Root/
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings |
3 | * |
4 | * Copyright 2001, Rik van Riel <riel@conectiva.com.br> |
5 | * Released under the General Public License (GPL). |
6 | * |
7 | * Simple, low overhead reverse mapping scheme. |
8 | * Please try to keep this thing as modular as possible. |
9 | * |
10 | * Provides methods for unmapping each kind of mapped page: |
11 | * the anon methods track anonymous pages, and |
12 | * the file methods track pages belonging to an inode. |
13 | * |
14 | * Original design by Rik van Riel <riel@conectiva.com.br> 2001 |
15 | * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 |
16 | * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 |
17 | * Contributions by Hugh Dickins 2003, 2004 |
18 | */ |
19 | |
20 | /* |
21 | * Lock ordering in mm: |
22 | * |
23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) |
26 | * mapping->i_mmap_mutex |
27 | * anon_vma->rwsem |
28 | * mm->page_table_lock or pte_lock |
29 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) |
30 | * swap_lock (in swap_duplicate, swap_info_get) |
31 | * mmlist_lock (in mmput, drain_mmlist and others) |
32 | * mapping->private_lock (in __set_page_dirty_buffers) |
33 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
34 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
36 | * mapping->tree_lock (widely used, in set_page_dirty, |
37 | * in arch-dependent flush_dcache_mmap_lock, |
38 | * within bdi.wb->list_lock in __sync_single_inode) |
39 | * |
40 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
41 | * ->tasklist_lock |
42 | * pte map lock |
43 | */ |
44 | |
45 | #include <linux/mm.h> |
46 | #include <linux/pagemap.h> |
47 | #include <linux/swap.h> |
48 | #include <linux/swapops.h> |
49 | #include <linux/slab.h> |
50 | #include <linux/init.h> |
51 | #include <linux/ksm.h> |
52 | #include <linux/rmap.h> |
53 | #include <linux/rcupdate.h> |
54 | #include <linux/export.h> |
55 | #include <linux/memcontrol.h> |
56 | #include <linux/mmu_notifier.h> |
57 | #include <linux/migrate.h> |
58 | #include <linux/hugetlb.h> |
59 | #include <linux/backing-dev.h> |
60 | |
61 | #include <asm/tlbflush.h> |
62 | |
63 | #include "internal.h" |
64 | |
65 | static struct kmem_cache *anon_vma_cachep; |
66 | static struct kmem_cache *anon_vma_chain_cachep; |
67 | |
68 | static inline struct anon_vma *anon_vma_alloc(void) |
69 | { |
70 | struct anon_vma *anon_vma; |
71 | |
72 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); |
73 | if (anon_vma) { |
74 | atomic_set(&anon_vma->refcount, 1); |
75 | /* |
76 | * Initialise the anon_vma root to point to itself. If called |
77 | * from fork, the root will be reset to the parents anon_vma. |
78 | */ |
79 | anon_vma->root = anon_vma; |
80 | } |
81 | |
82 | return anon_vma; |
83 | } |
84 | |
85 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
86 | { |
87 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88 | |
89 | /* |
90 | * Synchronize against page_lock_anon_vma_read() such that |
91 | * we can safely hold the lock without the anon_vma getting |
92 | * freed. |
93 | * |
94 | * Relies on the full mb implied by the atomic_dec_and_test() from |
95 | * put_anon_vma() against the acquire barrier implied by |
96 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
97 | * |
98 | * page_lock_anon_vma_read() VS put_anon_vma() |
99 | * down_read_trylock() atomic_dec_and_test() |
100 | * LOCK MB |
101 | * atomic_read() rwsem_is_locked() |
102 | * |
103 | * LOCK should suffice since the actual taking of the lock must |
104 | * happen _before_ what follows. |
105 | */ |
106 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
107 | anon_vma_lock_write(anon_vma); |
108 | anon_vma_unlock_write(anon_vma); |
109 | } |
110 | |
111 | kmem_cache_free(anon_vma_cachep, anon_vma); |
112 | } |
113 | |
114 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
115 | { |
116 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
117 | } |
118 | |
119 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
120 | { |
121 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); |
122 | } |
123 | |
124 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
125 | struct anon_vma_chain *avc, |
126 | struct anon_vma *anon_vma) |
127 | { |
128 | avc->vma = vma; |
129 | avc->anon_vma = anon_vma; |
130 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
131 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
132 | } |
133 | |
134 | /** |
135 | * anon_vma_prepare - attach an anon_vma to a memory region |
136 | * @vma: the memory region in question |
137 | * |
138 | * This makes sure the memory mapping described by 'vma' has |
139 | * an 'anon_vma' attached to it, so that we can associate the |
140 | * anonymous pages mapped into it with that anon_vma. |
141 | * |
142 | * The common case will be that we already have one, but if |
143 | * not we either need to find an adjacent mapping that we |
144 | * can re-use the anon_vma from (very common when the only |
145 | * reason for splitting a vma has been mprotect()), or we |
146 | * allocate a new one. |
147 | * |
148 | * Anon-vma allocations are very subtle, because we may have |
149 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
150 | * and that may actually touch the spinlock even in the newly |
151 | * allocated vma (it depends on RCU to make sure that the |
152 | * anon_vma isn't actually destroyed). |
153 | * |
154 | * As a result, we need to do proper anon_vma locking even |
155 | * for the new allocation. At the same time, we do not want |
156 | * to do any locking for the common case of already having |
157 | * an anon_vma. |
158 | * |
159 | * This must be called with the mmap_sem held for reading. |
160 | */ |
161 | int anon_vma_prepare(struct vm_area_struct *vma) |
162 | { |
163 | struct anon_vma *anon_vma = vma->anon_vma; |
164 | struct anon_vma_chain *avc; |
165 | |
166 | might_sleep(); |
167 | if (unlikely(!anon_vma)) { |
168 | struct mm_struct *mm = vma->vm_mm; |
169 | struct anon_vma *allocated; |
170 | |
171 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
172 | if (!avc) |
173 | goto out_enomem; |
174 | |
175 | anon_vma = find_mergeable_anon_vma(vma); |
176 | allocated = NULL; |
177 | if (!anon_vma) { |
178 | anon_vma = anon_vma_alloc(); |
179 | if (unlikely(!anon_vma)) |
180 | goto out_enomem_free_avc; |
181 | allocated = anon_vma; |
182 | } |
183 | |
184 | anon_vma_lock_write(anon_vma); |
185 | /* page_table_lock to protect against threads */ |
186 | spin_lock(&mm->page_table_lock); |
187 | if (likely(!vma->anon_vma)) { |
188 | vma->anon_vma = anon_vma; |
189 | anon_vma_chain_link(vma, avc, anon_vma); |
190 | allocated = NULL; |
191 | avc = NULL; |
192 | } |
193 | spin_unlock(&mm->page_table_lock); |
194 | anon_vma_unlock_write(anon_vma); |
195 | |
196 | if (unlikely(allocated)) |
197 | put_anon_vma(allocated); |
198 | if (unlikely(avc)) |
199 | anon_vma_chain_free(avc); |
200 | } |
201 | return 0; |
202 | |
203 | out_enomem_free_avc: |
204 | anon_vma_chain_free(avc); |
205 | out_enomem: |
206 | return -ENOMEM; |
207 | } |
208 | |
209 | /* |
210 | * This is a useful helper function for locking the anon_vma root as |
211 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that |
212 | * have the same vma. |
213 | * |
214 | * Such anon_vma's should have the same root, so you'd expect to see |
215 | * just a single mutex_lock for the whole traversal. |
216 | */ |
217 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) |
218 | { |
219 | struct anon_vma *new_root = anon_vma->root; |
220 | if (new_root != root) { |
221 | if (WARN_ON_ONCE(root)) |
222 | up_write(&root->rwsem); |
223 | root = new_root; |
224 | down_write(&root->rwsem); |
225 | } |
226 | return root; |
227 | } |
228 | |
229 | static inline void unlock_anon_vma_root(struct anon_vma *root) |
