Root/
1 | /* |
2 | * sparse memory mappings. |
3 | */ |
4 | #include <linux/mm.h> |
5 | #include <linux/slab.h> |
6 | #include <linux/mmzone.h> |
7 | #include <linux/bootmem.h> |
8 | #include <linux/highmem.h> |
9 | #include <linux/export.h> |
10 | #include <linux/spinlock.h> |
11 | #include <linux/vmalloc.h> |
12 | #include "internal.h" |
13 | #include <asm/dma.h> |
14 | #include <asm/pgalloc.h> |
15 | #include <asm/pgtable.h> |
16 | |
17 | /* |
18 | * Permanent SPARSEMEM data: |
19 | * |
20 | * 1) mem_section - memory sections, mem_map's for valid memory |
21 | */ |
22 | #ifdef CONFIG_SPARSEMEM_EXTREME |
23 | struct mem_section *mem_section[NR_SECTION_ROOTS] |
24 | ____cacheline_internodealigned_in_smp; |
25 | #else |
26 | struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] |
27 | ____cacheline_internodealigned_in_smp; |
28 | #endif |
29 | EXPORT_SYMBOL(mem_section); |
30 | |
31 | #ifdef NODE_NOT_IN_PAGE_FLAGS |
32 | /* |
33 | * If we did not store the node number in the page then we have to |
34 | * do a lookup in the section_to_node_table in order to find which |
35 | * node the page belongs to. |
36 | */ |
37 | #if MAX_NUMNODES <= 256 |
38 | static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
39 | #else |
40 | static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; |
41 | #endif |
42 | |
43 | int page_to_nid(const struct page *page) |
44 | { |
45 | return section_to_node_table[page_to_section(page)]; |
46 | } |
47 | EXPORT_SYMBOL(page_to_nid); |
48 | |
49 | static void set_section_nid(unsigned long section_nr, int nid) |
50 | { |
51 | section_to_node_table[section_nr] = nid; |
52 | } |
53 | #else /* !NODE_NOT_IN_PAGE_FLAGS */ |
54 | static inline void set_section_nid(unsigned long section_nr, int nid) |
55 | { |
56 | } |
57 | #endif |
58 | |
59 | #ifdef CONFIG_SPARSEMEM_EXTREME |
60 | static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) |
61 | { |
62 | struct mem_section *section = NULL; |
63 | unsigned long array_size = SECTIONS_PER_ROOT * |
64 | sizeof(struct mem_section); |
65 | |
66 | if (slab_is_available()) { |
67 | if (node_state(nid, N_HIGH_MEMORY)) |
68 | section = kzalloc_node(array_size, GFP_KERNEL, nid); |
69 | else |
70 | section = kzalloc(array_size, GFP_KERNEL); |
71 | } else { |
72 | section = alloc_bootmem_node(NODE_DATA(nid), array_size); |
73 | } |
74 | |
75 | return section; |
76 | } |
77 | |
78 | static int __meminit sparse_index_init(unsigned long section_nr, int nid) |
79 | { |
80 | unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
81 | struct mem_section *section; |
82 | |
83 | if (mem_section[root]) |
84 | return -EEXIST; |
85 | |
86 | section = sparse_index_alloc(nid); |
87 | if (!section) |
88 | return -ENOMEM; |
89 | |
90 | mem_section[root] = section; |
91 | |
92 | return 0; |
93 | } |
94 | #else /* !SPARSEMEM_EXTREME */ |
95 | static inline int sparse_index_init(unsigned long section_nr, int nid) |
96 | { |
97 | return 0; |
98 | } |
99 | #endif |
100 | |
101 | /* |
102 | * Although written for the SPARSEMEM_EXTREME case, this happens |
103 | * to also work for the flat array case because |
104 | * NR_SECTION_ROOTS==NR_MEM_SECTIONS. |
105 | */ |
106 | int __section_nr(struct mem_section* ms) |
107 | { |
108 | unsigned long root_nr; |
109 | struct mem_section* root; |
110 | |
111 | for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { |
112 | root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); |
113 | if (!root) |
114 | continue; |
115 | |
116 | if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) |
117 | break; |
118 | } |
119 | |
120 | VM_BUG_ON(root_nr == NR_SECTION_ROOTS); |
121 | |
122 | return (root_nr * SECTIONS_PER_ROOT) + (ms - root); |
123 | } |
124 | |
125 | /* |
126 | * During early boot, before section_mem_map is used for an actual |
