Root/
1 | /* |
2 | * linux/mm/swap_state.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | * Swap reorganised 29.12.95, Stephen Tweedie |
6 | * |
7 | * Rewritten to use page cache, (C) 1998 Stephen Tweedie |
8 | */ |
9 | #include <linux/mm.h> |
10 | #include <linux/gfp.h> |
11 | #include <linux/kernel_stat.h> |
12 | #include <linux/swap.h> |
13 | #include <linux/swapops.h> |
14 | #include <linux/init.h> |
15 | #include <linux/pagemap.h> |
16 | #include <linux/backing-dev.h> |
17 | #include <linux/blkdev.h> |
18 | #include <linux/pagevec.h> |
19 | #include <linux/migrate.h> |
20 | #include <linux/page_cgroup.h> |
21 | |
22 | #include <asm/pgtable.h> |
23 | |
24 | /* |
25 | * swapper_space is a fiction, retained to simplify the path through |
26 | * vmscan's shrink_page_list. |
27 | */ |
28 | static const struct address_space_operations swap_aops = { |
29 | .writepage = swap_writepage, |
30 | .set_page_dirty = swap_set_page_dirty, |
31 | .migratepage = migrate_page, |
32 | }; |
33 | |
34 | static struct backing_dev_info swap_backing_dev_info = { |
35 | .name = "swap", |
36 | .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, |
37 | }; |
38 | |
39 | struct address_space swapper_spaces[MAX_SWAPFILES] = { |
40 | [0 ... MAX_SWAPFILES - 1] = { |
41 | .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), |
42 | .a_ops = &swap_aops, |
43 | .backing_dev_info = &swap_backing_dev_info, |
44 | } |
45 | }; |
46 | |
47 | #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) |
48 | |
49 | static struct { |
50 | unsigned long add_total; |
51 | unsigned long del_total; |
52 | unsigned long find_success; |
53 | unsigned long find_total; |
54 | } swap_cache_info; |
55 | |
56 | unsigned long total_swapcache_pages(void) |
57 | { |
58 | int i; |
59 | unsigned long ret = 0; |
60 | |
61 | for (i = 0; i < MAX_SWAPFILES; i++) |
62 | ret += swapper_spaces[i].nrpages; |
63 | return ret; |
64 | } |
65 | |
66 | void show_swap_cache_info(void) |
67 | { |
68 | printk("%lu pages in swap cache\n", total_swapcache_pages()); |
69 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", |
70 | swap_cache_info.add_total, swap_cache_info.del_total, |
71 | swap_cache_info.find_success, swap_cache_info.find_total); |
72 | printk("Free swap = %ldkB\n", |
73 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); |
74 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); |
75 | } |
76 | |
77 | /* |
78 | * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, |
79 | * but sets SwapCache flag and private instead of mapping and index. |
80 | */ |
81 | int __add_to_swap_cache(struct page *page, swp_entry_t entry) |
82 | { |
83 | int error; |
84 | struct address_space *address_space; |
85 | |
86 | VM_BUG_ON(!PageLocked(page)); |
87 | VM_BUG_ON(PageSwapCache(page)); |
88 | VM_BUG_ON(!PageSwapBacked(page)); |
89 | |
90 | page_cache_get(page); |
91 | SetPageSwapCache(page); |
92 | set_page_private(page, entry.val); |
93 | |
94 | address_space = swap_address_space(entry); |
95 | spin_lock_irq(&address_space->tree_lock); |
96 | error = radix_tree_insert(&address_space->page_tree, |
97 | entry.val, page); |
98 | if (likely(!error)) { |
99 | address_space->nrpages++; |
100 | __inc_zone_page_state(page, NR_FILE_PAGES); |
101 | INC_CACHE_INFO(add_total); |
102 | } |
103 | spin_unlock_irq(&address_space->tree_lock); |
104 | |
105 | if (unlikely(error)) { |
106 | /* |
107 | * Only the context which have set SWAP_HAS_CACHE flag |
108 | * would call add_to_swap_cache(). |
109 | * So add_to_swap_cache() doesn't returns -EEXIST. |
110 | */ |
111 | VM_BUG_ON(error == -EEXIST); |