230 | { |
231 | if (root) |
232 | up_write(&root->rwsem); |
233 | } |
234 | |
235 | /* |
236 | * Attach the anon_vmas from src to dst. |
237 | * Returns 0 on success, -ENOMEM on failure. |
238 | */ |
239 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) |
240 | { |
241 | struct anon_vma_chain *avc, *pavc; |
242 | struct anon_vma *root = NULL; |
243 | |
244 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
245 | struct anon_vma *anon_vma; |
246 | |
247 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
248 | if (unlikely(!avc)) { |
249 | unlock_anon_vma_root(root); |
250 | root = NULL; |
251 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
252 | if (!avc) |
253 | goto enomem_failure; |
254 | } |
255 | anon_vma = pavc->anon_vma; |
256 | root = lock_anon_vma_root(root, anon_vma); |
257 | anon_vma_chain_link(dst, avc, anon_vma); |
258 | } |
259 | unlock_anon_vma_root(root); |
260 | return 0; |
261 | |
262 | enomem_failure: |
263 | unlink_anon_vmas(dst); |
264 | return -ENOMEM; |
265 | } |
266 | |
267 | /* |
268 | * Attach vma to its own anon_vma, as well as to the anon_vmas that |
269 | * the corresponding VMA in the parent process is attached to. |
270 | * Returns 0 on success, non-zero on failure. |
271 | */ |
272 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) |
273 | { |
274 | struct anon_vma_chain *avc; |
275 | struct anon_vma *anon_vma; |
276 | |
277 | /* Don't bother if the parent process has no anon_vma here. */ |
278 | if (!pvma->anon_vma) |
279 | return 0; |
280 | |
281 | /* |
282 | * First, attach the new VMA to the parent VMA's anon_vmas, |
283 | * so rmap can find non-COWed pages in child processes. |
284 | */ |
285 | if (anon_vma_clone(vma, pvma)) |
286 | return -ENOMEM; |
287 | |
288 | /* Then add our own anon_vma. */ |
289 | anon_vma = anon_vma_alloc(); |
290 | if (!anon_vma) |
291 | goto out_error; |
292 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
293 | if (!avc) |
294 | goto out_error_free_anon_vma; |
295 | |
296 | /* |
297 | * The root anon_vma's spinlock is the lock actually used when we |
298 | * lock any of the anon_vmas in this anon_vma tree. |
299 | */ |
300 | anon_vma->root = pvma->anon_vma->root; |
301 | /* |
302 | * With refcounts, an anon_vma can stay around longer than the |
303 | * process it belongs to. The root anon_vma needs to be pinned until |
304 | * this anon_vma is freed, because the lock lives in the root. |
305 | */ |
306 | get_anon_vma(anon_vma->root); |
307 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
308 | vma->anon_vma = anon_vma; |
309 | anon_vma_lock_write(anon_vma); |
310 | anon_vma_chain_link(vma, avc, anon_vma); |
311 | anon_vma_unlock_write(anon_vma); |
312 | |
313 | return 0; |
314 | |
315 | out_error_free_anon_vma: |
316 | put_anon_vma(anon_vma); |
317 | out_error: |
318 | unlink_anon_vmas(vma); |
319 | return -ENOMEM; |
320 | } |
321 | |
322 | void unlink_anon_vmas(struct vm_area_struct *vma) |
323 | { |
324 | struct anon_vma_chain *avc, *next; |
325 | struct anon_vma *root = NULL; |
326 | |
327 | /* |
328 | * Unlink each anon_vma chained to the VMA. This list is ordered |
329 | * from newest to oldest, ensuring the root anon_vma gets freed last. |
330 | */ |
331 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
332 | struct anon_vma *anon_vma = avc->anon_vma; |
333 | |
334 | root = lock_anon_vma_root(root, anon_vma); |
335 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
336 | |
337 | /* |
338 | * Leave empty anon_vmas on the list - we'll need |
339 | * to free them outside the lock. |
340 | */ |
341 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) |
342 | continue; |
343 | |
344 | list_del(&avc->same_vma); |
345 | anon_vma_chain_free(avc); |
346 | } |
347 | unlock_anon_vma_root(root); |
348 | |
349 | /* |
350 | * Iterate the list once more, it now only contains empty and unlinked |
351 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() |
352 | * needing to write-acquire the anon_vma->root->rwsem. |
353 | */ |
354 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
355 | struct anon_vma *anon_vma = avc->anon_vma; |
356 | |
357 | put_anon_vma(anon_vma); |
358 | |
359 | list_del(&avc->same_vma); |
360 | anon_vma_chain_free(avc); |
361 | } |
362 | } |
363 | |
364 | static void anon_vma_ctor(void *data) |
365 | { |
366 | struct anon_vma *anon_vma = data; |
367 | |
368 | init_rwsem(&anon_vma->rwsem); |
369 | atomic_set(&anon_vma->refcount, 0); |
370 | anon_vma->rb_root = RB_ROOT; |
371 | } |
372 | |
373 | void __init anon_vma_init(void) |
374 | { |
375 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), |
376 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
377 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
378 | } |
379 | |
380 | /* |
381 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
382 | * |
383 | * Since there is no serialization what so ever against page_remove_rmap() |
384 | * the best this function can do is return a locked anon_vma that might |
385 | * have been relevant to this page. |
386 | * |
387 | * The page might have been remapped to a different anon_vma or the anon_vma |
388 | * returned may already be freed (and even reused). |
389 | * |
390 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
391 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore |
392 | * ensure that any anon_vma obtained from the page will still be valid for as |
393 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. |
394 | * |
395 | * All users of this function must be very careful when walking the anon_vma |
396 | * chain and verify that the page in question is indeed mapped in it |
397 | * [ something equivalent to page_mapped_in_vma() ]. |
398 | * |
399 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() |
400 | * that the anon_vma pointer from page->mapping is valid if there is a |
401 | * mapcount, we can dereference the anon_vma after observing those. |
402 | */ |
403 | struct anon_vma *page_get_anon_vma(struct page *page) |
404 | { |
405 | struct anon_vma *anon_vma = NULL; |
406 | unsigned long anon_mapping; |
407 | |
408 | rcu_read_lock(); |
409 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
410 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
411 | goto out; |
412 | if (!page_mapped(page)) |
413 | goto out; |
414 | |
415 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
416 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
417 | anon_vma = NULL; |
418 | goto out; |
419 | } |
420 | |
421 | /* |
422 | * If this page is still mapped, then its anon_vma cannot have been |
423 | * freed. But if it has been unmapped, we have no security against the |
424 | * anon_vma structure being freed and reused (for another anon_vma: |
425 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() |
426 | * above cannot corrupt). |
427 | */ |
428 | if (!page_mapped(page)) { |
429 | put_anon_vma(anon_vma); |
430 | anon_vma = NULL; |
431 | } |
432 | out: |
433 | rcu_read_unlock(); |
434 | |
435 | return anon_vma; |
436 | } |
437 | |
438 | /* |
439 | * Similar to page_get_anon_vma() except it locks the anon_vma. |
440 | * |
441 | * Its a little more complex as it tries to keep the fast path to a single |
442 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a |
443 | * reference like with page_get_anon_vma() and then block on the mutex. |
444 | */ |
445 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
446 | { |
447 | struct anon_vma *anon_vma = NULL; |
448 | struct anon_vma *root_anon_vma; |
449 | unsigned long anon_mapping; |
450 | |
451 | rcu_read_lock(); |
452 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
453 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
454 | goto out; |
455 | if (!page_mapped(page)) |
456 | goto out; |
457 | |