127 | * mem_map, we use section_mem_map to store the section's NUMA |
128 | * node. This keeps us from having to use another data structure. The |
129 | * node information is cleared just before we store the real mem_map. |
130 | */ |
131 | static inline unsigned long sparse_encode_early_nid(int nid) |
132 | { |
133 | return (nid << SECTION_NID_SHIFT); |
134 | } |
135 | |
136 | static inline int sparse_early_nid(struct mem_section *section) |
137 | { |
138 | return (section->section_mem_map >> SECTION_NID_SHIFT); |
139 | } |
140 | |
141 | /* Validate the physical addressing limitations of the model */ |
142 | void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, |
143 | unsigned long *end_pfn) |
144 | { |
145 | unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); |
146 | |
147 | /* |
148 | * Sanity checks - do not allow an architecture to pass |
149 | * in larger pfns than the maximum scope of sparsemem: |
150 | */ |
151 | if (*start_pfn > max_sparsemem_pfn) { |
152 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
153 | "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
154 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
155 | WARN_ON_ONCE(1); |
156 | *start_pfn = max_sparsemem_pfn; |
157 | *end_pfn = max_sparsemem_pfn; |
158 | } else if (*end_pfn > max_sparsemem_pfn) { |
159 | mminit_dprintk(MMINIT_WARNING, "pfnvalidation", |
160 | "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", |
161 | *start_pfn, *end_pfn, max_sparsemem_pfn); |
162 | WARN_ON_ONCE(1); |
163 | *end_pfn = max_sparsemem_pfn; |
164 | } |
165 | } |
166 | |
167 | /* Record a memory area against a node. */ |
168 | void __init memory_present(int nid, unsigned long start, unsigned long end) |
169 | { |
170 | unsigned long pfn; |
171 | |
172 | start &= PAGE_SECTION_MASK; |
173 | mminit_validate_memmodel_limits(&start, &end); |
174 | for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
175 | unsigned long section = pfn_to_section_nr(pfn); |
176 | struct mem_section *ms; |
177 | |
178 | sparse_index_init(section, nid); |
179 | set_section_nid(section, nid); |
180 | |
181 | ms = __nr_to_section(section); |
182 | if (!ms->section_mem_map) |
183 | ms->section_mem_map = sparse_encode_early_nid(nid) | |
184 | SECTION_MARKED_PRESENT; |
185 | } |
186 | } |
187 | |
188 | /* |
189 | * Only used by the i386 NUMA architecures, but relatively |
190 | * generic code. |
191 | */ |
192 | unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, |
193 | unsigned long end_pfn) |
194 | { |
195 | unsigned long pfn; |
196 | unsigned long nr_pages = 0; |
197 | |
198 | mminit_validate_memmodel_limits(&start_pfn, &end_pfn); |
199 | for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
200 | if (nid != early_pfn_to_nid(pfn)) |
201 | continue; |
202 | |
203 | if (pfn_present(pfn)) |
204 | nr_pages += PAGES_PER_SECTION; |
205 | } |
206 | |
207 | return nr_pages * sizeof(struct page); |
208 | } |
209 | |
210 | /* |
211 | * Subtle, we encode the real pfn into the mem_map such that |
212 | * the identity pfn - section_mem_map will return the actual |
213 | * physical page frame number. |
214 | */ |
215 | static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) |
216 | { |
217 | return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); |
218 | } |
219 | |
220 | /* |
221 | * Decode mem_map from the coded memmap |
222 | */ |
223 | struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
224 | { |
225 | /* mask off the extra low bits of information */ |
226 | coded_mem_map &= SECTION_MAP_MASK; |
227 | return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
228 | } |
229 | |
230 | static int __meminit sparse_init_one_section(struct mem_section *ms, |
231 | unsigned long pnum, struct page *mem_map, |
232 | unsigned long *pageblock_bitmap) |
233 | { |
