Root/mm/slab.c

1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89#include <linux/slab.h>
90#include <linux/mm.h>
91#include <linux/poison.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/cpuset.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
106#include <linux/string.h>
107#include <linux/uaccess.h>
108#include <linux/nodemask.h>
109#include <linux/kmemleak.h>
110#include <linux/mempolicy.h>
111#include <linux/mutex.h>
112#include <linux/fault-inject.h>
113#include <linux/rtmutex.h>
114#include <linux/reciprocal_div.h>
115#include <linux/debugobjects.h>
116#include <linux/kmemcheck.h>
117#include <linux/memory.h>
118#include <linux/prefetch.h>
119
120#include <net/sock.h>
121
122#include <asm/cacheflush.h>
123#include <asm/tlbflush.h>
124#include <asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include "internal.h"
129
130#include "slab.h"
131
132/*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define DEBUG 1
144#define STATS 1
145#define FORCED_DEBUG 1
146#else
147#define DEBUG 0
148#define STATS 0
149#define FORCED_DEBUG 0
150#endif
151
152/* Shouldn't this be in a header file somewhere? */
153#define BYTES_PER_WORD sizeof(void *)
154#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160/*
161 * true if a page was allocated from pfmemalloc reserves for network-based
162 * swap
163 */
164static bool pfmemalloc_active __read_mostly;
165
166/*
167 * kmem_bufctl_t:
168 *
169 * Bufctl's are used for linking objs within a slab
170 * linked offsets.
171 *
172 * This implementation relies on "struct page" for locating the cache &
173 * slab an object belongs to.
174 * This allows the bufctl structure to be small (one int), but limits
175 * the number of objects a slab (not a cache) can contain when off-slab
176 * bufctls are used. The limit is the size of the largest general cache
177 * that does not use off-slab slabs.
178 * For 32bit archs with 4 kB pages, is this 56.
179 * This is not serious, as it is only for large objects, when it is unwise
180 * to have too many per slab.
181 * Note: This limit can be raised by introducing a general cache whose size
182 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
183 */
184
185typedef unsigned int kmem_bufctl_t;
186#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
187#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
188#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
189#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
190
191/*
192 * struct slab_rcu
193 *
194 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
195 * arrange for kmem_freepages to be called via RCU. This is useful if
196 * we need to approach a kernel structure obliquely, from its address
197 * obtained without the usual locking. We can lock the structure to
198 * stabilize it and check it's still at the given address, only if we
199 * can be sure that the memory has not been meanwhile reused for some
200 * other kind of object (which our subsystem's lock might corrupt).
201 *
202 * rcu_read_lock before reading the address, then rcu_read_unlock after
203 * taking the spinlock within the structure expected at that address.
204 */
205struct slab_rcu {
206    struct rcu_head head;
207    struct kmem_cache *cachep;
208    void *addr;
209};
210
211/*
212 * struct slab
213 *
214 * Manages the objs in a slab. Placed either at the beginning of mem allocated
215 * for a slab, or allocated from an general cache.
216 * Slabs are chained into three list: fully used, partial, fully free slabs.
217 */
218struct slab {
219    union {
220        struct {
221            struct list_head list;
222            unsigned long colouroff;
223            void *s_mem; /* including colour offset */
224            unsigned int inuse; /* num of objs active in slab */
225            kmem_bufctl_t free;
226            unsigned short nodeid;
227        };
228        struct slab_rcu __slab_cover_slab_rcu;
229    };
230};
231
232/*
233 * struct array_cache
234 *
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
239 *
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
242 *
243 */
244struct array_cache {
245    unsigned int avail;
246    unsigned int limit;
247    unsigned int batchcount;
248    unsigned int touched;
249    spinlock_t lock;
250    void *entry[]; /*
251             * Must have this definition in here for the proper
252             * alignment of array_cache. Also simplifies accessing
253             * the entries.
254             *
255             * Entries should not be directly dereferenced as
256             * entries belonging to slabs marked pfmemalloc will
257             * have the lower bits set SLAB_OBJ_PFMEMALLOC
258             */
259};
260
261#define SLAB_OBJ_PFMEMALLOC 1
262static inline bool is_obj_pfmemalloc(void *objp)
263{
264    return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
265}
266
267static inline void set_obj_pfmemalloc(void **objp)
268{
269    *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
270    return;
271}
272
273static inline void clear_obj_pfmemalloc(void **objp)
274{
275    *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
276}
277
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284    struct array_cache cache;
285    void *entries[BOOT_CPUCACHE_ENTRIES];
286};
287
288/*
289 * Need this for bootstrapping a per node allocator.
290 */
291#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
292static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
293#define CACHE_CACHE 0
294#define SIZE_AC MAX_NUMNODES
295#define SIZE_NODE (2 * MAX_NUMNODES)
296
297static int drain_freelist(struct kmem_cache *cache,
298            struct kmem_cache_node *n, int tofree);
299static void free_block(struct kmem_cache *cachep, void **objpp, int len,
300            int node);
301static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
302static void cache_reap(struct work_struct *unused);
303
304static int slab_early_init = 1;
305
306#define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
307#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
308
309static void kmem_cache_node_init(struct kmem_cache_node *parent)
310{
311    INIT_LIST_HEAD(&parent->slabs_full);
312    INIT_LIST_HEAD(&parent->slabs_partial);
313    INIT_LIST_HEAD(&parent->slabs_free);
314    parent->shared = NULL;
315    parent->alien = NULL;
316    parent->colour_next = 0;
317    spin_lock_init(&parent->list_lock);
318    parent->free_objects = 0;
319    parent->free_touched = 0;
320}
321
322#define MAKE_LIST(cachep, listp, slab, nodeid) \
323    do { \
324        INIT_LIST_HEAD(listp); \
325        list_splice(&(cachep->node[nodeid]->slab), listp); \
326    } while (0)
327
328#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
329    do { \
330    MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
331    MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
332    MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
333    } while (0)
334
335#define CFLGS_OFF_SLAB (0x80000000UL)
336#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
337
338#define BATCHREFILL_LIMIT 16
339/*
340 * Optimization question: fewer reaps means less probability for unnessary
341 * cpucache drain/refill cycles.
342 *
343 * OTOH the cpuarrays can contain lots of objects,
344 * which could lock up otherwise freeable slabs.
345 */
346#define REAPTIMEOUT_CPUC (2*HZ)
347#define REAPTIMEOUT_LIST3 (4*HZ)
348
349#if STATS
350#define STATS_INC_ACTIVE(x) ((x)->num_active++)
351#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
352#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
353#define STATS_INC_GROWN(x) ((x)->grown++)
354#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
355#define STATS_SET_HIGH(x) \
356    do { \
357        if ((x)->num_active > (x)->high_mark) \
358            (x)->high_mark = (x)->num_active; \
359    } while (0)
360#define STATS_INC_ERR(x) ((x)->errors++)
361#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
362#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
363#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
364#define STATS_SET_FREEABLE(x, i) \
365    do { \
366        if ((x)->max_freeable < i) \
367            (x)->max_freeable = i; \
368    } while (0)
369#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
370#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
371#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
372#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
373#else
374#define STATS_INC_ACTIVE(x) do { } while (0)
375#define STATS_DEC_ACTIVE(x) do { } while (0)
376#define STATS_INC_ALLOCED(x) do { } while (0)
377#define STATS_INC_GROWN(x) do { } while (0)
378#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
379#define STATS_SET_HIGH(x) do { } while (0)
380#define STATS_INC_ERR(x) do { } while (0)
381#define STATS_INC_NODEALLOCS(x) do { } while (0)
382#define STATS_INC_NODEFREES(x) do { } while (0)
383#define STATS_INC_ACOVERFLOW(x) do { } while (0)
384#define STATS_SET_FREEABLE(x, i) do { } while (0)
385#define STATS_INC_ALLOCHIT(x) do { } while (0)
386#define STATS_INC_ALLOCMISS(x) do { } while (0)
387#define STATS_INC_FREEHIT(x) do { } while (0)
388#define STATS_INC_FREEMISS(x) do { } while (0)
389#endif
390
391#if DEBUG
392
393/*
394 * memory layout of objects:
395 * 0 : objp
396 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
397 * the end of an object is aligned with the end of the real
398 * allocation. Catches writes behind the end of the allocation.
399 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
400 * redzone word.
401 * cachep->obj_offset: The real object.
402 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
403 * cachep->size - 1* BYTES_PER_WORD: last caller address
404 * [BYTES_PER_WORD long]
405 */
406static int obj_offset(struct kmem_cache *cachep)
407{
408    return cachep->obj_offset;
409}
410
411static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
412{
413    BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
414    return (unsigned long long*) (objp + obj_offset(cachep) -
415                      sizeof(unsigned long long));
416}
417
418static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
419{
420    BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
421    if (cachep->flags & SLAB_STORE_USER)
422        return (unsigned long long *)(objp + cachep->size -
423                          sizeof(unsigned long long) -
424                          REDZONE_ALIGN);
425    return (unsigned long long *) (objp + cachep->size -
426                       sizeof(unsigned long long));
427}
428
429static void **dbg_userword(struct kmem_cache *cachep, void *objp)
430{
431    BUG_ON(!(cachep->flags & SLAB_STORE_USER));
432    return (void **)(objp + cachep->size - BYTES_PER_WORD);
433}
434
435#else
436
437#define obj_offset(x) 0
438#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
439#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
440#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
441
442#endif
443
444/*
445 * Do not go above this order unless 0 objects fit into the slab or
446 * overridden on the command line.
447 */
448#define SLAB_MAX_ORDER_HI 1
449#define SLAB_MAX_ORDER_LO 0
450static int slab_max_order = SLAB_MAX_ORDER_LO;
451static bool slab_max_order_set __initdata;
452
453static inline struct kmem_cache *virt_to_cache(const void *obj)
454{
455    struct page *page = virt_to_head_page(obj);
456    return page->slab_cache;
457}
458
459static inline struct slab *virt_to_slab(const void *obj)
460{
461    struct page *page = virt_to_head_page(obj);
462
463    VM_BUG_ON(!PageSlab(page));
464    return page->slab_page;
465}
466
467static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
468                 unsigned int idx)
469{
470    return slab->s_mem + cache->size * idx;
471}
472
473/*
474 * We want to avoid an expensive divide : (offset / cache->size)
475 * Using the fact that size is a constant for a particular cache,
476 * we can replace (offset / cache->size) by
477 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
478 */
479static inline unsigned int obj_to_index(const struct kmem_cache *cache,
480                    const struct slab *slab, void *obj)
481{
482    u32 offset = (obj - slab->s_mem);
483    return reciprocal_divide(offset, cache->reciprocal_buffer_size);
484}
485
486static struct arraycache_init initarray_generic =
487    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
488
489/* internal cache of cache description objs */
490static struct kmem_cache kmem_cache_boot = {
491    .batchcount = 1,
492    .limit = BOOT_CPUCACHE_ENTRIES,
493    .shared = 1,
494    .size = sizeof(struct kmem_cache),
495    .name = "kmem_cache",
496};
497
498#define BAD_ALIEN_MAGIC 0x01020304ul
499
500#ifdef CONFIG_LOCKDEP
501
502/*
503 * Slab sometimes uses the kmalloc slabs to store the slab headers
504 * for other slabs "off slab".
505 * The locking for this is tricky in that it nests within the locks
506 * of all other slabs in a few places; to deal with this special
507 * locking we put on-slab caches into a separate lock-class.
508 *
509 * We set lock class for alien array caches which are up during init.
510 * The lock annotation will be lost if all cpus of a node goes down and
511 * then comes back up during hotplug
512 */
513static struct lock_class_key on_slab_l3_key;
514static struct lock_class_key on_slab_alc_key;
515
516static struct lock_class_key debugobj_l3_key;
517static struct lock_class_key debugobj_alc_key;
518
519static void slab_set_lock_classes(struct kmem_cache *cachep,
520        struct lock_class_key *l3_key, struct lock_class_key *alc_key,
521        int q)
522{
523    struct array_cache **alc;
524    struct kmem_cache_node *n;
525    int r;
526
527    n = cachep->node[q];
528    if (!n)
529        return;
530
531    lockdep_set_class(&n->list_lock, l3_key);
532    alc = n->alien;
533    /*
534     * FIXME: This check for BAD_ALIEN_MAGIC
535     * should go away when common slab code is taught to
536     * work even without alien caches.
537     * Currently, non NUMA code returns BAD_ALIEN_MAGIC
538     * for alloc_alien_cache,
539     */
540    if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
541        return;
542    for_each_node(r) {
543        if (alc[r])
544            lockdep_set_class(&alc[r]->lock, alc_key);
545    }
546}
547
548static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
549{
550    slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
551}
552
553static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
554{
555    int node;
556
557    for_each_online_node(node)
558        slab_set_debugobj_lock_classes_node(cachep, node);
559}
560
561static void init_node_lock_keys(int q)
562{
563    int i;
564
565    if (slab_state < UP)
566        return;
567
568    for (i = 1; i <= KMALLOC_SHIFT_HIGH; i++) {
569        struct kmem_cache_node *n;
570        struct kmem_cache *cache = kmalloc_caches[i];
571
572        if (!cache)
573            continue;
574
575        n = cache->node[q];
576        if (!n || OFF_SLAB(cache))
577            continue;
578
579        slab_set_lock_classes(cache, &on_slab_l3_key,
580                &on_slab_alc_key, q);
581    }
582}
583
584static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q)
585{
586    if (!cachep->node[q])
587        return;
588
589    slab_set_lock_classes(cachep, &on_slab_l3_key,
590            &on_slab_alc_key, q);
591}
592
593static inline void on_slab_lock_classes(struct kmem_cache *cachep)
594{
595    int node;
596
597    VM_BUG_ON(OFF_SLAB(cachep));
598    for_each_node(node)
599        on_slab_lock_classes_node(cachep, node);
600}
601
602static inline void init_lock_keys(void)
603{
604    int node;
605
606    for_each_node(node)
607        init_node_lock_keys(node);
608}
609#else
610static void init_node_lock_keys(int q)
611{
612}
613
614static inline void init_lock_keys(void)
615{
616}
617
618static inline void on_slab_lock_classes(struct kmem_cache *cachep)
619{
620}
621
622static inline void on_slab_lock_classes_node(struct kmem_cache *cachep, int node)
623{
624}
625
626static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
627{
628}
629
630static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
631{
632}
633#endif
634
635static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
636
637static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
638{
639    return cachep->array[smp_processor_id()];
640}
641
642static size_t slab_mgmt_size(size_t nr_objs, size_t align)
643{
644    return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
645}
646
647/*
648 * Calculate the number of objects and left-over bytes for a given buffer size.
649 */
650static void cache_estimate(unsigned long gfporder, size_t buffer_size,
651               size_t align, int flags, size_t *left_over,
652               unsigned int *num)
653{
654    int nr_objs;
655    size_t mgmt_size;
656    size_t slab_size = PAGE_SIZE << gfporder;
657
658    /*
659     * The slab management structure can be either off the slab or
660     * on it. For the latter case, the memory allocated for a
661     * slab is used for:
662     *
663     * - The struct slab
664     * - One kmem_bufctl_t for each object
665     * - Padding to respect alignment of @align
666     * - @buffer_size bytes for each object
667     *
668     * If the slab management structure is off the slab, then the
669     * alignment will already be calculated into the size. Because
670     * the slabs are all pages aligned, the objects will be at the
671     * correct alignment when allocated.
672     */
673    if (flags & CFLGS_OFF_SLAB) {
674        mgmt_size = 0;
675        nr_objs = slab_size / buffer_size;
676
677        if (nr_objs > SLAB_LIMIT)
678            nr_objs = SLAB_LIMIT;
679    } else {
680        /*
681         * Ignore padding for the initial guess. The padding
682         * is at most @align-1 bytes, and @buffer_size is at
683         * least @align. In the worst case, this result will
684         * be one greater than the number of objects that fit
685         * into the memory allocation when taking the padding
686         * into account.
687         */
688        nr_objs = (slab_size - sizeof(struct slab)) /
689              (buffer_size + sizeof(kmem_bufctl_t));
690
691        /*
692         * This calculated number will be either the right
693         * amount, or one greater than what we want.
