Root/mm/rmap.c

1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59#include <linux/backing-dev.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70    struct anon_vma *anon_vma;
71
72    anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73    if (anon_vma) {
74        atomic_set(&anon_vma->refcount, 1);
75        /*
76         * Initialise the anon_vma root to point to itself. If called
77         * from fork, the root will be reset to the parents anon_vma.
78         */
79        anon_vma->root = anon_vma;
80    }
81
82    return anon_vma;
83}
84
85static inline void anon_vma_free(struct anon_vma *anon_vma)
86{
87    VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89    /*
90     * Synchronize against page_lock_anon_vma_read() such that
91     * we can safely hold the lock without the anon_vma getting
92     * freed.
93     *
94     * Relies on the full mb implied by the atomic_dec_and_test() from
95     * put_anon_vma() against the acquire barrier implied by
96     * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97     *
98     * page_lock_anon_vma_read() VS put_anon_vma()
99     * down_read_trylock() atomic_dec_and_test()
100     * LOCK MB
101     * atomic_read() rwsem_is_locked()
102     *
103     * LOCK should suffice since the actual taking of the lock must
104     * happen _before_ what follows.
105     */
106    if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107        anon_vma_lock_write(anon_vma);
108        anon_vma_unlock_write(anon_vma);
109    }
110
111    kmem_cache_free(anon_vma_cachep, anon_vma);
112}
113
114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115{
116    return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117}
118
119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120{
121    kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122}
123
124static void anon_vma_chain_link(struct vm_area_struct *vma,
125                struct anon_vma_chain *avc,
126                struct anon_vma *anon_vma)
127{
128    avc->vma = vma;
129    avc->anon_vma = anon_vma;
130    list_add(&avc->same_vma, &vma->anon_vma_chain);
131    anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132}
133
134/**
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
137 *
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
141 *
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
147 *
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
153 *
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
158 *
159 * This must be called with the mmap_sem held for reading.
160 */
161int anon_vma_prepare(struct vm_area_struct *vma)
162{
163    struct anon_vma *anon_vma = vma->anon_vma;
164    struct anon_vma_chain *avc;
165
166    might_sleep();
167    if (unlikely(!anon_vma)) {
168        struct mm_struct *mm = vma->vm_mm;
169        struct anon_vma *allocated;
170
171        avc = anon_vma_chain_alloc(GFP_KERNEL);
172        if (!avc)
173            goto out_enomem;
174
175        anon_vma = find_mergeable_anon_vma(vma);
176        allocated = NULL;
177        if (!anon_vma) {
178            anon_vma = anon_vma_alloc();
179            if (unlikely(!anon_vma))
180                goto out_enomem_free_avc;
181            allocated = anon_vma;
182        }
183
184        anon_vma_lock_write(anon_vma);
185        /* page_table_lock to protect against threads */
186        spin_lock(&mm->page_table_lock);
187        if (likely(!vma->anon_vma)) {
188            vma->anon_vma = anon_vma;
189            anon_vma_chain_link(vma, avc, anon_vma);
190            allocated = NULL;
191            avc = NULL;
192        }
193        spin_unlock(&mm->page_table_lock);
194        anon_vma_unlock_write(anon_vma);
195
196        if (unlikely(allocated))
197            put_anon_vma(allocated);
198        if (unlikely(avc))
199            anon_vma_chain_free(avc);
200    }
201    return 0;
202
203 out_enomem_free_avc:
204    anon_vma_chain_free(avc);
205 out_enomem:
206    return -ENOMEM;
207}
208
209/*
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
213 *
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
216 */
217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218{
219    struct anon_vma *new_root = anon_vma->root;
220    if (new_root != root) {
221        if (WARN_ON_ONCE(root))
222            up_write(&root->rwsem);
223        root = new_root;
224        down_write(&root->rwsem);
225    }
226    return root;
227}
228
229static inline void unlock_anon_vma_root(struct anon_vma *root)
230{
231    if (root)
232        up_write(&root->rwsem);
233}
234
235/*
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
238 */
239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240{
241    struct anon_vma_chain *avc, *pavc;
242    struct anon_vma *root = NULL;
243
244    list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245        struct anon_vma *anon_vma;
246
247        avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248        if (unlikely(!avc)) {
249            unlock_anon_vma_root(root);
250            root = NULL;
251            avc = anon_vma_chain_alloc(GFP_KERNEL);
252            if (!avc)
253                goto enomem_failure;
254        }
255        anon_vma = pavc->anon_vma;
256        root = lock_anon_vma_root(root, anon_vma);
257        anon_vma_chain_link(dst, avc, anon_vma);
258    }
259    unlock_anon_vma_root(root);
260    return 0;
261
262 enomem_failure:
263    unlink_anon_vmas(dst);
264    return -ENOMEM;
265}
266
267/*
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
271 */
272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273{
274    struct anon_vma_chain *avc;
275    struct anon_vma *anon_vma;
276
277    /* Don't bother if the parent process has no anon_vma here. */
278    if (!pvma->anon_vma)
279        return 0;
280
281    /*
282     * First, attach the new VMA to the parent VMA's anon_vmas,
283     * so rmap can find non-COWed pages in child processes.
284     */
285    if (anon_vma_clone(vma, pvma))
286        return -ENOMEM;
287
288    /* Then add our own anon_vma. */
289    anon_vma = anon_vma_alloc();
290    if (!anon_vma)
291        goto out_error;
292    avc = anon_vma_chain_alloc(GFP_KERNEL);
293    if (!avc)
294        goto out_error_free_anon_vma;
295
296    /*
297     * The root anon_vma's spinlock is the lock actually used when we
298     * lock any of the anon_vmas in this anon_vma tree.
299     */
300    anon_vma->root = pvma->anon_vma->root;
301    /*
302     * With refcounts, an anon_vma can stay around longer than the
303     * process it belongs to. The root anon_vma needs to be pinned until
304     * this anon_vma is freed, because the lock lives in the root.
305     */
306    get_anon_vma(anon_vma->root);
307    /* Mark this anon_vma as the one where our new (COWed) pages go. */
308    vma->anon_vma = anon_vma;
309    anon_vma_lock_write(anon_vma);
310    anon_vma_chain_link(vma, avc, anon_vma);
311    anon_vma_unlock_write(anon_vma);
312
313    return 0;
314
315 out_error_free_anon_vma:
316    put_anon_vma(anon_vma);
317 out_error:
318    unlink_anon_vmas(vma);
319    return -ENOMEM;
320}
321
322void unlink_anon_vmas(struct vm_area_struct *vma)
323{
324    struct anon_vma_chain *avc, *next;
325    struct anon_vma *root = NULL;
326
327    /*
328     * Unlink each anon_vma chained to the VMA. This list is ordered
329     * from newest to oldest, ensuring the root anon_vma gets freed last.