234 | if (!present_section(ms)) |
235 | return -EINVAL; |
236 | |
237 | ms->section_mem_map &= ~SECTION_MAP_MASK; |
238 | ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | |
239 | SECTION_HAS_MEM_MAP; |
240 | ms->pageblock_flags = pageblock_bitmap; |
241 | |
242 | return 1; |
243 | } |
244 | |
245 | unsigned long usemap_size(void) |
246 | { |
247 | unsigned long size_bytes; |
248 | size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; |
249 | size_bytes = roundup(size_bytes, sizeof(unsigned long)); |
250 | return size_bytes; |
251 | } |
252 | |
253 | #ifdef CONFIG_MEMORY_HOTPLUG |
254 | static unsigned long *__kmalloc_section_usemap(void) |
255 | { |
256 | return kmalloc(usemap_size(), GFP_KERNEL); |
257 | } |
258 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
259 | |
260 | #ifdef CONFIG_MEMORY_HOTREMOVE |
261 | static unsigned long * __init |
262 | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
263 | unsigned long size) |
264 | { |
265 | unsigned long goal, limit; |
266 | unsigned long *p; |
267 | int nid; |
268 | /* |
269 | * A page may contain usemaps for other sections preventing the |
270 | * page being freed and making a section unremovable while |
271 | * other sections referencing the usemap retmain active. Similarly, |
272 | * a pgdat can prevent a section being removed. If section A |
273 | * contains a pgdat and section B contains the usemap, both |
274 | * sections become inter-dependent. This allocates usemaps |
275 | * from the same section as the pgdat where possible to avoid |
276 | * this problem. |
277 | */ |
278 | goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); |
279 | limit = goal + (1UL << PA_SECTION_SHIFT); |
280 | nid = early_pfn_to_nid(goal >> PAGE_SHIFT); |
281 | again: |
282 | p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size, |
283 | SMP_CACHE_BYTES, goal, limit); |
284 | if (!p && limit) { |
285 | limit = 0; |
286 | goto again; |
287 | } |
288 | return p; |
289 | } |
290 | |
291 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) |
292 | { |
293 | unsigned long usemap_snr, pgdat_snr; |
294 | static unsigned long old_usemap_snr = NR_MEM_SECTIONS; |
295 | static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; |
296 | struct pglist_data *pgdat = NODE_DATA(nid); |
297 | int usemap_nid; |
298 | |
299 | usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); |
300 | pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); |
301 | if (usemap_snr == pgdat_snr) |
302 | return; |
303 | |
304 | if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) |
305 | /* skip redundant message */ |
306 | return; |
307 | |
308 | old_usemap_snr = usemap_snr; |
309 | old_pgdat_snr = pgdat_snr; |
310 | |
311 | usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); |
312 | if (usemap_nid != nid) { |
313 | printk(KERN_INFO |
314 | "node %d must be removed before remove section %ld\n", |
315 | nid, usemap_snr); |
316 | return; |
317 | } |
318 | /* |
319 | * There is a circular dependency. |
320 | * Some platforms allow un-removable section because they will just |
321 | * gather other removable sections for dynamic partitioning. |
322 | * Just notify un-removable section's number here. |
323 | */ |
324 | printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, |
325 | pgdat_snr, nid); |
326 | printk(KERN_CONT |
327 | " have a circular dependency on usemap and pgdat allocations\n"); |
328 | } |
329 | #else |
330 | static unsigned long * __init |
331 | sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, |
332 | unsigned long size) |
333 | { |
334 | return alloc_bootmem_node_nopanic(pgdat, size); |
335 | } |
336 | |
337 | static void __init check_usemap_section_nr(int nid, unsigned long *usemap) |
338 | { |
339 | } |
340 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
