Root/
1 | /* |
2 | * linux/mm/page_io.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | * |
6 | * Swap reorganised 29.12.95, |
7 | * Asynchronous swapping added 30.12.95. Stephen Tweedie |
8 | * Removed race in async swapping. 14.4.1996. Bruno Haible |
9 | * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie |
10 | * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman |
11 | */ |
12 | |
13 | #include <linux/mm.h> |
14 | #include <linux/kernel_stat.h> |
15 | #include <linux/gfp.h> |
16 | #include <linux/pagemap.h> |
17 | #include <linux/swap.h> |
18 | #include <linux/bio.h> |
19 | #include <linux/swapops.h> |
20 | #include <linux/buffer_head.h> |
21 | #include <linux/writeback.h> |
22 | #include <linux/frontswap.h> |
23 | #include <linux/aio.h> |
24 | #include <linux/blkdev.h> |
25 | #include <asm/pgtable.h> |
26 | |
27 | static struct bio *get_swap_bio(gfp_t gfp_flags, |
28 | struct page *page, bio_end_io_t end_io) |
29 | { |
30 | struct bio *bio; |
31 | |
32 | bio = bio_alloc(gfp_flags, 1); |
33 | if (bio) { |
34 | bio->bi_sector = map_swap_page(page, &bio->bi_bdev); |
35 | bio->bi_sector <<= PAGE_SHIFT - 9; |
36 | bio->bi_io_vec[0].bv_page = page; |
37 | bio->bi_io_vec[0].bv_len = PAGE_SIZE; |
38 | bio->bi_io_vec[0].bv_offset = 0; |
39 | bio->bi_vcnt = 1; |
40 | bio->bi_size = PAGE_SIZE; |
41 | bio->bi_end_io = end_io; |
42 | } |
43 | return bio; |
44 | } |
45 | |
46 | void end_swap_bio_write(struct bio *bio, int err) |
47 | { |
48 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
49 | struct page *page = bio->bi_io_vec[0].bv_page; |
50 | |
51 | if (!uptodate) { |
52 | SetPageError(page); |
53 | /* |
54 | * We failed to write the page out to swap-space. |
55 | * Re-dirty the page in order to avoid it being reclaimed. |
56 | * Also print a dire warning that things will go BAD (tm) |
57 | * very quickly. |
58 | * |
59 | * Also clear PG_reclaim to avoid rotate_reclaimable_page() |
60 | */ |
61 | set_page_dirty(page); |
62 | printk(KERN_ALERT "Write-error on swap-device (%u:%u:%Lu)\n", |
63 | imajor(bio->bi_bdev->bd_inode), |
64 | iminor(bio->bi_bdev->bd_inode), |
65 | (unsigned long long)bio->bi_sector); |
66 | ClearPageReclaim(page); |
67 | } |
68 | end_page_writeback(page); |
69 | bio_put(bio); |
70 | } |
71 | |
72 | void end_swap_bio_read(struct bio *bio, int err) |
73 | { |
74 | const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); |
75 | struct page *page = bio->bi_io_vec[0].bv_page; |
76 | |
77 | if (!uptodate) { |
78 | SetPageError(page); |
79 | ClearPageUptodate(page); |
80 | printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n", |
81 | imajor(bio->bi_bdev->bd_inode), |
82 | iminor(bio->bi_bdev->bd_inode), |
83 | (unsigned long long)bio->bi_sector); |
84 | goto out; |
85 | } |
86 | |
87 | SetPageUptodate(page); |
88 | |
89 | /* |
90 | * There is no guarantee that the page is in swap cache - the software |
91 | * suspend code (at least) uses end_swap_bio_read() against a non- |
92 | * swapcache page. So we must check PG_swapcache before proceeding with |
93 | * this optimization. |
94 | */ |
95 | if (likely(PageSwapCache(page))) { |
96 | struct swap_info_struct *sis; |
97 | |
98 | sis = page_swap_info(page); |
99 | if (sis->flags & SWP_BLKDEV) { |
100 | /* |
101 | * The swap subsystem performs lazy swap slot freeing, |
102 | * expecting that the page will be swapped out again. |
103 | * So we can avoid an unnecessary write if the page |
104 | * isn't redirtied. |
105 | * This is good for real swap storage because we can |
106 | * reduce unnecessary I/O and enhance wear-leveling |
107 | * if an SSD is used as the as swap device. |
108 | * But if in-memory swap device (eg zram) is used, |
109 | * this causes a duplicated copy between uncompressed |