694         */
695        if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
696               > slab_size)
697            nr_objs--;
698
699        if (nr_objs > SLAB_LIMIT)
700            nr_objs = SLAB_LIMIT;
701
702        mgmt_size = slab_mgmt_size(nr_objs, align);
703    }
704    *num = nr_objs;
705    *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
706}
707
708#if DEBUG
709#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
710
711static void __slab_error(const char *function, struct kmem_cache *cachep,
712            char *msg)
713{
714    printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
715           function, cachep->name, msg);
716    dump_stack();
717    add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
718}
719#endif
720
721/*
722 * By default on NUMA we use alien caches to stage the freeing of
723 * objects allocated from other nodes. This causes massive memory
724 * inefficiencies when using fake NUMA setup to split memory into a
725 * large number of small nodes, so it can be disabled on the command
726 * line
727  */
728
729static int use_alien_caches __read_mostly = 1;
730static int __init noaliencache_setup(char *s)
731{
732    use_alien_caches = 0;
733    return 1;
734}
735__setup("noaliencache", noaliencache_setup);
736
737static int __init slab_max_order_setup(char *str)
738{
739    get_option(&str, &slab_max_order);
740    slab_max_order = slab_max_order < 0 ? 0 :
741                min(slab_max_order, MAX_ORDER - 1);
742    slab_max_order_set = true;
743
744    return 1;
745}
746__setup("slab_max_order=", slab_max_order_setup);
747
748#ifdef CONFIG_NUMA
749/*
750 * Special reaping functions for NUMA systems called from cache_reap().
751 * These take care of doing round robin flushing of alien caches (containing
752 * objects freed on different nodes from which they were allocated) and the
753 * flushing of remote pcps by calling drain_node_pages.
754 */
755static DEFINE_PER_CPU(unsigned long, slab_reap_node);
756
757static void init_reap_node(int cpu)
758{
759    int node;
760
761    node = next_node(cpu_to_mem(cpu), node_online_map);
762    if (node == MAX_NUMNODES)
763        node = first_node(node_online_map);
764
765    per_cpu(slab_reap_node, cpu) = node;
766}
767
768static void next_reap_node(void)
769{
770    int node = __this_cpu_read(slab_reap_node);
771
772    node = next_node(node, node_online_map);
773    if (unlikely(node >= MAX_NUMNODES))
774        node = first_node(node_online_map);
775    __this_cpu_write(slab_reap_node, node);
776}
777
778#else
779#define init_reap_node(cpu) do { } while (0)
780#define next_reap_node(void) do { } while (0)
781#endif
782
783/*
784 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
785 * via the workqueue/eventd.
786 * Add the CPU number into the expiration time to minimize the possibility of
787 * the CPUs getting into lockstep and contending for the global cache chain
788 * lock.
789 */
790static void start_cpu_timer(int cpu)
791{
792    struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
793
794    /*
795     * When this gets called from do_initcalls via cpucache_init(),
796     * init_workqueues() has already run, so keventd will be setup
797     * at that time.
798     */
799    if (keventd_up() && reap_work->work.func == NULL) {
800        init_reap_node(cpu);
801        INIT_DEFERRABLE_WORK(reap_work, cache_reap);
802        schedule_delayed_work_on(cpu, reap_work,
803                    __round_jiffies_relative(HZ, cpu));
804    }
805}
806
807static struct array_cache *alloc_arraycache(int node, int entries,
808                        int batchcount, gfp_t gfp)
809{
810    int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
811    struct array_cache *nc = NULL;
812
813    nc = kmalloc_node(memsize, gfp, node);
814    /*
815     * The array_cache structures contain pointers to free object.
816     * However, when such objects are allocated or transferred to another
817     * cache the pointers are not cleared and they could be counted as
818     * valid references during a kmemleak scan. Therefore, kmemleak must
819     * not scan such objects.
820     */
821    kmemleak_no_scan(nc);
822    if (nc) {
823        nc->avail = 0;
824        nc->limit = entries;
825        nc->batchcount = batchcount;
826        nc->touched = 0;
827        spin_lock_init(&nc->lock);
828    }
829    return nc;
830}
831
832static inline bool is_slab_pfmemalloc(struct slab *slabp)
833{
834    struct page *page = virt_to_page(slabp->s_mem);
835
836    return PageSlabPfmemalloc(page);
837}
838
839/* Clears pfmemalloc_active if no slabs have pfmalloc set */
840static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
841                        struct array_cache *ac)
842{
843    struct kmem_cache_node *n = cachep->node[numa_mem_id()];
844    struct slab *slabp;
845    unsigned long flags;
846
847    if (!pfmemalloc_active)
848        return;
849
850    spin_lock_irqsave(&n->list_lock, flags);
851    list_for_each_entry(slabp, &n->slabs_full, list)
852        if (is_slab_pfmemalloc(slabp))
853            goto out;
854
855    list_for_each_entry(slabp, &n->slabs_partial, list)
856        if (is_slab_pfmemalloc(slabp))
857            goto out;
858
859    list_for_each_entry(slabp, &n->slabs_free, list)
860        if (is_slab_pfmemalloc(slabp))
861            goto out;
862
863    pfmemalloc_active = false;
864out:
865    spin_unlock_irqrestore(&n->list_lock, flags);
866}
867
868static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
869                        gfp_t flags, bool force_refill)
870{
871    int i;
872    void *objp = ac->entry[--ac->avail];
873
874    /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
875    if (unlikely(is_obj_pfmemalloc(objp))) {
876        struct kmem_cache_node *n;
877
878        if (gfp_pfmemalloc_allowed(flags)) {
879            clear_obj_pfmemalloc(&objp);
880            return objp;
881        }
882
883        /* The caller cannot use PFMEMALLOC objects, find another one */
884        for (i = 0; i < ac->avail; i++) {
885            /* If a !PFMEMALLOC object is found, swap them */
886            if (!is_obj_pfmemalloc(ac->entry[i])) {
887                objp = ac->entry[i];
888                ac->entry[i] = ac->entry[ac->avail];
889                ac->entry[ac->avail] = objp;
890                return objp;
891            }
892        }
893
894        /*
895         * If there are empty slabs on the slabs_free list and we are
896         * being forced to refill the cache, mark this one !pfmemalloc.
897         */
898        n = cachep->node[numa_mem_id()];
899        if (!list_empty(&n->slabs_free) && force_refill) {
900            struct slab *slabp = virt_to_slab(objp);
901            ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
902            clear_obj_pfmemalloc(&objp);
903            recheck_pfmemalloc_active(cachep, ac);
904            return objp;
905        }
906
907        /* No !PFMEMALLOC objects available */
908        ac->avail++;
909        objp = NULL;
910    }
911
912    return objp;
913}
914
915static inline void *ac_get_obj(struct kmem_cache *cachep,
916            struct array_cache *ac, gfp_t flags, bool force_refill)
917{
918    void *objp;
919
920    if (unlikely(sk_memalloc_socks()))
921        objp = __ac_get_obj(cachep, ac, flags, force_refill);
922    else
923        objp = ac->entry[--ac->avail];
924
925    return objp;
926}
927
928static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
929                                void *objp)
930{
931    if (unlikely(pfmemalloc_active)) {
932        /* Some pfmemalloc slabs exist, check if this is one */
933        struct page *page = virt_to_head_page(objp);
934        if (PageSlabPfmemalloc(page))
935            set_obj_pfmemalloc(&objp);
936    }
937
938    return objp;
939}
940
941static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
942                                void *objp)
943{
944    if (unlikely(sk_memalloc_socks()))
945        objp = __ac_put_obj(cachep, ac, objp);
946
947    ac->entry[ac->avail++] = objp;
948}
949
950/*
951 * Transfer objects in one arraycache to another.
952 * Locking must be handled by the caller.
953 *
954 * Return the number of entries transferred.
955 */
956static int transfer_objects(struct array_cache *to,
957        struct array_cache *from, unsigned int max)
958{
959    /* Figure out how many entries to transfer */
960    int nr = min3(from->avail, max, to->limit - to->avail);
961
962    if (!nr)
963        return 0;
964
965    memcpy(to->entry + to->avail, from->entry + from->avail -nr,
966            sizeof(void *) *nr);
967
968    from->avail -= nr;
969    to->avail += nr;
970    return nr;
971}
972
973#ifndef CONFIG_NUMA
974
975#define drain_alien_cache(cachep, alien) do { } while (0)
976#define reap_alien(cachep, n) do { } while (0)
977
978static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
979{
980    return (struct array_cache **)BAD_ALIEN_MAGIC;
981}
982
983static inline void free_alien_cache(struct array_cache **ac_ptr)
984{
985}
986
987static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
988{
989    return 0;
990}
991
992static inline void *alternate_node_alloc(struct kmem_cache *cachep,
993        gfp_t flags)
994{
995    return NULL;
996}
997
998static inline void *____cache_alloc_node(struct kmem_cache *cachep,
999         gfp_t flags, int nodeid)
1000{
1001    return NULL;
1002}
1003
1004#else /* CONFIG_NUMA */
1005
1006static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1007static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1008
1009static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1010{
1011    struct array_cache **ac_ptr;
1012    int memsize = sizeof(void *) * nr_node_ids;
1013    int i;
1014
1015    if (limit > 1)
1016        limit = 12;
1017    ac_ptr = kzalloc_node(memsize, gfp, node);
1018    if (ac_ptr) {
1019        for_each_node(i) {
1020            if (i == node || !node_online(i))
1021                continue;
1022            ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1023            if (!ac_ptr[i]) {
1024                for (i--; i >= 0; i--)
1025                    kfree(ac_ptr[i]);
1026                kfree(ac_ptr);
1027                return NULL;
1028            }
1029        }
1030    }
1031    return ac_ptr;
1032}
1033
1034static void free_alien_cache(struct array_cache **ac_ptr)
1035{
1036    int i;
1037
1038    if (!ac_ptr)
1039        return;
1040    for_each_node(i)
1041        kfree(ac_ptr[i]);
1042    kfree(ac_ptr);
1043}
1044
1045static void __drain_alien_cache(struct kmem_cache *cachep,
1046                struct array_cache *ac, int node)
1047{
1048    struct kmem_cache_node *n = cachep->node[node];
1049
1050    if (ac->avail) {
1051        spin_lock(&n->list_lock);
1052        /*
1053         * Stuff objects into the remote nodes shared array first.
1054         * That way we could avoid the overhead of putting the objects
1055         * into the free lists and getting them back later.
1056         */
1057        if (n->shared)
1058            transfer_objects(n->shared, ac, ac->limit);
1059
1060        free_block(cachep, ac->entry, ac->avail, node);
1061        ac->avail = 0;
1062        spin_unlock(&n->list_lock);
1063    }
1064}
1065
1066/*
1067 * Called from cache_reap() to regularly drain alien caches round robin.
1068 */
1069static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
1070{
1071    int node = __this_cpu_read(slab_reap_node);
1072
1073    if (n->alien) {
1074        struct array_cache *ac = n->alien[node];
1075
1076        if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1077            __drain_alien_cache(cachep, ac, node);
1078            spin_unlock_irq(&ac->lock);
1079        }
1080    }
1081}
1082
1083static void drain_alien_cache(struct kmem_cache *cachep,
1084                struct array_cache **alien)
1085{
1086    int i = 0;
1087    struct array_cache *ac;
1088    unsigned long flags;
1089
1090    for_each_online_node(i) {
1091        ac = alien[i];
1092        if (ac) {
1093            spin_lock_irqsave(&ac->lock, flags);
1094            __drain_alien_cache(cachep, ac, i);
1095            spin_unlock_irqrestore(&ac->lock, flags);
1096        }
1097    }
1098}
1099
1100static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1101{
1102    struct slab *slabp = virt_to_slab(objp);
1103    int nodeid = slabp->nodeid;
1104    struct kmem_cache_node *n;
1105    struct array_cache *alien = NULL;
1106    int node;
1107
1108    node = numa_mem_id();
1109
1110    /*
1111     * Make sure we are not freeing a object from another node to the array
1112     * cache on this cpu.
1113     */
1114    if (likely(slabp->nodeid == node))
1115        return 0;
1116
1117    n = cachep->node[node];
1118    STATS_INC_NODEFREES(cachep);
1119    if (n->alien && n->alien[nodeid]) {
1120        alien = n->alien[nodeid];
1121        spin_lock(&alien->lock);
1122        if (unlikely(alien->avail == alien->limit)) {
1123            STATS_INC_ACOVERFLOW(cachep);
1124            __drain_alien_cache(cachep, alien, nodeid);
1125        }
1126        ac_put_obj(cachep, alien, objp);
1127        spin_unlock(&alien->lock);
1128    } else {
1129        spin_lock(&(cachep->node[nodeid])->list_lock);
1130        free_block(cachep, &objp, 1, nodeid);
1131        spin_unlock(&(cachep->node[nodeid])->list_lock);
1132    }
1133    return 1;
1134}
1135#endif
1136
1137/*
1138 * Allocates and initializes node for a node on each slab cache, used for
1139 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1140 * will be allocated off-node since memory is not yet online for the new node.
1141 * When hotplugging memory or a cpu, existing node are not replaced if
1142 * already in use.
1143 *
1144 * Must hold slab_mutex.
1145 */
1146static int init_cache_node_node(int node)
1147{
1148    struct kmem_cache *cachep;
1149    struct kmem_cache_node *n;
1150    const int memsize = sizeof(struct kmem_cache_node);
1151
1152    list_for_each_entry(cachep, &slab_caches, list) {
1153        /*
1154         * Set up the size64 kmemlist for cpu before we can
1155         * begin anything. Make sure some other cpu on this
1156         * node has not already allocated this
1157         */
1158        if (!cachep->node[node]) {
1159            n = kmalloc_node(memsize, GFP_KERNEL, node);
1160            if (!n)
1161                return -ENOMEM;
1162            kmem_cache_node_init(n);
1163            n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1164                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1165
1166            /*
1167             * The l3s don't come and go as CPUs come and
1168             * go. slab_mutex is sufficient
1169             * protection here.
1170             */
1171            cachep->node[node] = n;
1172        }
1173
1174        spin_lock_irq(&cachep->node[node]->list_lock);
1175        cachep->node[node]->free_limit =
1176            (1 + nr_cpus_node(node)) *
1177            cachep->batchcount + cachep->num;
1178        spin_unlock_irq(&cachep->node[node]->list_lock);
1179    }
1180    return 0;
1181}
1182
1183static inline int slabs_tofree(struct kmem_cache *cachep,
1184                        struct kmem_cache_node *n)
1185{
1186    return (n->free_objects + cachep->num - 1) / cachep->num;
1187}
1188
1189static void cpuup_canceled(long cpu)
1190{
1191    struct kmem_cache *cachep;
1192    struct kmem_cache_node *n = NULL;
1193    int node = cpu_to_mem(cpu);
1194    const struct cpumask *mask = cpumask_of_node(node);
1195
1196    list_for_each_entry(cachep, &slab_caches, list) {
1197        struct array_cache *nc;
1198        struct array_cache *shared;
1199        struct array_cache **alien;
1200
1201        /* cpu is dead; no one can alloc from it. */
1202        nc = cachep->array[cpu];
1203        cachep->array[cpu] = NULL;
1204        n = cachep->node[node];
1205
1206        if (!n)
1207            goto free_array_cache;
1208
1209        spin_lock_irq(&n->list_lock);
1210
1211        /* Free limit for this kmem_cache_node */
1212        n->free_limit -= cachep->batchcount;
1213        if (nc)
1214            free_block(cachep, nc->entry, nc->avail, node);
1215
1216        if (!cpumask_empty(mask)) {
1217            spin_unlock_irq(&n->list_lock);
1218            goto free_array_cache;
1219        }
1220
1221        shared = n->shared;
1222        if (shared) {
1223            free_block(cachep, shared->entry,
1224                   shared->avail, node);
1225            n->shared = NULL;
1226        }
1227
1228        alien = n->alien;
1229        n->alien = NULL;
1230
1231        spin_unlock_irq(&n->list_lock);
1232
1233        kfree(shared);
1234        if (alien) {
1235            drain_alien_cache(cachep, alien);
1236            free_alien_cache(alien);
1237        }
1238free_array_cache:
1239        kfree(nc);
1240    }
1241    /*
1242     * In the previous loop, all the objects were freed to
1243     * the respective cache's slabs, now we can go ahead and
1244     * shrink each nodelist to its limit.
