Root/mm/swap.c

1/*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16#include <linux/mm.h>
17#include <linux/sched.h>
18#include <linux/kernel_stat.h>
19#include <linux/swap.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/pagevec.h>
23#include <linux/init.h>
24#include <linux/export.h>
25#include <linux/mm_inline.h>
26#include <linux/percpu_counter.h>
27#include <linux/percpu.h>
28#include <linux/cpu.h>
29#include <linux/notifier.h>
30#include <linux/backing-dev.h>
31#include <linux/memcontrol.h>
32#include <linux/gfp.h>
33#include <linux/uio.h>
34#include <linux/hugetlb.h>
35
36#include "internal.h"
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/pagemap.h>
40
41/* How many pages do we try to swap or page in/out together? */
42int page_cluster;
43
44static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47
48/*
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
51 */
52static void __page_cache_release(struct page *page)
53{
54    if (PageLRU(page)) {
55        struct zone *zone = page_zone(page);
56        struct lruvec *lruvec;
57        unsigned long flags;
58
59        spin_lock_irqsave(&zone->lru_lock, flags);
60        lruvec = mem_cgroup_page_lruvec(page, zone);
61        VM_BUG_ON(!PageLRU(page));
62        __ClearPageLRU(page);
63        del_page_from_lru_list(page, lruvec, page_off_lru(page));
64        spin_unlock_irqrestore(&zone->lru_lock, flags);
65    }
66}
67
68static void __put_single_page(struct page *page)
69{
70    __page_cache_release(page);
71    free_hot_cold_page(page, 0);
72}
73
74static void __put_compound_page(struct page *page)
75{
76    compound_page_dtor *dtor;
77
78    __page_cache_release(page);
79    dtor = get_compound_page_dtor(page);
80    (*dtor)(page);
81}
82
83static void put_compound_page(struct page *page)
84{
85    /*
86     * hugetlbfs pages cannot be split from under us. If this is a
87     * hugetlbfs page, check refcount on head page and release the page if
88     * the refcount becomes zero.
89     */
90    if (PageHuge(page)) {
91        page = compound_head(page);
92        if (put_page_testzero(page))
93            __put_compound_page(page);
94
95        return;
96    }
97
98    if (unlikely(PageTail(page))) {
99        /* __split_huge_page_refcount can run under us */
100        struct page *page_head = compound_trans_head(page);
101
102        if (likely(page != page_head &&
103               get_page_unless_zero(page_head))) {
104            unsigned long flags;
105
106            /*
107             * THP can not break up slab pages so avoid taking
108             * compound_lock(). Slab performs non-atomic bit ops
109             * on page->flags for better performance. In particular
110             * slab_unlock() in slub used to be a hot path. It is
111             * still hot on arches that do not support
112             * this_cpu_cmpxchg_double().
113             */
114            if (PageSlab(page_head)) {
115                if (PageTail(page)) {
116                    if (put_page_testzero(page_head))
117                        VM_BUG_ON(1);
118
119                    atomic_dec(&page->_mapcount);
120                    goto skip_lock_tail;
121                } else
122                    goto skip_lock;
123            }
124            /*
125             * page_head wasn't a dangling pointer but it
126             * may not be a head page anymore by the time
127             * we obtain the lock. That is ok as long as it
128             * can't be freed from under us.
129             */
130            flags = compound_lock_irqsave(page_head);
131            if (unlikely(!PageTail(page))) {
132                /* __split_huge_page_refcount run before us */
133                compound_unlock_irqrestore(page_head, flags);
134skip_lock:
135                if (put_page_testzero(page_head))
136                    __put_single_page(page_head);
137out_put_single:
138                if (put_page_testzero(page))
139                    __put_single_page(page);
140                return;
141            }
142            VM_BUG_ON(page_head != page->first_page);
143            /*
144             * We can release the refcount taken by
145             * get_page_unless_zero() now that
146             * __split_huge_page_refcount() is blocked on
147             * the compound_lock.
