    BUG_ON(!PageLocked(page));
2094
2095    if (wait)
2096        wait_on_page_writeback(page);
2097
2098    if (clear_page_dirty_for_io(page)) {
2099        page_cache_get(page);
2100        ret = mapping->a_ops->writepage(page, &wbc);
2101        if (ret == 0 && wait) {
2102            wait_on_page_writeback(page);
2103            if (PageError(page))
2104                ret = -EIO;
2105        }
2106        page_cache_release(page);
2107    } else {
2108        unlock_page(page);
2109    }
2110    return ret;
2111}
2112EXPORT_SYMBOL(write_one_page);
2113
2114/*
2115 * For address_spaces which do not use buffers nor write back.
2116 */
2117int __set_page_dirty_no_writeback(struct page *page)
2118{
2119    if (!PageDirty(page))
2120        return !TestSetPageDirty(page);
2121    return 0;
2122}
2123
2124/*
2125 * Helper function for set_page_dirty family.
2126 * NOTE: This relies on being atomic wrt interrupts.
2127 */
2128void account_page_dirtied(struct page *page, struct address_space *mapping)
2129{
2130    trace_writeback_dirty_page(page, mapping);
2131
2132    if (mapping_cap_account_dirty(mapping)) {
2133        __inc_zone_page_state(page, NR_FILE_DIRTY);
2134        __inc_zone_page_state(page, NR_DIRTIED);
2135        __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2136        __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2137        task_io_account_write(PAGE_CACHE_SIZE);
2138        current->nr_dirtied++;
2139        this_cpu_inc(bdp_ratelimits);
2140    }
2141}
2142EXPORT_SYMBOL(account_page_dirtied);
2143
2144/*
2145 * Helper function for set_page_writeback family.
2146 *
2147 * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2148 * while calling this function.
2149 * See test_set_page_writeback for example.
2150 *
2151 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2152 * wrt interrupts.
2153 */
2154void account_page_writeback(struct page *page)
2155{
2156    mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2157    inc_zone_page_state(page, NR_WRITEBACK);
2158}
2159EXPORT_SYMBOL(account_page_writeback);
2160
2161/*
2162 * For address_spaces which do not use buffers. Just tag the page as dirty in
2163 * its radix tree.
2164 *
2165 * This is also used when a single buffer is being dirtied: we want to set the
2166 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2167 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2168 *
2169 * Most callers have locked the page, which pins the address_space in memory.
2170 * But zap_pte_range() does not lock the page, however in that case the
2171 * mapping is pinned by the vma's ->vm_file reference.
2172 *
2173 * We take care to handle the case where the page was truncated from the
2174 * mapping by re-checking page_mapping() inside tree_lock.
2175 */
2176int __set_page_dirty_nobuffers(struct page *page)
2177{
2178    if (!TestSetPageDirty(page)) {
2179        struct address_space *mapping = page_mapping(page);
2180        struct address_space *mapping2;
2181
2182        if (!mapping)
2183            return 1;
2184
2185        spin_lock_irq(&mapping->tree_lock);
2186        mapping2 = page_mapping(page);
2187        if (mapping2) { /* Race with truncate? */
2188            BUG_ON(mapping2 != mapping);
2189            WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2190            account_page_dirtied(page, mapping);
2191            radix_tree_tag_set(&mapping->page_tree,
2192                page_index(page), PAGECACHE_TAG_DIRTY);
2193        }
2194        spin_unlock_irq(&mapping->tree_lock);
2195        if (mapping->host) {
2196            /* !PageAnon && !swapper_space */
2197            __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2198        }
2199        return 1;
2200    }
2201    return 0;
2202}
2203EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2204
2205/*
2206 * Call this whenever redirtying a page, to de-account the dirty counters
2207 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2208 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2209 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2210 * control.
2211 */
2212void account_page_redirty(struct page *page)
2213{
2214    struct address_space *mapping = page->mapping;
2215    if (mapping && mapping_cap_account_dirty(mapping)) {
2216        current->nr_dirtied--;
2217        dec_zone_page_state(page, NR_DIRTIED);
2218        dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2219    }
2220}
2221EXPORT_SYMBOL(account_page_redirty);
2222
2223/*
2224 * When a writepage implementation decides that it doesn't want to write this
2225 * page for some reason, it should redirty the locked page via
2226 * redirty_page_for_writepage() and it should then unlock the page and return 0
2227 */
2228int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2229{
2230    wbc->pages_skipped++;
2231    account_page_redirty(page);
2232    return __set_page_dirty_nobuffers(page);
2233}
2234EXPORT_SYMBOL(redirty_page_for_writepage);
2235
2236/*
2237 * Dirty a page.