1245     */
1246    list_for_each_entry(cachep, &slab_caches, list) {
1247        n = cachep->node[node];
1248        if (!n)
1249            continue;
1250        drain_freelist(cachep, n, slabs_tofree(cachep, n));
1251    }
1252}
1253
1254static int cpuup_prepare(long cpu)
1255{
1256    struct kmem_cache *cachep;
1257    struct kmem_cache_node *n = NULL;
1258    int node = cpu_to_mem(cpu);
1259    int err;
1260
1261    /*
1262     * We need to do this right in the beginning since
1263     * alloc_arraycache's are going to use this list.
1264     * kmalloc_node allows us to add the slab to the right
1265     * kmem_cache_node and not this cpu's kmem_cache_node
1266     */
1267    err = init_cache_node_node(node);
1268    if (err < 0)
1269        goto bad;
1270
1271    /*
1272     * Now we can go ahead with allocating the shared arrays and
1273     * array caches
1274     */
1275    list_for_each_entry(cachep, &slab_caches, list) {
1276        struct array_cache *nc;
1277        struct array_cache *shared = NULL;
1278        struct array_cache **alien = NULL;
1279
1280        nc = alloc_arraycache(node, cachep->limit,
1281                    cachep->batchcount, GFP_KERNEL);
1282        if (!nc)
1283            goto bad;
1284        if (cachep->shared) {
1285            shared = alloc_arraycache(node,
1286                cachep->shared * cachep->batchcount,
1287                0xbaadf00d, GFP_KERNEL);
1288            if (!shared) {
1289                kfree(nc);
1290                goto bad;
1291            }
1292        }
1293        if (use_alien_caches) {
1294            alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1295            if (!alien) {
1296                kfree(shared);
1297                kfree(nc);
1298                goto bad;
1299            }
1300        }
1301        cachep->array[cpu] = nc;
1302        n = cachep->node[node];
1303        BUG_ON(!n);
1304
1305        spin_lock_irq(&n->list_lock);
1306        if (!n->shared) {
1307            /*
1308             * We are serialised from CPU_DEAD or
1309             * CPU_UP_CANCELLED by the cpucontrol lock
1310             */
1311            n->shared = shared;
1312            shared = NULL;
1313        }
1314#ifdef CONFIG_NUMA
1315        if (!n->alien) {
1316            n->alien = alien;
1317            alien = NULL;
1318        }
1319#endif
1320        spin_unlock_irq(&n->list_lock);
1321        kfree(shared);
1322        free_alien_cache(alien);
1323        if (cachep->flags & SLAB_DEBUG_OBJECTS)
1324            slab_set_debugobj_lock_classes_node(cachep, node);
1325        else if (!OFF_SLAB(cachep) &&
1326             !(cachep->flags & SLAB_DESTROY_BY_RCU))
1327            on_slab_lock_classes_node(cachep, node);
1328    }
1329    init_node_lock_keys(node);
1330
1331    return 0;
1332bad:
1333    cpuup_canceled(cpu);
1334    return -ENOMEM;
1335}
1336
1337static int cpuup_callback(struct notifier_block *nfb,
1338                    unsigned long action, void *hcpu)
1339{
1340    long cpu = (long)hcpu;
1341    int err = 0;
1342
1343    switch (action) {
1344    case CPU_UP_PREPARE:
1345    case CPU_UP_PREPARE_FROZEN:
1346        mutex_lock(&slab_mutex);
1347        err = cpuup_prepare(cpu);
1348        mutex_unlock(&slab_mutex);
1349        break;
1350    case CPU_ONLINE:
1351    case CPU_ONLINE_FROZEN:
1352        start_cpu_timer(cpu);
1353        break;
1354#ifdef CONFIG_HOTPLUG_CPU
1355      case CPU_DOWN_PREPARE:
1356      case CPU_DOWN_PREPARE_FROZEN:
1357        /*
1358         * Shutdown cache reaper. Note that the slab_mutex is
1359         * held so that if cache_reap() is invoked it cannot do
1360         * anything expensive but will only modify reap_work
1361         * and reschedule the timer.
1362        */
1363        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1364        /* Now the cache_reaper is guaranteed to be not running. */
1365        per_cpu(slab_reap_work, cpu).work.func = NULL;
1366          break;
1367      case CPU_DOWN_FAILED:
1368      case CPU_DOWN_FAILED_FROZEN:
1369        start_cpu_timer(cpu);
1370          break;
1371    case CPU_DEAD:
1372    case CPU_DEAD_FROZEN:
1373        /*
1374         * Even if all the cpus of a node are down, we don't free the
1375         * kmem_cache_node of any cache. This to avoid a race between
1376         * cpu_down, and a kmalloc allocation from another cpu for
1377         * memory from the node of the cpu going down. The node
1378         * structure is usually allocated from kmem_cache_create() and
1379         * gets destroyed at kmem_cache_destroy().
1380         */
1381        /* fall through */
1382#endif
1383    case CPU_UP_CANCELED:
1384    case CPU_UP_CANCELED_FROZEN:
1385        mutex_lock(&slab_mutex);
1386        cpuup_canceled(cpu);
1387        mutex_unlock(&slab_mutex);
1388        break;
1389    }
1390    return notifier_from_errno(err);
1391}
1392
1393static struct notifier_block cpucache_notifier = {
1394    &cpuup_callback, NULL, 0
1395};
1396
1397#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1398/*
1399 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1400 * Returns -EBUSY if all objects cannot be drained so that the node is not
1401 * removed.
1402 *
1403 * Must hold slab_mutex.
1404 */
1405static int __meminit drain_cache_node_node(int node)
1406{
1407    struct kmem_cache *cachep;
1408    int ret = 0;
1409
1410    list_for_each_entry(cachep, &slab_caches, list) {
1411        struct kmem_cache_node *n;
1412
1413        n = cachep->node[node];
1414        if (!n)
1415            continue;
1416
1417        drain_freelist(cachep, n, slabs_tofree(cachep, n));
1418
1419        if (!list_empty(&n->slabs_full) ||
1420            !list_empty(&n->slabs_partial)) {
1421            ret = -EBUSY;
1422            break;
1423        }
1424    }
1425    return ret;
1426}
1427
1428static int __meminit slab_memory_callback(struct notifier_block *self,
1429                    unsigned long action, void *arg)
1430{
1431    struct memory_notify *mnb = arg;
1432    int ret = 0;
1433    int nid;
1434
1435    nid = mnb->status_change_nid;
1436    if (nid < 0)
1437        goto out;
1438
1439    switch (action) {
1440    case MEM_GOING_ONLINE:
1441        mutex_lock(&slab_mutex);
1442        ret = init_cache_node_node(nid);
1443        mutex_unlock(&slab_mutex);
1444        break;
1445    case MEM_GOING_OFFLINE:
1446        mutex_lock(&slab_mutex);
1447        ret = drain_cache_node_node(nid);
1448        mutex_unlock(&slab_mutex);
1449        break;
1450    case MEM_ONLINE:
1451    case MEM_OFFLINE:
1452    case MEM_CANCEL_ONLINE:
1453    case MEM_CANCEL_OFFLINE:
1454        break;
1455    }
1456out:
1457    return notifier_from_errno(ret);
1458}
1459#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1460
1461/*
1462 * swap the static kmem_cache_node with kmalloced memory
1463 */
1464static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1465                int nodeid)
1466{
1467    struct kmem_cache_node *ptr;
1468
1469    ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1470    BUG_ON(!ptr);
1471
1472    memcpy(ptr, list, sizeof(struct kmem_cache_node));
1473    /*
1474     * Do not assume that spinlocks can be initialized via memcpy:
1475     */
1476    spin_lock_init(&ptr->list_lock);
1477
1478    MAKE_ALL_LISTS(cachep, ptr, nodeid);
1479    cachep->node[nodeid] = ptr;
1480}
1481
1482/*
1483 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1484 * size of kmem_cache_node.
1485 */
1486static void __init set_up_node(struct kmem_cache *cachep, int index)
1487{
1488    int node;
1489
1490    for_each_online_node(node) {
1491        cachep->node[node] = &init_kmem_cache_node[index + node];
1492        cachep->node[node]->next_reap = jiffies +
1493            REAPTIMEOUT_LIST3 +
1494            ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1495    }
1496}
1497
1498/*
1499 * The memory after the last cpu cache pointer is used for the
1500 * the node pointer.
1501 */
1502static void setup_node_pointer(struct kmem_cache *cachep)
1503{
1504    cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids];
1505}
1506
1507/*
1508 * Initialisation. Called after the page allocator have been initialised and
1509 * before smp_init().
1510 */
1511void __init kmem_cache_init(void)
1512{
1513    int i;
1514
1515    kmem_cache = &kmem_cache_boot;
1516    setup_node_pointer(kmem_cache);
1517
1518    if (num_possible_nodes() == 1)
1519        use_alien_caches = 0;
1520
1521    for (i = 0; i < NUM_INIT_LISTS; i++)
1522        kmem_cache_node_init(&init_kmem_cache_node[i]);
1523
1524    set_up_node(kmem_cache, CACHE_CACHE);
1525
1526    /*
1527     * Fragmentation resistance on low memory - only use bigger
1528     * page orders on machines with more than 32MB of memory if
1529     * not overridden on the command line.
1530     */
1531    if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1532        slab_max_order = SLAB_MAX_ORDER_HI;
1533
1534    /* Bootstrap is tricky, because several objects are allocated
1535     * from caches that do not exist yet:
1536     * 1) initialize the kmem_cache cache: it contains the struct
1537     * kmem_cache structures of all caches, except kmem_cache itself:
1538     * kmem_cache is statically allocated.
1539     * Initially an __init data area is used for the head array and the
1540     * kmem_cache_node structures, it's replaced with a kmalloc allocated
1541     * array at the end of the bootstrap.
1542     * 2) Create the first kmalloc cache.
1543     * The struct kmem_cache for the new cache is allocated normally.
1544     * An __init data area is used for the head array.
1545     * 3) Create the remaining kmalloc caches, with minimally sized
1546     * head arrays.
1547     * 4) Replace the __init data head arrays for kmem_cache and the first
1548     * kmalloc cache with kmalloc allocated arrays.
1549     * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1550     * the other cache's with kmalloc allocated memory.
1551     * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1552     */
1553
1554    /* 1) create the kmem_cache */
1555
1556    /*
1557     * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1558     */
1559    create_boot_cache(kmem_cache, "kmem_cache",
1560        offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1561                  nr_node_ids * sizeof(struct kmem_cache_node *),
1562                  SLAB_HWCACHE_ALIGN);
1563    list_add(&kmem_cache->list, &slab_caches);
1564
1565    /* 2+3) create the kmalloc caches */
1566
1567    /*
1568     * Initialize the caches that provide memory for the array cache and the
1569     * kmem_cache_node structures first. Without this, further allocations will
1570     * bug.
1571     */
1572
1573    kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac",
1574                    kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS);
1575
1576    if (INDEX_AC != INDEX_NODE)
1577        kmalloc_caches[INDEX_NODE] =
1578            create_kmalloc_cache("kmalloc-node",
1579                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1580
1581    slab_early_init = 0;
1582
1583    /* 4) Replace the bootstrap head arrays */
1584    {
1585        struct array_cache *ptr;
1586
1587        ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1588
1589        memcpy(ptr, cpu_cache_get(kmem_cache),
1590               sizeof(struct arraycache_init));
1591        /*
1592         * Do not assume that spinlocks can be initialized via memcpy:
1593         */
1594        spin_lock_init(&ptr->lock);
1595
1596        kmem_cache->array[smp_processor_id()] = ptr;
1597
1598        ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1599
1600        BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC])
1601               != &initarray_generic.cache);
1602        memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]),
1603               sizeof(struct arraycache_init));
1604        /*
1605         * Do not assume that spinlocks can be initialized via memcpy:
1606         */
1607        spin_lock_init(&ptr->lock);
1608
1609        kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr;
1610    }
1611    /* 5) Replace the bootstrap kmem_cache_node */
1612    {
1613        int nid;
1614
1615        for_each_online_node(nid) {
1616            init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1617
1618            init_list(kmalloc_caches[INDEX_AC],
1619                  &init_kmem_cache_node[SIZE_AC + nid], nid);
1620
1621            if (INDEX_AC != INDEX_NODE) {
1622                init_list(kmalloc_caches[INDEX_NODE],
1623                      &init_kmem_cache_node[SIZE_NODE + nid], nid);
1624            }
1625        }
1626    }
1627
1628    create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1629}
1630
1631void __init kmem_cache_init_late(void)
1632{
1633    struct kmem_cache *cachep;
1634
1635    slab_state = UP;
1636
1637    /* 6) resize the head arrays to their final sizes */
1638    mutex_lock(&slab_mutex);
1639    list_for_each_entry(cachep, &slab_caches, list)
1640        if (enable_cpucache(cachep, GFP_NOWAIT))
1641            BUG();
1642    mutex_unlock(&slab_mutex);
1643
1644    /* Annotate slab for lockdep -- annotate the malloc caches */
1645    init_lock_keys();
1646
1647    /* Done! */
1648    slab_state = FULL;
1649
1650    /*
1651     * Register a cpu startup notifier callback that initializes
1652     * cpu_cache_get for all new cpus
1653     */
1654    register_cpu_notifier(&cpucache_notifier);
1655
1656#ifdef CONFIG_NUMA
1657    /*
1658     * Register a memory hotplug callback that initializes and frees
1659     * node.
1660     */
1661    hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1662#endif
1663
1664    /*
1665     * The reap timers are started later, with a module init call: That part
1666     * of the kernel is not yet operational.
1667     */
1668}
1669
1670static int __init cpucache_init(void)
1671{
1672    int cpu;
1673
1674    /*
1675     * Register the timers that return unneeded pages to the page allocator
1676     */
1677    for_each_online_cpu(cpu)
1678        start_cpu_timer(cpu);
1679
1680    /* Done! */
1681    slab_state = FULL;
1682    return 0;
1683}
1684__initcall(cpucache_init);
1685
1686static noinline void
1687slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1688{
1689    struct kmem_cache_node *n;
1690    struct slab *slabp;
1691    unsigned long flags;
1692    int node;
1693
1694    printk(KERN_WARNING
1695        "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1696        nodeid, gfpflags);
1697    printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1698        cachep->name, cachep->size, cachep->gfporder);
1699
1700    for_each_online_node(node) {
1701        unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1702        unsigned long active_slabs = 0, num_slabs = 0;
1703
1704        n = cachep->node[node];
1705        if (!n)
1706            continue;
1707
1708        spin_lock_irqsave(&n->list_lock, flags);
1709        list_for_each_entry(slabp, &n->slabs_full, list) {
1710            active_objs += cachep->num;
1711            active_slabs++;
1712        }
1713        list_for_each_entry(slabp, &n->slabs_partial, list) {
1714            active_objs += slabp->inuse;
1715            active_slabs++;
1716        }
1717        list_for_each_entry(slabp, &n->slabs_free, list)
1718            num_slabs++;
1719
1720        free_objects += n->free_objects;
1721        spin_unlock_irqrestore(&n->list_lock, flags);
1722
1723        num_slabs += active_slabs;
1724        num_objs = num_slabs * cachep->num;
1725        printk(KERN_WARNING
1726            " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1727            node, active_slabs, num_slabs, active_objs, num_objs,
1728            free_objects);
1729    }
1730}
1731
1732/*
1733 * Interface to system's page allocator. No need to hold the cache-lock.
1734 *
1735 * If we requested dmaable memory, we will get it. Even if we
1736 * did not request dmaable memory, we might get it, but that
1737 * would be relatively rare and ignorable.
1738 */
1739static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1740{
1741    struct page *page;
1742    int nr_pages;
1743    int i;
1744
1745#ifndef CONFIG_MMU
1746    /*
1747     * Nommu uses slab's for process anonymous memory allocations, and thus
1748     * requires __GFP_COMP to properly refcount higher order allocations
1749     */
1750    flags |= __GFP_COMP;
1751#endif
1752
1753    flags |= cachep->allocflags;
1754    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1755        flags |= __GFP_RECLAIMABLE;
1756
1757    page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1758    if (!page) {
1759        if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1760            slab_out_of_memory(cachep, flags, nodeid);
1761        return NULL;
1762    }
1763
1764    /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1765    if (unlikely(page->pfmemalloc))
1766        pfmemalloc_active = true;
1767
1768    nr_pages = (1 << cachep->gfporder);
1769    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1770        add_zone_page_state(page_zone(page),
1771            NR_SLAB_RECLAIMABLE, nr_pages);
1772    else
1773        add_zone_page_state(page_zone(page),
1774            NR_SLAB_UNRECLAIMABLE, nr_pages);
1775    for (i = 0; i < nr_pages; i++) {
1776        __SetPageSlab(page + i);
1777
1778        if (page->pfmemalloc)
1779            SetPageSlabPfmemalloc(page + i);
1780    }
1781    memcg_bind_pages(cachep, cachep->gfporder);
1782
1783    if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1784        kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1785
1786        if (cachep->ctor)
1787            kmemcheck_mark_uninitialized_pages(page, nr_pages);
1788        else
1789            kmemcheck_mark_unallocated_pages(page, nr_pages);
1790    }
1791
1792    return page_address(page);
1793}
1794
1795/*
1796 * Interface to system's page release.