112 | set_page_private(page, 0UL); |
113 | ClearPageSwapCache(page); |
114 | page_cache_release(page); |
115 | } |
116 | |
117 | return error; |
118 | } |
119 | |
120 | |
121 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) |
122 | { |
123 | int error; |
124 | |
125 | error = radix_tree_maybe_preload(gfp_mask); |
126 | if (!error) { |
127 | error = __add_to_swap_cache(page, entry); |
128 | radix_tree_preload_end(); |
129 | } |
130 | return error; |
131 | } |
132 | |
133 | /* |
134 | * This must be called only on pages that have |
135 | * been verified to be in the swap cache. |
136 | */ |
137 | void __delete_from_swap_cache(struct page *page) |
138 | { |
139 | swp_entry_t entry; |
140 | struct address_space *address_space; |
141 | |
142 | VM_BUG_ON(!PageLocked(page)); |
143 | VM_BUG_ON(!PageSwapCache(page)); |
144 | VM_BUG_ON(PageWriteback(page)); |
145 | |
146 | entry.val = page_private(page); |
147 | address_space = swap_address_space(entry); |
148 | radix_tree_delete(&address_space->page_tree, page_private(page)); |
149 | set_page_private(page, 0); |
150 | ClearPageSwapCache(page); |
151 | address_space->nrpages--; |
152 | __dec_zone_page_state(page, NR_FILE_PAGES); |
153 | INC_CACHE_INFO(del_total); |
154 | } |
155 | |
156 | /** |
157 | * add_to_swap - allocate swap space for a page |
158 | * @page: page we want to move to swap |
159 | * |
160 | * Allocate swap space for the page and add the page to the |
161 | * swap cache. Caller needs to hold the page lock. |
162 | */ |
163 | int add_to_swap(struct page *page, struct list_head *list) |
164 | { |
165 | swp_entry_t entry; |
166 | int err; |
167 | |
168 | VM_BUG_ON(!PageLocked(page)); |
169 | VM_BUG_ON(!PageUptodate(page)); |
170 | |
171 | entry = get_swap_page(); |
172 | if (!entry.val) |
173 | return 0; |
174 | |
175 | if (unlikely(PageTransHuge(page))) |
176 | if (unlikely(split_huge_page_to_list(page, list))) { |
177 | swapcache_free(entry, NULL); |
178 | return 0; |
179 | } |
180 | |
181 | /* |
182 | * Radix-tree node allocations from PF_MEMALLOC contexts could |
183 | * completely exhaust the page allocator. __GFP_NOMEMALLOC |
184 | * stops emergency reserves from being allocated. |
185 | * |
186 | * TODO: this could cause a theoretical memory reclaim |
187 | * deadlock in the swap out path. |
188 | */ |
189 | /* |
190 | * Add it to the swap cache and mark it dirty |
191 | */ |
192 | err = add_to_swap_cache(page, entry, |
193 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); |
194 | |
195 | if (!err) { /* Success */ |
196 | SetPageDirty(page); |
197 | return 1; |
198 | } else { /* -ENOMEM radix-tree allocation failure */ |
199 | /* |
200 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
201 | * clear SWAP_HAS_CACHE flag. |
202 | */ |
203 | swapcache_free(entry, NULL); |
204 | return 0; |
205 | } |
206 | } |
207 | |
208 | /* |
209 | * This must be called only on pages that have |
210 | * been verified to be in the swap cache and locked. |
211 | * It will never put the page into the free list, |
212 | * the caller has a reference on the page. |
213 | */ |
214 | void delete_from_swap_cache(struct page *page) |
215 | { |
216 | swp_entry_t entry; |
217 | struct address_space *address_space; |
218 | |
219 | entry.val = page_private(page); |
220 | |
221 | address_space = swap_address_space(entry); |
222 | spin_lock_irq(&address_space->tree_lock); |
223 | __delete_from_swap_cache(page); |
224 | spin_unlock_irq(&address_space->tree_lock); |
225 | |
226 | swapcache_free(entry, page); |
227 | page_cache_release(page); |
228 | } |
229 | |
230 | /* |