330     */
331    list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332        struct anon_vma *anon_vma = avc->anon_vma;
333
334        root = lock_anon_vma_root(root, anon_vma);
335        anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336
337        /*
338         * Leave empty anon_vmas on the list - we'll need
339         * to free them outside the lock.
340         */
341        if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342            continue;
343
344        list_del(&avc->same_vma);
345        anon_vma_chain_free(avc);
346    }
347    unlock_anon_vma_root(root);
348
349    /*
350     * Iterate the list once more, it now only contains empty and unlinked
351     * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352     * needing to write-acquire the anon_vma->root->rwsem.
353     */
354    list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355        struct anon_vma *anon_vma = avc->anon_vma;
356
357        put_anon_vma(anon_vma);
358
359        list_del(&avc->same_vma);
360        anon_vma_chain_free(avc);
361    }
362}
363
364static void anon_vma_ctor(void *data)
365{
366    struct anon_vma *anon_vma = data;
367
368    init_rwsem(&anon_vma->rwsem);
369    atomic_set(&anon_vma->refcount, 0);
370    anon_vma->rb_root = RB_ROOT;
371}
372
373void __init anon_vma_init(void)
374{
375    anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376            0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377    anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378}
379
380/*
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 *
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
386 *
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
389 *
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 *
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
398 *
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
402 */
403struct anon_vma *page_get_anon_vma(struct page *page)
404{
405    struct anon_vma *anon_vma = NULL;
406    unsigned long anon_mapping;
407
408    rcu_read_lock();
409    anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410    if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411        goto out;
412    if (!page_mapped(page))
413        goto out;
414
415    anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416    if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417        anon_vma = NULL;
418        goto out;
419    }
420
421    /*
422     * If this page is still mapped, then its anon_vma cannot have been
423     * freed. But if it has been unmapped, we have no security against the
424     * anon_vma structure being freed and reused (for another anon_vma:
425     * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426     * above cannot corrupt).
427     */
428    if (!page_mapped(page)) {
429        put_anon_vma(anon_vma);
430        anon_vma = NULL;
431    }
432out:
433    rcu_read_unlock();
434
435    return anon_vma;
436}
437
438/*
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 *
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
444 */
445struct anon_vma *page_lock_anon_vma_read(struct page *page)
446{
447    struct anon_vma *anon_vma = NULL;
448    struct anon_vma *root_anon_vma;
449    unsigned long anon_mapping;
450
451    rcu_read_lock();
452    anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453    if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454        goto out;
455    if (!page_mapped(page))
456        goto out;
457
458    anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459    root_anon_vma = ACCESS_ONCE(anon_vma->root);
460    if (down_read_trylock(&root_anon_vma->rwsem)) {
461        /*
462         * If the page is still mapped, then this anon_vma is still
463         * its anon_vma, and holding the mutex ensures that it will
464         * not go away, see anon_vma_free().
465         */
466        if (!page_mapped(page)) {
467            up_read(&root_anon_vma->rwsem);
468            anon_vma = NULL;
469        }
470        goto out;
471    }
472
473    /* trylock failed, we got to sleep */
474    if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475        anon_vma = NULL;
476        goto out;
477    }
478
479    if (!page_mapped(page)) {
480        put_anon_vma(anon_vma);
481        anon_vma = NULL;
482        goto out;
483    }
484
485    /* we pinned the anon_vma, its safe to sleep */
486    rcu_read_unlock();
487    anon_vma_lock_read(anon_vma);
488
489    if (atomic_dec_and_test(&anon_vma->refcount)) {
490        /*
491         * Oops, we held the last refcount, release the lock
492         * and bail -- can't simply use put_anon_vma() because
493         * we'll deadlock on the anon_vma_lock_write() recursion.
494         */
495        anon_vma_unlock_read(anon_vma);
496        __put_anon_vma(anon_vma);
497        anon_vma = NULL;
498    }
499
500    return anon_vma;
501
502out:
503    rcu_read_unlock();
504    return anon_vma;
505}
506
507void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508{
509    anon_vma_unlock_read(anon_vma);
510}
511
512/*
513 * At what user virtual address is page expected in @vma?
514 */
515static inline unsigned long
516__vma_address(struct page *page, struct vm_area_struct *vma)
517{
518    pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519
520    if (unlikely(is_vm_hugetlb_page(vma)))
521        pgoff = page->index << huge_page_order(page_hstate(page));
522
523    return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529    unsigned long address = __vma_address(page, vma);
530
531    /* page should be within @vma mapping range */
532    VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533
534    return address;
535}
536
537/*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
543    unsigned long address;
544    if (PageAnon(page)) {
545        struct anon_vma *page__anon_vma = page_anon_vma(page);
546        /*
547         * Note: swapoff's unuse_vma() is more efficient with this
548         * check, and needs it to match anon_vma when KSM is active.
549         */
550        if (!vma->anon_vma || !page__anon_vma ||
551            vma->anon_vma->root != page__anon_vma->root)
552            return -EFAULT;
553    } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554        if (!vma->vm_file ||
555            vma->vm_file->f_mapping != page->mapping)
556            return -EFAULT;
557    } else
558        return -EFAULT;
559    address = __vma_address(page, vma);
560    if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561        return -EFAULT;
562    return address;
563}
564
565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566{
567    pgd_t *pgd;
568    pud_t *pud;
569    pmd_t *pmd = NULL;
570
571    pgd = pgd_offset(mm, address);
572    if (!pgd_present(*pgd))
573        goto out;
574
575    pud = pud_offset(pgd, address);
576    if (!pud_present(*pud))
577        goto out;
578
579    pmd = pmd_offset(pud, address);
580    if (!pmd_present(*pmd))
581        pmd = NULL;
582out:
583    return pmd;
584}
585
586/*
587 * Check that @page is mapped at @address into @mm.
588 *
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
592 *
593 * On success returns with pte mapped and locked.