110 | * data in VM-owned memory and compressed data in |
111 | * zram-owned memory. So let's free zram-owned memory |
112 | * and make the VM-owned decompressed page *dirty*, |
113 | * so the page should be swapped out somewhere again if |
114 | * we again wish to reclaim it. |
115 | */ |
116 | struct gendisk *disk = sis->bdev->bd_disk; |
117 | if (disk->fops->swap_slot_free_notify) { |
118 | swp_entry_t entry; |
119 | unsigned long offset; |
120 | |
121 | entry.val = page_private(page); |
122 | offset = swp_offset(entry); |
123 | |
124 | SetPageDirty(page); |
125 | disk->fops->swap_slot_free_notify(sis->bdev, |
126 | offset); |
127 | } |
128 | } |
129 | } |
130 | |
131 | out: |
132 | unlock_page(page); |
133 | bio_put(bio); |
134 | } |
135 | |
136 | int generic_swapfile_activate(struct swap_info_struct *sis, |
137 | struct file *swap_file, |
138 | sector_t *span) |
139 | { |
140 | struct address_space *mapping = swap_file->f_mapping; |
141 | struct inode *inode = mapping->host; |
142 | unsigned blocks_per_page; |
143 | unsigned long page_no; |
144 | unsigned blkbits; |
145 | sector_t probe_block; |
146 | sector_t last_block; |
147 | sector_t lowest_block = -1; |
148 | sector_t highest_block = 0; |
149 | int nr_extents = 0; |
150 | int ret; |
151 | |
152 | blkbits = inode->i_blkbits; |
153 | blocks_per_page = PAGE_SIZE >> blkbits; |
154 | |
155 | /* |
156 | * Map all the blocks into the extent list. This code doesn't try |
157 | * to be very smart. |
158 | */ |
159 | probe_block = 0; |
160 | page_no = 0; |
161 | last_block = i_size_read(inode) >> blkbits; |
162 | while ((probe_block + blocks_per_page) <= last_block && |
163 | page_no < sis->max) { |
164 | unsigned block_in_page; |
165 | sector_t first_block; |
166 | |
167 | first_block = bmap(inode, probe_block); |
168 | if (first_block == 0) |
169 | goto bad_bmap; |
170 | |
171 | /* |
172 | * It must be PAGE_SIZE aligned on-disk |
173 | */ |
174 | if (first_block & (blocks_per_page - 1)) { |
175 | probe_block++; |
176 | goto reprobe; |
177 | } |
178 | |
179 | for (block_in_page = 1; block_in_page < blocks_per_page; |
180 | block_in_page++) { |
181 | sector_t block; |
182 | |
183 | block = bmap(inode, probe_block + block_in_page); |
184 | if (block == 0) |
185 | goto bad_bmap; |
186 | if (block != first_block + block_in_page) { |
187 | /* Discontiguity */ |
188 | probe_block++; |
189 | goto reprobe; |
190 | } |
191 | } |
192 | |
193 | first_block >>= (PAGE_SHIFT - blkbits); |
194 | if (page_no) { /* exclude the header page */ |
195 | if (first_block < lowest_block) |
196 | lowest_block = first_block; |
197 | if (first_block > highest_block) |
198 | highest_block = first_block; |
199 | } |
200 | |
201 | /* |
202 | * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks |
203 | */ |
204 | ret = add_swap_extent(sis, page_no, 1, first_block); |
205 | if (ret < 0) |
206 | goto out; |
207 | nr_extents += ret; |
208 | page_no++; |
209 | probe_block += blocks_per_page; |
210 | reprobe: |
211 | continue; |
212 | } |
213 | ret = nr_extents; |
214 | *span = 1 + highest_block - lowest_block; |
215 | if (page_no == 0) |
216 | page_no = 1; /* force Empty message */ |
217 | sis->max = page_no; |
218 | sis->pages = page_no - 1; |
219 | sis->highest_bit = page_no - 1; |
220 | out: |
221 | return ret; |
222 | bad_bmap: |
223 | printk(KERN_ERR "swapon: swapfile has holes\n"); |
224 | ret = -EINVAL; |
225 | goto out; |
226 | } |
227 | |
228 | /* |
229 | * We may have stale swap cache pages in memory: notice |
230 | * them here and get rid of the unnecessary final write. |
231 | */ |
232 | int swap_writepage(struct page *page, struct writeback_control *wbc) |
233 | { |
234 | int ret = 0; |
235 | |
236 | if (try_to_free_swap(page)) { |
237 | unlock_page(page); |