231 | * If we are the only user, then try to free up the swap cache. |
232 | * |
233 | * Its ok to check for PageSwapCache without the page lock |
234 | * here because we are going to recheck again inside |
235 | * try_to_free_swap() _with_ the lock. |
236 | * - Marcelo |
237 | */ |
238 | static inline void free_swap_cache(struct page *page) |
239 | { |
240 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { |
241 | try_to_free_swap(page); |
242 | unlock_page(page); |
243 | } |
244 | } |
245 | |
246 | /* |
247 | * Perform a free_page(), also freeing any swap cache associated with |
248 | * this page if it is the last user of the page. |
249 | */ |
250 | void free_page_and_swap_cache(struct page *page) |
251 | { |
252 | free_swap_cache(page); |
253 | page_cache_release(page); |
254 | } |
255 | |
256 | /* |
257 | * Passed an array of pages, drop them all from swapcache and then release |
258 | * them. They are removed from the LRU and freed if this is their last use. |
259 | */ |
260 | void free_pages_and_swap_cache(struct page **pages, int nr) |
261 | { |
262 | struct page **pagep = pages; |
263 | |
264 | lru_add_drain(); |
265 | while (nr) { |
266 | int todo = min(nr, PAGEVEC_SIZE); |
267 | int i; |
268 | |
269 | for (i = 0; i < todo; i++) |
270 | free_swap_cache(pagep[i]); |
271 | release_pages(pagep, todo, 0); |
272 | pagep += todo; |
273 | nr -= todo; |
274 | } |
275 | } |
276 | |
277 | /* |
278 | * Lookup a swap entry in the swap cache. A found page will be returned |
279 | * unlocked and with its refcount incremented - we rely on the kernel |
280 | * lock getting page table operations atomic even if we drop the page |
281 | * lock before returning. |
282 | */ |
283 | struct page * lookup_swap_cache(swp_entry_t entry) |
284 | { |
285 | struct page *page; |
286 | |
287 | page = find_get_page(swap_address_space(entry), entry.val); |
288 | |
289 | if (page) |
290 | INC_CACHE_INFO(find_success); |
291 | |
292 | INC_CACHE_INFO(find_total); |
293 | return page; |
294 | } |
295 | |
296 | /* |
297 | * Locate a page of swap in physical memory, reserving swap cache space |
298 | * and reading the disk if it is not already cached. |
299 | * A failure return means that either the page allocation failed or that |
300 | * the swap entry is no longer in use. |
301 | */ |
302 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, |
303 | struct vm_area_struct *vma, unsigned long addr) |
304 | { |
305 | struct page *found_page, *new_page = NULL; |
306 | int err; |
307 | |
308 | do { |
309 | /* |
310 | * First check the swap cache. Since this is normally |
311 | * called after lookup_swap_cache() failed, re-calling |
312 | * that would confuse statistics. |
313 | */ |
314 | found_page = find_get_page(swap_address_space(entry), |
315 | entry.val); |
316 | if (found_page) |
317 | break; |
318 | |
319 | /* |
320 | * Get a new page to read into from swap. |
321 | */ |
322 | if (!new_page) { |
323 | new_page = alloc_page_vma(gfp_mask, vma, addr); |
324 | if (!new_page) |
325 | break; /* Out of memory */ |
326 | } |
327 | |
328 | /* |
329 | * call radix_tree_preload() while we can wait. |
330 | */ |
331 | err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); |
332 | if (err) |
333 | break; |
334 | |
335 | /* |
336 | * Swap entry may have been freed since our caller observed it. |
337 | */ |
338 | err = swapcache_prepare(entry); |
339 | if (err == -EEXIST) { |
340 | radix_tree_preload_end(); |
341 | /* |
342 | * We might race against get_swap_page() and stumble |
343 | * across a SWAP_HAS_CACHE swap_map entry whose page |