458 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
459 | root_anon_vma = ACCESS_ONCE(anon_vma->root); |
460 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
461 | /* |
462 | * If the page is still mapped, then this anon_vma is still |
463 | * its anon_vma, and holding the mutex ensures that it will |
464 | * not go away, see anon_vma_free(). |
465 | */ |
466 | if (!page_mapped(page)) { |
467 | up_read(&root_anon_vma->rwsem); |
468 | anon_vma = NULL; |
469 | } |
470 | goto out; |
471 | } |
472 | |
473 | /* trylock failed, we got to sleep */ |
474 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
475 | anon_vma = NULL; |
476 | goto out; |
477 | } |
478 | |
479 | if (!page_mapped(page)) { |
480 | put_anon_vma(anon_vma); |
481 | anon_vma = NULL; |
482 | goto out; |
483 | } |
484 | |
485 | /* we pinned the anon_vma, its safe to sleep */ |
486 | rcu_read_unlock(); |
487 | anon_vma_lock_read(anon_vma); |
488 | |
489 | if (atomic_dec_and_test(&anon_vma->refcount)) { |
490 | /* |
491 | * Oops, we held the last refcount, release the lock |
492 | * and bail -- can't simply use put_anon_vma() because |
493 | * we'll deadlock on the anon_vma_lock_write() recursion. |
494 | */ |
495 | anon_vma_unlock_read(anon_vma); |
496 | __put_anon_vma(anon_vma); |
497 | anon_vma = NULL; |
498 | } |
499 | |
500 | return anon_vma; |
501 | |
502 | out: |
503 | rcu_read_unlock(); |
504 | return anon_vma; |
505 | } |
506 | |
507 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
508 | { |
509 | anon_vma_unlock_read(anon_vma); |
510 | } |
511 | |
512 | /* |
513 | * At what user virtual address is page expected in @vma? |
514 | */ |
515 | static inline unsigned long |
516 | __vma_address(struct page *page, struct vm_area_struct *vma) |
517 | { |
518 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
519 | |
520 | if (unlikely(is_vm_hugetlb_page(vma))) |
521 | pgoff = page->index << huge_page_order(page_hstate(page)); |
522 | |
523 | return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
524 | } |
525 | |
526 | inline unsigned long |
527 | vma_address(struct page *page, struct vm_area_struct *vma) |
528 | { |
529 | unsigned long address = __vma_address(page, vma); |
530 | |
531 | /* page should be within @vma mapping range */ |
532 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
533 | |
534 | return address; |
535 | } |
536 | |
537 | /* |
538 | * At what user virtual address is page expected in vma? |
539 | * Caller should check the page is actually part of the vma. |
540 | */ |
541 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) |
542 | { |
543 | unsigned long address; |
544 | if (PageAnon(page)) { |
545 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
546 | /* |
547 | * Note: swapoff's unuse_vma() is more efficient with this |
548 | * check, and needs it to match anon_vma when KSM is active. |
549 | */ |
550 | if (!vma->anon_vma || !page__anon_vma || |
551 | vma->anon_vma->root != page__anon_vma->root) |
552 | return -EFAULT; |
553 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { |
554 | if (!vma->vm_file || |
555 | vma->vm_file->f_mapping != page->mapping) |
556 | return -EFAULT; |
557 | } else |
558 | return -EFAULT; |
559 | address = __vma_address(page, vma); |
560 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) |
561 | return -EFAULT; |
562 | return address; |
563 | } |
564 | |
565 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
566 | { |
567 | pgd_t *pgd; |
568 | pud_t *pud; |
569 | pmd_t *pmd = NULL; |
570 | |
571 | pgd = pgd_offset(mm, address); |
572 | if (!pgd_present(*pgd)) |
573 | goto out; |
574 | |
575 | pud = pud_offset(pgd, address); |
576 | if (!pud_present(*pud)) |
577 | goto out; |
578 | |
579 | pmd = pmd_offset(pud, address); |
580 | if (!pmd_present(*pmd)) |
581 | pmd = NULL; |
582 | out: |
583 | return pmd; |
584 | } |
585 | |
586 | /* |
587 | * Check that @page is mapped at @address into @mm. |
588 | * |
589 | * If @sync is false, page_check_address may perform a racy check to avoid |
590 | * the page table lock when the pte is not present (helpful when reclaiming |
591 | * highly shared pages). |
592 | * |
593 | * On success returns with pte mapped and locked. |
594 | */ |
595 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
596 | unsigned long address, spinlock_t **ptlp, int sync) |
597 | { |
598 | pmd_t *pmd; |
599 | pte_t *pte; |
600 | spinlock_t *ptl; |
601 | |
602 | if (unlikely(PageHuge(page))) { |
603 | pte = huge_pte_offset(mm, address); |
604 | ptl = &mm->page_table_lock; |
605 | goto check; |
606 | } |
607 | |
608 | pmd = mm_find_pmd(mm, address); |
609 | if (!pmd) |
610 | return NULL; |
611 | |
612 | if (pmd_trans_huge(*pmd)) |
613 | return NULL; |
614 | |
615 | pte = pte_offset_map(pmd, address); |
616 | /* Make a quick check before getting the lock */ |
617 | if (!sync && !pte_present(*pte)) { |
618 | pte_unmap(pte); |
619 | return NULL; |
620 | } |
621 | |
622 | ptl = pte_lockptr(mm, pmd); |
623 | check: |
624 | spin_lock(ptl); |
625 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { |
626 | *ptlp = ptl; |
627 | return pte; |
628 | } |
629 | pte_unmap_unlock(pte, ptl); |
630 | return NULL; |
631 | } |
632 | |
633 | /** |
634 | * page_mapped_in_vma - check whether a page is really mapped in a VMA |
635 | * @page: the page to test |
636 | * @vma: the VMA to test |
637 | * |
638 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 |
639 | * if the page is not mapped into the page tables of this VMA. Only |
640 | * valid for normal file or anonymous VMAs. |
641 | */ |
642 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
643 | { |
644 | unsigned long address; |
645 | pte_t *pte; |
646 | spinlock_t *ptl; |
647 | |
648 | address = __vma_address(page, vma); |
649 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) |
650 | return 0; |
651 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); |
652 | if (!pte) /* the page is not in this mm */ |
653 | return 0; |
654 | pte_unmap_unlock(pte, ptl); |
655 | |
656 | return 1; |
657 | } |
658 | |
659 | /* |
660 | * Subfunctions of page_referenced: page_referenced_one called |
661 | * repeatedly from either page_referenced_anon or page_referenced_file. |
662 | */ |
663 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
664 | unsigned long address, unsigned int *mapcount, |
665 | unsigned long *vm_flags) |
666 | { |
667 | struct mm_struct *mm = vma->vm_mm; |
668 | int referenced = 0; |
669 | |
670 | if (unlikely(PageTransHuge(page))) { |
671 | pmd_t *pmd; |
672 | |
673 | spin_lock(&mm->page_table_lock); |
674 | /* |
675 | * rmap might return false positives; we must filter |
676 | * these out using page_check_address_pmd(). |
677 | */ |
678 | pmd = page_check_address_pmd(page, mm, address, |
679 | PAGE_CHECK_ADDRESS_PMD_FLAG); |
680 | if (!pmd) { |
681 | spin_unlock(&mm->page_table_lock); |
682 | goto out; |
683 | } |
684 | |
685 | if (vma->vm_flags & VM_LOCKED) { |
686 | spin_unlock(&mm->page_table_lock); |
687 | *mapcount = 0; /* break early from loop */ |
688 | *vm_flags |= VM_LOCKED; |
689 | goto out; |
690 | } |
691 | |
692 | /* go ahead even if the pmd is pmd_trans_splitting() */ |
693 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) |
694 | referenced++; |
695 | spin_unlock(&mm->page_table_lock); |
696 | } else { |
697 | pte_t *pte; |
698 | spinlock_t *ptl; |
699 | |
700 | /* |
701 | * rmap might return false positives; we must filter |
702 | * these out using page_check_address(). |
703 | */ |
704 | pte = page_check_address(page, mm, address, &ptl, 0); |
705 | if (!pte) |
706 | goto out; |
707 | |
708 | if (vma->vm_flags & VM_LOCKED) { |
709 | pte_unmap_unlock(pte, ptl); |
710 | *mapcount = 0; /* break early from loop */ |
711 | *vm_flags |= VM_LOCKED; |
712 | goto out; |
713 | } |
714 | |
