Root/
1 | /* |
2 | * linux/mm/swapfile.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | * Swap reorganised 29.12.95, Stephen Tweedie |
6 | */ |
7 | |
8 | #include <linux/mm.h> |
9 | #include <linux/hugetlb.h> |
10 | #include <linux/mman.h> |
11 | #include <linux/slab.h> |
12 | #include <linux/kernel_stat.h> |
13 | #include <linux/swap.h> |
14 | #include <linux/vmalloc.h> |
15 | #include <linux/pagemap.h> |
16 | #include <linux/namei.h> |
17 | #include <linux/shmem_fs.h> |
18 | #include <linux/blkdev.h> |
19 | #include <linux/random.h> |
20 | #include <linux/writeback.h> |
21 | #include <linux/proc_fs.h> |
22 | #include <linux/seq_file.h> |
23 | #include <linux/init.h> |
24 | #include <linux/ksm.h> |
25 | #include <linux/rmap.h> |
26 | #include <linux/security.h> |
27 | #include <linux/backing-dev.h> |
28 | #include <linux/mutex.h> |
29 | #include <linux/capability.h> |
30 | #include <linux/syscalls.h> |
31 | #include <linux/memcontrol.h> |
32 | #include <linux/poll.h> |
33 | #include <linux/oom.h> |
34 | #include <linux/frontswap.h> |
35 | #include <linux/swapfile.h> |
36 | #include <linux/export.h> |
37 | |
38 | #include <asm/pgtable.h> |
39 | #include <asm/tlbflush.h> |
40 | #include <linux/swapops.h> |
41 | #include <linux/page_cgroup.h> |
42 | |
43 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, |
44 | unsigned char); |
45 | static void free_swap_count_continuations(struct swap_info_struct *); |
46 | static sector_t map_swap_entry(swp_entry_t, struct block_device**); |
47 | |
48 | DEFINE_SPINLOCK(swap_lock); |
49 | static unsigned int nr_swapfiles; |
50 | atomic_long_t nr_swap_pages; |
51 | /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ |
52 | long total_swap_pages; |
53 | static int least_priority; |
54 | static atomic_t highest_priority_index = ATOMIC_INIT(-1); |
55 | |
56 | static const char Bad_file[] = "Bad swap file entry "; |
57 | static const char Unused_file[] = "Unused swap file entry "; |
58 | static const char Bad_offset[] = "Bad swap offset entry "; |
59 | static const char Unused_offset[] = "Unused swap offset entry "; |
60 | |
61 | struct swap_list_t swap_list = {-1, -1}; |
62 | |
63 | struct swap_info_struct *swap_info[MAX_SWAPFILES]; |
64 | |
65 | static DEFINE_MUTEX(swapon_mutex); |
66 | |
67 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); |
68 | /* Activity counter to indicate that a swapon or swapoff has occurred */ |
69 | static atomic_t proc_poll_event = ATOMIC_INIT(0); |
70 | |
71 | static inline unsigned char swap_count(unsigned char ent) |
72 | { |
73 | return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ |
74 | } |
75 | |
76 | /* returns 1 if swap entry is freed */ |
77 | static int |
78 | __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) |
79 | { |
80 | swp_entry_t entry = swp_entry(si->type, offset); |
81 | struct page *page; |
82 | int ret = 0; |
83 | |
84 | page = find_get_page(swap_address_space(entry), entry.val); |
85 | if (!page) |
86 | return 0; |
87 | /* |
88 | * This function is called from scan_swap_map() and it's called |
89 | * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. |
90 | * We have to use trylock for avoiding deadlock. This is a special |
91 | * case and you should use try_to_free_swap() with explicit lock_page() |
92 | * in usual operations. |
93 | */ |
94 | if (trylock_page(page)) { |
95 | ret = try_to_free_swap(page); |
96 | unlock_page(page); |
97 | } |
98 | page_cache_release(page); |
99 | return ret; |
100 | } |
101 | |
102 | /* |
103 | * swapon tell device that all the old swap contents can be discarded, |
104 | * to allow the swap device to optimize its wear-levelling. |
105 | */ |
106 | static int discard_swap(struct swap_info_struct *si) |
107 | { |
108 | struct swap_extent *se; |
109 | sector_t start_block; |
110 | sector_t nr_blocks; |
111 | int err = 0; |
112 | |
113 | /* Do not discard the swap header page! */ |
114 | se = &si->first_swap_extent; |
115 | start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); |
116 | nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); |
117 | if (nr_blocks) { |
118 | err = blkdev_issue_discard(si->bdev, start_block, |
119 | nr_blocks, GFP_KERNEL, 0); |
120 | if (err) |
121 | return err; |
122 | cond_resched(); |
123 | } |
124 | |
125 | list_for_each_entry(se, &si->first_swap_extent.list, list) { |