1797 */
1798static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1799{
1800    unsigned long i = (1 << cachep->gfporder);
1801    struct page *page = virt_to_page(addr);
1802    const unsigned long nr_freed = i;
1803
1804    kmemcheck_free_shadow(page, cachep->gfporder);
1805
1806    if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1807        sub_zone_page_state(page_zone(page),
1808                NR_SLAB_RECLAIMABLE, nr_freed);
1809    else
1810        sub_zone_page_state(page_zone(page),
1811                NR_SLAB_UNRECLAIMABLE, nr_freed);
1812    while (i--) {
1813        BUG_ON(!PageSlab(page));
1814        __ClearPageSlabPfmemalloc(page);
1815        __ClearPageSlab(page);
1816        page++;
1817    }
1818
1819    memcg_release_pages(cachep, cachep->gfporder);
1820    if (current->reclaim_state)
1821        current->reclaim_state->reclaimed_slab += nr_freed;
1822    free_memcg_kmem_pages((unsigned long)addr, cachep->gfporder);
1823}
1824
1825static void kmem_rcu_free(struct rcu_head *head)
1826{
1827    struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1828    struct kmem_cache *cachep = slab_rcu->cachep;
1829
1830    kmem_freepages(cachep, slab_rcu->addr);
1831    if (OFF_SLAB(cachep))
1832        kmem_cache_free(cachep->slabp_cache, slab_rcu);
1833}
1834
1835#if DEBUG
1836
1837#ifdef CONFIG_DEBUG_PAGEALLOC
1838static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1839                unsigned long caller)
1840{
1841    int size = cachep->object_size;
1842
1843    addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1844
1845    if (size < 5 * sizeof(unsigned long))
1846        return;
1847
1848    *addr++ = 0x12345678;
1849    *addr++ = caller;
1850    *addr++ = smp_processor_id();
1851    size -= 3 * sizeof(unsigned long);
1852    {
1853        unsigned long *sptr = &caller;
1854        unsigned long svalue;
1855
1856        while (!kstack_end(sptr)) {
1857            svalue = *sptr++;
1858            if (kernel_text_address(svalue)) {
1859                *addr++ = svalue;
1860                size -= sizeof(unsigned long);
1861                if (size <= sizeof(unsigned long))
1862                    break;
1863            }
1864        }
1865
1866    }
1867    *addr++ = 0x87654321;
1868}
1869#endif
1870
1871static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1872{
1873    int size = cachep->object_size;
1874    addr = &((char *)addr)[obj_offset(cachep)];
1875
1876    memset(addr, val, size);
1877    *(unsigned char *)(addr + size - 1) = POISON_END;
1878}
1879
1880static void dump_line(char *data, int offset, int limit)
1881{
1882    int i;
1883    unsigned char error = 0;
1884    int bad_count = 0;
1885
1886    printk(KERN_ERR "%03x: ", offset);
1887    for (i = 0; i < limit; i++) {
1888        if (data[offset + i] != POISON_FREE) {
1889            error = data[offset + i];
1890            bad_count++;
1891        }
1892    }
1893    print_hex_dump(KERN_CONT, "", 0, 16, 1,
1894            &data[offset], limit, 1);
1895
1896    if (bad_count == 1) {
1897        error ^= POISON_FREE;
1898        if (!(error & (error - 1))) {
1899            printk(KERN_ERR "Single bit error detected. Probably "
1900                    "bad RAM.\n");
1901#ifdef CONFIG_X86
1902            printk(KERN_ERR "Run memtest86+ or a similar memory "
1903                    "test tool.\n");
1904#else
1905            printk(KERN_ERR "Run a memory test tool.\n");
1906#endif
1907        }
1908    }
1909}
1910#endif
1911
1912#if DEBUG
1913
1914static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1915{
1916    int i, size;
1917    char *realobj;
1918
1919    if (cachep->flags & SLAB_RED_ZONE) {
1920        printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1921            *dbg_redzone1(cachep, objp),
1922            *dbg_redzone2(cachep, objp));
1923    }
1924
1925    if (cachep->flags & SLAB_STORE_USER) {
1926        printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1927               *dbg_userword(cachep, objp),
1928               *dbg_userword(cachep, objp));
1929    }
1930    realobj = (char *)objp + obj_offset(cachep);
1931    size = cachep->object_size;
1932    for (i = 0; i < size && lines; i += 16, lines--) {
1933        int limit;
1934        limit = 16;
1935        if (i + limit > size)
1936            limit = size - i;
1937        dump_line(realobj, i, limit);
1938    }
1939}
1940
1941static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1942{
1943    char *realobj;
1944    int size, i;
1945    int lines = 0;
1946
1947    realobj = (char *)objp + obj_offset(cachep);
1948    size = cachep->object_size;
1949
1950    for (i = 0; i < size; i++) {
1951        char exp = POISON_FREE;
1952        if (i == size - 1)
1953            exp = POISON_END;
1954        if (realobj[i] != exp) {
1955            int limit;
1956            /* Mismatch ! */
1957            /* Print header */
1958            if (lines == 0) {
1959                printk(KERN_ERR
1960                    "Slab corruption (%s): %s start=%p, len=%d\n",
1961                    print_tainted(), cachep->name, realobj, size);
1962                print_objinfo(cachep, objp, 0);
1963            }
1964            /* Hexdump the affected line */
1965            i = (i / 16) * 16;
1966            limit = 16;
1967            if (i + limit > size)
1968                limit = size - i;
1969            dump_line(realobj, i, limit);
1970            i += 16;
1971            lines++;
1972            /* Limit to 5 lines */
1973            if (lines > 5)
1974                break;
1975        }
1976    }
1977    if (lines != 0) {
1978        /* Print some data about the neighboring objects, if they
1979         * exist:
1980         */
1981        struct slab *slabp = virt_to_slab(objp);
1982        unsigned int objnr;
1983
1984        objnr = obj_to_index(cachep, slabp, objp);
1985        if (objnr) {
1986            objp = index_to_obj(cachep, slabp, objnr - 1);
1987            realobj = (char *)objp + obj_offset(cachep);
1988            printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1989                   realobj, size);
1990            print_objinfo(cachep, objp, 2);
1991        }
1992        if (objnr + 1 < cachep->num) {
1993            objp = index_to_obj(cachep, slabp, objnr + 1);
1994            realobj = (char *)objp + obj_offset(cachep);
1995            printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1996                   realobj, size);
1997            print_objinfo(cachep, objp, 2);
1998        }
1999    }
2000}
2001#endif
2002
2003#if DEBUG
2004static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2005{
2006    int i;
2007    for (i = 0; i < cachep->num; i++) {
2008        void *objp = index_to_obj(cachep, slabp, i);
2009
2010        if (cachep->flags & SLAB_POISON) {
2011#ifdef CONFIG_DEBUG_PAGEALLOC
2012            if (cachep->size % PAGE_SIZE == 0 &&
2013                    OFF_SLAB(cachep))
2014                kernel_map_pages(virt_to_page(objp),
2015                    cachep->size / PAGE_SIZE, 1);
2016            else
2017                check_poison_obj(cachep, objp);
2018#else
2019            check_poison_obj(cachep, objp);
2020#endif
2021        }
2022        if (cachep->flags & SLAB_RED_ZONE) {
2023            if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2024                slab_error(cachep, "start of a freed object "
2025                       "was overwritten");
2026            if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2027                slab_error(cachep, "end of a freed object "
2028                       "was overwritten");
2029        }
2030    }
2031}
2032#else
2033static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2034{
2035}
2036#endif
2037
2038/**
2039 * slab_destroy - destroy and release all objects in a slab
2040 * @cachep: cache pointer being destroyed
2041 * @slabp: slab pointer being destroyed
2042 *
2043 * Destroy all the objs in a slab, and release the mem back to the system.
2044 * Before calling the slab must have been unlinked from the cache. The
2045 * cache-lock is not held/needed.
2046 */
2047static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2048{
2049    void *addr = slabp->s_mem - slabp->colouroff;
2050
2051    slab_destroy_debugcheck(cachep, slabp);
2052    if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2053        struct slab_rcu *slab_rcu;
2054
2055        slab_rcu = (struct slab_rcu *)slabp;
2056        slab_rcu->cachep = cachep;
2057        slab_rcu->addr = addr;
2058        call_rcu(&slab_rcu->head, kmem_rcu_free);
2059    } else {
2060        kmem_freepages(cachep, addr);
2061        if (OFF_SLAB(cachep))
2062            kmem_cache_free(cachep->slabp_cache, slabp);
2063    }
2064}
2065
2066/**
2067 * calculate_slab_order - calculate size (page order) of slabs
2068 * @cachep: pointer to the cache that is being created
2069 * @size: size of objects to be created in this cache.
2070 * @align: required alignment for the objects.
2071 * @flags: slab allocation flags
2072 *
2073 * Also calculates the number of objects per slab.
2074 *
2075 * This could be made much more intelligent. For now, try to avoid using
2076 * high order pages for slabs. When the gfp() functions are more friendly
2077 * towards high-order requests, this should be changed.
2078 */
2079static size_t calculate_slab_order(struct kmem_cache *cachep,
2080            size_t size, size_t align, unsigned long flags)
2081{
2082    unsigned long offslab_limit;
2083    size_t left_over = 0;
2084    int gfporder;
2085
2086    for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2087        unsigned int num;
2088        size_t remainder;
2089
2090        cache_estimate(gfporder, size, align, flags, &remainder, &num);
2091        if (!num)
2092            continue;
2093
2094        if (flags & CFLGS_OFF_SLAB) {
2095            /*
2096             * Max number of objs-per-slab for caches which
2097             * use off-slab slabs. Needed to avoid a possible
2098             * looping condition in cache_grow().
2099             */
2100            offslab_limit = size - sizeof(struct slab);
2101            offslab_limit /= sizeof(kmem_bufctl_t);
2102
2103             if (num > offslab_limit)
2104                break;
2105        }
2106
2107        /* Found something acceptable - save it away */
2108        cachep->num = num;
2109        cachep->gfporder = gfporder;
2110        left_over = remainder;
2111
2112        /*
2113         * A VFS-reclaimable slab tends to have most allocations
2114         * as GFP_NOFS and we really don't want to have to be allocating
2115         * higher-order pages when we are unable to shrink dcache.
2116         */
2117        if (flags & SLAB_RECLAIM_ACCOUNT)
2118            break;
2119
2120        /*
2121         * Large number of objects is good, but very large slabs are
2122         * currently bad for the gfp()s.
2123         */
2124        if (gfporder >= slab_max_order)
2125            break;
2126
2127        /*
2128         * Acceptable internal fragmentation?
2129         */
2130        if (left_over * 8 <= (PAGE_SIZE << gfporder))
2131            break;
2132    }
2133    return left_over;
2134}
2135
2136static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2137{
2138    if (slab_state >= FULL)
2139        return enable_cpucache(cachep, gfp);
2140
2141    if (slab_state == DOWN) {
2142        /*
2143         * Note: Creation of first cache (kmem_cache).
2144         * The setup_node is taken care
2145         * of by the caller of __kmem_cache_create
2146         */
2147        cachep->array[smp_processor_id()] = &initarray_generic.cache;
2148        slab_state = PARTIAL;
2149    } else if (slab_state == PARTIAL) {
2150        /*
2151         * Note: the second kmem_cache_create must create the cache
2152         * that's used by kmalloc(24), otherwise the creation of
2153         * further caches will BUG().
2154         */
2155        cachep->array[smp_processor_id()] = &initarray_generic.cache;
2156
2157        /*
2158         * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2159         * the second cache, then we need to set up all its node/,
2160         * otherwise the creation of further caches will BUG().
2161         */
2162        set_up_node(cachep, SIZE_AC);
2163        if (INDEX_AC == INDEX_NODE)
2164            slab_state = PARTIAL_NODE;
2165        else
2166            slab_state = PARTIAL_ARRAYCACHE;
2167    } else {
2168        /* Remaining boot caches */
2169        cachep->array[smp_processor_id()] =
2170            kmalloc(sizeof(struct arraycache_init), gfp);
2171
2172        if (slab_state == PARTIAL_ARRAYCACHE) {
2173            set_up_node(cachep, SIZE_NODE);
2174            slab_state = PARTIAL_NODE;
2175        } else {
2176            int node;
2177            for_each_online_node(node) {
2178                cachep->node[node] =
2179                    kmalloc_node(sizeof(struct kmem_cache_node),
2180                        gfp, node);
2181                BUG_ON(!cachep->node[node]);
2182                kmem_cache_node_init(cachep->node[node]);
2183            }
2184        }
2185    }
2186    cachep->node[numa_mem_id()]->next_reap =
2187            jiffies + REAPTIMEOUT_LIST3 +
2188            ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2189
2190    cpu_cache_get(cachep)->avail = 0;
2191    cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2192    cpu_cache_get(cachep)->batchcount = 1;
2193    cpu_cache_get(cachep)->touched = 0;
2194    cachep->batchcount = 1;
2195    cachep->limit = BOOT_CPUCACHE_ENTRIES;
2196    return 0;
2197}
2198
2199/**
2200 * __kmem_cache_create - Create a cache.
2201 * @cachep: cache management descriptor
2202 * @flags: SLAB flags
2203 *
2204 * Returns a ptr to the cache on success, NULL on failure.
2205 * Cannot be called within a int, but can be interrupted.
2206 * The @ctor is run when new pages are allocated by the cache.
2207 *
2208 * The flags are
2209 *
2210 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2211 * to catch references to uninitialised memory.
2212 *
2213 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2214 * for buffer overruns.
2215 *
2216 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2217 * cacheline. This can be beneficial if you're counting cycles as closely
2218 * as davem.
2219 */
2220int
2221__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2222{
2223    size_t left_over, slab_size, ralign;
2224    gfp_t gfp;
2225    int err;
2226    size_t size = cachep->size;
2227
2228#if DEBUG
2229#if FORCED_DEBUG
2230    /*
2231     * Enable redzoning and last user accounting, except for caches with
2232     * large objects, if the increased size would increase the object size
2233     * above the next power of two: caches with object sizes just above a
2234     * power of two have a significant amount of internal fragmentation.
2235     */
2236    if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2237                        2 * sizeof(unsigned long long)))
2238        flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2239    if (!(flags & SLAB_DESTROY_BY_RCU))
2240        flags |= SLAB_POISON;
2241#endif
2242    if (flags & SLAB_DESTROY_BY_RCU)
2243        BUG_ON(flags & SLAB_POISON);
2244#endif
2245
2246    /*
2247     * Check that size is in terms of words. This is needed to avoid
2248     * unaligned accesses for some archs when redzoning is used, and makes
2249     * sure any on-slab bufctl's are also correctly aligned.
2250     */
2251    if (size & (BYTES_PER_WORD - 1)) {
2252        size += (BYTES_PER_WORD - 1);
2253        size &= ~(BYTES_PER_WORD - 1);
2254    }
2255
2256    /*
2257     * Redzoning and user store require word alignment or possibly larger.
2258     * Note this will be overridden by architecture or caller mandated
2259     * alignment if either is greater than BYTES_PER_WORD.
2260     */
2261    if (flags & SLAB_STORE_USER)
2262        ralign = BYTES_PER_WORD;
2263
2264    if (flags & SLAB_RED_ZONE) {
2265        ralign = REDZONE_ALIGN;
2266        /* If redzoning, ensure that the second redzone is suitably
2267         * aligned, by adjusting the object size accordingly. */
2268        size += REDZONE_ALIGN - 1;
2269        size &= ~(REDZONE_ALIGN - 1);
2270    }
2271
2272    /* 3) caller mandated alignment */
2273    if (ralign < cachep->align) {
2274        ralign = cachep->align;
2275    }
2276    /* disable debug if necessary */
2277    if (ralign > __alignof__(unsigned long long))
2278        flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2279    /*
2280     * 4) Store it.