594 */
595pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596              unsigned long address, spinlock_t **ptlp, int sync)
597{
598    pmd_t *pmd;
599    pte_t *pte;
600    spinlock_t *ptl;
601
602    if (unlikely(PageHuge(page))) {
603        pte = huge_pte_offset(mm, address);
604        ptl = &mm->page_table_lock;
605        goto check;
606    }
607
608    pmd = mm_find_pmd(mm, address);
609    if (!pmd)
610        return NULL;
611
612    if (pmd_trans_huge(*pmd))
613        return NULL;
614
615    pte = pte_offset_map(pmd, address);
616    /* Make a quick check before getting the lock */
617    if (!sync && !pte_present(*pte)) {
618        pte_unmap(pte);
619        return NULL;
620    }
621
622    ptl = pte_lockptr(mm, pmd);
623check:
624    spin_lock(ptl);
625    if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
626        *ptlp = ptl;
627        return pte;
628    }
629    pte_unmap_unlock(pte, ptl);
630    return NULL;
631}
632
633/**
634 * page_mapped_in_vma - check whether a page is really mapped in a VMA
635 * @page: the page to test
636 * @vma: the VMA to test
637 *
638 * Returns 1 if the page is mapped into the page tables of the VMA, 0
639 * if the page is not mapped into the page tables of this VMA. Only
640 * valid for normal file or anonymous VMAs.
641 */
642int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
643{
644    unsigned long address;
645    pte_t *pte;
646    spinlock_t *ptl;
647
648    address = __vma_address(page, vma);
649    if (unlikely(address < vma->vm_start || address >= vma->vm_end))
650        return 0;
651    pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
652    if (!pte) /* the page is not in this mm */
653        return 0;
654    pte_unmap_unlock(pte, ptl);
655
656    return 1;
657}
658
659/*
660 * Subfunctions of page_referenced: page_referenced_one called
661 * repeatedly from either page_referenced_anon or page_referenced_file.
662 */
663int page_referenced_one(struct page *page, struct vm_area_struct *vma,
664            unsigned long address, unsigned int *mapcount,
665            unsigned long *vm_flags)
666{
667    struct mm_struct *mm = vma->vm_mm;
668    int referenced = 0;
669
670    if (unlikely(PageTransHuge(page))) {
671        pmd_t *pmd;
672
673        spin_lock(&mm->page_table_lock);
674        /*
675         * rmap might return false positives; we must filter
676         * these out using page_check_address_pmd().
677         */
678        pmd = page_check_address_pmd(page, mm, address,
679                         PAGE_CHECK_ADDRESS_PMD_FLAG);
680        if (!pmd) {
681            spin_unlock(&mm->page_table_lock);
682            goto out;
683        }
684
685        if (vma->vm_flags & VM_LOCKED) {
686            spin_unlock(&mm->page_table_lock);
687            *mapcount = 0; /* break early from loop */
688            *vm_flags |= VM_LOCKED;
689            goto out;
690        }
691
692        /* go ahead even if the pmd is pmd_trans_splitting() */
693        if (pmdp_clear_flush_young_notify(vma, address, pmd))
694            referenced++;
695        spin_unlock(&mm->page_table_lock);
696    } else {
697        pte_t *pte;
698        spinlock_t *ptl;
699
700        /*
701         * rmap might return false positives; we must filter
702         * these out using page_check_address().
703         */
704        pte = page_check_address(page, mm, address, &ptl, 0);
705        if (!pte)
706            goto out;
707
708        if (vma->vm_flags & VM_LOCKED) {
709            pte_unmap_unlock(pte, ptl);
710            *mapcount = 0; /* break early from loop */
711            *vm_flags |= VM_LOCKED;
712            goto out;
713        }
714
715        if (ptep_clear_flush_young_notify(vma, address, pte)) {
716            /*
717             * Don't treat a reference through a sequentially read
718             * mapping as such. If the page has been used in
719             * another mapping, we will catch it; if this other
720             * mapping is already gone, the unmap path will have
721             * set PG_referenced or activated the page.
722             */
723            if (likely(!(vma->vm_flags & VM_SEQ_READ)))
724                referenced++;
725        }
726        pte_unmap_unlock(pte, ptl);
727    }
728
729    (*mapcount)--;
730
731    if (referenced)
732        *vm_flags |= vma->vm_flags;
733out:
734    return referenced;
735}
736
737static int page_referenced_anon(struct page *page,
738                struct mem_cgroup *memcg,
739                unsigned long *vm_flags)
740{
741    unsigned int mapcount;
742    struct anon_vma *anon_vma;
743    pgoff_t pgoff;
744    struct anon_vma_chain *avc;
745    int referenced = 0;
746
747    anon_vma = page_lock_anon_vma_read(page);
748    if (!anon_vma)
749        return referenced;
750
751    mapcount = page_mapcount(page);
752    pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
753    anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
754        struct vm_area_struct *vma = avc->vma;
755        unsigned long address = vma_address(page, vma);
756        /*
757         * If we are reclaiming on behalf of a cgroup, skip
758         * counting on behalf of references from different
759         * cgroups
760         */
761        if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
762            continue;
763        referenced += page_referenced_one(page, vma, address,
764                          &mapcount, vm_flags);
765        if (!mapcount)
766            break;
767    }
768
769    page_unlock_anon_vma_read(anon_vma);
770    return referenced;
771}
772
773/**
774 * page_referenced_file - referenced check for object-based rmap
775 * @page: the page we're checking references on.
776 * @memcg: target memory control group
777 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
778 *
779 * For an object-based mapped page, find all the places it is mapped and
780 * check/clear the referenced flag. This is done by following the page->mapping
781 * pointer, then walking the chain of vmas it holds. It returns the number
782 * of references it found.
783 *
784 * This function is only called from page_referenced for object-based pages.
785 */
786static int page_referenced_file(struct page *page,
787                struct mem_cgroup *memcg,
788                unsigned long *vm_flags)
789{
790    unsigned int mapcount;
791    struct address_space *mapping = page->mapping;
792    pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
793    struct vm_area_struct *vma;
794    int referenced = 0;
795
796    /*
797     * The caller's checks on page->mapping and !PageAnon have made
798     * sure that this is a file page: the check for page->mapping
799     * excludes the case just before it gets set on an anon page.
800     */
801    BUG_ON(PageAnon(page));
802
803    /*
804     * The page lock not only makes sure that page->mapping cannot
805     * suddenly be NULLified by truncation, it makes sure that the
806     * structure at mapping cannot be freed and reused yet,
807     * so we can safely take mapping->i_mmap_mutex.
808     */
809    BUG_ON(!PageLocked(page));
810
811    mutex_lock(&mapping->i_mmap_mutex);
812
813    /*
814     * i_mmap_mutex does not stabilize mapcount at all, but mapcount
815     * is more likely to be accurate if we note it after spinning.