2238 *
2239 * For pages with a mapping this should be done under the page lock
2240 * for the benefit of asynchronous memory errors who prefer a consistent
2241 * dirty state. This rule can be broken in some special cases,
2242 * but should be better not to.
2243 *
2244 * If the mapping doesn't provide a set_page_dirty a_op, then
2245 * just fall through and assume that it wants buffer_heads.
2246 */
2247int set_page_dirty(struct page *page)
2248{
2249    struct address_space *mapping = page_mapping(page);
2250
2251    if (likely(mapping)) {
2252        int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2253        /*
2254         * readahead/lru_deactivate_page could remain
2255         * PG_readahead/PG_reclaim due to race with end_page_writeback
2256         * About readahead, if the page is written, the flags would be
2257         * reset. So no problem.
2258         * About lru_deactivate_page, if the page is redirty, the flag
2259         * will be reset. So no problem. but if the page is used by readahead
2260         * it will confuse readahead and make it restart the size rampup
2261         * process. But it's a trivial problem.
2262         */
2263        ClearPageReclaim(page);
2264#ifdef CONFIG_BLOCK
2265        if (!spd)
2266            spd = __set_page_dirty_buffers;
2267#endif
2268        return (*spd)(page);
2269    }
2270    if (!PageDirty(page)) {
2271        if (!TestSetPageDirty(page))
2272            return 1;
2273    }
2274    return 0;
2275}
2276EXPORT_SYMBOL(set_page_dirty);
2277
2278/*
2279 * set_page_dirty() is racy if the caller has no reference against
2280 * page->mapping->host, and if the page is unlocked. This is because another
2281 * CPU could truncate the page off the mapping and then free the mapping.
2282 *
2283 * Usually, the page _is_ locked, or the caller is a user-space process which
2284 * holds a reference on the inode by having an open file.
2285 *
2286 * In other cases, the page should be locked before running set_page_dirty().
2287 */
2288int set_page_dirty_lock(struct page *page)
2289{
2290    int ret;
2291
2292    lock_page(page);
2293    ret = set_page_dirty(page);
2294    unlock_page(page);
2295    return ret;
2296}
2297EXPORT_SYMBOL(set_page_dirty_lock);
2298
2299/*
2300 * Clear a page's dirty flag, while caring for dirty memory accounting.
2301 * Returns true if the page was previously dirty.
2302 *
2303 * This is for preparing to put the page under writeout. We leave the page
2304 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2305 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2306 * implementation will run either set_page_writeback() or set_page_dirty(),
2307 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2308 * back into sync.
2309 *
2310 * This incoherency between the page's dirty flag and radix-tree tag is
2311 * unfortunate, but it only exists while the page is locked.
2312 */
2313int clear_page_dirty_for_io(struct page *page)
2314{
2315    struct address_space *mapping = page_mapping(page);
2316
2317    BUG_ON(!PageLocked(page));
2318
2319    if (mapping && mapping_cap_account_dirty(mapping)) {
2320        /*
2321         * Yes, Virginia, this is indeed insane.
2322         *
2323         * We use this sequence to make sure that
2324         * (a) we account for dirty stats properly
2325         * (b) we tell the low-level filesystem to
2326         * mark the whole page dirty if it was
2327         * dirty in a pagetable. Only to then
2328         * (c) clean the page again and return 1 to
2329         * cause the writeback.
2330         *
2331         * This way we avoid all nasty races with the
2332         * dirty bit in multiple places and clearing
2333         * them concurrently from different threads.
2334         *
2335         * Note! Normally the "set_page_dirty(page)"
2336         * has no effect on the actual dirty bit - since
2337         * that will already usually be set. But we
2338         * need the side effects, and it can help us
2339         * avoid races.
2340         *
2341         * We basically use the page "master dirty bit"
2342         * as a serialization point for all the different
2343         * threads doing their things.
2344         */
2345        if (page_mkclean(page))
2346            set_page_dirty(page);
2347        /*
2348         * We carefully synchronise fault handlers against
2349         * installing a dirty pte and marking the page dirty
2350         * at this point. We do this by having them hold the
2351         * page lock at some point after installing their
2352         * pte, but before marking the page dirty.