148             */
149            if (put_page_testzero(page_head))
150                VM_BUG_ON(1);
151            /* __split_huge_page_refcount will wait now */
152            VM_BUG_ON(page_mapcount(page) <= 0);
153            atomic_dec(&page->_mapcount);
154            VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
155            VM_BUG_ON(atomic_read(&page->_count) != 0);
156            compound_unlock_irqrestore(page_head, flags);
157
158skip_lock_tail:
159            if (put_page_testzero(page_head)) {
160                if (PageHead(page_head))
161                    __put_compound_page(page_head);
162                else
163                    __put_single_page(page_head);
164            }
165        } else {
166            /* page_head is a dangling pointer */
167            VM_BUG_ON(PageTail(page));
168            goto out_put_single;
169        }
170    } else if (put_page_testzero(page)) {
171        if (PageHead(page))
172            __put_compound_page(page);
173        else
174            __put_single_page(page);
175    }
176}
177
178void put_page(struct page *page)
179{
180    if (unlikely(PageCompound(page)))
181        put_compound_page(page);
182    else if (put_page_testzero(page))
183        __put_single_page(page);
184}
185EXPORT_SYMBOL(put_page);
186
187/*
188 * This function is exported but must not be called by anything other
189 * than get_page(). It implements the slow path of get_page().
190 */
191bool __get_page_tail(struct page *page)
192{
193    /*
194     * This takes care of get_page() if run on a tail page
195     * returned by one of the get_user_pages/follow_page variants.
196     * get_user_pages/follow_page itself doesn't need the compound
197     * lock because it runs __get_page_tail_foll() under the
198     * proper PT lock that already serializes against
199     * split_huge_page().
200     */
201    bool got = false;
202    struct page *page_head;
203
204    /*
205     * If this is a hugetlbfs page it cannot be split under us. Simply
206     * increment refcount for the head page.
207     */
208    if (PageHuge(page)) {
209        page_head = compound_head(page);
210        atomic_inc(&page_head->_count);
211        got = true;
212    } else {
213        unsigned long flags;
214
215        page_head = compound_trans_head(page);
216        if (likely(page != page_head &&
217                    get_page_unless_zero(page_head))) {
218
219            /* Ref to put_compound_page() comment. */
220            if (PageSlab(page_head)) {
221                if (likely(PageTail(page))) {
222                    __get_page_tail_foll(page, false);
223                    return true;
224                } else {
225                    put_page(page_head);
226                    return false;
227                }
228            }
229
230            /*
231             * page_head wasn't a dangling pointer but it
232             * may not be a head page anymore by the time
233             * we obtain the lock. That is ok as long as it
234             * can't be freed from under us.
235             */
236            flags = compound_lock_irqsave(page_head);
237            /* here __split_huge_page_refcount won't run anymore */
238            if (likely(PageTail(page))) {
239                __get_page_tail_foll(page, false);
240                got = true;
241            }
242            compound_unlock_irqrestore(page_head, flags);
243            if (unlikely(!got))
244                put_page(page_head);
245        }
246    }
247    return got;
248}
249EXPORT_SYMBOL(__get_page_tail);
250
251/**
252 * put_pages_list() - release a list of pages
253 * @pages: list of pages threaded on page->lru
254 *
255 * Release a list of pages which are strung together on page.lru. Currently
256 * used by read_cache_pages() and related error recovery code.
257 */
258void put_pages_list(struct list_head *pages)
259{
260    while (!list_empty(pages)) {
261        struct page *victim;
262
263        victim = list_entry(pages->prev, struct page, lru);
264        list_del(&victim->lru);
265        page_cache_release(victim);
266    }
267}
268EXPORT_SYMBOL(put_pages_list);
269
270/*
271 * get_kernel_pages() - pin kernel pages in memory
272 * @kiov: An array of struct kvec structures
273 * @nr_segs: number of segments to pin
274 * @write: pinning for read/write, currently ignored
275 * @pages: array that receives pointers to the pages pinned.
276 * Should be at least nr_segs long.
277 *
278 * Returns number of pages pinned. This may be fewer than the number
279 * requested. If nr_pages is 0 or negative, returns 0. If no pages
280 * were pinned, returns -errno. Each page returned must be released
281 * with a put_page() call when it is finished with.