715 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
716 | /* |
717 | * Don't treat a reference through a sequentially read |
718 | * mapping as such. If the page has been used in |
719 | * another mapping, we will catch it; if this other |
720 | * mapping is already gone, the unmap path will have |
721 | * set PG_referenced or activated the page. |
722 | */ |
723 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) |
724 | referenced++; |
725 | } |
726 | pte_unmap_unlock(pte, ptl); |
727 | } |
728 | |
729 | (*mapcount)--; |
730 | |
731 | if (referenced) |
732 | *vm_flags |= vma->vm_flags; |
733 | out: |
734 | return referenced; |
735 | } |
736 | |
737 | static int page_referenced_anon(struct page *page, |
738 | struct mem_cgroup *memcg, |
739 | unsigned long *vm_flags) |
740 | { |
741 | unsigned int mapcount; |
742 | struct anon_vma *anon_vma; |
743 | pgoff_t pgoff; |
744 | struct anon_vma_chain *avc; |
745 | int referenced = 0; |
746 | |
747 | anon_vma = page_lock_anon_vma_read(page); |
748 | if (!anon_vma) |
749 | return referenced; |
750 | |
751 | mapcount = page_mapcount(page); |
752 | pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
753 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
754 | struct vm_area_struct *vma = avc->vma; |
755 | unsigned long address = vma_address(page, vma); |
756 | /* |
757 | * If we are reclaiming on behalf of a cgroup, skip |
758 | * counting on behalf of references from different |
759 | * cgroups |
760 | */ |
761 | if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) |
762 | continue; |
763 | referenced += page_referenced_one(page, vma, address, |
764 | &mapcount, vm_flags); |
765 | if (!mapcount) |
766 | break; |
767 | } |
768 | |
769 | page_unlock_anon_vma_read(anon_vma); |
770 | return referenced; |
771 | } |
772 | |
773 | /** |
774 | * page_referenced_file - referenced check for object-based rmap |
775 | * @page: the page we're checking references on. |
776 | * @memcg: target memory control group |
777 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
778 | * |
779 | * For an object-based mapped page, find all the places it is mapped and |
780 | * check/clear the referenced flag. This is done by following the page->mapping |
781 | * pointer, then walking the chain of vmas it holds. It returns the number |
782 | * of references it found. |
783 | * |
784 | * This function is only called from page_referenced for object-based pages. |
785 | */ |
786 | static int page_referenced_file(struct page *page, |
787 | struct mem_cgroup *memcg, |
788 | unsigned long *vm_flags) |
789 | { |
790 | unsigned int mapcount; |
791 | struct address_space *mapping = page->mapping; |
792 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
793 | struct vm_area_struct *vma; |
794 | int referenced = 0; |
795 | |
796 | /* |
797 | * The caller's checks on page->mapping and !PageAnon have made |
798 | * sure that this is a file page: the check for page->mapping |
799 | * excludes the case just before it gets set on an anon page. |
800 | */ |
801 | BUG_ON(PageAnon(page)); |
802 | |
803 | /* |
804 | * The page lock not only makes sure that page->mapping cannot |
805 | * suddenly be NULLified by truncation, it makes sure that the |
806 | * structure at mapping cannot be freed and reused yet, |
807 | * so we can safely take mapping->i_mmap_mutex. |
808 | */ |
809 | BUG_ON(!PageLocked(page)); |
810 | |
811 | mutex_lock(&mapping->i_mmap_mutex); |
812 | |
813 | /* |
814 | * i_mmap_mutex does not stabilize mapcount at all, but mapcount |
815 | * is more likely to be accurate if we note it after spinning. |
816 | */ |
817 | mapcount = page_mapcount(page); |
818 | |
819 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
820 | unsigned long address = vma_address(page, vma); |
821 | /* |
822 | * If we are reclaiming on behalf of a cgroup, skip |
823 | * counting on behalf of references from different |
824 | * cgroups |
825 | */ |
826 | if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) |
827 | continue; |
828 | referenced += page_referenced_one(page, vma, address, |
829 | &mapcount, vm_flags); |
830 | if (!mapcount) |
831 | break; |
832 | } |
833 | |
834 | mutex_unlock(&mapping->i_mmap_mutex); |
835 | return referenced; |
836 | } |
837 | |
838 | /** |
839 | * page_referenced - test if the page was referenced |
840 | * @page: the page to test |
841 | * @is_locked: caller holds lock on the page |
842 | * @memcg: target memory cgroup |
843 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
844 | * |
845 | * Quick test_and_clear_referenced for all mappings to a page, |
846 | * returns the number of ptes which referenced the page. |
847 | */ |
848 | int page_referenced(struct page *page, |
849 | int is_locked, |
850 | struct mem_cgroup *memcg, |
851 | unsigned long *vm_flags) |
852 | { |
853 | int referenced = 0; |
854 | int we_locked = 0; |
855 | |
856 | *vm_flags = 0; |
857 | if (page_mapped(page) && page_rmapping(page)) { |
858 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { |
859 | we_locked = trylock_page(page); |
860 | if (!we_locked) { |
861 | referenced++; |
862 | goto out; |
863 | } |
864 | } |
865 | if (unlikely(PageKsm(page))) |
866 | referenced += page_referenced_ksm(page, memcg, |
867 | vm_flags); |
868 | else if (PageAnon(page)) |
869 | referenced += page_referenced_anon(page, memcg, |
870 | vm_flags); |
871 | else if (page->mapping) |
872 | referenced += page_referenced_file(page, memcg, |
873 | vm_flags); |
874 | if (we_locked) |
875 | unlock_page(page); |
876 | } |
877 | out: |
878 | return referenced; |
879 | } |
880 | |
881 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
882 | unsigned long address) |
883 | { |
884 | struct mm_struct *mm = vma->vm_mm; |
885 | pte_t *pte; |
886 | spinlock_t *ptl; |
887 | int ret = 0; |
888 | |
889 | pte = page_check_address(page, mm, address, &ptl, 1); |
890 | if (!pte) |
891 | goto out; |
892 | |
893 | if (pte_dirty(*pte) || pte_write(*pte)) { |
894 | pte_t entry; |
895 | |
896 | flush_cache_page(vma, address, pte_pfn(*pte)); |
897 | entry = ptep_clear_flush(vma, address, pte); |
898 | entry = pte_wrprotect(entry); |
899 | entry = pte_mkclean(entry); |
900 | set_pte_at(mm, address, pte, entry); |
901 | ret = 1; |
902 | } |
903 | |
904 | pte_unmap_unlock(pte, ptl); |
905 | |
906 | if (ret) |
907 | mmu_notifier_invalidate_page(mm, address); |
908 | out: |
909 | return ret; |
910 | } |
911 | |
912 | static int page_mkclean_file(struct address_space *mapping, struct page *page) |
913 | { |
914 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
915 | struct vm_area_struct *vma; |
916 | int ret = 0; |
917 | |
918 | BUG_ON(PageAnon(page)); |
919 | |
920 | mutex_lock(&mapping->i_mmap_mutex); |
921 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
922 | if (vma->vm_flags & VM_SHARED) { |
923 | unsigned long address = vma_address(page, vma); |
924 | ret += page_mkclean_one(page, vma, address); |
925 | } |
926 | } |
927 | mutex_unlock(&mapping->i_mmap_mutex); |
928 | return ret; |
929 | } |
930 | |
931 | int page_mkclean(struct page *page) |
932 | { |
933 | int ret = 0; |
934 | |
935 | BUG_ON(!PageLocked(page)); |
936 | |
937 | if (page_mapped(page)) { |
938 | struct address_space *mapping = page_mapping(page); |
939 | if (mapping) |
940 | ret = page_mkclean_file(mapping, page); |
941 | } |
942 | |
943 | return ret; |
944 | } |
945 | EXPORT_SYMBOL_GPL(page_mkclean); |
946 | |
947 | /** |
948 | * page_move_anon_rmap - move a page to our anon_vma |
949 | * @page: the page to move to our anon_vma |
950 | * @vma: the vma the page belongs to |
951 | * @address: the user virtual address mapped |
952 | * |
953 | * When a page belongs exclusively to one process after a COW event, |
954 | * that page can be moved into the anon_vma that belongs to just that |