816     */
817    mapcount = page_mapcount(page);
818
819    vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
820        unsigned long address = vma_address(page, vma);
821        /*
822         * If we are reclaiming on behalf of a cgroup, skip
823         * counting on behalf of references from different
824         * cgroups
825         */
826        if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
827            continue;
828        referenced += page_referenced_one(page, vma, address,
829                          &mapcount, vm_flags);
830        if (!mapcount)
831            break;
832    }
833
834    mutex_unlock(&mapping->i_mmap_mutex);
835    return referenced;
836}
837
838/**
839 * page_referenced - test if the page was referenced
840 * @page: the page to test
841 * @is_locked: caller holds lock on the page
842 * @memcg: target memory cgroup
843 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
844 *
845 * Quick test_and_clear_referenced for all mappings to a page,
846 * returns the number of ptes which referenced the page.
847 */
848int page_referenced(struct page *page,
849            int is_locked,
850            struct mem_cgroup *memcg,
851            unsigned long *vm_flags)
852{
853    int referenced = 0;
854    int we_locked = 0;
855
856    *vm_flags = 0;
857    if (page_mapped(page) && page_rmapping(page)) {
858        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
859            we_locked = trylock_page(page);
860            if (!we_locked) {
861                referenced++;
862                goto out;
863            }
864        }
865        if (unlikely(PageKsm(page)))
866            referenced += page_referenced_ksm(page, memcg,
867                                vm_flags);
868        else if (PageAnon(page))
869            referenced += page_referenced_anon(page, memcg,
870                                vm_flags);
871        else if (page->mapping)
872            referenced += page_referenced_file(page, memcg,
873                                vm_flags);
874        if (we_locked)
875            unlock_page(page);
876    }
877out:
878    return referenced;
879}
880
881static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882                unsigned long address)
883{
884    struct mm_struct *mm = vma->vm_mm;
885    pte_t *pte;
886    spinlock_t *ptl;
887    int ret = 0;
888
889    pte = page_check_address(page, mm, address, &ptl, 1);
890    if (!pte)
891        goto out;
892
893    if (pte_dirty(*pte) || pte_write(*pte)) {
894        pte_t entry;
895
896        flush_cache_page(vma, address, pte_pfn(*pte));
897        entry = ptep_clear_flush(vma, address, pte);
898        entry = pte_wrprotect(entry);
899        entry = pte_mkclean(entry);
900        set_pte_at(mm, address, pte, entry);
901        ret = 1;
902    }
903
904    pte_unmap_unlock(pte, ptl);
905
906    if (ret)
907        mmu_notifier_invalidate_page(mm, address);
908out:
909    return ret;
910}
911
912static int page_mkclean_file(struct address_space *mapping, struct page *page)
913{
914    pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
915    struct vm_area_struct *vma;
916    int ret = 0;
917
918    BUG_ON(PageAnon(page));
919
920    mutex_lock(&mapping->i_mmap_mutex);
921    vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
922        if (vma->vm_flags & VM_SHARED) {
923            unsigned long address = vma_address(page, vma);
924            ret += page_mkclean_one(page, vma, address);
925        }
926    }
927    mutex_unlock(&mapping->i_mmap_mutex);
928    return ret;
929}
930
931int page_mkclean(struct page *page)
932{
933    int ret = 0;
934
935    BUG_ON(!PageLocked(page));
936
937    if (page_mapped(page)) {
938        struct address_space *mapping = page_mapping(page);
939        if (mapping)
940            ret = page_mkclean_file(mapping, page);
941    }
942
943    return ret;
944}
945EXPORT_SYMBOL_GPL(page_mkclean);
946
947/**
948 * page_move_anon_rmap - move a page to our anon_vma
949 * @page: the page to move to our anon_vma
950 * @vma: the vma the page belongs to
951 * @address: the user virtual address mapped
952 *
953 * When a page belongs exclusively to one process after a COW event,
954 * that page can be moved into the anon_vma that belongs to just that
955 * process, so the rmap code will not search the parent or sibling
956 * processes.
957 */
958void page_move_anon_rmap(struct page *page,
959    struct vm_area_struct *vma, unsigned long address)
960{
961    struct anon_vma *anon_vma = vma->anon_vma;
962
963    VM_BUG_ON(!PageLocked(page));
964    VM_BUG_ON(!anon_vma);
965    VM_BUG_ON(page->index != linear_page_index(vma, address));
966
967    anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
968    page->mapping = (struct address_space *) anon_vma;
969}
970
971/**
972 * __page_set_anon_rmap - set up new anonymous rmap
973 * @page: Page to add to rmap
974 * @vma: VM area to add page to.
975 * @address: User virtual address of the mapping
976 * @exclusive: the page is exclusively owned by the current process
977 */
978static void __page_set_anon_rmap(struct page *page,
979    struct vm_area_struct *vma, unsigned long address, int exclusive)
980{
981    struct anon_vma *anon_vma = vma->anon_vma;
982
983    BUG_ON(!anon_vma);
984
985    if (PageAnon(page))
986        return;
987
988    /*
989     * If the page isn't exclusively mapped into this vma,
990     * we must use the _oldest_ possible anon_vma for the
991     * page mapping!
992     */
993    if (!exclusive)
994        anon_vma = anon_vma->root;
995
996    anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
997    page->mapping = (struct address_space *) anon_vma;
998    page->index = linear_page_index(vma, address);
999}
1000
1001/**
1002 * __page_check_anon_rmap - sanity check anonymous rmap addition
1003 * @page: the page to add the mapping to
1004 * @vma: the vm area in which the mapping is added
1005 * @address: the user virtual address mapped
1006 */
1007static void __page_check_anon_rmap(struct page *page,
1008    struct vm_area_struct *vma, unsigned long address)
1009{
1010#ifdef CONFIG_DEBUG_VM
1011    /*
1012     * The page's anon-rmap details (mapping and index) are guaranteed to
1013     * be set up correctly at this point.
1014     *
1015     * We have exclusion against page_add_anon_rmap because the caller
1016     * always holds the page locked, except if called from page_dup_rmap,
1017     * in which case the page is already known to be setup.
1018     *
1019     * We have exclusion against page_add_new_anon_rmap because those pages
1020     * are initially only visible via the pagetables, and the pte is locked
1021     * over the call to page_add_new_anon_rmap.
1022     */
1023    BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1024    BUG_ON(page->index != linear_page_index(vma, address));
1025#endif
1026}
1027
1028/**
1029 * page_add_anon_rmap - add pte mapping to an anonymous page
1030 * @page: the page to add the mapping to
1031 * @vma: the vm area in which the mapping is added
1032 * @address: the user virtual address mapped
1033 *
1034 * The caller needs to hold the pte lock, and the page must be locked in
1035 * the anon_vma case: to serialize mapping,index checking after setting,
1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1037 * (but PageKsm is never downgraded to PageAnon).