341 | |
342 | static void __init sparse_early_usemaps_alloc_node(void *data, |
343 | unsigned long pnum_begin, |
344 | unsigned long pnum_end, |
345 | unsigned long usemap_count, int nodeid) |
346 | { |
347 | void *usemap; |
348 | unsigned long pnum; |
349 | unsigned long **usemap_map = (unsigned long **)data; |
350 | int size = usemap_size(); |
351 | |
352 | usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), |
353 | size * usemap_count); |
354 | if (!usemap) { |
355 | printk(KERN_WARNING "%s: allocation failed\n", __func__); |
356 | return; |
357 | } |
358 | |
359 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
360 | if (!present_section_nr(pnum)) |
361 | continue; |
362 | usemap_map[pnum] = usemap; |
363 | usemap += size; |
364 | check_usemap_section_nr(nodeid, usemap_map[pnum]); |
365 | } |
366 | } |
367 | |
368 | #ifndef CONFIG_SPARSEMEM_VMEMMAP |
369 | struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) |
370 | { |
371 | struct page *map; |
372 | unsigned long size; |
373 | |
374 | map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); |
375 | if (map) |
376 | return map; |
377 | |
378 | size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); |
379 | map = __alloc_bootmem_node_high(NODE_DATA(nid), size, |
380 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
381 | return map; |
382 | } |
383 | void __init sparse_mem_maps_populate_node(struct page **map_map, |
384 | unsigned long pnum_begin, |
385 | unsigned long pnum_end, |
386 | unsigned long map_count, int nodeid) |
387 | { |
388 | void *map; |
389 | unsigned long pnum; |
390 | unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; |
391 | |
392 | map = alloc_remap(nodeid, size * map_count); |
393 | if (map) { |
394 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
395 | if (!present_section_nr(pnum)) |
396 | continue; |
397 | map_map[pnum] = map; |
398 | map += size; |
399 | } |
400 | return; |
401 | } |
402 | |
403 | size = PAGE_ALIGN(size); |
404 | map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count, |
405 | PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
406 | if (map) { |
407 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
408 | if (!present_section_nr(pnum)) |
409 | continue; |
410 | map_map[pnum] = map; |
411 | map += size; |
412 | } |
413 | return; |
414 | } |
415 | |
416 | /* fallback */ |
417 | for (pnum = pnum_begin; pnum < pnum_end; pnum++) { |
418 | struct mem_section *ms; |
419 | |
420 | if (!present_section_nr(pnum)) |
421 | continue; |
422 | map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); |
423 | if (map_map[pnum]) |
424 | continue; |
425 | ms = __nr_to_section(pnum); |
426 | printk(KERN_ERR "%s: sparsemem memory map backing failed " |
427 | "some memory will not be available.\n", __func__); |
428 | ms->section_mem_map = 0; |
429 | } |
430 | } |
431 | #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ |
432 | |
433 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
434 | static void __init sparse_early_mem_maps_alloc_node(void *data, |
435 | unsigned long pnum_begin, |
436 | unsigned long pnum_end, |
437 | unsigned long map_count, int nodeid) |
438 | { |
439 | struct page **map_map = (struct page **)data; |
440 | sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, |
441 | map_count, nodeid); |
442 | } |
443 | #else |
444 | static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) |
445 | { |
446 | struct page *map; |
447 | struct mem_section *ms = __nr_to_section(pnum); |
448 | int nid = sparse_early_nid(ms); |
449 | |
450 | map = sparse_mem_map_populate(pnum, nid); |
451 | if (map) |
452 | return map; |
453 | |
454 | printk(KERN_ERR "%s: sparsemem memory map backing failed " |
455 | "some memory will not be available.\n", __func__); |
456 | ms->section_mem_map = 0; |