282 */
283int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
284        struct page **pages)
285{
286    int seg;
287
288    for (seg = 0; seg < nr_segs; seg++) {
289        if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
290            return seg;
291
292        pages[seg] = kmap_to_page(kiov[seg].iov_base);
293        page_cache_get(pages[seg]);
294    }
295
296    return seg;
297}
298EXPORT_SYMBOL_GPL(get_kernel_pages);
299
300/*
301 * get_kernel_page() - pin a kernel page in memory
302 * @start: starting kernel address
303 * @write: pinning for read/write, currently ignored
304 * @pages: array that receives pointer to the page pinned.
305 * Must be at least nr_segs long.
306 *
307 * Returns 1 if page is pinned. If the page was not pinned, returns
308 * -errno. The page returned must be released with a put_page() call
309 * when it is finished with.
310 */
311int get_kernel_page(unsigned long start, int write, struct page **pages)
312{
313    const struct kvec kiov = {
314        .iov_base = (void *)start,
315        .iov_len = PAGE_SIZE
316    };
317
318    return get_kernel_pages(&kiov, 1, write, pages);
319}
320EXPORT_SYMBOL_GPL(get_kernel_page);
321
322static void pagevec_lru_move_fn(struct pagevec *pvec,
323    void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
324    void *arg)
325{
326    int i;
327    struct zone *zone = NULL;
328    struct lruvec *lruvec;
329    unsigned long flags = 0;
330
331    for (i = 0; i < pagevec_count(pvec); i++) {
332        struct page *page = pvec->pages[i];
333        struct zone *pagezone = page_zone(page);
334
335        if (pagezone != zone) {
336            if (zone)
337                spin_unlock_irqrestore(&zone->lru_lock, flags);
338            zone = pagezone;
339            spin_lock_irqsave(&zone->lru_lock, flags);
340        }
341
342        lruvec = mem_cgroup_page_lruvec(page, zone);
343        (*move_fn)(page, lruvec, arg);
344    }
345    if (zone)
346        spin_unlock_irqrestore(&zone->lru_lock, flags);
347    release_pages(pvec->pages, pvec->nr, pvec->cold);
348    pagevec_reinit(pvec);
349}
350
351static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
352                 void *arg)
353{
354    int *pgmoved = arg;
355
356    if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
357        enum lru_list lru = page_lru_base_type(page);
358        list_move_tail(&page->lru, &lruvec->lists[lru]);
359        (*pgmoved)++;
360    }
361}
362
363/*
364 * pagevec_move_tail() must be called with IRQ disabled.
365 * Otherwise this may cause nasty races.
366 */
367static void pagevec_move_tail(struct pagevec *pvec)
368{
369    int pgmoved = 0;
370
371    pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
372    __count_vm_events(PGROTATED, pgmoved);
373}
374
375/*
376 * Writeback is about to end against a page which has been marked for immediate
377 * reclaim. If it still appears to be reclaimable, move it to the tail of the
378 * inactive list.