955 | * process, so the rmap code will not search the parent or sibling |
956 | * processes. |
957 | */ |
958 | void page_move_anon_rmap(struct page *page, |
959 | struct vm_area_struct *vma, unsigned long address) |
960 | { |
961 | struct anon_vma *anon_vma = vma->anon_vma; |
962 | |
963 | VM_BUG_ON(!PageLocked(page)); |
964 | VM_BUG_ON(!anon_vma); |
965 | VM_BUG_ON(page->index != linear_page_index(vma, address)); |
966 | |
967 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
968 | page->mapping = (struct address_space *) anon_vma; |
969 | } |
970 | |
971 | /** |
972 | * __page_set_anon_rmap - set up new anonymous rmap |
973 | * @page: Page to add to rmap |
974 | * @vma: VM area to add page to. |
975 | * @address: User virtual address of the mapping |
976 | * @exclusive: the page is exclusively owned by the current process |
977 | */ |
978 | static void __page_set_anon_rmap(struct page *page, |
979 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
980 | { |
981 | struct anon_vma *anon_vma = vma->anon_vma; |
982 | |
983 | BUG_ON(!anon_vma); |
984 | |
985 | if (PageAnon(page)) |
986 | return; |
987 | |
988 | /* |
989 | * If the page isn't exclusively mapped into this vma, |
990 | * we must use the _oldest_ possible anon_vma for the |
991 | * page mapping! |
992 | */ |
993 | if (!exclusive) |
994 | anon_vma = anon_vma->root; |
995 | |
996 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
997 | page->mapping = (struct address_space *) anon_vma; |
998 | page->index = linear_page_index(vma, address); |
999 | } |
1000 | |
1001 | /** |
1002 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
1003 | * @page: the page to add the mapping to |
1004 | * @vma: the vm area in which the mapping is added |
1005 | * @address: the user virtual address mapped |
1006 | */ |
1007 | static void __page_check_anon_rmap(struct page *page, |
1008 | struct vm_area_struct *vma, unsigned long address) |
1009 | { |
1010 | #ifdef CONFIG_DEBUG_VM |
1011 | /* |
1012 | * The page's anon-rmap details (mapping and index) are guaranteed to |
1013 | * be set up correctly at this point. |
1014 | * |
1015 | * We have exclusion against page_add_anon_rmap because the caller |
1016 | * always holds the page locked, except if called from page_dup_rmap, |
1017 | * in which case the page is already known to be setup. |
1018 | * |
1019 | * We have exclusion against page_add_new_anon_rmap because those pages |
1020 | * are initially only visible via the pagetables, and the pte is locked |
1021 | * over the call to page_add_new_anon_rmap. |
1022 | */ |
1023 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
1024 | BUG_ON(page->index != linear_page_index(vma, address)); |
1025 | #endif |
1026 | } |
1027 | |
1028 | /** |
1029 | * page_add_anon_rmap - add pte mapping to an anonymous page |
1030 | * @page: the page to add the mapping to |
1031 | * @vma: the vm area in which the mapping is added |
1032 | * @address: the user virtual address mapped |
1033 | * |
1034 | * The caller needs to hold the pte lock, and the page must be locked in |
1035 | * the anon_vma case: to serialize mapping,index checking after setting, |
1036 | * and to ensure that PageAnon is not being upgraded racily to PageKsm |
1037 | * (but PageKsm is never downgraded to PageAnon). |
1038 | */ |
1039 | void page_add_anon_rmap(struct page *page, |
1040 | struct vm_area_struct *vma, unsigned long address) |
1041 | { |
1042 | do_page_add_anon_rmap(page, vma, address, 0); |
1043 | } |
1044 | |
1045 | /* |
1046 | * Special version of the above for do_swap_page, which often runs |
1047 | * into pages that are exclusively owned by the current process. |
1048 | * Everybody else should continue to use page_add_anon_rmap above. |
1049 | */ |
1050 | void do_page_add_anon_rmap(struct page *page, |
1051 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
1052 | { |
1053 | int first = atomic_inc_and_test(&page->_mapcount); |
1054 | if (first) { |
1055 | if (PageTransHuge(page)) |
1056 | __inc_zone_page_state(page, |
1057 | NR_ANON_TRANSPARENT_HUGEPAGES); |
1058 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1059 | hpage_nr_pages(page)); |
1060 | } |
1061 | if (unlikely(PageKsm(page))) |
1062 | return; |
1063 | |
1064 | VM_BUG_ON(!PageLocked(page)); |
1065 | /* address might be in next vma when migration races vma_adjust */ |
1066 | if (first) |
1067 | __page_set_anon_rmap(page, vma, address, exclusive); |
1068 | else |
1069 | __page_check_anon_rmap(page, vma, address); |
1070 | } |
1071 | |
1072 | /** |
1073 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1074 | * @page: the page to add the mapping to |
1075 | * @vma: the vm area in which the mapping is added |
1076 | * @address: the user virtual address mapped |
1077 | * |
1078 | * Same as page_add_anon_rmap but must only be called on *new* pages. |
1079 | * This means the inc-and-test can be bypassed. |
1080 | * Page does not have to be locked. |
1081 | */ |
1082 | void page_add_new_anon_rmap(struct page *page, |
1083 | struct vm_area_struct *vma, unsigned long address) |
1084 | { |
1085 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
1086 | SetPageSwapBacked(page); |
1087 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ |
1088 | if (PageTransHuge(page)) |
1089 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); |
1090 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1091 | hpage_nr_pages(page)); |
1092 | __page_set_anon_rmap(page, vma, address, 1); |
1093 | if (!mlocked_vma_newpage(vma, page)) { |
1094 | SetPageActive(page); |
1095 | lru_cache_add(page); |
1096 | } else |
1097 | add_page_to_unevictable_list(page); |
1098 | } |
1099 | |
1100 | /** |
1101 | * page_add_file_rmap - add pte mapping to a file page |
1102 | * @page: the page to add the mapping to |
1103 | * |
1104 | * The caller needs to hold the pte lock. |
1105 | */ |
1106 | void page_add_file_rmap(struct page *page) |
1107 | { |
1108 | bool locked; |
1109 | unsigned long flags; |
1110 | |
1111 | mem_cgroup_begin_update_page_stat(page, &locked, &flags); |
1112 | if (atomic_inc_and_test(&page->_mapcount)) { |
1113 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
1114 | mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); |
1115 | } |
1116 | mem_cgroup_end_update_page_stat(page, &locked, &flags); |
1117 | } |
1118 | |
1119 | /** |
1120 | * page_remove_rmap - take down pte mapping from a page |
1121 | * @page: page to remove mapping from |
1122 | * |
1123 | * The caller needs to hold the pte lock. |
1124 | */ |
1125 | void page_remove_rmap(struct page *page) |
1126 | { |
1127 | bool anon = PageAnon(page); |
1128 | bool locked; |
1129 | unsigned long flags; |
1130 | |
1131 | /* |
1132 | * The anon case has no mem_cgroup page_stat to update; but may |
1133 | * uncharge_page() below, where the lock ordering can deadlock if |
1134 | * we hold the lock against page_stat move: so avoid it on anon. |
1135 | */ |
1136 | if (!anon) |
1137 | mem_cgroup_begin_update_page_stat(page, &locked, &flags); |
1138 | |
1139 | /* page still mapped by someone else? */ |
1140 | if (!atomic_add_negative(-1, &page->_mapcount)) |
1141 | goto out; |
1142 | |
1143 | /* |
1144 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED |
1145 | * and not charged by memcg for now. |
1146 | */ |
1147 | if (unlikely(PageHuge(page))) |
1148 | goto out; |
1149 | if (anon) { |
1150 | mem_cgroup_uncharge_page(page); |
1151 | if (PageTransHuge(page)) |
1152 | __dec_zone_page_state(page, |
1153 | NR_ANON_TRANSPARENT_HUGEPAGES); |
1154 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1155 | -hpage_nr_pages(page)); |
1156 | } else { |
1157 | __dec_zone_page_state(page, NR_FILE_MAPPED); |
1158 | mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); |
1159 | mem_cgroup_end_update_page_stat(page, &locked, &flags); |