2281     */
2282    cachep->align = ralign;
2283
2284    if (slab_is_available())
2285        gfp = GFP_KERNEL;
2286    else
2287        gfp = GFP_NOWAIT;
2288
2289    setup_node_pointer(cachep);
2290#if DEBUG
2291
2292    /*
2293     * Both debugging options require word-alignment which is calculated
2294     * into align above.
2295     */
2296    if (flags & SLAB_RED_ZONE) {
2297        /* add space for red zone words */
2298        cachep->obj_offset += sizeof(unsigned long long);
2299        size += 2 * sizeof(unsigned long long);
2300    }
2301    if (flags & SLAB_STORE_USER) {
2302        /* user store requires one word storage behind the end of
2303         * the real object. But if the second red zone needs to be
2304         * aligned to 64 bits, we must allow that much space.
2305         */
2306        if (flags & SLAB_RED_ZONE)
2307            size += REDZONE_ALIGN;
2308        else
2309            size += BYTES_PER_WORD;
2310    }
2311#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2312    if (size >= kmalloc_size(INDEX_NODE + 1)
2313        && cachep->object_size > cache_line_size()
2314        && ALIGN(size, cachep->align) < PAGE_SIZE) {
2315        cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2316        size = PAGE_SIZE;
2317    }
2318#endif
2319#endif
2320
2321    /*
2322     * Determine if the slab management is 'on' or 'off' slab.
2323     * (bootstrapping cannot cope with offslab caches so don't do
2324     * it too early on. Always use on-slab management when
2325     * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2326     */
2327    if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2328        !(flags & SLAB_NOLEAKTRACE))
2329        /*
2330         * Size is large, assume best to place the slab management obj
2331         * off-slab (should allow better packing of objs).
2332         */
2333        flags |= CFLGS_OFF_SLAB;
2334
2335    size = ALIGN(size, cachep->align);
2336
2337    left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2338
2339    if (!cachep->num)
2340        return -E2BIG;
2341
2342    slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2343              + sizeof(struct slab), cachep->align);
2344
2345    /*
2346     * If the slab has been placed off-slab, and we have enough space then
2347     * move it on-slab. This is at the expense of any extra colouring.
2348     */
2349    if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2350        flags &= ~CFLGS_OFF_SLAB;
2351        left_over -= slab_size;
2352    }
2353
2354    if (flags & CFLGS_OFF_SLAB) {
2355        /* really off slab. No need for manual alignment */
2356        slab_size =
2357            cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2358
2359#ifdef CONFIG_PAGE_POISONING
2360        /* If we're going to use the generic kernel_map_pages()
2361         * poisoning, then it's going to smash the contents of
2362         * the redzone and userword anyhow, so switch them off.
2363         */
2364        if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2365            flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2366#endif
2367    }
2368
2369    cachep->colour_off = cache_line_size();
2370    /* Offset must be a multiple of the alignment. */
2371    if (cachep->colour_off < cachep->align)
2372        cachep->colour_off = cachep->align;
2373    cachep->colour = left_over / cachep->colour_off;
2374    cachep->slab_size = slab_size;
2375    cachep->flags = flags;
2376    cachep->allocflags = 0;
2377    if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2378        cachep->allocflags |= GFP_DMA;
2379    cachep->size = size;
2380    cachep->reciprocal_buffer_size = reciprocal_value(size);
2381
2382    if (flags & CFLGS_OFF_SLAB) {
2383        cachep->slabp_cache = kmalloc_slab(slab_size, 0u);
2384        /*
2385         * This is a possibility for one of the malloc_sizes caches.
2386         * But since we go off slab only for object size greater than
2387         * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2388         * this should not happen at all.
2389         * But leave a BUG_ON for some lucky dude.
2390         */
2391        BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2392    }
2393
2394    err = setup_cpu_cache(cachep, gfp);
2395    if (err) {
2396        __kmem_cache_shutdown(cachep);
2397        return err;
2398    }
2399
2400    if (flags & SLAB_DEBUG_OBJECTS) {
2401        /*
2402         * Would deadlock through slab_destroy()->call_rcu()->
2403         * debug_object_activate()->kmem_cache_alloc().
2404         */
2405        WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2406
2407        slab_set_debugobj_lock_classes(cachep);
2408    } else if (!OFF_SLAB(cachep) && !(flags & SLAB_DESTROY_BY_RCU))
2409        on_slab_lock_classes(cachep);
2410
2411    return 0;
2412}
2413
2414#if DEBUG
2415static void check_irq_off(void)
2416{
2417    BUG_ON(!irqs_disabled());
2418}
2419
2420static void check_irq_on(void)
2421{
2422    BUG_ON(irqs_disabled());
2423}
2424
2425static void check_spinlock_acquired(struct kmem_cache *cachep)
2426{
2427#ifdef CONFIG_SMP
2428    check_irq_off();
2429    assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock);
2430#endif
2431}
2432
2433static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2434{
2435#ifdef CONFIG_SMP
2436    check_irq_off();
2437    assert_spin_locked(&cachep->node[node]->list_lock);
2438#endif
2439}
2440
2441#else
2442#define check_irq_off() do { } while(0)
2443#define check_irq_on() do { } while(0)
2444#define check_spinlock_acquired(x) do { } while(0)
2445#define check_spinlock_acquired_node(x, y) do { } while(0)
2446#endif
2447
2448static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2449            struct array_cache *ac,
2450            int force, int node);
2451
2452static void do_drain(void *arg)
2453{
2454    struct kmem_cache *cachep = arg;
2455    struct array_cache *ac;
2456    int node = numa_mem_id();
2457
2458    check_irq_off();
2459    ac = cpu_cache_get(cachep);
2460    spin_lock(&cachep->node[node]->list_lock);
2461    free_block(cachep, ac->entry, ac->avail, node);
2462    spin_unlock(&cachep->node[node]->list_lock);
2463    ac->avail = 0;
2464}
2465
2466static void drain_cpu_caches(struct kmem_cache *cachep)
2467{
2468    struct kmem_cache_node *n;
2469    int node;
2470
2471    on_each_cpu(do_drain, cachep, 1);
2472    check_irq_on();
2473    for_each_online_node(node) {
2474        n = cachep->node[node];
2475        if (n && n->alien)
2476            drain_alien_cache(cachep, n->alien);
2477    }
2478
2479    for_each_online_node(node) {
2480        n = cachep->node[node];
2481        if (n)
2482            drain_array(cachep, n, n->shared, 1, node);
2483    }
2484}
2485
2486/*
2487 * Remove slabs from the list of free slabs.
2488 * Specify the number of slabs to drain in tofree.
2489 *
2490 * Returns the actual number of slabs released.
2491 */
2492static int drain_freelist(struct kmem_cache *cache,
2493            struct kmem_cache_node *n, int tofree)
2494{
2495    struct list_head *p;
2496    int nr_freed;
2497    struct slab *slabp;
2498
2499    nr_freed = 0;
2500    while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2501
2502        spin_lock_irq(&n->list_lock);
2503        p = n->slabs_free.prev;
2504        if (p == &n->slabs_free) {
2505            spin_unlock_irq(&n->list_lock);
2506            goto out;
2507        }
2508
2509        slabp = list_entry(p, struct slab, list);
2510#if DEBUG
2511        BUG_ON(slabp->inuse);
2512#endif
2513        list_del(&slabp->list);
2514        /*
2515         * Safe to drop the lock. The slab is no longer linked
2516         * to the cache.
2517         */
2518        n->free_objects -= cache->num;
2519        spin_unlock_irq(&n->list_lock);
2520        slab_destroy(cache, slabp);
2521        nr_freed++;
2522    }
2523out:
2524    return nr_freed;
2525}
2526
2527/* Called with slab_mutex held to protect against cpu hotplug */
2528static int __cache_shrink(struct kmem_cache *cachep)
2529{
2530    int ret = 0, i = 0;
2531    struct kmem_cache_node *n;
2532
2533    drain_cpu_caches(cachep);
2534
2535    check_irq_on();
2536    for_each_online_node(i) {
2537        n = cachep->node[i];
2538        if (!n)
2539            continue;
2540
2541        drain_freelist(cachep, n, slabs_tofree(cachep, n));
2542
2543        ret += !list_empty(&n->slabs_full) ||
2544            !list_empty(&n->slabs_partial);
2545    }
2546    return (ret ? 1 : 0);
2547}
2548
2549/**
2550 * kmem_cache_shrink - Shrink a cache.
2551 * @cachep: The cache to shrink.
2552 *
2553 * Releases as many slabs as possible for a cache.
2554 * To help debugging, a zero exit status indicates all slabs were released.
2555 */
2556int kmem_cache_shrink(struct kmem_cache *cachep)
2557{
2558    int ret;
2559    BUG_ON(!cachep || in_interrupt());
2560
2561    get_online_cpus();
2562    mutex_lock(&slab_mutex);
2563    ret = __cache_shrink(cachep);
2564    mutex_unlock(&slab_mutex);
2565    put_online_cpus();
2566    return ret;
2567}
2568EXPORT_SYMBOL(kmem_cache_shrink);
2569
2570int __kmem_cache_shutdown(struct kmem_cache *cachep)
2571{
2572    int i;
2573    struct kmem_cache_node *n;
2574    int rc = __cache_shrink(cachep);
2575
2576    if (rc)
2577        return rc;
2578
2579    for_each_online_cpu(i)
2580        kfree(cachep->array[i]);
2581
2582    /* NUMA: free the node structures */
2583    for_each_online_node(i) {
2584        n = cachep->node[i];
2585        if (n) {
2586            kfree(n->shared);
2587            free_alien_cache(n->alien);
2588            kfree(n);
2589        }
2590    }
2591    return 0;
2592}
2593
2594/*
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2604 */
2605static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2606                   int colour_off, gfp_t local_flags,
2607                   int nodeid)
2608{
2609    struct slab *slabp;
2610
2611    if (OFF_SLAB(cachep)) {
2612        /* Slab management obj is off-slab. */
2613        slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2614                          local_flags, nodeid);
2615        /*
2616         * If the first object in the slab is leaked (it's allocated
2617         * but no one has a reference to it), we want to make sure
2618         * kmemleak does not treat the ->s_mem pointer as a reference
2619         * to the object. Otherwise we will not report the leak.
2620         */
2621        kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2622                   local_flags);
2623        if (!slabp)
2624            return NULL;
2625    } else {
2626        slabp = objp + colour_off;
2627        colour_off += cachep->slab_size;
2628    }
2629    slabp->inuse = 0;
2630    slabp->colouroff = colour_off;
2631    slabp->s_mem = objp + colour_off;
2632    slabp->nodeid = nodeid;
2633    slabp->free = 0;
2634    return slabp;
2635}
2636
2637static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2638{
2639    return (kmem_bufctl_t *) (slabp + 1);
2640}
2641
2642static void cache_init_objs(struct kmem_cache *cachep,
2643                struct slab *slabp)
2644{
2645    int i;
2646
2647    for (i = 0; i < cachep->num; i++) {
2648        void *objp = index_to_obj(cachep, slabp, i);
2649#if DEBUG
2650        /* need to poison the objs? */
2651        if (cachep->flags & SLAB_POISON)
2652            poison_obj(cachep, objp, POISON_FREE);
2653        if (cachep->flags & SLAB_STORE_USER)
2654            *dbg_userword(cachep, objp) = NULL;
2655
2656        if (cachep->flags & SLAB_RED_ZONE) {
2657            *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2658            *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2659        }
2660        /*
2661         * Constructors are not allowed to allocate memory from the same
2662         * cache which they are a constructor for. Otherwise, deadlock.
2663         * They must also be threaded.
2664         */
2665        if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2666            cachep->ctor(objp + obj_offset(cachep));
2667
2668        if (cachep->flags & SLAB_RED_ZONE) {
2669            if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2670                slab_error(cachep, "constructor overwrote the"
2671                       " end of an object");
2672            if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2673                slab_error(cachep, "constructor overwrote the"
2674                       " start of an object");
2675        }
2676        if ((cachep->size % PAGE_SIZE) == 0 &&
2677                OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2678            kernel_map_pages(virt_to_page(objp),
2679                     cachep->size / PAGE_SIZE, 0);
2680#else
2681        if (cachep->ctor)
2682            cachep->ctor(objp);
2683#endif
2684        slab_bufctl(slabp)[i] = i + 1;
2685    }
2686    slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2687}
2688
2689static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2690{
2691    if (CONFIG_ZONE_DMA_FLAG) {
2692        if (flags & GFP_DMA)
2693            BUG_ON(!(cachep->allocflags & GFP_DMA));
2694        else
2695            BUG_ON(cachep->allocflags & GFP_DMA);
2696    }
2697}
2698
2699static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2700                int nodeid)
2701{
2702    void *objp = index_to_obj(cachep, slabp, slabp->free);
2703    kmem_bufctl_t next;
2704
2705    slabp->inuse++;
2706    next = slab_bufctl(slabp)[slabp->free];
2707#if DEBUG
2708    slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2709    WARN_ON(slabp->nodeid != nodeid);
2710#endif
2711    slabp->free = next;
2712
2713    return objp;
2714}
2715
2716static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2717                void *objp, int nodeid)
2718{
2719    unsigned int objnr = obj_to_index(cachep, slabp, objp);
2720
2721#if DEBUG
2722    /* Verify that the slab belongs to the intended node */
2723    WARN_ON(slabp->nodeid != nodeid);
2724
2725    if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2726        printk(KERN_ERR "slab: double free detected in cache "
2727                "'%s', objp %p\n", cachep->name, objp);
2728        BUG();
2729    }
2730#endif
2731    slab_bufctl(slabp)[objnr] = slabp->free;
2732    slabp->free = objnr;
2733    slabp->inuse--;
2734}
2735
2736/*
2737 * Map pages beginning at addr to the given cache and slab. This is required
2738 * for the slab allocator to be able to lookup the cache and slab of a
2739 * virtual address for kfree, ksize, and slab debugging.
2740 */
2741static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2742               void *addr)
2743{
2744    int nr_pages;
2745    struct page *page;
2746
2747    page = virt_to_page(addr);
2748
2749    nr_pages = 1;
2750    if (likely(!PageCompound(page)))
2751        nr_pages <<= cache->gfporder;
2752
2753    do {
2754        page->slab_cache = cache;
2755        page->slab_page = slab;
2756        page++;
2757    } while (--nr_pages);
2758}
2759
2760/*
2761 * Grow (by 1) the number of slabs within a cache. This is called by
2762 * kmem_cache_alloc() when there are no active objs left in a cache.
2763 */
2764static int cache_grow(struct kmem_cache *cachep,
2765        gfp_t flags, int nodeid, void *objp)
2766{
2767    struct slab *slabp;
2768    size_t offset;
2769    gfp_t local_flags;
2770    struct kmem_cache_node *n;
2771
2772    /*
2773     * Be lazy and only check for valid flags here, keeping it out of the
2774     * critical path in kmem_cache_alloc().
2775     */
2776    BUG_ON(flags & GFP_SLAB_BUG_MASK);
2777    local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2778
2779    /* Take the node list lock to change the colour_next on this node */
2780    check_irq_off();
2781    n = cachep->node[nodeid];
2782    spin_lock(&n->list_lock);
2783
2784    /* Get colour for the slab, and cal the next value. */
2785    offset = n->colour_next;
2786    n->colour_next++;
2787    if (n->colour_next >= cachep->colour)
2788        n->colour_next = 0;
2789    spin_unlock(&n->list_lock);
2790
2791    offset *= cachep->colour_off;
2792
2793    if (local_flags & __GFP_WAIT)
2794        local_irq_enable();
2795
2796    /*
2797     * The test for missing atomic flag is performed here, rather than
2798     * the more obvious place, simply to reduce the critical path length
2799     * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2800     * will eventually be caught here (where it matters).
2801     */
2802    kmem_flagcheck(cachep, flags);
2803
2804    /*
2805     * Get mem for the objs. Attempt to allocate a physical page from
2806     * 'nodeid'.