379 */
380void rotate_reclaimable_page(struct page *page)
381{
382    if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
383        !PageUnevictable(page) && PageLRU(page)) {
384        struct pagevec *pvec;
385        unsigned long flags;
386
387        page_cache_get(page);
388        local_irq_save(flags);
389        pvec = &__get_cpu_var(lru_rotate_pvecs);
390        if (!pagevec_add(pvec, page))
391            pagevec_move_tail(pvec);
392        local_irq_restore(flags);
393    }
394}
395
396static void update_page_reclaim_stat(struct lruvec *lruvec,
397                     int file, int rotated)
398{
399    struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
400
401    reclaim_stat->recent_scanned[file]++;
402    if (rotated)
403        reclaim_stat->recent_rotated[file]++;
404}
405
406static void __activate_page(struct page *page, struct lruvec *lruvec,
407                void *arg)
408{
409    if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
410        int file = page_is_file_cache(page);
411        int lru = page_lru_base_type(page);
412
413        del_page_from_lru_list(page, lruvec, lru);
414        SetPageActive(page);
415        lru += LRU_ACTIVE;
416        add_page_to_lru_list(page, lruvec, lru);
417        trace_mm_lru_activate(page, page_to_pfn(page));
418
419        __count_vm_event(PGACTIVATE);
420        update_page_reclaim_stat(lruvec, file, 1);
421    }
422}
423
424#ifdef CONFIG_SMP
425static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
426
427static void activate_page_drain(int cpu)
428{
429    struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
430
431    if (pagevec_count(pvec))
432        pagevec_lru_move_fn(pvec, __activate_page, NULL);
433}
434
435static bool need_activate_page_drain(int cpu)
436{
437    return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
438}
439
440void activate_page(struct page *page)
441{
442    if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
443        struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
444
445        page_cache_get(page);
446        if (!pagevec_add(pvec, page))
447            pagevec_lru_move_fn(pvec, __activate_page, NULL);
448        put_cpu_var(activate_page_pvecs);
449    }
450}
451
452#else
453static inline void activate_page_drain(int cpu)
454{
455}
456
457static bool need_activate_page_drain(int cpu)
458{
459    return false;
460}
461
462void activate_page(struct page *page)
463{
464    struct zone *zone = page_zone(page);
465
466    spin_lock_irq(&zone->lru_lock);
467    __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
468    spin_unlock_irq(&zone->lru_lock);
469}
470#endif
471
472static void __lru_cache_activate_page(struct page *page)
473{
474    struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
475    int i;
476
477    /*
478     * Search backwards on the optimistic assumption that the page being
479     * activated has just been added to this pagevec. Note that only
480     * the local pagevec is examined as a !PageLRU page could be in the
481     * process of being released, reclaimed, migrated or on a remote
482     * pagevec that is currently being drained. Furthermore, marking
483     * a remote pagevec's page PageActive potentially hits a race where
484     * a page is marked PageActive just after it is added to the inactive
485     * list causing accounting errors and BUG_ON checks to trigger.
486     */
487    for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
488        struct page *pagevec_page = pvec->pages[i];
489
490        if (pagevec_page == page) {
491            SetPageActive(page);
492            break;
493        }
494    }
495
496    put_cpu_var(lru_add_pvec);
497}
498
499/*
500 * Mark a page as having seen activity.
501 *
502 * inactive,unreferenced -> inactive,referenced
503 * inactive,referenced -> active,unreferenced
504 * active,unreferenced -> active,referenced
505 */
506void mark_page_accessed(struct page *page)
507{
508    if (!PageActive(page) && !PageUnevictable(page) &&
509            PageReferenced(page)) {
510
511        /*
512         * If the page is on the LRU, queue it for activation via
513         * activate_page_pvecs. Otherwise, assume the page is on a
514         * pagevec, mark it active and it'll be moved to the active
515         * LRU on the next drain.
516         */
517        if (PageLRU(page))
518            activate_page(page);
519        else
520            __lru_cache_activate_page(page);
521        ClearPageReferenced(page);
522    } else if (!PageReferenced(page)) {
523        SetPageReferenced(page);
524    }
525}
526EXPORT_SYMBOL(mark_page_accessed);
527
528/*
529 * Queue the page for addition to the LRU via pagevec. The decision on whether
530 * to add the page to the [in]active [file|anon] list is deferred until the
531 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
532 * have the page added to the active list using mark_page_accessed().
533 */
534void __lru_cache_add(struct page *page)
535{
536    struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
537
538    page_cache_get(page);
539    if (!pagevec_space(pvec))
540        __pagevec_lru_add(pvec);
541    pagevec_add(pvec, page);
542    put_cpu_var(lru_add_pvec);
543}
544EXPORT_SYMBOL(__lru_cache_add);
545
546/**
547 * lru_cache_add - add a page to a page list
548 * @page: the page to be added to the LRU.