1160 | } |
1161 | if (unlikely(PageMlocked(page))) |
1162 | clear_page_mlock(page); |
1163 | /* |
1164 | * It would be tidy to reset the PageAnon mapping here, |
1165 | * but that might overwrite a racing page_add_anon_rmap |
1166 | * which increments mapcount after us but sets mapping |
1167 | * before us: so leave the reset to free_hot_cold_page, |
1168 | * and remember that it's only reliable while mapped. |
1169 | * Leaving it set also helps swapoff to reinstate ptes |
1170 | * faster for those pages still in swapcache. |
1171 | */ |
1172 | return; |
1173 | out: |
1174 | if (!anon) |
1175 | mem_cgroup_end_update_page_stat(page, &locked, &flags); |
1176 | } |
1177 | |
1178 | /* |
1179 | * Subfunctions of try_to_unmap: try_to_unmap_one called |
1180 | * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. |
1181 | */ |
1182 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
1183 | unsigned long address, enum ttu_flags flags) |
1184 | { |
1185 | struct mm_struct *mm = vma->vm_mm; |
1186 | pte_t *pte; |
1187 | pte_t pteval; |
1188 | spinlock_t *ptl; |
1189 | int ret = SWAP_AGAIN; |
1190 | |
1191 | pte = page_check_address(page, mm, address, &ptl, 0); |
1192 | if (!pte) |
1193 | goto out; |
1194 | |
1195 | /* |
1196 | * If the page is mlock()d, we cannot swap it out. |
1197 | * If it's recently referenced (perhaps page_referenced |
1198 | * skipped over this mm) then we should reactivate it. |
1199 | */ |
1200 | if (!(flags & TTU_IGNORE_MLOCK)) { |
1201 | if (vma->vm_flags & VM_LOCKED) |
1202 | goto out_mlock; |
1203 | |
1204 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
1205 | goto out_unmap; |
1206 | } |
1207 | if (!(flags & TTU_IGNORE_ACCESS)) { |
1208 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1209 | ret = SWAP_FAIL; |
1210 | goto out_unmap; |
1211 | } |
1212 | } |
1213 | |
1214 | /* Nuke the page table entry. */ |
1215 | flush_cache_page(vma, address, page_to_pfn(page)); |
1216 | pteval = ptep_clear_flush(vma, address, pte); |
1217 | |
1218 | /* Move the dirty bit to the physical page now the pte is gone. */ |
1219 | if (pte_dirty(pteval)) |
1220 | set_page_dirty(page); |
1221 | |
1222 | /* Update high watermark before we lower rss */ |
1223 | update_hiwater_rss(mm); |
1224 | |
1225 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
1226 | if (!PageHuge(page)) { |
1227 | if (PageAnon(page)) |
1228 | dec_mm_counter(mm, MM_ANONPAGES); |
1229 | else |
1230 | dec_mm_counter(mm, MM_FILEPAGES); |
1231 | } |
1232 | set_pte_at(mm, address, pte, |
1233 | swp_entry_to_pte(make_hwpoison_entry(page))); |
1234 | } else if (PageAnon(page)) { |
1235 | swp_entry_t entry = { .val = page_private(page) }; |
1236 | pte_t swp_pte; |
1237 | |
1238 | if (PageSwapCache(page)) { |
1239 | /* |
1240 | * Store the swap location in the pte. |
1241 | * See handle_pte_fault() ... |
1242 | */ |
1243 | if (swap_duplicate(entry) < 0) { |
1244 | set_pte_at(mm, address, pte, pteval); |
1245 | ret = SWAP_FAIL; |
1246 | goto out_unmap; |
1247 | } |
1248 | if (list_empty(&mm->mmlist)) { |
1249 | spin_lock(&mmlist_lock); |
1250 | if (list_empty(&mm->mmlist)) |
1251 | list_add(&mm->mmlist, &init_mm.mmlist); |
1252 | spin_unlock(&mmlist_lock); |
1253 | } |
1254 | dec_mm_counter(mm, MM_ANONPAGES); |
1255 | inc_mm_counter(mm, MM_SWAPENTS); |
1256 | } else if (IS_ENABLED(CONFIG_MIGRATION)) { |
1257 | /* |
1258 | * Store the pfn of the page in a special migration |
1259 | * pte. do_swap_page() will wait until the migration |
1260 | * pte is removed and then restart fault handling. |
1261 | */ |
1262 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); |
1263 | entry = make_migration_entry(page, pte_write(pteval)); |
1264 | } |
1265 | swp_pte = swp_entry_to_pte(entry); |
1266 | if (pte_soft_dirty(pteval)) |
1267 | swp_pte = pte_swp_mksoft_dirty(swp_pte); |
1268 | set_pte_at(mm, address, pte, swp_pte); |
1269 | BUG_ON(pte_file(*pte)); |
1270 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
1271 | (TTU_ACTION(flags) == TTU_MIGRATION)) { |
1272 | /* Establish migration entry for a file page */ |
1273 | swp_entry_t entry; |
1274 | entry = make_migration_entry(page, pte_write(pteval)); |
1275 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); |
1276 | } else |
1277 | dec_mm_counter(mm, MM_FILEPAGES); |
1278 | |
1279 | page_remove_rmap(page); |
1280 | page_cache_release(page); |
1281 | |
1282 | out_unmap: |
1283 | pte_unmap_unlock(pte, ptl); |
1284 | if (ret != SWAP_FAIL) |
1285 | mmu_notifier_invalidate_page(mm, address); |
1286 | out: |
1287 | return ret; |
1288 | |
1289 | out_mlock: |
1290 | pte_unmap_unlock(pte, ptl); |
1291 | |
1292 | |
1293 | /* |
1294 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes |
1295 | * unstable result and race. Plus, We can't wait here because |
1296 | * we now hold anon_vma->rwsem or mapping->i_mmap_mutex. |
1297 | * if trylock failed, the page remain in evictable lru and later |
1298 | * vmscan could retry to move the page to unevictable lru if the |
1299 | * page is actually mlocked. |
1300 | */ |
1301 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
1302 | if (vma->vm_flags & VM_LOCKED) { |
1303 | mlock_vma_page(page); |
1304 | ret = SWAP_MLOCK; |
1305 | } |
1306 | up_read(&vma->vm_mm->mmap_sem); |
1307 | } |
1308 | return ret; |
1309 | } |
1310 | |
1311 | /* |
1312 | * objrmap doesn't work for nonlinear VMAs because the assumption that |
1313 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. |
1314 | * Consequently, given a particular page and its ->index, we cannot locate the |
1315 | * ptes which are mapping that page without an exhaustive linear search. |
1316 | * |
1317 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which |
1318 | * maps the file to which the target page belongs. The ->vm_private_data field |
1319 | * holds the current cursor into that scan. Successive searches will circulate |
1320 | * around the vma's virtual address space. |
1321 | * |
1322 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, |
1323 | * more scanning pressure is placed against them as well. Eventually pages |
1324 | * will become fully unmapped and are eligible for eviction. |
1325 | * |
1326 | * For very sparsely populated VMAs this is a little inefficient - chances are |
1327 | * there there won't be many ptes located within the scan cluster. In this case |
1328 | * maybe we could scan further - to the end of the pte page, perhaps. |
1329 | * |
1330 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can |
1331 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, |
1332 | * rather than unmapping them. If we encounter the "check_page" that vmscan is |
1333 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. |
1334 | */ |
1335 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) |
1336 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) |
1337 | |
1338 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
1339 | struct vm_area_struct *vma, struct page *check_page) |
1340 | { |
1341 | struct mm_struct *mm = vma->vm_mm; |
1342 | pmd_t *pmd; |
1343 | pte_t *pte; |
1344 | pte_t pteval; |
1345 | spinlock_t *ptl; |
1346 | struct page *page; |
1347 | unsigned long address; |
1348 | unsigned long mmun_start; /* For mmu_notifiers */ |
1349 | unsigned long mmun_end; /* For mmu_notifiers */ |
1350 | unsigned long end; |
1351 | int ret = SWAP_AGAIN; |
1352 | int locked_vma = 0; |
1353 | |
1354 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
1355 | end = address + CLUSTER_SIZE; |
1356 | if (address < vma->vm_start) |
1357 | address = vma->vm_start; |
1358 | if (end > vma->vm_end) |
1359 | end = vma->vm_end; |
1360 | |
1361 | pmd = mm_find_pmd(mm, address); |
1362 | if (!pmd) |
1363 | return ret; |
1364 | |
1365 | mmun_start = address; |
1366 | mmun_end = end; |