344 | * has not been brought into the swapcache yet, while |
345 | * the other end is scheduled away waiting on discard |
346 | * I/O completion at scan_swap_map(). |
347 | * |
348 | * In order to avoid turning this transitory state |
349 | * into a permanent loop around this -EEXIST case |
350 | * if !CONFIG_PREEMPT and the I/O completion happens |
351 | * to be waiting on the CPU waitqueue where we are now |
352 | * busy looping, we just conditionally invoke the |
353 | * scheduler here, if there are some more important |
354 | * tasks to run. |
355 | */ |
356 | cond_resched(); |
357 | continue; |
358 | } |
359 | if (err) { /* swp entry is obsolete ? */ |
360 | radix_tree_preload_end(); |
361 | break; |
362 | } |
363 | |
364 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ |
365 | __set_page_locked(new_page); |
366 | SetPageSwapBacked(new_page); |
367 | err = __add_to_swap_cache(new_page, entry); |
368 | if (likely(!err)) { |
369 | radix_tree_preload_end(); |
370 | /* |
371 | * Initiate read into locked page and return. |
372 | */ |
373 | lru_cache_add_anon(new_page); |
374 | swap_readpage(new_page); |
375 | return new_page; |
376 | } |
377 | radix_tree_preload_end(); |
378 | ClearPageSwapBacked(new_page); |
379 | __clear_page_locked(new_page); |
380 | /* |
381 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely |
382 | * clear SWAP_HAS_CACHE flag. |
383 | */ |
384 | swapcache_free(entry, NULL); |
385 | } while (err != -ENOMEM); |
386 | |
387 | if (new_page) |
388 | page_cache_release(new_page); |
389 | return found_page; |
390 | } |
391 | |
392 | /** |
393 | * swapin_readahead - swap in pages in hope we need them soon |
394 | * @entry: swap entry of this memory |
395 | * @gfp_mask: memory allocation flags |
396 | * @vma: user vma this address belongs to |
397 | * @addr: target address for mempolicy |
398 | * |
399 | * Returns the struct page for entry and addr, after queueing swapin. |
400 | * |
401 | * Primitive swap readahead code. We simply read an aligned block of |
402 | * (1 << page_cluster) entries in the swap area. This method is chosen |
403 | * because it doesn't cost us any seek time. We also make sure to queue |
404 | * the 'original' request together with the readahead ones... |
405 | * |
406 | * This has been extended to use the NUMA policies from the mm triggering |
407 | * the readahead. |
408 | * |
409 | * Caller must hold down_read on the vma->vm_mm if vma is not NULL. |
410 | */ |
411 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, |
412 | struct vm_area_struct *vma, unsigned long addr) |
413 | { |
414 | struct page *page; |
415 | unsigned long offset = swp_offset(entry); |
416 | unsigned long start_offset, end_offset; |
417 | unsigned long mask = (1UL << page_cluster) - 1; |
418 | struct blk_plug plug; |
419 | |
420 | /* Read a page_cluster sized and aligned cluster around offset. */ |
421 | start_offset = offset & ~mask; |
422 | end_offset = offset | mask; |
423 | if (!start_offset) /* First page is swap header. */ |
424 | start_offset++; |
425 | |
426 | blk_start_plug(&plug); |
427 | for (offset = start_offset; offset <= end_offset ; offset++) { |
428 | /* Ok, do the async read-ahead now */ |
429 | page = read_swap_cache_async(swp_entry(swp_type(entry), offset), |
430 | gfp_mask, vma, addr); |
431 | if (!page) |
432 | continue; |
433 | page_cache_release(page); |
434 | } |
435 | blk_finish_plug(&plug); |
436 | |
437 | lru_add_drain(); /* Push any new pages onto the LRU now */ |
438 | return read_swap_cache_async(entry, gfp_mask, vma, addr); |
439 | } |
440 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9