549 */
550void lru_cache_add(struct page *page)
551{
552    VM_BUG_ON(PageActive(page) && PageUnevictable(page));
553    VM_BUG_ON(PageLRU(page));
554    __lru_cache_add(page);
555}
556
557/**
558 * add_page_to_unevictable_list - add a page to the unevictable list
559 * @page: the page to be added to the unevictable list
560 *
561 * Add page directly to its zone's unevictable list. To avoid races with
562 * tasks that might be making the page evictable, through eg. munlock,
563 * munmap or exit, while it's not on the lru, we want to add the page
564 * while it's locked or otherwise "invisible" to other tasks. This is
565 * difficult to do when using the pagevec cache, so bypass that.
566 */
567void add_page_to_unevictable_list(struct page *page)
568{
569    struct zone *zone = page_zone(page);
570    struct lruvec *lruvec;
571
572    spin_lock_irq(&zone->lru_lock);
573    lruvec = mem_cgroup_page_lruvec(page, zone);
574    ClearPageActive(page);
575    SetPageUnevictable(page);
576    SetPageLRU(page);
577    add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
578    spin_unlock_irq(&zone->lru_lock);
579}
580
581/*
582 * If the page can not be invalidated, it is moved to the
583 * inactive list to speed up its reclaim. It is moved to the
584 * head of the list, rather than the tail, to give the flusher
585 * threads some time to write it out, as this is much more
586 * effective than the single-page writeout from reclaim.
587 *
588 * If the page isn't page_mapped and dirty/writeback, the page
589 * could reclaim asap using PG_reclaim.
590 *
591 * 1. active, mapped page -> none
592 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
593 * 3. inactive, mapped page -> none
594 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
595 * 5. inactive, clean -> inactive, tail
596 * 6. Others -> none
597 *
598 * In 4, why it moves inactive's head, the VM expects the page would
599 * be write it out by flusher threads as this is much more effective
600 * than the single-page writeout from reclaim.
601 */
602static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
603                  void *arg)
604{
605    int lru, file;
606    bool active;
607
608    if (!PageLRU(page))
609        return;
610
611    if (PageUnevictable(page))
612        return;
613
614    /* Some processes are using the page */
615    if (page_mapped(page))
616        return;
617
618    active = PageActive(page);
619    file = page_is_file_cache(page);
620    lru = page_lru_base_type(page);
621
622    del_page_from_lru_list(page, lruvec, lru + active);
623    ClearPageActive(page);
624    ClearPageReferenced(page);
625    add_page_to_lru_list(page, lruvec, lru);
626
627    if (PageWriteback(page) || PageDirty(page)) {
628        /*
629         * PG_reclaim could be raced with end_page_writeback
630         * It can make readahead confusing. But race window
631         * is _really_ small and it's non-critical problem.
632         */
633        SetPageReclaim(page);
634    } else {
635        /*
636         * The page's writeback ends up during pagevec
637         * We moves tha page into tail of inactive.
638         */
639        list_move_tail(&page->lru, &lruvec->lists[lru]);
640        __count_vm_event(PGROTATED);
641    }
642
643    if (active)
644        __count_vm_event(PGDEACTIVATE);
645    update_page_reclaim_stat(lruvec, file, 0);
646}
647
648/*
649 * Drain pages out of the cpu's pagevecs.
650 * Either "cpu" is the current CPU, and preemption has already been
651 * disabled; or "cpu" is being hot-unplugged, and is already dead.
652 */
653void lru_add_drain_cpu(int cpu)
654{
655    struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
656
657    if (pagevec_count(pvec))
658        __pagevec_lru_add(pvec);
659
660    pvec = &per_cpu(lru_rotate_pvecs, cpu);
661    if (pagevec_count(pvec)) {
662        unsigned long flags;
663
664        /* No harm done if a racing interrupt already did this */
665        local_irq_save(flags);
666        pagevec_move_tail(pvec);
667        local_irq_restore(flags);
668    }
669
670    pvec = &per_cpu(lru_deactivate_pvecs, cpu);
671    if (pagevec_count(pvec))
672        pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
673
674    activate_page_drain(cpu);
675}
676
677/**
678 * deactivate_page - forcefully deactivate a page
679 * @page: page to deactivate
680 *
681 * This function hints the VM that @page is a good reclaim candidate,
682 * for example if its invalidation fails due to the page being dirty
683 * or under writeback.