1038 */
1039void page_add_anon_rmap(struct page *page,
1040    struct vm_area_struct *vma, unsigned long address)
1041{
1042    do_page_add_anon_rmap(page, vma, address, 0);
1043}
1044
1045/*
1046 * Special version of the above for do_swap_page, which often runs
1047 * into pages that are exclusively owned by the current process.
1048 * Everybody else should continue to use page_add_anon_rmap above.
1049 */
1050void do_page_add_anon_rmap(struct page *page,
1051    struct vm_area_struct *vma, unsigned long address, int exclusive)
1052{
1053    int first = atomic_inc_and_test(&page->_mapcount);
1054    if (first) {
1055        if (PageTransHuge(page))
1056            __inc_zone_page_state(page,
1057                          NR_ANON_TRANSPARENT_HUGEPAGES);
1058        __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1059                hpage_nr_pages(page));
1060    }
1061    if (unlikely(PageKsm(page)))
1062        return;
1063
1064    VM_BUG_ON(!PageLocked(page));
1065    /* address might be in next vma when migration races vma_adjust */
1066    if (first)
1067        __page_set_anon_rmap(page, vma, address, exclusive);
1068    else
1069        __page_check_anon_rmap(page, vma, address);
1070}
1071
1072/**
1073 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 *
1078 * Same as page_add_anon_rmap but must only be called on *new* pages.
1079 * This means the inc-and-test can be bypassed.
1080 * Page does not have to be locked.
1081 */
1082void page_add_new_anon_rmap(struct page *page,
1083    struct vm_area_struct *vma, unsigned long address)
1084{
1085    VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1086    SetPageSwapBacked(page);
1087    atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1088    if (PageTransHuge(page))
1089        __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1090    __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1091            hpage_nr_pages(page));
1092    __page_set_anon_rmap(page, vma, address, 1);
1093    if (!mlocked_vma_newpage(vma, page)) {
1094        SetPageActive(page);
1095        lru_cache_add(page);
1096    } else
1097        add_page_to_unevictable_list(page);
1098}
1099
1100/**
1101 * page_add_file_rmap - add pte mapping to a file page
1102 * @page: the page to add the mapping to
1103 *
1104 * The caller needs to hold the pte lock.
1105 */
1106void page_add_file_rmap(struct page *page)
1107{
1108    bool locked;
1109    unsigned long flags;
1110
1111    mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1112    if (atomic_inc_and_test(&page->_mapcount)) {
1113        __inc_zone_page_state(page, NR_FILE_MAPPED);
1114        mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1115    }
1116    mem_cgroup_end_update_page_stat(page, &locked, &flags);
1117}
1118
1119/**
1120 * page_remove_rmap - take down pte mapping from a page
1121 * @page: page to remove mapping from
1122 *
1123 * The caller needs to hold the pte lock.
1124 */
1125void page_remove_rmap(struct page *page)
1126{
1127    bool anon = PageAnon(page);
1128    bool locked;
1129    unsigned long flags;
1130
1131    /*
1132     * The anon case has no mem_cgroup page_stat to update; but may
1133     * uncharge_page() below, where the lock ordering can deadlock if
1134     * we hold the lock against page_stat move: so avoid it on anon.
1135     */
1136    if (!anon)
1137        mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1138
1139    /* page still mapped by someone else? */
1140    if (!atomic_add_negative(-1, &page->_mapcount))
1141        goto out;
1142
1143    /*
1144     * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1145     * and not charged by memcg for now.
1146     */
1147    if (unlikely(PageHuge(page)))
1148        goto out;
1149    if (anon) {
1150        mem_cgroup_uncharge_page(page);
1151        if (PageTransHuge(page))
1152            __dec_zone_page_state(page,
1153                          NR_ANON_TRANSPARENT_HUGEPAGES);
1154        __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1155                -hpage_nr_pages(page));
1156    } else {
1157        __dec_zone_page_state(page, NR_FILE_MAPPED);
1158        mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1159        mem_cgroup_end_update_page_stat(page, &locked, &flags);
1160    }
1161    if (unlikely(PageMlocked(page)))
1162        clear_page_mlock(page);
1163    /*
1164     * It would be tidy to reset the PageAnon mapping here,
1165     * but that might overwrite a racing page_add_anon_rmap
1166     * which increments mapcount after us but sets mapping
1167     * before us: so leave the reset to free_hot_cold_page,
1168     * and remember that it's only reliable while mapped.
1169     * Leaving it set also helps swapoff to reinstate ptes
1170     * faster for those pages still in swapcache.
1171     */
1172    return;
1173out:
1174    if (!anon)
1175        mem_cgroup_end_update_page_stat(page, &locked, &flags);
1176}
1177
1178/*
1179 * Subfunctions of try_to_unmap: try_to_unmap_one called
1180 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1181 */
1182int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1183             unsigned long address, enum ttu_flags flags)
1184{
1185    struct mm_struct *mm = vma->vm_mm;
1186    pte_t *pte;
1187    pte_t pteval;
1188    spinlock_t *ptl;
1189    int ret = SWAP_AGAIN;
1190
1191    pte = page_check_address(page, mm, address, &ptl, 0);
1192    if (!pte)
1193        goto out;
1194
1195    /*
1196     * If the page is mlock()d, we cannot swap it out.
1197     * If it's recently referenced (perhaps page_referenced
1198     * skipped over this mm) then we should reactivate it.
1199     */
1200    if (!(flags & TTU_IGNORE_MLOCK)) {
1201        if (vma->vm_flags & VM_LOCKED)
1202            goto out_mlock;
1203
1204        if (TTU_ACTION(flags) == TTU_MUNLOCK)
1205            goto out_unmap;
1206    }
1207    if (!(flags & TTU_IGNORE_ACCESS)) {
1208        if (ptep_clear_flush_young_notify(vma, address, pte)) {
1209            ret = SWAP_FAIL;
1210            goto out_unmap;
1211        }
1212      }
1213
1214    /* Nuke the page table entry. */
1215    flush_cache_page(vma, address, page_to_pfn(page));
1216    pteval = ptep_clear_flush(vma, address, pte);
1217
1218    /* Move the dirty bit to the physical page now the pte is gone. */
1219    if (pte_dirty(pteval))
1220        set_page_dirty(page);
1221
1222    /* Update high watermark before we lower rss */
1223    update_hiwater_rss(mm);
1224
1225    if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1226        if (!PageHuge(page)) {
1227            if (PageAnon(page))
1228                dec_mm_counter(mm, MM_ANONPAGES);
1229            else
1230                dec_mm_counter(mm, MM_FILEPAGES);
1231        }
1232        set_pte_at(mm, address, pte,
1233               swp_entry_to_pte(make_hwpoison_entry(page)));
1234    } else if (PageAnon(page)) {
1235        swp_entry_t entry = { .val = page_private(page) };
1236        pte_t swp_pte;
1237
1238        if (PageSwapCache(page)) {
1239            /*
1240             * Store the swap location in the pte.