2353         * Pages are always locked coming in here, so we get
2354         * the desired exclusion. See mm/memory.c:do_wp_page()
2355         * for more comments.
2356         */
2357        if (TestClearPageDirty(page)) {
2358            dec_zone_page_state(page, NR_FILE_DIRTY);
2359            dec_bdi_stat(mapping->backing_dev_info,
2360                    BDI_RECLAIMABLE);
2361            return 1;
2362        }
2363        return 0;
2364    }
2365    return TestClearPageDirty(page);
2366}
2367EXPORT_SYMBOL(clear_page_dirty_for_io);
2368
2369int test_clear_page_writeback(struct page *page)
2370{
2371    struct address_space *mapping = page_mapping(page);
2372    int ret;
2373    bool locked;
2374    unsigned long memcg_flags;
2375
2376    mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2377    if (mapping) {
2378        struct backing_dev_info *bdi = mapping->backing_dev_info;
2379        unsigned long flags;
2380
2381        spin_lock_irqsave(&mapping->tree_lock, flags);
2382        ret = TestClearPageWriteback(page);
2383        if (ret) {
2384            radix_tree_tag_clear(&mapping->page_tree,
2385                        page_index(page),
2386                        PAGECACHE_TAG_WRITEBACK);
2387            if (bdi_cap_account_writeback(bdi)) {
2388                __dec_bdi_stat(bdi, BDI_WRITEBACK);
2389                __bdi_writeout_inc(bdi);
2390            }
2391        }
2392        spin_unlock_irqrestore(&mapping->tree_lock, flags);
2393    } else {
2394        ret = TestClearPageWriteback(page);
2395    }
2396    if (ret) {
2397        mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2398        dec_zone_page_state(page, NR_WRITEBACK);
2399        inc_zone_page_state(page, NR_WRITTEN);
2400    }
2401    mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2402    return ret;
2403}
2404
2405int test_set_page_writeback(struct page *page)
2406{
2407    struct address_space *mapping = page_mapping(page);
2408    int ret;
2409    bool locked;
2410    unsigned long memcg_flags;
2411
2412    mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2413    if (mapping) {
2414        struct backing_dev_info *bdi = mapping->backing_dev_info;
2415        unsigned long flags;
2416
2417        spin_lock_irqsave(&mapping->tree_lock, flags);
2418        ret = TestSetPageWriteback(page);
2419        if (!ret) {
2420            radix_tree_tag_set(&mapping->page_tree,
2421                        page_index(page),
2422                        PAGECACHE_TAG_WRITEBACK);
2423            if (bdi_cap_account_writeback(bdi))
2424                __inc_bdi_stat(bdi, BDI_WRITEBACK);
2425        }
2426        if (!PageDirty(page))
2427            radix_tree_tag_clear(&mapping->page_tree,
2428                        page_index(page),
2429                        PAGECACHE_TAG_DIRTY);
2430        radix_tree_tag_clear(&mapping->page_tree,
2431                     page_index(page),
2432                     PAGECACHE_TAG_TOWRITE);
2433        spin_unlock_irqrestore(&mapping->tree_lock, flags);
2434    } else {
2435        ret = TestSetPageWriteback(page);
2436    }
2437    if (!ret)
2438        account_page_writeback(page);
2439    mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2440    return ret;
2441
2442}
2443EXPORT_SYMBOL(test_set_page_writeback);
2444
2445/*
2446 * Return true if any of the pages in the mapping are marked with the
2447 * passed tag.
2448 */
2449int mapping_tagged(struct address_space *mapping, int tag)
2450{
2451    return radix_tree_tagged(&mapping->page_tree, tag);
2452}
2453EXPORT_SYMBOL(mapping_tagged);
2454
2455/**
2456 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2457 * @page: The page to wait on.
2458 *
2459 * This function determines if the given page is related to a backing device
2460 * that requires page contents to be held stable during writeback. If so, then
2461 * it will wait for any pending writeback to complete.
2462 */
2463void wait_for_stable_page(struct page *page)
2464{
2465    struct address_space *mapping = page_mapping(page);
2466    struct backing_dev_info *bdi = mapping->backing_dev_info;
2467
2468    if (!bdi_cap_stable_pages_required(bdi))
2469        return;
2470
2471    wait_on_page_writeback(page);
2472}
2473EXPORT_SYMBOL_GPL(wait_for_stable_page);
2474

Archive Download this file



interactive