126 | start_block = se->start_block << (PAGE_SHIFT - 9); |
127 | nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); |
128 | |
129 | err = blkdev_issue_discard(si->bdev, start_block, |
130 | nr_blocks, GFP_KERNEL, 0); |
131 | if (err) |
132 | break; |
133 | |
134 | cond_resched(); |
135 | } |
136 | return err; /* That will often be -EOPNOTSUPP */ |
137 | } |
138 | |
139 | /* |
140 | * swap allocation tell device that a cluster of swap can now be discarded, |
141 | * to allow the swap device to optimize its wear-levelling. |
142 | */ |
143 | static void discard_swap_cluster(struct swap_info_struct *si, |
144 | pgoff_t start_page, pgoff_t nr_pages) |
145 | { |
146 | struct swap_extent *se = si->curr_swap_extent; |
147 | int found_extent = 0; |
148 | |
149 | while (nr_pages) { |
150 | struct list_head *lh; |
151 | |
152 | if (se->start_page <= start_page && |
153 | start_page < se->start_page + se->nr_pages) { |
154 | pgoff_t offset = start_page - se->start_page; |
155 | sector_t start_block = se->start_block + offset; |
156 | sector_t nr_blocks = se->nr_pages - offset; |
157 | |
158 | if (nr_blocks > nr_pages) |
159 | nr_blocks = nr_pages; |
160 | start_page += nr_blocks; |
161 | nr_pages -= nr_blocks; |
162 | |
163 | if (!found_extent++) |
164 | si->curr_swap_extent = se; |
165 | |
166 | start_block <<= PAGE_SHIFT - 9; |
167 | nr_blocks <<= PAGE_SHIFT - 9; |
168 | if (blkdev_issue_discard(si->bdev, start_block, |
169 | nr_blocks, GFP_NOIO, 0)) |
170 | break; |
171 | } |
172 | |
173 | lh = se->list.next; |
174 | se = list_entry(lh, struct swap_extent, list); |
175 | } |
176 | } |
177 | |
178 | #define SWAPFILE_CLUSTER 256 |
179 | #define LATENCY_LIMIT 256 |
180 | |
181 | static inline void cluster_set_flag(struct swap_cluster_info *info, |
182 | unsigned int flag) |
183 | { |
184 | info->flags = flag; |
185 | } |
186 | |
187 | static inline unsigned int cluster_count(struct swap_cluster_info *info) |
188 | { |
189 | return info->data; |
190 | } |
191 | |
192 | static inline void cluster_set_count(struct swap_cluster_info *info, |
193 | unsigned int c) |
194 | { |
195 | info->data = c; |
196 | } |
197 | |
198 | static inline void cluster_set_count_flag(struct swap_cluster_info *info, |
199 | unsigned int c, unsigned int f) |
200 | { |
201 | info->flags = f; |
202 | info->data = c; |
203 | } |
204 | |
205 | static inline unsigned int cluster_next(struct swap_cluster_info *info) |
206 | { |
207 | return info->data; |
208 | } |
209 | |
210 | static inline void cluster_set_next(struct swap_cluster_info *info, |
211 | unsigned int n) |
212 | { |
213 | info->data = n; |
214 | } |
215 | |
216 | static inline void cluster_set_next_flag(struct swap_cluster_info *info, |
217 | unsigned int n, unsigned int f) |
218 | { |
219 | info->flags = f; |
220 | info->data = n; |
221 | } |
222 | |
223 | static inline bool cluster_is_free(struct swap_cluster_info *info) |
224 | { |
225 | return info->flags & CLUSTER_FLAG_FREE; |
226 | } |
227 | |
228 | static inline bool cluster_is_null(struct swap_cluster_info *info) |
229 | { |
230 | return info->flags & CLUSTER_FLAG_NEXT_NULL; |
231 | } |
232 | |
233 | static inline void cluster_set_null(struct swap_cluster_info *info) |
234 | { |
235 | info->flags = CLUSTER_FLAG_NEXT_NULL; |
236 | info->data = 0; |
237 | } |
238 | |
239 | /* Add a cluster to discard list and schedule it to do discard */ |
240 | static void swap_cluster_schedule_discard(struct swap_info_struct *si, |
241 | unsigned int idx) |
242 | { |
243 | /* |
244 | * If scan_swap_map() can't find a free cluster, it will check |
245 | * si->swap_map directly. To make sure the discarding cluster isn't |
246 | * taken by scan_swap_map(), mark the swap entries bad (occupied). It |
247 | * will be cleared after discard |
248 | */ |
249 | memset(si->swap_map + idx * SWAPFILE_CLUSTER, |
250 | SWAP_MAP_BAD, SWAPFILE_CLUSTER); |
251 | |
252 | if (cluster_is_null(&si->discard_cluster_head)) { |
253 | cluster_set_next_flag(&si->discard_cluster_head, |
254 | idx, 0); |
255 | cluster_set_next_flag(&si->discard_cluster_tail, |
256 | idx, 0); |
257 | } else { |
258 | unsigned int tail = cluster_next(&si->discard_cluster_tail); |
259 | cluster_set_next(&si->cluster_info[tail], idx); |
260 | cluster_set_next_flag(&si->discard_cluster_tail, |
261 | idx, 0); |
262 | } |
263 | |
264 | schedule_work(&si->discard_work); |