684 */
685void deactivate_page(struct page *page)
686{
687    /*
688     * In a workload with many unevictable page such as mprotect, unevictable
689     * page deactivation for accelerating reclaim is pointless.
690     */
691    if (PageUnevictable(page))
692        return;
693
694    if (likely(get_page_unless_zero(page))) {
695        struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
696
697        if (!pagevec_add(pvec, page))
698            pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699        put_cpu_var(lru_deactivate_pvecs);
700    }
701}
702
703void lru_add_drain(void)
704{
705    lru_add_drain_cpu(get_cpu());
706    put_cpu();
707}
708
709static void lru_add_drain_per_cpu(struct work_struct *dummy)
710{
711    lru_add_drain();
712}
713
714static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
715
716void lru_add_drain_all(void)
717{
718    static DEFINE_MUTEX(lock);
719    static struct cpumask has_work;
720    int cpu;
721
722    mutex_lock(&lock);
723    get_online_cpus();
724    cpumask_clear(&has_work);
725
726    for_each_online_cpu(cpu) {
727        struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
728
729        if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
730            pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
731            pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
732            need_activate_page_drain(cpu)) {
733            INIT_WORK(work, lru_add_drain_per_cpu);
734            schedule_work_on(cpu, work);
735            cpumask_set_cpu(cpu, &has_work);
736        }
737    }
738
739    for_each_cpu(cpu, &has_work)
740        flush_work(&per_cpu(lru_add_drain_work, cpu));
741
742    put_online_cpus();
743    mutex_unlock(&lock);
744}
745
746/*
747 * Batched page_cache_release(). Decrement the reference count on all the
748 * passed pages. If it fell to zero then remove the page from the LRU and
749 * free it.
750 *
751 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
752 * for the remainder of the operation.
753 *
754 * The locking in this function is against shrink_inactive_list(): we recheck
755 * the page count inside the lock to see whether shrink_inactive_list()
756 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
757 * will free it.
758 */
759void release_pages(struct page **pages, int nr, int cold)
760{
761    int i;
762    LIST_HEAD(pages_to_free);
763    struct zone *zone = NULL;
764    struct lruvec *lruvec;
765    unsigned long uninitialized_var(flags);
766
767    for (i = 0; i < nr; i++) {
768        struct page *page = pages[i];
769
770        if (unlikely(PageCompound(page))) {
771            if (zone) {
772                spin_unlock_irqrestore(&zone->lru_lock, flags);
773                zone = NULL;
774            }
775            put_compound_page(page);
776            continue;
777        }
778
779        if (!put_page_testzero(page))
780            continue;
781
782        if (PageLRU(page)) {
783            struct zone *pagezone = page_zone(page);
784
785            if (pagezone != zone) {
786                if (zone)
787                    spin_unlock_irqrestore(&zone->lru_lock,
788                                    flags);
789                zone = pagezone;
790                spin_lock_irqsave(&zone->lru_lock, flags);
791            }
792
793            lruvec = mem_cgroup_page_lruvec(page, zone);
794            VM_BUG_ON(!PageLRU(page));
795            __ClearPageLRU(page);
796            del_page_from_lru_list(page, lruvec, page_off_lru(page));
797        }
798
799        /* Clear Active bit in case of parallel mark_page_accessed */
800        ClearPageActive(page);
801
802        list_add(&page->lru, &pages_to_free);
803    }
804    if (zone)
805        spin_unlock_irqrestore(&zone->lru_lock, flags);
806
807    free_hot_cold_page_list(&pages_to_free, cold);
808}
809EXPORT_SYMBOL(release_pages);
810
811/*
812 * The pages which we're about to release may be in the deferred lru-addition
813 * queues. That would prevent them from really being freed right now. That's
814 * OK from a correctness point of view but is inefficient - those pages may be
815 * cache-warm and we want to give them back to the page allocator ASAP.
816 *
817 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
818 * and __pagevec_lru_add_active() call release_pages() directly to avoid
819 * mutual recursion.