238 | goto out; |
239 | } |
240 | if (frontswap_store(page) == 0) { |
241 | set_page_writeback(page); |
242 | unlock_page(page); |
243 | end_page_writeback(page); |
244 | goto out; |
245 | } |
246 | ret = __swap_writepage(page, wbc, end_swap_bio_write); |
247 | out: |
248 | return ret; |
249 | } |
250 | |
251 | int __swap_writepage(struct page *page, struct writeback_control *wbc, |
252 | void (*end_write_func)(struct bio *, int)) |
253 | { |
254 | struct bio *bio; |
255 | int ret = 0, rw = WRITE; |
256 | struct swap_info_struct *sis = page_swap_info(page); |
257 | |
258 | if (sis->flags & SWP_FILE) { |
259 | struct kiocb kiocb; |
260 | struct file *swap_file = sis->swap_file; |
261 | struct address_space *mapping = swap_file->f_mapping; |
262 | struct iovec iov = { |
263 | .iov_base = kmap(page), |
264 | .iov_len = PAGE_SIZE, |
265 | }; |
266 | |
267 | init_sync_kiocb(&kiocb, swap_file); |
268 | kiocb.ki_pos = page_file_offset(page); |
269 | kiocb.ki_nbytes = PAGE_SIZE; |
270 | |
271 | set_page_writeback(page); |
272 | unlock_page(page); |
273 | ret = mapping->a_ops->direct_IO(KERNEL_WRITE, |
274 | &kiocb, &iov, |
275 | kiocb.ki_pos, 1); |
276 | kunmap(page); |
277 | if (ret == PAGE_SIZE) { |
278 | count_vm_event(PSWPOUT); |
279 | ret = 0; |
280 | } else { |
281 | /* |
282 | * In the case of swap-over-nfs, this can be a |
283 | * temporary failure if the system has limited |
284 | * memory for allocating transmit buffers. |
285 | * Mark the page dirty and avoid |
286 | * rotate_reclaimable_page but rate-limit the |
287 | * messages but do not flag PageError like |
288 | * the normal direct-to-bio case as it could |
289 | * be temporary. |
290 | */ |
291 | set_page_dirty(page); |
292 | ClearPageReclaim(page); |
293 | pr_err_ratelimited("Write error on dio swapfile (%Lu)\n", |
294 | page_file_offset(page)); |
295 | } |
296 | end_page_writeback(page); |
297 | return ret; |
298 | } |
299 | |
300 | bio = get_swap_bio(GFP_NOIO, page, end_write_func); |
301 | if (bio == NULL) { |
302 | set_page_dirty(page); |
303 | unlock_page(page); |
304 | ret = -ENOMEM; |
305 | goto out; |
306 | } |
307 | if (wbc->sync_mode == WB_SYNC_ALL) |
308 | rw |= REQ_SYNC; |
309 | count_vm_event(PSWPOUT); |
310 | set_page_writeback(page); |
311 | unlock_page(page); |
312 | submit_bio(rw, bio); |
313 | out: |
314 | return ret; |
315 | } |
316 | |
317 | int swap_readpage(struct page *page) |
318 | { |
319 | struct bio *bio; |
320 | int ret = 0; |
321 | struct swap_info_struct *sis = page_swap_info(page); |
322 | |
323 | VM_BUG_ON(!PageLocked(page)); |
324 | VM_BUG_ON(PageUptodate(page)); |
325 | if (frontswap_load(page) == 0) { |
326 | SetPageUptodate(page); |
327 | unlock_page(page); |
328 | goto out; |
329 | } |
330 | |
331 | if (sis->flags & SWP_FILE) { |
332 | struct file *swap_file = sis->swap_file; |
333 | struct address_space *mapping = swap_file->f_mapping; |
334 | |
335 | ret = mapping->a_ops->readpage(swap_file, page); |
336 | if (!ret) |
337 | count_vm_event(PSWPIN); |
338 | return ret; |
339 | } |
340 | |
341 | bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read); |
342 | if (bio == NULL) { |
343 | unlock_page(page); |
344 | ret = -ENOMEM; |
345 | goto out; |
346 | } |
347 | count_vm_event(PSWPIN); |
348 | submit_bio(READ, bio); |
349 | out: |
350 | return ret; |
351 | } |
352 | |
353 | int swap_set_page_dirty(struct page *page) |
354 | { |
355 | struct swap_info_struct *sis = page_swap_info(page); |
356 | |
357 | if (sis->flags & SWP_FILE) { |
358 | struct address_space *mapping = sis->swap_file->f_mapping; |
359 | return mapping->a_ops->set_page_dirty(page); |
360 | } else { |
361 | return __set_page_dirty_no_writeback(page); |
362 | } |
363 | } |
364 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9