1241             * See handle_pte_fault() ...
1242             */
1243            if (swap_duplicate(entry) < 0) {
1244                set_pte_at(mm, address, pte, pteval);
1245                ret = SWAP_FAIL;
1246                goto out_unmap;
1247            }
1248            if (list_empty(&mm->mmlist)) {
1249                spin_lock(&mmlist_lock);
1250                if (list_empty(&mm->mmlist))
1251                    list_add(&mm->mmlist, &init_mm.mmlist);
1252                spin_unlock(&mmlist_lock);
1253            }
1254            dec_mm_counter(mm, MM_ANONPAGES);
1255            inc_mm_counter(mm, MM_SWAPENTS);
1256        } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1257            /*
1258             * Store the pfn of the page in a special migration
1259             * pte. do_swap_page() will wait until the migration
1260             * pte is removed and then restart fault handling.
1261             */
1262            BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1263            entry = make_migration_entry(page, pte_write(pteval));
1264        }
1265        swp_pte = swp_entry_to_pte(entry);
1266        if (pte_soft_dirty(pteval))
1267            swp_pte = pte_swp_mksoft_dirty(swp_pte);
1268        set_pte_at(mm, address, pte, swp_pte);
1269        BUG_ON(pte_file(*pte));
1270    } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1271           (TTU_ACTION(flags) == TTU_MIGRATION)) {
1272        /* Establish migration entry for a file page */
1273        swp_entry_t entry;
1274        entry = make_migration_entry(page, pte_write(pteval));
1275        set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1276    } else
1277        dec_mm_counter(mm, MM_FILEPAGES);
1278
1279    page_remove_rmap(page);
1280    page_cache_release(page);
1281
1282out_unmap:
1283    pte_unmap_unlock(pte, ptl);
1284    if (ret != SWAP_FAIL)
1285        mmu_notifier_invalidate_page(mm, address);
1286out:
1287    return ret;
1288
1289out_mlock:
1290    pte_unmap_unlock(pte, ptl);
1291
1292
1293    /*
1294     * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1295     * unstable result and race. Plus, We can't wait here because
1296     * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1297     * if trylock failed, the page remain in evictable lru and later
1298     * vmscan could retry to move the page to unevictable lru if the
1299     * page is actually mlocked.
1300     */
1301    if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1302        if (vma->vm_flags & VM_LOCKED) {
1303            mlock_vma_page(page);
1304            ret = SWAP_MLOCK;
1305        }
1306        up_read(&vma->vm_mm->mmap_sem);
1307    }
1308    return ret;
1309}
1310
1311/*
1312 * objrmap doesn't work for nonlinear VMAs because the assumption that
1313 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1314 * Consequently, given a particular page and its ->index, we cannot locate the
1315 * ptes which are mapping that page without an exhaustive linear search.
1316 *
1317 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1318 * maps the file to which the target page belongs. The ->vm_private_data field
1319 * holds the current cursor into that scan. Successive searches will circulate
1320 * around the vma's virtual address space.
1321 *
1322 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1323 * more scanning pressure is placed against them as well. Eventually pages
1324 * will become fully unmapped and are eligible for eviction.
1325 *
1326 * For very sparsely populated VMAs this is a little inefficient - chances are
1327 * there there won't be many ptes located within the scan cluster. In this case
1328 * maybe we could scan further - to the end of the pte page, perhaps.
1329 *
1330 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1331 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1332 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1333 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1334 */
1335#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1336#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1337
1338static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1339        struct vm_area_struct *vma, struct page *check_page)
1340{
1341    struct mm_struct *mm = vma->vm_mm;
1342    pmd_t *pmd;
1343    pte_t *pte;
1344    pte_t pteval;
1345    spinlock_t *ptl;
1346    struct page *page;
1347    unsigned long address;
1348    unsigned long mmun_start; /* For mmu_notifiers */
1349    unsigned long mmun_end; /* For mmu_notifiers */
1350    unsigned long end;
1351    int ret = SWAP_AGAIN;
1352    int locked_vma = 0;
1353
1354    address = (vma->vm_start + cursor) & CLUSTER_MASK;
1355    end = address + CLUSTER_SIZE;
1356    if (address < vma->vm_start)
1357        address = vma->vm_start;
1358    if (end > vma->vm_end)
1359        end = vma->vm_end;
1360
1361    pmd = mm_find_pmd(mm, address);
1362    if (!pmd)
1363        return ret;
1364
1365    mmun_start = address;
1366    mmun_end = end;
1367    mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1368
1369    /*
1370     * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1371     * keep the sem while scanning the cluster for mlocking pages.
1372     */
1373    if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1374        locked_vma = (vma->vm_flags & VM_LOCKED);
1375        if (!locked_vma)
1376            up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1377    }
1378
1379    pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1380
1381    /* Update high watermark before we lower rss */
1382    update_hiwater_rss(mm);
1383
1384    for (; address < end; pte++, address += PAGE_SIZE) {
1385        if (!pte_present(*pte))
1386            continue;
1387        page = vm_normal_page(vma, address, *pte);
1388        BUG_ON(!page || PageAnon(page));
1389
1390        if (locked_vma) {
1391            mlock_vma_page(page); /* no-op if already mlocked */
1392            if (page == check_page)
1393                ret = SWAP_MLOCK;
1394            continue; /* don't unmap */
1395        }
1396
1397        if (ptep_clear_flush_young_notify(vma, address, pte))
1398            continue;
1399
1400        /* Nuke the page table entry. */
1401        flush_cache_page(vma, address, pte_pfn(*pte));
1402        pteval = ptep_clear_flush(vma, address, pte);
1403
1404        /* If nonlinear, store the file page offset in the pte. */
1405        if (page->index != linear_page_index(vma, address)) {
1406            pte_t ptfile = pgoff_to_pte(page->index);
1407            if (pte_soft_dirty(pteval))
1408                pte_file_mksoft_dirty(ptfile);
1409            set_pte_at(mm, address, pte, ptfile);
1410        }
1411
1412        /* Move the dirty bit to the physical page now the pte is gone. */
1413        if (pte_dirty(pteval))
1414            set_page_dirty(page);
1415
1416        page_remove_rmap(page);
1417        page_cache_release(page);
1418        dec_mm_counter(mm, MM_FILEPAGES);
1419        (*mapcount)--;
1420    }
1421    pte_unmap_unlock(pte - 1, ptl);
1422    mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1423    if (locked_vma)
1424        up_read(&vma->vm_mm->mmap_sem);
1425    return ret;
1426}
1427
1428bool is_vma_temporary_stack(struct vm_area_struct *vma)
1429{
1430    int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1431
1432    if (!maybe_stack)
1433        return false;
1434
1435    if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1436                        VM_STACK_INCOMPLETE_SETUP)
1437        return true;
1438
1439    return false;
1440}
1441
1442/**
1443 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1444 * rmap method
1445 * @page: the page to unmap/unlock
1446 * @flags: action and flags
1447 *
1448 * Find all the mappings of a page using the mapping pointer and the vma chains
1449 * contained in the anon_vma struct it points to.