820 */
821void __pagevec_release(struct pagevec *pvec)
822{
823    lru_add_drain();
824    release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
825    pagevec_reinit(pvec);
826}
827EXPORT_SYMBOL(__pagevec_release);
828
829#ifdef CONFIG_TRANSPARENT_HUGEPAGE
830/* used by __split_huge_page_refcount() */
831void lru_add_page_tail(struct page *page, struct page *page_tail,
832               struct lruvec *lruvec, struct list_head *list)
833{
834    const int file = 0;
835
836    VM_BUG_ON(!PageHead(page));
837    VM_BUG_ON(PageCompound(page_tail));
838    VM_BUG_ON(PageLRU(page_tail));
839    VM_BUG_ON(NR_CPUS != 1 &&
840          !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
841
842    if (!list)
843        SetPageLRU(page_tail);
844
845    if (likely(PageLRU(page)))
846        list_add_tail(&page_tail->lru, &page->lru);
847    else if (list) {
848        /* page reclaim is reclaiming a huge page */
849        get_page(page_tail);
850        list_add_tail(&page_tail->lru, list);
851    } else {
852        struct list_head *list_head;
853        /*
854         * Head page has not yet been counted, as an hpage,
855         * so we must account for each subpage individually.
856         *
857         * Use the standard add function to put page_tail on the list,
858         * but then correct its position so they all end up in order.
859         */
860        add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
861        list_head = page_tail->lru.prev;
862        list_move_tail(&page_tail->lru, list_head);
863    }
864
865    if (!PageUnevictable(page))
866        update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
867}
868#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869
870static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
871                 void *arg)
872{
873    int file = page_is_file_cache(page);
874    int active = PageActive(page);
875    enum lru_list lru = page_lru(page);
876
877    VM_BUG_ON(PageLRU(page));
878
879    SetPageLRU(page);
880    add_page_to_lru_list(page, lruvec, lru);
881    update_page_reclaim_stat(lruvec, file, active);
882    trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
883}
884
885/*
886 * Add the passed pages to the LRU, then drop the caller's refcount
887 * on them. Reinitialises the caller's pagevec.
888 */
889void __pagevec_lru_add(struct pagevec *pvec)
890{
891    pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
892}
893EXPORT_SYMBOL(__pagevec_lru_add);
894
895/**
896 * pagevec_lookup - gang pagecache lookup
897 * @pvec: Where the resulting pages are placed
898 * @mapping: The address_space to search
899 * @start: The starting page index
900 * @nr_pages: The maximum number of pages
901 *
902 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
903 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
904 * reference against the pages in @pvec.
905 *
906 * The search returns a group of mapping-contiguous pages with ascending
907 * indexes. There may be holes in the indices due to not-present pages.
908 *
909 * pagevec_lookup() returns the number of pages which were found.
910 */
911unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
912        pgoff_t start, unsigned nr_pages)
913{
914    pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
915    return pagevec_count(pvec);
916}
917EXPORT_SYMBOL(pagevec_lookup);
918
919unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
920        pgoff_t *index, int tag, unsigned nr_pages)
921{
922    pvec->nr = find_get_pages_tag(mapping, index, tag,
923                    nr_pages, pvec->pages);
924    return pagevec_count(pvec);
925}
926EXPORT_SYMBOL(pagevec_lookup_tag);
927
928/*
929 * Perform any setup for the swap system
930 */
931void __init swap_setup(void)
932{
933    unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
934#ifdef CONFIG_SWAP
935    int i;
936
937    bdi_init(swapper_spaces[0].backing_dev_info);
938    for (i = 0; i < MAX_SWAPFILES; i++) {
939        spin_lock_init(&swapper_spaces[i].tree_lock);
940        INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
941    }
942#endif
943
944    /* Use a smaller cluster for small-memory machines */
945    if (megs < 16)
946        page_cluster = 2;
947    else
948        page_cluster = 3;
949    /*
950     * Right now other parts of the system means that we
951     * _really_ don't want to cluster much more
952     */
953}
954

Archive Download this file



interactive