457 | return NULL; |
458 | } |
459 | #endif |
460 | |
461 | void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) |
462 | { |
463 | } |
464 | |
465 | /** |
466 | * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap |
467 | * @map: usemap_map for pageblock flags or mmap_map for vmemmap |
468 | */ |
469 | static void __init alloc_usemap_and_memmap(void (*alloc_func) |
470 | (void *, unsigned long, unsigned long, |
471 | unsigned long, int), void *data) |
472 | { |
473 | unsigned long pnum; |
474 | unsigned long map_count; |
475 | int nodeid_begin = 0; |
476 | unsigned long pnum_begin = 0; |
477 | |
478 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
479 | struct mem_section *ms; |
480 | |
481 | if (!present_section_nr(pnum)) |
482 | continue; |
483 | ms = __nr_to_section(pnum); |
484 | nodeid_begin = sparse_early_nid(ms); |
485 | pnum_begin = pnum; |
486 | break; |
487 | } |
488 | map_count = 1; |
489 | for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { |
490 | struct mem_section *ms; |
491 | int nodeid; |
492 | |
493 | if (!present_section_nr(pnum)) |
494 | continue; |
495 | ms = __nr_to_section(pnum); |
496 | nodeid = sparse_early_nid(ms); |
497 | if (nodeid == nodeid_begin) { |
498 | map_count++; |
499 | continue; |
500 | } |
501 | /* ok, we need to take cake of from pnum_begin to pnum - 1*/ |
502 | alloc_func(data, pnum_begin, pnum, |
503 | map_count, nodeid_begin); |
504 | /* new start, update count etc*/ |
505 | nodeid_begin = nodeid; |
506 | pnum_begin = pnum; |
507 | map_count = 1; |
508 | } |
509 | /* ok, last chunk */ |
510 | alloc_func(data, pnum_begin, NR_MEM_SECTIONS, |
511 | map_count, nodeid_begin); |
512 | } |
513 | |
514 | /* |
515 | * Allocate the accumulated non-linear sections, allocate a mem_map |
516 | * for each and record the physical to section mapping. |
517 | */ |
518 | void __init sparse_init(void) |
519 | { |
520 | unsigned long pnum; |
521 | struct page *map; |
522 | unsigned long *usemap; |
523 | unsigned long **usemap_map; |
524 | int size; |
525 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
526 | int size2; |
527 | struct page **map_map; |
528 | #endif |
529 | |
530 | /* see include/linux/mmzone.h 'struct mem_section' definition */ |
531 | BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); |
532 | |
533 | /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ |
534 | set_pageblock_order(); |
535 | |
536 | /* |
537 | * map is using big page (aka 2M in x86 64 bit) |
538 | * usemap is less one page (aka 24 bytes) |
539 | * so alloc 2M (with 2M align) and 24 bytes in turn will |
540 | * make next 2M slip to one more 2M later. |
541 | * then in big system, the memory will have a lot of holes... |
542 | * here try to allocate 2M pages continuously. |
543 | * |
544 | * powerpc need to call sparse_init_one_section right after each |
545 | * sparse_early_mem_map_alloc, so allocate usemap_map at first. |
546 | */ |
547 | size = sizeof(unsigned long *) * NR_MEM_SECTIONS; |
548 | usemap_map = alloc_bootmem(size); |
549 | if (!usemap_map) |
550 | panic("can not allocate usemap_map\n"); |
551 | alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, |
552 | (void *)usemap_map); |
553 | |
554 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
555 | size2 = sizeof(struct page *) * NR_MEM_SECTIONS; |
556 | map_map = alloc_bootmem(size2); |
557 | if (!map_map) |
558 | panic("can not allocate map_map\n"); |
559 | alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, |
560 | (void *)map_map); |
561 | #endif |
562 | |
563 | for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
564 | if (!present_section_nr(pnum)) |
565 | continue; |
566 | |
567 | usemap = usemap_map[pnum]; |
568 | if (!usemap) |
569 | continue; |
570 | |
571 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