1450 *
1451 * This function is only called from try_to_unmap/try_to_munlock for
1452 * anonymous pages.
1453 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1454 * where the page was found will be held for write. So, we won't recheck
1455 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1456 * 'LOCKED.
1457 */
1458static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1459{
1460    struct anon_vma *anon_vma;
1461    pgoff_t pgoff;
1462    struct anon_vma_chain *avc;
1463    int ret = SWAP_AGAIN;
1464
1465    anon_vma = page_lock_anon_vma_read(page);
1466    if (!anon_vma)
1467        return ret;
1468
1469    pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1470    anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1471        struct vm_area_struct *vma = avc->vma;
1472        unsigned long address;
1473
1474        /*
1475         * During exec, a temporary VMA is setup and later moved.
1476         * The VMA is moved under the anon_vma lock but not the
1477         * page tables leading to a race where migration cannot
1478         * find the migration ptes. Rather than increasing the
1479         * locking requirements of exec(), migration skips
1480         * temporary VMAs until after exec() completes.
1481         */
1482        if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1483                is_vma_temporary_stack(vma))
1484            continue;
1485
1486        address = vma_address(page, vma);
1487        ret = try_to_unmap_one(page, vma, address, flags);
1488        if (ret != SWAP_AGAIN || !page_mapped(page))
1489            break;
1490    }
1491
1492    page_unlock_anon_vma_read(anon_vma);
1493    return ret;
1494}
1495
1496/**
1497 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1498 * @page: the page to unmap/unlock
1499 * @flags: action and flags
1500 *
1501 * Find all the mappings of a page using the mapping pointer and the vma chains
1502 * contained in the address_space struct it points to.
1503 *
1504 * This function is only called from try_to_unmap/try_to_munlock for
1505 * object-based pages.
1506 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1507 * where the page was found will be held for write. So, we won't recheck
1508 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1509 * 'LOCKED.
1510 */
1511static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1512{
1513    struct address_space *mapping = page->mapping;
1514    pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1515    struct vm_area_struct *vma;
1516    int ret = SWAP_AGAIN;
1517    unsigned long cursor;
1518    unsigned long max_nl_cursor = 0;
1519    unsigned long max_nl_size = 0;
1520    unsigned int mapcount;
1521
1522    if (PageHuge(page))
1523        pgoff = page->index << compound_order(page);
1524
1525    mutex_lock(&mapping->i_mmap_mutex);
1526    vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1527        unsigned long address = vma_address(page, vma);
1528        ret = try_to_unmap_one(page, vma, address, flags);
1529        if (ret != SWAP_AGAIN || !page_mapped(page))
1530            goto out;
1531    }
1532
1533    if (list_empty(&mapping->i_mmap_nonlinear))
1534        goto out;
1535
1536    /*
1537     * We don't bother to try to find the munlocked page in nonlinears.
1538     * It's costly. Instead, later, page reclaim logic may call
1539     * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1540     */
1541    if (TTU_ACTION(flags) == TTU_MUNLOCK)
1542        goto out;
1543
1544    list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1545                            shared.nonlinear) {
1546        cursor = (unsigned long) vma->vm_private_data;
1547        if (cursor > max_nl_cursor)
1548            max_nl_cursor = cursor;
1549        cursor = vma->vm_end - vma->vm_start;
1550        if (cursor > max_nl_size)
1551            max_nl_size = cursor;
1552    }
1553
1554    if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1555        ret = SWAP_FAIL;
1556        goto out;
1557    }
1558
1559    /*
1560     * We don't try to search for this page in the nonlinear vmas,
1561     * and page_referenced wouldn't have found it anyway. Instead
1562     * just walk the nonlinear vmas trying to age and unmap some.
1563     * The mapcount of the page we came in with is irrelevant,
1564     * but even so use it as a guide to how hard we should try?
1565     */
1566    mapcount = page_mapcount(page);
1567    if (!mapcount)
1568        goto out;
1569    cond_resched();
1570
1571    max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1572    if (max_nl_cursor == 0)
1573        max_nl_cursor = CLUSTER_SIZE;
1574
1575    do {
1576        list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1577                            shared.nonlinear) {
1578            cursor = (unsigned long) vma->vm_private_data;
1579            while ( cursor < max_nl_cursor &&
1580                cursor < vma->vm_end - vma->vm_start) {
1581                if (try_to_unmap_cluster(cursor, &mapcount,
1582                        vma, page) == SWAP_MLOCK)
1583                    ret = SWAP_MLOCK;
1584                cursor += CLUSTER_SIZE;
1585                vma->vm_private_data = (void *) cursor;
1586                if ((int)mapcount <= 0)
1587                    goto out;
1588            }
1589            vma->vm_private_data = (void *) max_nl_cursor;
1590        }
1591        cond_resched();
1592        max_nl_cursor += CLUSTER_SIZE;
1593    } while (max_nl_cursor <= max_nl_size);
1594
1595    /*
1596     * Don't loop forever (perhaps all the remaining pages are
1597     * in locked vmas). Reset cursor on all unreserved nonlinear
1598     * vmas, now forgetting on which ones it had fallen behind.
1599     */
1600    list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1601        vma->vm_private_data = NULL;
1602out:
1603    mutex_unlock(&mapping->i_mmap_mutex);
1604    return ret;
1605}
1606
1607/**
1608 * try_to_unmap - try to remove all page table mappings to a page
1609 * @page: the page to get unmapped
1610 * @flags: action and flags
1611 *
1612 * Tries to remove all the page table entries which are mapping this
1613 * page, used in the pageout path. Caller must hold the page lock.