2807     */
2808    if (!objp)
2809        objp = kmem_getpages(cachep, local_flags, nodeid);
2810    if (!objp)
2811        goto failed;
2812
2813    /* Get slab management. */
2814    slabp = alloc_slabmgmt(cachep, objp, offset,
2815            local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2816    if (!slabp)
2817        goto opps1;
2818
2819    slab_map_pages(cachep, slabp, objp);
2820
2821    cache_init_objs(cachep, slabp);
2822
2823    if (local_flags & __GFP_WAIT)
2824        local_irq_disable();
2825    check_irq_off();
2826    spin_lock(&n->list_lock);
2827
2828    /* Make slab active. */
2829    list_add_tail(&slabp->list, &(n->slabs_free));
2830    STATS_INC_GROWN(cachep);
2831    n->free_objects += cachep->num;
2832    spin_unlock(&n->list_lock);
2833    return 1;
2834opps1:
2835    kmem_freepages(cachep, objp);
2836failed:
2837    if (local_flags & __GFP_WAIT)
2838        local_irq_disable();
2839    return 0;
2840}
2841
2842#if DEBUG
2843
2844/*
2845 * Perform extra freeing checks:
2846 * - detect bad pointers.
2847 * - POISON/RED_ZONE checking
2848 */
2849static void kfree_debugcheck(const void *objp)
2850{
2851    if (!virt_addr_valid(objp)) {
2852        printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2853               (unsigned long)objp);
2854        BUG();
2855    }
2856}
2857
2858static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2859{
2860    unsigned long long redzone1, redzone2;
2861
2862    redzone1 = *dbg_redzone1(cache, obj);
2863    redzone2 = *dbg_redzone2(cache, obj);
2864
2865    /*
2866     * Redzone is ok.
2867     */
2868    if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2869        return;
2870
2871    if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2872        slab_error(cache, "double free detected");
2873    else
2874        slab_error(cache, "memory outside object was overwritten");
2875
2876    printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2877            obj, redzone1, redzone2);
2878}
2879
2880static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2881                   unsigned long caller)
2882{
2883    struct page *page;
2884    unsigned int objnr;
2885    struct slab *slabp;
2886
2887    BUG_ON(virt_to_cache(objp) != cachep);
2888
2889    objp -= obj_offset(cachep);
2890    kfree_debugcheck(objp);
2891    page = virt_to_head_page(objp);
2892
2893    slabp = page->slab_page;
2894
2895    if (cachep->flags & SLAB_RED_ZONE) {
2896        verify_redzone_free(cachep, objp);
2897        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2898        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2899    }
2900    if (cachep->flags & SLAB_STORE_USER)
2901        *dbg_userword(cachep, objp) = (void *)caller;
2902
2903    objnr = obj_to_index(cachep, slabp, objp);
2904
2905    BUG_ON(objnr >= cachep->num);
2906    BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2907
2908#ifdef CONFIG_DEBUG_SLAB_LEAK
2909    slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2910#endif
2911    if (cachep->flags & SLAB_POISON) {
2912#ifdef CONFIG_DEBUG_PAGEALLOC
2913        if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2914            store_stackinfo(cachep, objp, caller);
2915            kernel_map_pages(virt_to_page(objp),
2916                     cachep->size / PAGE_SIZE, 0);
2917        } else {
2918            poison_obj(cachep, objp, POISON_FREE);
2919        }
2920#else
2921        poison_obj(cachep, objp, POISON_FREE);
2922#endif
2923    }
2924    return objp;
2925}
2926
2927static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2928{
2929    kmem_bufctl_t i;
2930    int entries = 0;
2931
2932    /* Check slab's freelist to see if this obj is there. */
2933    for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2934        entries++;
2935        if (entries > cachep->num || i >= cachep->num)
2936            goto bad;
2937    }
2938    if (entries != cachep->num - slabp->inuse) {
2939bad:
2940        printk(KERN_ERR "slab: Internal list corruption detected in "
2941            "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
2942            cachep->name, cachep->num, slabp, slabp->inuse,
2943            print_tainted());
2944        print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
2945            sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
2946            1);
2947        BUG();
2948    }
2949}
2950#else
2951#define kfree_debugcheck(x) do { } while(0)
2952#define cache_free_debugcheck(x,objp,z) (objp)
2953#define check_slabp(x,y) do { } while(0)
2954#endif
2955
2956static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2957                            bool force_refill)
2958{
2959    int batchcount;
2960    struct kmem_cache_node *n;
2961    struct array_cache *ac;
2962    int node;
2963
2964    check_irq_off();
2965    node = numa_mem_id();
2966    if (unlikely(force_refill))
2967        goto force_grow;
2968retry:
2969    ac = cpu_cache_get(cachep);
2970    batchcount = ac->batchcount;
2971    if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2972        /*
2973         * If there was little recent activity on this cache, then
2974         * perform only a partial refill. Otherwise we could generate
2975         * refill bouncing.
2976         */
2977        batchcount = BATCHREFILL_LIMIT;
2978    }
2979    n = cachep->node[node];
2980
2981    BUG_ON(ac->avail > 0 || !n);
2982    spin_lock(&n->list_lock);
2983
2984    /* See if we can refill from the shared array */
2985    if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2986        n->shared->touched = 1;
2987        goto alloc_done;
2988    }
2989
2990    while (batchcount > 0) {
2991        struct list_head *entry;
2992        struct slab *slabp;
2993        /* Get slab alloc is to come from. */
2994        entry = n->slabs_partial.next;
2995        if (entry == &n->slabs_partial) {
2996            n->free_touched = 1;
2997            entry = n->slabs_free.next;
2998            if (entry == &n->slabs_free)
2999                goto must_grow;
3000        }
3001
3002        slabp = list_entry(entry, struct slab, list);
3003        check_slabp(cachep, slabp);
3004        check_spinlock_acquired(cachep);
3005
3006        /*
3007         * The slab was either on partial or free list so
3008         * there must be at least one object available for
3009         * allocation.
3010         */
3011        BUG_ON(slabp->inuse >= cachep->num);
3012
3013        while (slabp->inuse < cachep->num && batchcount--) {
3014            STATS_INC_ALLOCED(cachep);
3015            STATS_INC_ACTIVE(cachep);
3016            STATS_SET_HIGH(cachep);
3017
3018            ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3019                                    node));
3020        }
3021        check_slabp(cachep, slabp);
3022
3023        /* move slabp to correct slabp list: */
3024        list_del(&slabp->list);
3025        if (slabp->free == BUFCTL_END)
3026            list_add(&slabp->list, &n->slabs_full);
3027        else
3028            list_add(&slabp->list, &n->slabs_partial);
3029    }
3030
3031must_grow:
3032    n->free_objects -= ac->avail;
3033alloc_done:
3034    spin_unlock(&n->list_lock);
3035
3036    if (unlikely(!ac->avail)) {
3037        int x;
3038force_grow:
3039        x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3040
3041        /* cache_grow can reenable interrupts, then ac could change. */
3042        ac = cpu_cache_get(cachep);
3043        node = numa_mem_id();
3044
3045        /* no objects in sight? abort */
3046        if (!x && (ac->avail == 0 || force_refill))
3047            return NULL;
3048
3049        if (!ac->avail) /* objects refilled by interrupt? */
3050            goto retry;
3051    }
3052    ac->touched = 1;
3053
3054    return ac_get_obj(cachep, ac, flags, force_refill);
3055}
3056
3057static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3058                        gfp_t flags)
3059{
3060    might_sleep_if(flags & __GFP_WAIT);
3061#if DEBUG
3062    kmem_flagcheck(cachep, flags);
3063#endif
3064}
3065
3066#if DEBUG
3067static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3068                gfp_t flags, void *objp, unsigned long caller)
3069{
3070    if (!objp)
3071        return objp;
3072    if (cachep->flags & SLAB_POISON) {
3073#ifdef CONFIG_DEBUG_PAGEALLOC
3074        if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3075            kernel_map_pages(virt_to_page(objp),
3076                     cachep->size / PAGE_SIZE, 1);
3077        else
3078            check_poison_obj(cachep, objp);
3079#else
3080        check_poison_obj(cachep, objp);
3081#endif
3082        poison_obj(cachep, objp, POISON_INUSE);
3083    }
3084    if (cachep->flags & SLAB_STORE_USER)
3085        *dbg_userword(cachep, objp) = (void *)caller;
3086
3087    if (cachep->flags & SLAB_RED_ZONE) {
3088        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3089                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3090            slab_error(cachep, "double free, or memory outside"
3091                        " object was overwritten");
3092            printk(KERN_ERR
3093                "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094                objp, *dbg_redzone1(cachep, objp),
3095                *dbg_redzone2(cachep, objp));
3096        }
3097        *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098        *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099    }
3100#ifdef CONFIG_DEBUG_SLAB_LEAK
3101    {
3102        struct slab *slabp;
3103        unsigned objnr;
3104
3105        slabp = virt_to_head_page(objp)->slab_page;
3106        objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3107        slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3108    }
3109#endif
3110    objp += obj_offset(cachep);
3111    if (cachep->ctor && cachep->flags & SLAB_POISON)
3112        cachep->ctor(objp);
3113    if (ARCH_SLAB_MINALIGN &&
3114        ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3115        printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3116               objp, (int)ARCH_SLAB_MINALIGN);
3117    }
3118    return objp;
3119}
3120#else
3121#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3122#endif
3123
3124static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3125{
3126    if (cachep == kmem_cache)
3127        return false;
3128
3129    return should_failslab(cachep->object_size, flags, cachep->flags);
3130}
3131
3132static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3133{
3134    void *objp;
3135    struct array_cache *ac;
3136    bool force_refill = false;
3137
3138    check_irq_off();
3139
3140    ac = cpu_cache_get(cachep);
3141    if (likely(ac->avail)) {
3142        ac->touched = 1;
3143        objp = ac_get_obj(cachep, ac, flags, false);
3144
3145        /*
3146         * Allow for the possibility all avail objects are not allowed
3147         * by the current flags
3148         */
3149        if (objp) {
3150            STATS_INC_ALLOCHIT(cachep);
3151            goto out;
3152        }
3153        force_refill = true;
3154    }
3155
3156    STATS_INC_ALLOCMISS(cachep);
3157    objp = cache_alloc_refill(cachep, flags, force_refill);
3158    /*
3159     * the 'ac' may be updated by cache_alloc_refill(),
3160     * and kmemleak_erase() requires its correct value.
3161     */
3162    ac = cpu_cache_get(cachep);
3163
3164out:
3165    /*
3166     * To avoid a false negative, if an object that is in one of the
3167     * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3168     * treat the array pointers as a reference to the object.
3169     */
3170    if (objp)
3171        kmemleak_erase(&ac->entry[ac->avail]);
3172    return objp;
3173}
3174
3175#ifdef CONFIG_NUMA
3176/*
3177 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3178 *
3179 * If we are in_interrupt, then process context, including cpusets and
3180 * mempolicy, may not apply and should not be used for allocation policy.
3181 */
3182static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3183{
3184    int nid_alloc, nid_here;
3185
3186    if (in_interrupt() || (flags & __GFP_THISNODE))
3187        return NULL;
3188    nid_alloc = nid_here = numa_mem_id();
3189    if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3190        nid_alloc = cpuset_slab_spread_node();
3191    else if (current->mempolicy)
3192        nid_alloc = slab_node();
3193    if (nid_alloc != nid_here)
3194        return ____cache_alloc_node(cachep, flags, nid_alloc);
3195    return NULL;
3196}
3197
3198/*
3199 * Fallback function if there was no memory available and no objects on a
3200 * certain node and fall back is permitted. First we scan all the
3201 * available node for available objects. If that fails then we
3202 * perform an allocation without specifying a node. This allows the page
3203 * allocator to do its reclaim / fallback magic. We then insert the
3204 * slab into the proper nodelist and then allocate from it.
3205 */
3206static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3207{
3208    struct zonelist *zonelist;
3209    gfp_t local_flags;
3210    struct zoneref *z;
3211    struct zone *zone;
3212    enum zone_type high_zoneidx = gfp_zone(flags);
3213    void *obj = NULL;
3214    int nid;
3215    unsigned int cpuset_mems_cookie;
3216
3217    if (flags & __GFP_THISNODE)
3218        return NULL;
3219
3220    local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3221
3222retry_cpuset:
3223    cpuset_mems_cookie = get_mems_allowed();
3224    zonelist = node_zonelist(slab_node(), flags);
3225
3226retry:
3227    /*
3228     * Look through allowed nodes for objects available
3229     * from existing per node queues.
3230     */
3231    for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3232        nid = zone_to_nid(zone);
3233
3234        if (cpuset_zone_allowed_hardwall(zone, flags) &&
3235            cache->node[nid] &&
3236            cache->node[nid]->free_objects) {
3237                obj = ____cache_alloc_node(cache,
3238                    flags | GFP_THISNODE, nid);
3239                if (obj)
3240                    break;
3241        }
3242    }
3243
3244    if (!obj) {
3245        /*
3246         * This allocation will be performed within the constraints
3247         * of the current cpuset / memory policy requirements.
3248         * We may trigger various forms of reclaim on the allowed
3249         * set and go into memory reserves if necessary.
3250         */
3251        if (local_flags & __GFP_WAIT)
3252            local_irq_enable();
3253        kmem_flagcheck(cache, flags);
3254        obj = kmem_getpages(cache, local_flags, numa_mem_id());
3255        if (local_flags & __GFP_WAIT)
3256            local_irq_disable();
3257        if (obj) {
3258            /*
3259             * Insert into the appropriate per node queues
3260             */
3261            nid = page_to_nid(virt_to_page(obj));
3262            if (cache_grow(cache, flags, nid, obj)) {
3263                obj = ____cache_alloc_node(cache,
3264                    flags | GFP_THISNODE, nid);
3265                if (!obj)
3266                    /*
3267                     * Another processor may allocate the
3268                     * objects in the slab since we are
3269                     * not holding any locks.
3270                     */
3271                    goto retry;
3272            } else {
3273                /* cache_grow already freed obj */
3274                obj = NULL;
3275            }
3276        }
3277    }
3278
3279    if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3280        goto retry_cpuset;
3281    return obj;
3282}
3283
3284/*
3285 * A interface to enable slab creation on nodeid
3286 */
3287static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3288                int nodeid)
3289{
3290    struct list_head *entry;
3291    struct slab *slabp;
3292    struct kmem_cache_node *n;
3293    void *obj;
3294    int x;
3295
3296    VM_BUG_ON(nodeid > num_online_nodes());
3297    n = cachep->node[nodeid];
3298    BUG_ON(!n);
3299
3300retry:
3301    check_irq_off();
3302    spin_lock(&n->list_lock);
3303    entry = n->slabs_partial.next;
3304    if (entry == &n->slabs_partial) {
3305        n->free_touched = 1;
3306        entry = n->slabs_free.next;
3307        if (entry == &n->slabs_free)
3308            goto must_grow;
3309    }
3310
3311    slabp = list_entry(entry, struct slab, list);
3312    check_spinlock_acquired_node(cachep, nodeid);
3313    check_slabp(cachep, slabp);
3314
3315    STATS_INC_NODEALLOCS(cachep);
3316    STATS_INC_ACTIVE(cachep);
3317    STATS_SET_HIGH(cachep);
3318
3319    BUG_ON(slabp->inuse == cachep->num);
3320
3321    obj = slab_get_obj(cachep, slabp, nodeid);
3322    check_slabp(cachep, slabp);
3323    n->free_objects--;
3324    /* move slabp to correct slabp list: */
3325    list_del(&slabp->list);
3326
3327    if (slabp->free == BUFCTL_END)
3328        list_add(&slabp->list, &n->slabs_full);
3329    else
3330        list_add(&slabp->list, &n->slabs_partial);
3331
3332    spin_unlock(&n->list_lock);
3333    goto done;
3334
3335must_grow:
3336    spin_unlock(&n->list_lock);
3337    x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3338    if (x)
3339        goto retry;
3340
3341    return fallback_alloc(cachep, flags);
3342
3343done:
3344    return obj;
3345}
3346
3347static __always_inline void *
3348slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3349           unsigned long caller)
3350{
3351    unsigned long save_flags;
3352    void *ptr;
3353    int slab_node = numa_mem_id();
3354
3355    flags &= gfp_allowed_mask;
3356
3357    lockdep_trace_alloc(flags);
3358
3359    if (slab_should_failslab(cachep, flags))
3360        return NULL;
3361
3362    cachep = memcg_kmem_get_cache(cachep, flags);
3363
3364    cache_alloc_debugcheck_before(cachep, flags);
3365    local_irq_save(save_flags);
3366
3367    if (nodeid == NUMA_NO_NODE)
3368        nodeid = slab_node;
3369
3370    if (unlikely(!cachep->node[nodeid])) {
3371        /* Node not bootstrapped yet */
3372        ptr = fallback_alloc(cachep, flags);
3373        goto out;
3374    }
3375
3376    if (nodeid == slab_node) {
3377        /*
3378         * Use the locally cached objects if possible.