1367 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
1368 | |
1369 | /* |
1370 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
1371 | * keep the sem while scanning the cluster for mlocking pages. |
1372 | */ |
1373 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
1374 | locked_vma = (vma->vm_flags & VM_LOCKED); |
1375 | if (!locked_vma) |
1376 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ |
1377 | } |
1378 | |
1379 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
1380 | |
1381 | /* Update high watermark before we lower rss */ |
1382 | update_hiwater_rss(mm); |
1383 | |
1384 | for (; address < end; pte++, address += PAGE_SIZE) { |
1385 | if (!pte_present(*pte)) |
1386 | continue; |
1387 | page = vm_normal_page(vma, address, *pte); |
1388 | BUG_ON(!page || PageAnon(page)); |
1389 | |
1390 | if (locked_vma) { |
1391 | mlock_vma_page(page); /* no-op if already mlocked */ |
1392 | if (page == check_page) |
1393 | ret = SWAP_MLOCK; |
1394 | continue; /* don't unmap */ |
1395 | } |
1396 | |
1397 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1398 | continue; |
1399 | |
1400 | /* Nuke the page table entry. */ |
1401 | flush_cache_page(vma, address, pte_pfn(*pte)); |
1402 | pteval = ptep_clear_flush(vma, address, pte); |
1403 | |
1404 | /* If nonlinear, store the file page offset in the pte. */ |
1405 | if (page->index != linear_page_index(vma, address)) { |
1406 | pte_t ptfile = pgoff_to_pte(page->index); |
1407 | if (pte_soft_dirty(pteval)) |
1408 | pte_file_mksoft_dirty(ptfile); |
1409 | set_pte_at(mm, address, pte, ptfile); |
1410 | } |
1411 | |
1412 | /* Move the dirty bit to the physical page now the pte is gone. */ |
1413 | if (pte_dirty(pteval)) |
1414 | set_page_dirty(page); |
1415 | |
1416 | page_remove_rmap(page); |
1417 | page_cache_release(page); |
1418 | dec_mm_counter(mm, MM_FILEPAGES); |
1419 | (*mapcount)--; |
1420 | } |
1421 | pte_unmap_unlock(pte - 1, ptl); |
1422 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
1423 | if (locked_vma) |
1424 | up_read(&vma->vm_mm->mmap_sem); |
1425 | return ret; |
1426 | } |
1427 | |
1428 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
1429 | { |
1430 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); |
1431 | |
1432 | if (!maybe_stack) |
1433 | return false; |
1434 | |
1435 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == |
1436 | VM_STACK_INCOMPLETE_SETUP) |
1437 | return true; |
1438 | |
1439 | return false; |
1440 | } |
1441 | |
1442 | /** |
1443 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based |
1444 | * rmap method |
1445 | * @page: the page to unmap/unlock |
1446 | * @flags: action and flags |
1447 | * |
1448 | * Find all the mappings of a page using the mapping pointer and the vma chains |
1449 | * contained in the anon_vma struct it points to. |
1450 | * |
1451 | * This function is only called from try_to_unmap/try_to_munlock for |
1452 | * anonymous pages. |
1453 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma |
1454 | * where the page was found will be held for write. So, we won't recheck |
1455 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be |
1456 | * 'LOCKED. |
1457 | */ |
1458 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) |
1459 | { |
1460 | struct anon_vma *anon_vma; |
1461 | pgoff_t pgoff; |
1462 | struct anon_vma_chain *avc; |
1463 | int ret = SWAP_AGAIN; |
1464 | |
1465 | anon_vma = page_lock_anon_vma_read(page); |
1466 | if (!anon_vma) |
1467 | return ret; |
1468 | |
1469 | pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
1470 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
1471 | struct vm_area_struct *vma = avc->vma; |
1472 | unsigned long address; |
1473 | |
1474 | /* |
1475 | * During exec, a temporary VMA is setup and later moved. |
1476 | * The VMA is moved under the anon_vma lock but not the |
1477 | * page tables leading to a race where migration cannot |
1478 | * find the migration ptes. Rather than increasing the |
1479 | * locking requirements of exec(), migration skips |
1480 | * temporary VMAs until after exec() completes. |
1481 | */ |
1482 | if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && |
1483 | is_vma_temporary_stack(vma)) |
1484 | continue; |
1485 | |
1486 | address = vma_address(page, vma); |
1487 | ret = try_to_unmap_one(page, vma, address, flags); |
1488 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1489 | break; |
1490 | } |
1491 | |
1492 | page_unlock_anon_vma_read(anon_vma); |
1493 | return ret; |
1494 | } |
1495 | |
1496 | /** |
1497 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1498 | * @page: the page to unmap/unlock |
1499 | * @flags: action and flags |
1500 | * |
1501 | * Find all the mappings of a page using the mapping pointer and the vma chains |
1502 | * contained in the address_space struct it points to. |
1503 | * |
1504 | * This function is only called from try_to_unmap/try_to_munlock for |
1505 | * object-based pages. |
1506 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma |
1507 | * where the page was found will be held for write. So, we won't recheck |
1508 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be |
1509 | * 'LOCKED. |
1510 | */ |
1511 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) |
1512 | { |
1513 | struct address_space *mapping = page->mapping; |
1514 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
1515 | struct vm_area_struct *vma; |
1516 | int ret = SWAP_AGAIN; |
1517 | unsigned long cursor; |
1518 | unsigned long max_nl_cursor = 0; |
1519 | unsigned long max_nl_size = 0; |
1520 | unsigned int mapcount; |
1521 | |
1522 | if (PageHuge(page)) |
1523 | pgoff = page->index << compound_order(page); |
1524 | |
1525 | mutex_lock(&mapping->i_mmap_mutex); |
1526 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
1527 | unsigned long address = vma_address(page, vma); |
1528 | ret = try_to_unmap_one(page, vma, address, flags); |
1529 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1530 | goto out; |
1531 | } |
1532 | |
1533 | if (list_empty(&mapping->i_mmap_nonlinear)) |
1534 | goto out; |
1535 | |
1536 | /* |
1537 | * We don't bother to try to find the munlocked page in nonlinears. |
1538 | * It's costly. Instead, later, page reclaim logic may call |
1539 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. |
1540 | */ |
1541 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
1542 | goto out; |
1543 | |
1544 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1545 | shared.nonlinear) { |
1546 | cursor = (unsigned long) vma->vm_private_data; |
1547 | if (cursor > max_nl_cursor) |
1548 | max_nl_cursor = cursor; |
1549 | cursor = vma->vm_end - vma->vm_start; |
1550 | if (cursor > max_nl_size) |
1551 | max_nl_size = cursor; |
1552 | } |
1553 | |
1554 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1555 | ret = SWAP_FAIL; |
1556 | goto out; |
1557 | } |
1558 | |
1559 | /* |
1560 | * We don't try to search for this page in the nonlinear vmas, |
1561 | * and page_referenced wouldn't have found it anyway. Instead |
1562 | * just walk the nonlinear vmas trying to age and unmap some. |
1563 | * The mapcount of the page we came in with is irrelevant, |
1564 | * but even so use it as a guide to how hard we should try? |
1565 | */ |
1566 | mapcount = page_mapcount(page); |
1567 | if (!mapcount) |
1568 | goto out; |
1569 | cond_resched(); |
1570 | |
1571 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; |
1572 | if (max_nl_cursor == 0) |
1573 | max_nl_cursor = CLUSTER_SIZE; |
1574 | |
1575 | do { |
1576 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1577 | shared.nonlinear) { |
1578 | cursor = (unsigned long) vma->vm_private_data; |
1579 | while ( cursor < max_nl_cursor && |
1580 | cursor < vma->vm_end - vma->vm_start) { |
1581 | if (try_to_unmap_cluster(cursor, &mapcount, |