1614 * Return values are:
1615 *
1616 * SWAP_SUCCESS - we succeeded in removing all mappings
1617 * SWAP_AGAIN - we missed a mapping, try again later
1618 * SWAP_FAIL - the page is unswappable
1619 * SWAP_MLOCK - page is mlocked.
1620 */
1621int try_to_unmap(struct page *page, enum ttu_flags flags)
1622{
1623    int ret;
1624
1625    BUG_ON(!PageLocked(page));
1626    VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1627
1628    if (unlikely(PageKsm(page)))
1629        ret = try_to_unmap_ksm(page, flags);
1630    else if (PageAnon(page))
1631        ret = try_to_unmap_anon(page, flags);
1632    else
1633        ret = try_to_unmap_file(page, flags);
1634    if (ret != SWAP_MLOCK && !page_mapped(page))
1635        ret = SWAP_SUCCESS;
1636    return ret;
1637}
1638
1639/**
1640 * try_to_munlock - try to munlock a page
1641 * @page: the page to be munlocked
1642 *
1643 * Called from munlock code. Checks all of the VMAs mapping the page
1644 * to make sure nobody else has this page mlocked. The page will be
1645 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1646 *
1647 * Return values are:
1648 *
1649 * SWAP_AGAIN - no vma is holding page mlocked, or,
1650 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1651 * SWAP_FAIL - page cannot be located at present
1652 * SWAP_MLOCK - page is now mlocked.
1653 */
1654int try_to_munlock(struct page *page)
1655{
1656    VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1657
1658    if (unlikely(PageKsm(page)))
1659        return try_to_unmap_ksm(page, TTU_MUNLOCK);
1660    else if (PageAnon(page))
1661        return try_to_unmap_anon(page, TTU_MUNLOCK);
1662    else
1663        return try_to_unmap_file(page, TTU_MUNLOCK);
1664}
1665
1666void __put_anon_vma(struct anon_vma *anon_vma)
1667{
1668    struct anon_vma *root = anon_vma->root;
1669
1670    if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1671        anon_vma_free(root);
1672
1673    anon_vma_free(anon_vma);
1674}
1675
1676#ifdef CONFIG_MIGRATION
1677/*
1678 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1679 * Called by migrate.c to remove migration ptes, but might be used more later.
1680 */
1681static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1682        struct vm_area_struct *, unsigned long, void *), void *arg)
1683{
1684    struct anon_vma *anon_vma;
1685    pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1686    struct anon_vma_chain *avc;
1687    int ret = SWAP_AGAIN;
1688
1689    /*
1690     * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1691     * because that depends on page_mapped(); but not all its usages
1692     * are holding mmap_sem. Users without mmap_sem are required to
1693     * take a reference count to prevent the anon_vma disappearing
1694     */
1695    anon_vma = page_anon_vma(page);
1696    if (!anon_vma)
1697        return ret;
1698    anon_vma_lock_read(anon_vma);
1699    anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1700        struct vm_area_struct *vma = avc->vma;
1701        unsigned long address = vma_address(page, vma);
1702        ret = rmap_one(page, vma, address, arg);
1703        if (ret != SWAP_AGAIN)
1704            break;
1705    }
1706    anon_vma_unlock_read(anon_vma);
1707    return ret;
1708}
1709
1710static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1711        struct vm_area_struct *, unsigned long, void *), void *arg)
1712{
1713    struct address_space *mapping = page->mapping;
1714    pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1715    struct vm_area_struct *vma;
1716    int ret = SWAP_AGAIN;
1717
1718    if (!mapping)
1719        return ret;
1720    mutex_lock(&mapping->i_mmap_mutex);
1721    vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1722        unsigned long address = vma_address(page, vma);
1723        ret = rmap_one(page, vma, address, arg);
1724        if (ret != SWAP_AGAIN)
1725            break;
1726    }
1727    /*
1728     * No nonlinear handling: being always shared, nonlinear vmas
1729     * never contain migration ptes. Decide what to do about this
1730     * limitation to linear when we need rmap_walk() on nonlinear.
1731     */
1732    mutex_unlock(&mapping->i_mmap_mutex);
1733    return ret;
1734}
1735
1736int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1737        struct vm_area_struct *, unsigned long, void *), void *arg)
1738{
1739    VM_BUG_ON(!PageLocked(page));
1740
1741    if (unlikely(PageKsm(page)))
1742        return rmap_walk_ksm(page, rmap_one, arg);
1743    else if (PageAnon(page))
1744        return rmap_walk_anon(page, rmap_one, arg);
1745    else
1746        return rmap_walk_file(page, rmap_one, arg);
1747}
1748#endif /* CONFIG_MIGRATION */
1749
1750#ifdef CONFIG_HUGETLB_PAGE
1751/*
1752 * The following three functions are for anonymous (private mapped) hugepages.
1753 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1754 * and no lru code, because we handle hugepages differently from common pages.
1755 */
1756static void __hugepage_set_anon_rmap(struct page *page,
1757    struct vm_area_struct *vma, unsigned long address, int exclusive)
1758{
1759    struct anon_vma *anon_vma = vma->anon_vma;
1760
1761    BUG_ON(!anon_vma);
1762
1763    if (PageAnon(page))
1764        return;
1765    if (!exclusive)
1766        anon_vma = anon_vma->root;
1767
1768    anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1769    page->mapping = (struct address_space *) anon_vma;
1770    page->index = linear_page_index(vma, address);
1771}
1772
1773void hugepage_add_anon_rmap(struct page *page,
1774                struct vm_area_struct *vma, unsigned long address)
1775{
1776    struct anon_vma *anon_vma = vma->anon_vma;
1777    int first;
1778
1779    BUG_ON(!PageLocked(page));
1780    BUG_ON(!anon_vma);
1781    /* address might be in next vma when migration races vma_adjust */
1782    first = atomic_inc_and_test(&page->_mapcount);
1783    if (first)
1784        __hugepage_set_anon_rmap(page, vma, address, 0);
1785}
1786
1787void hugepage_add_new_anon_rmap(struct page *page,
1788            struct vm_area_struct *vma, unsigned long address)
1789{
1790    BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1791    atomic_set(&page->_mapcount, 0);
1792    __hugepage_set_anon_rmap(page, vma, address, 1);
1793}
1794#endif /* CONFIG_HUGETLB_PAGE */
1795

Archive Download this file



interactive