3379         * However ____cache_alloc does not allow fallback
3380         * to other nodes. It may fail while we still have
3381         * objects on other nodes available.
3382         */
3383        ptr = ____cache_alloc(cachep, flags);
3384        if (ptr)
3385            goto out;
3386    }
3387    /* ___cache_alloc_node can fall back to other nodes */
3388    ptr = ____cache_alloc_node(cachep, flags, nodeid);
3389  out:
3390    local_irq_restore(save_flags);
3391    ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3392    kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3393                 flags);
3394
3395    if (likely(ptr))
3396        kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3397
3398    if (unlikely((flags & __GFP_ZERO) && ptr))
3399        memset(ptr, 0, cachep->object_size);
3400
3401    return ptr;
3402}
3403
3404static __always_inline void *
3405__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3406{
3407    void *objp;
3408
3409    if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3410        objp = alternate_node_alloc(cache, flags);
3411        if (objp)
3412            goto out;
3413    }
3414    objp = ____cache_alloc(cache, flags);
3415
3416    /*
3417     * We may just have run out of memory on the local node.
3418     * ____cache_alloc_node() knows how to locate memory on other nodes
3419     */
3420    if (!objp)
3421        objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3422
3423  out:
3424    return objp;
3425}
3426#else
3427
3428static __always_inline void *
3429__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3430{
3431    return ____cache_alloc(cachep, flags);
3432}
3433
3434#endif /* CONFIG_NUMA */
3435
3436static __always_inline void *
3437slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3438{
3439    unsigned long save_flags;
3440    void *objp;
3441
3442    flags &= gfp_allowed_mask;
3443
3444    lockdep_trace_alloc(flags);
3445
3446    if (slab_should_failslab(cachep, flags))
3447        return NULL;
3448
3449    cachep = memcg_kmem_get_cache(cachep, flags);
3450
3451    cache_alloc_debugcheck_before(cachep, flags);
3452    local_irq_save(save_flags);
3453    objp = __do_cache_alloc(cachep, flags);
3454    local_irq_restore(save_flags);
3455    objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3456    kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3457                 flags);
3458    prefetchw(objp);
3459
3460    if (likely(objp))
3461        kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3462
3463    if (unlikely((flags & __GFP_ZERO) && objp))
3464        memset(objp, 0, cachep->object_size);
3465
3466    return objp;
3467}
3468
3469/*
3470 * Caller needs to acquire correct kmem_list's list_lock
3471 */
3472static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3473               int node)
3474{
3475    int i;
3476    struct kmem_cache_node *n;
3477
3478    for (i = 0; i < nr_objects; i++) {
3479        void *objp;
3480        struct slab *slabp;
3481
3482        clear_obj_pfmemalloc(&objpp[i]);
3483        objp = objpp[i];
3484
3485        slabp = virt_to_slab(objp);
3486        n = cachep->node[node];
3487        list_del(&slabp->list);
3488        check_spinlock_acquired_node(cachep, node);
3489        check_slabp(cachep, slabp);
3490        slab_put_obj(cachep, slabp, objp, node);
3491        STATS_DEC_ACTIVE(cachep);
3492        n->free_objects++;
3493        check_slabp(cachep, slabp);
3494
3495        /* fixup slab chains */
3496        if (slabp->inuse == 0) {
3497            if (n->free_objects > n->free_limit) {
3498                n->free_objects -= cachep->num;
3499                /* No need to drop any previously held
3500                 * lock here, even if we have a off-slab slab
3501                 * descriptor it is guaranteed to come from
3502                 * a different cache, refer to comments before
3503                 * alloc_slabmgmt.
3504                 */
3505                slab_destroy(cachep, slabp);
3506            } else {
3507                list_add(&slabp->list, &n->slabs_free);
3508            }
3509        } else {
3510            /* Unconditionally move a slab to the end of the
3511             * partial list on free - maximum time for the
3512             * other objects to be freed, too.
3513             */
3514            list_add_tail(&slabp->list, &n->slabs_partial);
3515        }
3516    }
3517}
3518
3519static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3520{
3521    int batchcount;
3522    struct kmem_cache_node *n;
3523    int node = numa_mem_id();
3524
3525    batchcount = ac->batchcount;
3526#if DEBUG
3527    BUG_ON(!batchcount || batchcount > ac->avail);
3528#endif
3529    check_irq_off();
3530    n = cachep->node[node];
3531    spin_lock(&n->list_lock);
3532    if (n->shared) {
3533        struct array_cache *shared_array = n->shared;
3534        int max = shared_array->limit - shared_array->avail;
3535        if (max) {
3536            if (batchcount > max)
3537                batchcount = max;
3538            memcpy(&(shared_array->entry[shared_array->avail]),
3539                   ac->entry, sizeof(void *) * batchcount);
3540            shared_array->avail += batchcount;
3541            goto free_done;
3542        }
3543    }
3544
3545    free_block(cachep, ac->entry, batchcount, node);
3546free_done:
3547#if STATS
3548    {
3549        int i = 0;
3550        struct list_head *p;
3551
3552        p = n->slabs_free.next;
3553        while (p != &(n->slabs_free)) {
3554            struct slab *slabp;
3555
3556            slabp = list_entry(p, struct slab, list);
3557            BUG_ON(slabp->inuse);
3558
3559            i++;
3560            p = p->next;
3561        }
3562        STATS_SET_FREEABLE(cachep, i);
3563    }
3564#endif
3565    spin_unlock(&n->list_lock);
3566    ac->avail -= batchcount;
3567    memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3568}
3569
3570/*
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
3573 */
3574static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3575                unsigned long caller)
3576{
3577    struct array_cache *ac = cpu_cache_get(cachep);
3578
3579    check_irq_off();
3580    kmemleak_free_recursive(objp, cachep->flags);
3581    objp = cache_free_debugcheck(cachep, objp, caller);
3582
3583    kmemcheck_slab_free(cachep, objp, cachep->object_size);
3584
3585    /*
3586     * Skip calling cache_free_alien() when the platform is not numa.
3587     * This will avoid cache misses that happen while accessing slabp (which
3588     * is per page memory reference) to get nodeid. Instead use a global
3589     * variable to skip the call, which is mostly likely to be present in
3590     * the cache.
3591     */
3592    if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3593        return;
3594
3595    if (likely(ac->avail < ac->limit)) {
3596        STATS_INC_FREEHIT(cachep);
3597    } else {
3598        STATS_INC_FREEMISS(cachep);
3599        cache_flusharray(cachep, ac);
3600    }
3601
3602    ac_put_obj(cachep, ac, objp);
3603}
3604
3605/**
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3612 */
3613void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3614{
3615    void *ret = slab_alloc(cachep, flags, _RET_IP_);
3616
3617    trace_kmem_cache_alloc(_RET_IP_, ret,
3618                   cachep->object_size, cachep->size, flags);
3619
3620    return ret;
3621}
3622EXPORT_SYMBOL(kmem_cache_alloc);
3623
3624#ifdef CONFIG_TRACING
3625void *
3626kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3627{
3628    void *ret;
3629
3630    ret = slab_alloc(cachep, flags, _RET_IP_);
3631
3632    trace_kmalloc(_RET_IP_, ret,
3633              size, cachep->size, flags);
3634    return ret;
3635}
3636EXPORT_SYMBOL(kmem_cache_alloc_trace);
3637#endif
3638
3639#ifdef CONFIG_NUMA
3640/**
3641 * kmem_cache_alloc_node - Allocate an object on the specified node
3642 * @cachep: The cache to allocate from.
3643 * @flags: See kmalloc().
3644 * @nodeid: node number of the target node.
3645 *
3646 * Identical to kmem_cache_alloc but it will allocate memory on the given
3647 * node, which can improve the performance for cpu bound structures.
3648 *
3649 * Fallback to other node is possible if __GFP_THISNODE is not set.
3650 */
3651void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3652{
3653    void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3654
3655    trace_kmem_cache_alloc_node(_RET_IP_, ret,
3656                    cachep->object_size, cachep->size,
3657                    flags, nodeid);
3658
3659    return ret;
3660}
3661EXPORT_SYMBOL(kmem_cache_alloc_node);
3662
3663#ifdef CONFIG_TRACING
3664void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3665                  gfp_t flags,
3666                  int nodeid,
3667                  size_t size)
3668{
3669    void *ret;
3670
3671    ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3672
3673    trace_kmalloc_node(_RET_IP_, ret,
3674               size, cachep->size,
3675               flags, nodeid);
3676    return ret;
3677}
3678EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3679#endif
3680
3681static __always_inline void *
3682__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3683{
3684    struct kmem_cache *cachep;
3685
3686    cachep = kmalloc_slab(size, flags);
3687    if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3688        return cachep;
3689    return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3690}
3691
3692#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3693void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694{
3695    return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696}
3697EXPORT_SYMBOL(__kmalloc_node);
3698
3699void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700        int node, unsigned long caller)
3701{
3702    return __do_kmalloc_node(size, flags, node, caller);
3703}
3704EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705#else
3706void *__kmalloc_node(size_t size, gfp_t flags, int node)
3707{
3708    return __do_kmalloc_node(size, flags, node, 0);
3709}
3710EXPORT_SYMBOL(__kmalloc_node);
3711#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3712#endif /* CONFIG_NUMA */
3713
3714/**
3715 * __do_kmalloc - allocate memory
3716 * @size: how many bytes of memory are required.
3717 * @flags: the type of memory to allocate (see kmalloc).
3718 * @caller: function caller for debug tracking of the caller
3719 */
3720static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3721                      unsigned long caller)
3722{
3723    struct kmem_cache *cachep;
3724    void *ret;
3725
3726    /* If you want to save a few bytes .text space: replace
3727     * __ with kmem_.
3728     * Then kmalloc uses the uninlined functions instead of the inline
3729     * functions.
3730     */
3731    cachep = kmalloc_slab(size, flags);
3732    if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3733        return cachep;
3734    ret = slab_alloc(cachep, flags, caller);
3735
3736    trace_kmalloc(caller, ret,
3737              size, cachep->size, flags);
3738
3739    return ret;
3740}
3741
3742
3743#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
3746    return __do_kmalloc(size, flags, _RET_IP_);
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
3750void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3751{
3752    return __do_kmalloc(size, flags, caller);
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
3755
3756#else
3757void *__kmalloc(size_t size, gfp_t flags)
3758{
3759    return __do_kmalloc(size, flags, 0);
3760}
3761EXPORT_SYMBOL(__kmalloc);
3762#endif
3763
3764/**
3765 * kmem_cache_free - Deallocate an object
3766 * @cachep: The cache the allocation was from.
3767 * @objp: The previously allocated object.
3768 *
3769 * Free an object which was previously allocated from this
3770 * cache.
3771 */
3772void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3773{
3774    unsigned long flags;
3775    cachep = cache_from_obj(cachep, objp);
3776    if (!cachep)
3777        return;
3778
3779    local_irq_save(flags);
3780    debug_check_no_locks_freed(objp, cachep->object_size);
3781    if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3782        debug_check_no_obj_freed(objp, cachep->object_size);
3783    __cache_free(cachep, objp, _RET_IP_);
3784    local_irq_restore(flags);
3785
3786    trace_kmem_cache_free(_RET_IP_, objp);
3787}
3788EXPORT_SYMBOL(kmem_cache_free);
3789
3790/**
3791 * kfree - free previously allocated memory
3792 * @objp: pointer returned by kmalloc.
3793 *
3794 * If @objp is NULL, no operation is performed.
3795 *
3796 * Don't free memory not originally allocated by kmalloc()
3797 * or you will run into trouble.
3798 */
3799void kfree(const void *objp)
3800{
3801    struct kmem_cache *c;
3802    unsigned long flags;
3803
3804    trace_kfree(_RET_IP_, objp);
3805
3806    if (unlikely(ZERO_OR_NULL_PTR(objp)))
3807        return;
3808    local_irq_save(flags);
3809    kfree_debugcheck(objp);
3810    c = virt_to_cache(objp);
3811    debug_check_no_locks_freed(objp, c->object_size);
3812
3813    debug_check_no_obj_freed(objp, c->object_size);
3814    __cache_free(c, (void *)objp, _RET_IP_);
3815    local_irq_restore(flags);
3816}
3817EXPORT_SYMBOL(kfree);
3818
3819/*
3820 * This initializes kmem_cache_node or resizes various caches for all nodes.
3821 */
3822static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3823{
3824    int node;
3825    struct kmem_cache_node *n;
3826    struct array_cache *new_shared;
3827    struct array_cache **new_alien = NULL;
3828
3829    for_each_online_node(node) {
3830
3831                if (use_alien_caches) {
3832                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3833                        if (!new_alien)
3834                                goto fail;
3835                }
3836
3837        new_shared = NULL;
3838        if (cachep->shared) {
3839            new_shared = alloc_arraycache(node,
3840                cachep->shared*cachep->batchcount,
3841                    0xbaadf00d, gfp);
3842            if (!new_shared) {
3843                free_alien_cache(new_alien);
3844                goto fail;
3845            }
3846        }
3847
3848        n = cachep->node[node];
3849        if (n) {
3850            struct array_cache *shared = n->shared;
3851
3852            spin_lock_irq(&n->list_lock);
3853
3854            if (shared)
3855                free_block(cachep, shared->entry,
3856                        shared->avail, node);
3857
3858            n->shared = new_shared;
3859            if (!n->alien) {
3860                n->alien = new_alien;
3861                new_alien = NULL;
3862            }
3863            n->free_limit = (1 + nr_cpus_node(node)) *
3864                    cachep->batchcount + cachep->num;
3865            spin_unlock_irq(&n->list_lock);
3866            kfree(shared);
3867            free_alien_cache(new_alien);
3868            continue;
3869        }
3870        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3871        if (!n) {
3872            free_alien_cache(new_alien);
3873            kfree(new_shared);
3874            goto fail;
3875        }
3876
3877        kmem_cache_node_init(n);
3878        n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3879                ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3880        n->shared = new_shared;
3881        n->alien = new_alien;
3882        n->free_limit = (1 + nr_cpus_node(node)) *
3883                    cachep->batchcount + cachep->num;
3884        cachep->node[node] = n;
3885    }
3886    return 0;
3887
3888fail:
3889    if (!cachep->list.next) {
3890        /* Cache is not active yet. Roll back what we did */
3891        node--;
3892        while (node >= 0) {
3893            if (cachep->node[node]) {
3894                n = cachep->node[node];
3895
3896                kfree(n->shared);
3897                free_alien_cache(n->alien);
3898                kfree(n);
3899                cachep->node[node] = NULL;
3900            }
3901            node--;
3902        }
3903    }
3904    return -ENOMEM;
3905}
3906
3907struct ccupdate_struct {
3908    struct kmem_cache *cachep;
3909    struct array_cache *new[0];
3910};
3911
3912static void do_ccupdate_local(void *info)
3913{
3914    struct ccupdate_struct *new = info;
3915    struct array_cache *old;
3916
3917    check_irq_off();
3918    old = cpu_cache_get(new->cachep);
3919
3920    new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3921    new->new[smp_processor_id()] = old;
3922}
3923
3924/* Always called with the slab_mutex held */
3925static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3926                int batchcount, int shared, gfp_t gfp)
3927{
3928    struct ccupdate_struct *new;
3929    int i;
3930
3931    new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
3932              gfp);
3933    if (!new)
3934        return -ENOMEM;
3935
3936    for_each_online_cpu(i) {
3937        new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3938                        batchcount, gfp);
3939        if (!new->new[i]) {
3940            for (i--; i >= 0; i--)
3941                kfree(new->new[i]);
3942            kfree(new);
3943            return -ENOMEM;
3944        }
3945    }
3946    new->cachep = cachep;
3947
3948    on_each_cpu(do_ccupdate_local, (void *)new, 1);
3949
3950    check_irq_on();
3951    cachep->batchcount = batchcount;
3952    cachep->limit = limit;
3953    cachep->shared = shared;
3954
3955    for_each_online_cpu(i) {
3956        struct array_cache *ccold = new->new[i];
3957        if (!ccold)
3958            continue;
3959        spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3960        free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
3961        spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock);
3962        kfree(ccold);
3963    }
3964    kfree(new);
3965    return alloc_kmemlist(cachep, gfp);
3966}
3967
3968static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3969                int batchcount, int shared, gfp_t gfp)
3970{
3971    int ret;
3972    struct kmem_cache *c = NULL;
3973    int i = 0;
3974
3975    ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3976
3977    if (slab_state < FULL)
3978        return ret;
3979
3980    if ((ret < 0) || !is_root_cache(cachep))
3981        return ret;
3982
3983    VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3984    for_each_memcg_cache_index(i) {
3985        c = cache_from_memcg(cachep, i);
3986        if (c)
3987            /* return value determined by the parent cache only */
3988            __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3989    }
3990
3991    return ret;
3992}
3993
3994/* Called with slab_mutex held always */
3995static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3996{
3997    int err;
3998    int limit = 0;
3999    int shared = 0;
4000    int batchcount = 0;
4001
4002    if (!is_root_cache(cachep)) {
4003        struct kmem_cache *root = memcg_root_cache(cachep);
4004        limit = root->limit;
4005        shared = root->shared;
4006        batchcount = root->batchcount;
4007    }
4008
4009    if (limit && shared && batchcount)
4010        goto skip_setup;
4011    /*
4012     * The head array serves three purposes:
4013     * - create a LIFO ordering, i.e. return objects that are cache-warm
4014     * - reduce the number of spinlock operations.