572 | map = map_map[pnum]; |
573 | #else |
574 | map = sparse_early_mem_map_alloc(pnum); |
575 | #endif |
576 | if (!map) |
577 | continue; |
578 | |
579 | sparse_init_one_section(__nr_to_section(pnum), pnum, map, |
580 | usemap); |
581 | } |
582 | |
583 | vmemmap_populate_print_last(); |
584 | |
585 | #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER |
586 | free_bootmem(__pa(map_map), size2); |
587 | #endif |
588 | free_bootmem(__pa(usemap_map), size); |
589 | } |
590 | |
591 | #ifdef CONFIG_MEMORY_HOTPLUG |
592 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
593 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
594 | unsigned long nr_pages) |
595 | { |
596 | /* This will make the necessary allocations eventually. */ |
597 | return sparse_mem_map_populate(pnum, nid); |
598 | } |
599 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
600 | { |
601 | unsigned long start = (unsigned long)memmap; |
602 | unsigned long end = (unsigned long)(memmap + nr_pages); |
603 | |
604 | vmemmap_free(start, end); |
605 | } |
606 | #ifdef CONFIG_MEMORY_HOTREMOVE |
607 | static void free_map_bootmem(struct page *memmap, unsigned long nr_pages) |
608 | { |
609 | unsigned long start = (unsigned long)memmap; |
610 | unsigned long end = (unsigned long)(memmap + nr_pages); |
611 | |
612 | vmemmap_free(start, end); |
613 | } |
614 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
615 | #else |
616 | static struct page *__kmalloc_section_memmap(unsigned long nr_pages) |
617 | { |
618 | struct page *page, *ret; |
619 | unsigned long memmap_size = sizeof(struct page) * nr_pages; |
620 | |
621 | page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); |
622 | if (page) |
623 | goto got_map_page; |
624 | |
625 | ret = vmalloc(memmap_size); |
626 | if (ret) |
627 | goto got_map_ptr; |
628 | |
629 | return NULL; |
630 | got_map_page: |
631 | ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); |
632 | got_map_ptr: |
633 | |
634 | return ret; |
635 | } |
636 | |
637 | static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, |
638 | unsigned long nr_pages) |
639 | { |
640 | return __kmalloc_section_memmap(nr_pages); |
641 | } |
642 | |
643 | static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
644 | { |
645 | if (is_vmalloc_addr(memmap)) |
646 | vfree(memmap); |
647 | else |
648 | free_pages((unsigned long)memmap, |
649 | get_order(sizeof(struct page) * nr_pages)); |
650 | } |
651 | |
652 | #ifdef CONFIG_MEMORY_HOTREMOVE |
653 | static void free_map_bootmem(struct page *memmap, unsigned long nr_pages) |
654 | { |
655 | unsigned long maps_section_nr, removing_section_nr, i; |
656 | unsigned long magic; |
657 | struct page *page = virt_to_page(memmap); |
658 | |
659 | for (i = 0; i < nr_pages; i++, page++) { |
660 | magic = (unsigned long) page->lru.next; |
661 | |
662 | BUG_ON(magic == NODE_INFO); |
663 | |
664 | maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); |
665 | removing_section_nr = page->private; |
666 | |
667 | /* |
668 | * When this function is called, the removing section is |
669 | * logical offlined state. This means all pages are isolated |
670 | * from page allocator. If removing section's memmap is placed |
671 | * on the same section, it must not be freed. |
672 | * If it is freed, page allocator may allocate it which will |
673 | * be removed physically soon. |
674 | */ |
675 | if (maps_section_nr != removing_section_nr) |
676 | put_page_bootmem(page); |
677 | } |
678 | } |
679 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
680 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
681 | |
682 | /* |
683 | * returns the number of sections whose mem_maps were properly |
684 | * set. If this is <=0, then that means that the passed-in |
685 | * map was not consumed and must be freed. |