1582 | vma, page) == SWAP_MLOCK) |
1583 | ret = SWAP_MLOCK; |
1584 | cursor += CLUSTER_SIZE; |
1585 | vma->vm_private_data = (void *) cursor; |
1586 | if ((int)mapcount <= 0) |
1587 | goto out; |
1588 | } |
1589 | vma->vm_private_data = (void *) max_nl_cursor; |
1590 | } |
1591 | cond_resched(); |
1592 | max_nl_cursor += CLUSTER_SIZE; |
1593 | } while (max_nl_cursor <= max_nl_size); |
1594 | |
1595 | /* |
1596 | * Don't loop forever (perhaps all the remaining pages are |
1597 | * in locked vmas). Reset cursor on all unreserved nonlinear |
1598 | * vmas, now forgetting on which ones it had fallen behind. |
1599 | */ |
1600 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) |
1601 | vma->vm_private_data = NULL; |
1602 | out: |
1603 | mutex_unlock(&mapping->i_mmap_mutex); |
1604 | return ret; |
1605 | } |
1606 | |
1607 | /** |
1608 | * try_to_unmap - try to remove all page table mappings to a page |
1609 | * @page: the page to get unmapped |
1610 | * @flags: action and flags |
1611 | * |
1612 | * Tries to remove all the page table entries which are mapping this |
1613 | * page, used in the pageout path. Caller must hold the page lock. |
1614 | * Return values are: |
1615 | * |
1616 | * SWAP_SUCCESS - we succeeded in removing all mappings |
1617 | * SWAP_AGAIN - we missed a mapping, try again later |
1618 | * SWAP_FAIL - the page is unswappable |
1619 | * SWAP_MLOCK - page is mlocked. |
1620 | */ |
1621 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1622 | { |
1623 | int ret; |
1624 | |
1625 | BUG_ON(!PageLocked(page)); |
1626 | VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); |
1627 | |
1628 | if (unlikely(PageKsm(page))) |
1629 | ret = try_to_unmap_ksm(page, flags); |
1630 | else if (PageAnon(page)) |
1631 | ret = try_to_unmap_anon(page, flags); |
1632 | else |
1633 | ret = try_to_unmap_file(page, flags); |
1634 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1635 | ret = SWAP_SUCCESS; |
1636 | return ret; |
1637 | } |
1638 | |
1639 | /** |
1640 | * try_to_munlock - try to munlock a page |
1641 | * @page: the page to be munlocked |
1642 | * |
1643 | * Called from munlock code. Checks all of the VMAs mapping the page |
1644 | * to make sure nobody else has this page mlocked. The page will be |
1645 | * returned with PG_mlocked cleared if no other vmas have it mlocked. |
1646 | * |
1647 | * Return values are: |
1648 | * |
1649 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
1650 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
1651 | * SWAP_FAIL - page cannot be located at present |
1652 | * SWAP_MLOCK - page is now mlocked. |
1653 | */ |
1654 | int try_to_munlock(struct page *page) |
1655 | { |
1656 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); |
1657 | |
1658 | if (unlikely(PageKsm(page))) |
1659 | return try_to_unmap_ksm(page, TTU_MUNLOCK); |
1660 | else if (PageAnon(page)) |
1661 | return try_to_unmap_anon(page, TTU_MUNLOCK); |
1662 | else |
1663 | return try_to_unmap_file(page, TTU_MUNLOCK); |
1664 | } |
1665 | |
1666 | void __put_anon_vma(struct anon_vma *anon_vma) |
1667 | { |
1668 | struct anon_vma *root = anon_vma->root; |
1669 | |
1670 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1671 | anon_vma_free(root); |
1672 | |
1673 | anon_vma_free(anon_vma); |
1674 | } |
1675 | |
1676 | #ifdef CONFIG_MIGRATION |
1677 | /* |
1678 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): |
1679 | * Called by migrate.c to remove migration ptes, but might be used more later. |
1680 | */ |
1681 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, |
1682 | struct vm_area_struct *, unsigned long, void *), void *arg) |
1683 | { |
1684 | struct anon_vma *anon_vma; |
1685 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
1686 | struct anon_vma_chain *avc; |
1687 | int ret = SWAP_AGAIN; |
1688 | |
1689 | /* |
1690 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() |
1691 | * because that depends on page_mapped(); but not all its usages |
1692 | * are holding mmap_sem. Users without mmap_sem are required to |
1693 | * take a reference count to prevent the anon_vma disappearing |
1694 | */ |
1695 | anon_vma = page_anon_vma(page); |
1696 | if (!anon_vma) |
1697 | return ret; |
1698 | anon_vma_lock_read(anon_vma); |
1699 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
1700 | struct vm_area_struct *vma = avc->vma; |
1701 | unsigned long address = vma_address(page, vma); |
1702 | ret = rmap_one(page, vma, address, arg); |
1703 | if (ret != SWAP_AGAIN) |
1704 | break; |
1705 | } |
1706 | anon_vma_unlock_read(anon_vma); |
1707 | return ret; |
1708 | } |
1709 | |
1710 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, |
1711 | struct vm_area_struct *, unsigned long, void *), void *arg) |
1712 | { |
1713 | struct address_space *mapping = page->mapping; |
1714 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
1715 | struct vm_area_struct *vma; |
1716 | int ret = SWAP_AGAIN; |
1717 | |
1718 | if (!mapping) |
1719 | return ret; |
1720 | mutex_lock(&mapping->i_mmap_mutex); |
1721 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
1722 | unsigned long address = vma_address(page, vma); |
1723 | ret = rmap_one(page, vma, address, arg); |
1724 | if (ret != SWAP_AGAIN) |
1725 | break; |
1726 | } |
1727 | /* |
1728 | * No nonlinear handling: being always shared, nonlinear vmas |
1729 | * never contain migration ptes. Decide what to do about this |
1730 | * limitation to linear when we need rmap_walk() on nonlinear. |
1731 | */ |
1732 | mutex_unlock(&mapping->i_mmap_mutex); |
1733 | return ret; |
1734 | } |
1735 | |
1736 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, |
1737 | struct vm_area_struct *, unsigned long, void *), void *arg) |
1738 | { |
1739 | VM_BUG_ON(!PageLocked(page)); |
1740 | |
1741 | if (unlikely(PageKsm(page))) |
1742 | return rmap_walk_ksm(page, rmap_one, arg); |
1743 | else if (PageAnon(page)) |
1744 | return rmap_walk_anon(page, rmap_one, arg); |
1745 | else |
1746 | return rmap_walk_file(page, rmap_one, arg); |
1747 | } |
1748 | #endif /* CONFIG_MIGRATION */ |
1749 | |
1750 | #ifdef CONFIG_HUGETLB_PAGE |
1751 | /* |
1752 | * The following three functions are for anonymous (private mapped) hugepages. |
1753 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
1754 | * and no lru code, because we handle hugepages differently from common pages. |
1755 | */ |
1756 | static void __hugepage_set_anon_rmap(struct page *page, |
1757 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
1758 | { |
1759 | struct anon_vma *anon_vma = vma->anon_vma; |
1760 | |
1761 | BUG_ON(!anon_vma); |
1762 | |
1763 | if (PageAnon(page)) |
1764 | return; |
1765 | if (!exclusive) |
1766 | anon_vma = anon_vma->root; |
1767 | |
1768 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1769 | page->mapping = (struct address_space *) anon_vma; |
1770 | page->index = linear_page_index(vma, address); |
1771 | } |
1772 | |
1773 | void hugepage_add_anon_rmap(struct page *page, |
1774 | struct vm_area_struct *vma, unsigned long address) |
1775 | { |
1776 | struct anon_vma *anon_vma = vma->anon_vma; |
1777 | int first; |
1778 | |
1779 | BUG_ON(!PageLocked(page)); |
1780 | BUG_ON(!anon_vma); |
1781 | /* address might be in next vma when migration races vma_adjust */ |
1782 | first = atomic_inc_and_test(&page->_mapcount); |
1783 | if (first) |
1784 | __hugepage_set_anon_rmap(page, vma, address, 0); |
1785 | } |
1786 | |
1787 | void hugepage_add_new_anon_rmap(struct page *page, |
1788 | struct vm_area_struct *vma, unsigned long address) |
1789 | { |
1790 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
1791 | atomic_set(&page->_mapcount, 0); |
1792 | __hugepage_set_anon_rmap(page, vma, address, 1); |
1793 | } |
1794 | #endif /* CONFIG_HUGETLB_PAGE */ |
1795 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9