4015     * - reduce the number of linked list operations on the slab and
4016     * bufctl chains: array operations are cheaper.
4017     * The numbers are guessed, we should auto-tune as described by
4018     * Bonwick.
4019     */
4020    if (cachep->size > 131072)
4021        limit = 1;
4022    else if (cachep->size > PAGE_SIZE)
4023        limit = 8;
4024    else if (cachep->size > 1024)
4025        limit = 24;
4026    else if (cachep->size > 256)
4027        limit = 54;
4028    else
4029        limit = 120;
4030
4031    /*
4032     * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4033     * allocation behaviour: Most allocs on one cpu, most free operations
4034     * on another cpu. For these cases, an efficient object passing between
4035     * cpus is necessary. This is provided by a shared array. The array
4036     * replaces Bonwick's magazine layer.
4037     * On uniprocessor, it's functionally equivalent (but less efficient)
4038     * to a larger limit. Thus disabled by default.
4039     */
4040    shared = 0;
4041    if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4042        shared = 8;
4043
4044#if DEBUG
4045    /*
4046     * With debugging enabled, large batchcount lead to excessively long
4047     * periods with disabled local interrupts. Limit the batchcount
4048     */
4049    if (limit > 32)
4050        limit = 32;
4051#endif
4052    batchcount = (limit + 1) / 2;
4053skip_setup:
4054    err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
4055    if (err)
4056        printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4057               cachep->name, -err);
4058    return err;
4059}
4060
4061/*
4062 * Drain an array if it contains any elements taking the node lock only if
4063 * necessary. Note that the node listlock also protects the array_cache
4064 * if drain_array() is used on the shared array.
4065 */
4066static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4067             struct array_cache *ac, int force, int node)
4068{
4069    int tofree;
4070
4071    if (!ac || !ac->avail)
4072        return;
4073    if (ac->touched && !force) {
4074        ac->touched = 0;
4075    } else {
4076        spin_lock_irq(&n->list_lock);
4077        if (ac->avail) {
4078            tofree = force ? ac->avail : (ac->limit + 4) / 5;
4079            if (tofree > ac->avail)
4080                tofree = (ac->avail + 1) / 2;
4081            free_block(cachep, ac->entry, tofree, node);
4082            ac->avail -= tofree;
4083            memmove(ac->entry, &(ac->entry[tofree]),
4084                sizeof(void *) * ac->avail);
4085        }
4086        spin_unlock_irq(&n->list_lock);
4087    }
4088}
4089
4090/**
4091 * cache_reap - Reclaim memory from caches.
4092 * @w: work descriptor
4093 *
4094 * Called from workqueue/eventd every few seconds.
4095 * Purpose:
4096 * - clear the per-cpu caches for this CPU.
4097 * - return freeable pages to the main free memory pool.
4098 *
4099 * If we cannot acquire the cache chain mutex then just give up - we'll try
4100 * again on the next iteration.
4101 */
4102static void cache_reap(struct work_struct *w)
4103{
4104    struct kmem_cache *searchp;
4105    struct kmem_cache_node *n;
4106    int node = numa_mem_id();
4107    struct delayed_work *work = to_delayed_work(w);
4108
4109    if (!mutex_trylock(&slab_mutex))
4110        /* Give up. Setup the next iteration. */
4111        goto out;
4112
4113    list_for_each_entry(searchp, &slab_caches, list) {
4114        check_irq_on();
4115
4116        /*
4117         * We only take the node lock if absolutely necessary and we
4118         * have established with reasonable certainty that
4119         * we can do some work if the lock was obtained.
4120         */
4121        n = searchp->node[node];
4122
4123        reap_alien(searchp, n);
4124
4125        drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
4126
4127        /*
4128         * These are racy checks but it does not matter
4129         * if we skip one check or scan twice.
4130         */
4131        if (time_after(n->next_reap, jiffies))
4132            goto next;
4133
4134        n->next_reap = jiffies + REAPTIMEOUT_LIST3;
4135
4136        drain_array(searchp, n, n->shared, 0, node);
4137
4138        if (n->free_touched)
4139            n->free_touched = 0;
4140        else {
4141            int freed;
4142
4143            freed = drain_freelist(searchp, n, (n->free_limit +
4144                5 * searchp->num - 1) / (5 * searchp->num));
4145            STATS_ADD_REAPED(searchp, freed);
4146        }
4147next:
4148        cond_resched();
4149    }
4150    check_irq_on();
4151    mutex_unlock(&slab_mutex);
4152    next_reap_node();
4153out:
4154    /* Set up the next iteration */
4155    schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4156}
4157
4158#ifdef CONFIG_SLABINFO
4159void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4160{
4161    struct slab *slabp;
4162    unsigned long active_objs;
4163    unsigned long num_objs;
4164    unsigned long active_slabs = 0;
4165    unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4166    const char *name;
4167    char *error = NULL;
4168    int node;
4169    struct kmem_cache_node *n;
4170
4171    active_objs = 0;
4172    num_slabs = 0;
4173    for_each_online_node(node) {
4174        n = cachep->node[node];
4175        if (!n)
4176            continue;
4177
4178        check_irq_on();
4179        spin_lock_irq(&n->list_lock);
4180
4181        list_for_each_entry(slabp, &n->slabs_full, list) {
4182            if (slabp->inuse != cachep->num && !error)
4183                error = "slabs_full accounting error";
4184            active_objs += cachep->num;
4185            active_slabs++;
4186        }
4187        list_for_each_entry(slabp, &n->slabs_partial, list) {
4188            if (slabp->inuse == cachep->num && !error)
4189                error = "slabs_partial inuse accounting error";
4190            if (!slabp->inuse && !error)
4191                error = "slabs_partial/inuse accounting error";
4192            active_objs += slabp->inuse;
4193            active_slabs++;
4194        }
4195        list_for_each_entry(slabp, &n->slabs_free, list) {
4196            if (slabp->inuse && !error)
4197                error = "slabs_free/inuse accounting error";
4198            num_slabs++;
4199        }
4200        free_objects += n->free_objects;
4201        if (n->shared)
4202            shared_avail += n->shared->avail;
4203
4204        spin_unlock_irq(&n->list_lock);
4205    }
4206    num_slabs += active_slabs;
4207    num_objs = num_slabs * cachep->num;
4208    if (num_objs - active_objs != free_objects && !error)
4209        error = "free_objects accounting error";
4210
4211    name = cachep->name;
4212    if (error)
4213        printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4214
4215    sinfo->active_objs = active_objs;
4216    sinfo->num_objs = num_objs;
4217    sinfo->active_slabs = active_slabs;
4218    sinfo->num_slabs = num_slabs;
4219    sinfo->shared_avail = shared_avail;
4220    sinfo->limit = cachep->limit;
4221    sinfo->batchcount = cachep->batchcount;
4222    sinfo->shared = cachep->shared;
4223    sinfo->objects_per_slab = cachep->num;
4224    sinfo->cache_order = cachep->gfporder;
4225}
4226
4227void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4228{
4229#if STATS
4230    { /* node stats */
4231        unsigned long high = cachep->high_mark;
4232        unsigned long allocs = cachep->num_allocations;
4233        unsigned long grown = cachep->grown;
4234        unsigned long reaped = cachep->reaped;
4235        unsigned long errors = cachep->errors;
4236        unsigned long max_freeable = cachep->max_freeable;
4237        unsigned long node_allocs = cachep->node_allocs;
4238        unsigned long node_frees = cachep->node_frees;
4239        unsigned long overflows = cachep->node_overflow;
4240
4241        seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4242               "%4lu %4lu %4lu %4lu %4lu",
4243               allocs, high, grown,
4244               reaped, errors, max_freeable, node_allocs,
4245               node_frees, overflows);
4246    }
4247    /* cpu stats */
4248    {
4249        unsigned long allochit = atomic_read(&cachep->allochit);
4250        unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4251        unsigned long freehit = atomic_read(&cachep->freehit);
4252        unsigned long freemiss = atomic_read(&cachep->freemiss);
4253
4254        seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4255               allochit, allocmiss, freehit, freemiss);
4256    }
4257#endif
4258}
4259
4260#define MAX_SLABINFO_WRITE 128
4261/**
4262 * slabinfo_write - Tuning for the slab allocator
4263 * @file: unused
4264 * @buffer: user buffer
4265 * @count: data length
4266 * @ppos: unused
4267 */
4268ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4269               size_t count, loff_t *ppos)
4270{
4271    char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4272    int limit, batchcount, shared, res;
4273    struct kmem_cache *cachep;
4274
4275    if (count > MAX_SLABINFO_WRITE)
4276        return -EINVAL;
4277    if (copy_from_user(&kbuf, buffer, count))
4278        return -EFAULT;
4279    kbuf[MAX_SLABINFO_WRITE] = '\0';
4280
4281    tmp = strchr(kbuf, ' ');
4282    if (!tmp)
4283        return -EINVAL;
4284    *tmp = '\0';
4285    tmp++;
4286    if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4287        return -EINVAL;
4288
4289    /* Find the cache in the chain of caches. */
4290    mutex_lock(&slab_mutex);
4291    res = -EINVAL;
4292    list_for_each_entry(cachep, &slab_caches, list) {
4293        if (!strcmp(cachep->name, kbuf)) {
4294            if (limit < 1 || batchcount < 1 ||
4295                    batchcount > limit || shared < 0) {
4296                res = 0;
4297            } else {
4298                res = do_tune_cpucache(cachep, limit,
4299                               batchcount, shared,
4300                               GFP_KERNEL);
4301            }
4302            break;
4303        }
4304    }
4305    mutex_unlock(&slab_mutex);
4306    if (res >= 0)
4307        res = count;
4308    return res;
4309}
4310
4311#ifdef CONFIG_DEBUG_SLAB_LEAK
4312
4313static void *leaks_start(struct seq_file *m, loff_t *pos)
4314{
4315    mutex_lock(&slab_mutex);
4316    return seq_list_start(&slab_caches, *pos);
4317}
4318
4319static inline int add_caller(unsigned long *n, unsigned long v)
4320{
4321    unsigned long *p;
4322    int l;
4323    if (!v)
4324        return 1;
4325    l = n[1];
4326    p = n + 2;
4327    while (l) {
4328        int i = l/2;
4329        unsigned long *q = p + 2 * i;
4330        if (*q == v) {
4331            q[1]++;
4332            return 1;
4333        }
4334        if (*q > v) {
4335            l = i;
4336        } else {
4337            p = q + 2;
4338            l -= i + 1;
4339        }
4340    }
4341    if (++n[1] == n[0])
4342        return 0;
4343    memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4344    p[0] = v;
4345    p[1] = 1;
4346    return 1;
4347}
4348
4349static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4350{
4351    void *p;
4352    int i;
4353    if (n[0] == n[1])
4354        return;
4355    for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4356        if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4357            continue;
4358        if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4359            return;
4360    }
4361}
4362
4363static void show_symbol(struct seq_file *m, unsigned long address)
4364{
4365#ifdef CONFIG_KALLSYMS
4366    unsigned long offset, size;
4367    char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4368
4369    if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4370        seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4371        if (modname[0])
4372            seq_printf(m, " [%s]", modname);
4373        return;
4374    }
4375#endif
4376    seq_printf(m, "%p", (void *)address);
4377}
4378
4379static int leaks_show(struct seq_file *m, void *p)
4380{
4381    struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4382    struct slab *slabp;
4383    struct kmem_cache_node *n;
4384    const char *name;
4385    unsigned long *x = m->private;
4386    int node;
4387    int i;
4388
4389    if (!(cachep->flags & SLAB_STORE_USER))
4390        return 0;
4391    if (!(cachep->flags & SLAB_RED_ZONE))
4392        return 0;
4393
4394    /* OK, we can do it */
4395
4396    x[1] = 0;
4397
4398    for_each_online_node(node) {
4399        n = cachep->node[node];
4400        if (!n)
4401            continue;
4402
4403        check_irq_on();
4404        spin_lock_irq(&n->list_lock);
4405
4406        list_for_each_entry(slabp, &n->slabs_full, list)
4407            handle_slab(x, cachep, slabp);
4408        list_for_each_entry(slabp, &n->slabs_partial, list)
4409            handle_slab(x, cachep, slabp);
4410        spin_unlock_irq(&n->list_lock);
4411    }
4412    name = cachep->name;
4413    if (x[0] == x[1]) {
4414        /* Increase the buffer size */
4415        mutex_unlock(&slab_mutex);
4416        m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4417        if (!m->private) {
4418            /* Too bad, we are really out */
4419            m->private = x;
4420            mutex_lock(&slab_mutex);
4421            return -ENOMEM;
4422        }
4423        *(unsigned long *)m->private = x[0] * 2;
4424        kfree(x);
4425        mutex_lock(&slab_mutex);
4426        /* Now make sure this entry will be retried */
4427        m->count = m->size;
4428        return 0;
4429    }
4430    for (i = 0; i < x[1]; i++) {
4431        seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4432        show_symbol(m, x[2*i+2]);
4433        seq_putc(m, '\n');
4434    }
4435
4436    return 0;
4437}
4438
4439static const struct seq_operations slabstats_op = {
4440    .start = leaks_start,
4441    .next = slab_next,
4442    .stop = slab_stop,
4443    .show = leaks_show,
4444};
4445
4446static int slabstats_open(struct inode *inode, struct file *file)
4447{
4448    unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4449    int ret = -ENOMEM;
4450    if (n) {
4451        ret = seq_open(file, &slabstats_op);
4452        if (!ret) {
4453            struct seq_file *m = file->private_data;
4454            *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4455            m->private = n;
4456            n = NULL;
4457        }
4458        kfree(n);
4459    }
4460    return ret;
4461}
4462
4463static const struct file_operations proc_slabstats_operations = {
4464    .open = slabstats_open,
4465    .read = seq_read,
4466    .llseek = seq_lseek,
4467    .release = seq_release_private,
4468};
4469#endif
4470
4471static int __init slab_proc_init(void)
4472{
4473#ifdef CONFIG_DEBUG_SLAB_LEAK
4474    proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4475#endif
4476    return 0;
4477}
4478module_init(slab_proc_init);
4479#endif
4480
4481/**
4482 * ksize - get the actual amount of memory allocated for a given object
4483 * @objp: Pointer to the object
4484 *
4485 * kmalloc may internally round up allocations and return more memory
4486 * than requested. ksize() can be used to determine the actual amount of
4487 * memory allocated. The caller may use this additional memory, even though
4488 * a smaller amount of memory was initially specified with the kmalloc call.
4489 * The caller must guarantee that objp points to a valid object previously
4490 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4491 * must not be freed during the duration of the call.
4492 */
4493size_t ksize(const void *objp)
4494{
4495    BUG_ON(!objp);
4496    if (unlikely(objp == ZERO_SIZE_PTR))
4497        return 0;
4498
4499    return virt_to_cache(objp)->object_size;
4500}
4501EXPORT_SYMBOL(ksize);
4502

Archive Download this file



interactive