686 | */ |
687 | int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, |
688 | int nr_pages) |
689 | { |
690 | unsigned long section_nr = pfn_to_section_nr(start_pfn); |
691 | struct pglist_data *pgdat = zone->zone_pgdat; |
692 | struct mem_section *ms; |
693 | struct page *memmap; |
694 | unsigned long *usemap; |
695 | unsigned long flags; |
696 | int ret; |
697 | |
698 | /* |
699 | * no locking for this, because it does its own |
700 | * plus, it does a kmalloc |
701 | */ |
702 | ret = sparse_index_init(section_nr, pgdat->node_id); |
703 | if (ret < 0 && ret != -EEXIST) |
704 | return ret; |
705 | memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); |
706 | if (!memmap) |
707 | return -ENOMEM; |
708 | usemap = __kmalloc_section_usemap(); |
709 | if (!usemap) { |
710 | __kfree_section_memmap(memmap, nr_pages); |
711 | return -ENOMEM; |
712 | } |
713 | |
714 | pgdat_resize_lock(pgdat, &flags); |
715 | |
716 | ms = __pfn_to_section(start_pfn); |
717 | if (ms->section_mem_map & SECTION_MARKED_PRESENT) { |
718 | ret = -EEXIST; |
719 | goto out; |
720 | } |
721 | |
722 | memset(memmap, 0, sizeof(struct page) * nr_pages); |
723 | |
724 | ms->section_mem_map |= SECTION_MARKED_PRESENT; |
725 | |
726 | ret = sparse_init_one_section(ms, section_nr, memmap, usemap); |
727 | |
728 | out: |
729 | pgdat_resize_unlock(pgdat, &flags); |
730 | if (ret <= 0) { |
731 | kfree(usemap); |
732 | __kfree_section_memmap(memmap, nr_pages); |
733 | } |
734 | return ret; |
735 | } |
736 | |
737 | #ifdef CONFIG_MEMORY_HOTREMOVE |
738 | #ifdef CONFIG_MEMORY_FAILURE |
739 | static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) |
740 | { |
741 | int i; |
742 | |
743 | if (!memmap) |
744 | return; |
745 | |
746 | for (i = 0; i < PAGES_PER_SECTION; i++) { |
747 | if (PageHWPoison(&memmap[i])) { |
748 | atomic_long_sub(1, &num_poisoned_pages); |
749 | ClearPageHWPoison(&memmap[i]); |
750 | } |
751 | } |
752 | } |
753 | #else |
754 | static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) |
755 | { |
756 | } |
757 | #endif |
758 | |
759 | static void free_section_usemap(struct page *memmap, unsigned long *usemap) |
760 | { |
761 | struct page *usemap_page; |
762 | unsigned long nr_pages; |
763 | |
764 | if (!usemap) |
765 | return; |
766 | |
767 | usemap_page = virt_to_page(usemap); |
768 | /* |
769 | * Check to see if allocation came from hot-plug-add |
770 | */ |
771 | if (PageSlab(usemap_page) || PageCompound(usemap_page)) { |
772 | kfree(usemap); |
773 | if (memmap) |
774 | __kfree_section_memmap(memmap, PAGES_PER_SECTION); |
775 | return; |
776 | } |
777 | |
778 | /* |
779 | * The usemap came from bootmem. This is packed with other usemaps |
780 | * on the section which has pgdat at boot time. Just keep it as is now. |
781 | */ |
782 | |
783 | if (memmap) { |
784 | nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) |
785 | >> PAGE_SHIFT; |
786 | |
787 | free_map_bootmem(memmap, nr_pages); |
788 | } |
789 | } |
790 | |
791 | void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) |
792 | { |
793 | struct page *memmap = NULL; |
794 | unsigned long *usemap = NULL, flags; |
795 | struct pglist_data *pgdat = zone->zone_pgdat; |
796 | |
797 | pgdat_resize_lock(pgdat, &flags); |
798 | if (ms->section_mem_map) { |
799 | usemap = ms->pageblock_flags; |
800 | memmap = sparse_decode_mem_map(ms->section_mem_map, |
801 | __section_nr(ms)); |
802 | ms->section_mem_map = 0; |
803 | ms->pageblock_flags = NULL; |
804 | } |
805 | pgdat_resize_unlock(pgdat, &flags); |
806 | |
807 | clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION); |
808 | free_section_usemap(memmap, usemap); |
809 | } |
810 | #endif /* CONFIG_MEMORY_HOTREMOVE */ |
811 | #endif /* CONFIG_MEMORY_HOTPLUG */ |
812 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9