265 | } |
266 | |
267 | /* |
268 | * Doing discard actually. After a cluster discard is finished, the cluster |
269 | * will be added to free cluster list. caller should hold si->lock. |
270 | */ |
271 | static void swap_do_scheduled_discard(struct swap_info_struct *si) |
272 | { |
273 | struct swap_cluster_info *info; |
274 | unsigned int idx; |
275 | |
276 | info = si->cluster_info; |
277 | |
278 | while (!cluster_is_null(&si->discard_cluster_head)) { |
279 | idx = cluster_next(&si->discard_cluster_head); |
280 | |
281 | cluster_set_next_flag(&si->discard_cluster_head, |
282 | cluster_next(&info[idx]), 0); |
283 | if (cluster_next(&si->discard_cluster_tail) == idx) { |
284 | cluster_set_null(&si->discard_cluster_head); |
285 | cluster_set_null(&si->discard_cluster_tail); |
286 | } |
287 | spin_unlock(&si->lock); |
288 | |
289 | discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, |
290 | SWAPFILE_CLUSTER); |
291 | |
292 | spin_lock(&si->lock); |
293 | cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); |
294 | if (cluster_is_null(&si->free_cluster_head)) { |
295 | cluster_set_next_flag(&si->free_cluster_head, |
296 | idx, 0); |
297 | cluster_set_next_flag(&si->free_cluster_tail, |
298 | idx, 0); |
299 | } else { |
300 | unsigned int tail; |
301 | |
302 | tail = cluster_next(&si->free_cluster_tail); |
303 | cluster_set_next(&info[tail], idx); |
304 | cluster_set_next_flag(&si->free_cluster_tail, |
305 | idx, 0); |
306 | } |
307 | memset(si->swap_map + idx * SWAPFILE_CLUSTER, |
308 | 0, SWAPFILE_CLUSTER); |
309 | } |
310 | } |
311 | |
312 | static void swap_discard_work(struct work_struct *work) |
313 | { |
314 | struct swap_info_struct *si; |
315 | |
316 | si = container_of(work, struct swap_info_struct, discard_work); |
317 | |
318 | spin_lock(&si->lock); |
319 | swap_do_scheduled_discard(si); |
320 | spin_unlock(&si->lock); |
321 | } |
322 | |
323 | /* |
324 | * The cluster corresponding to page_nr will be used. The cluster will be |
325 | * removed from free cluster list and its usage counter will be increased. |
326 | */ |
327 | static void inc_cluster_info_page(struct swap_info_struct *p, |
328 | struct swap_cluster_info *cluster_info, unsigned long page_nr) |
329 | { |
330 | unsigned long idx = page_nr / SWAPFILE_CLUSTER; |
331 | |
332 | if (!cluster_info) |
333 | return; |
334 | if (cluster_is_free(&cluster_info[idx])) { |
335 | VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); |
336 | cluster_set_next_flag(&p->free_cluster_head, |
337 | cluster_next(&cluster_info[idx]), 0); |
338 | if (cluster_next(&p->free_cluster_tail) == idx) { |
339 | cluster_set_null(&p->free_cluster_tail); |
340 | cluster_set_null(&p->free_cluster_head); |
341 | } |
342 | cluster_set_count_flag(&cluster_info[idx], 0, 0); |
343 | } |
344 | |
345 | VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); |
346 | cluster_set_count(&cluster_info[idx], |
347 | cluster_count(&cluster_info[idx]) + 1); |
348 | } |
349 | |
350 | /* |
351 | * The cluster corresponding to page_nr decreases one usage. If the usage |
352 | * counter becomes 0, which means no page in the cluster is in using, we can |
353 | * optionally discard the cluster and add it to free cluster list. |
354 | */ |
355 | static void dec_cluster_info_page(struct swap_info_struct *p, |
356 | struct swap_cluster_info *cluster_info, unsigned long page_nr) |
357 | { |
358 | unsigned long idx = page_nr / SWAPFILE_CLUSTER; |
359 | |
360 | if (!cluster_info) |
361 | return; |
362 | |
363 | VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); |
364 | cluster_set_count(&cluster_info[idx], |
365 | cluster_count(&cluster_info[idx]) - 1); |
366 | |
367 | if (cluster_count(&cluster_info[idx]) == 0) { |
368 | /* |
369 | * If the swap is discardable, prepare discard the cluster |
370 | * instead of free it immediately. The cluster will be freed |
371 | * after discard. |
372 | */ |
373 | if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == |
374 | (SWP_WRITEOK | SWP_PAGE_DISCARD)) { |
375 | swap_cluster_schedule_discard(p, idx); |
376 | return; |
377 | } |
378 | |
379 | cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); |
380 | if (cluster_is_null(&p->free_cluster_head)) { |
381 | cluster_set_next_flag(&p->free_cluster_head, idx, 0); |
382 | cluster_set_next_flag(&p->free_cluster_tail, idx, 0); |
383 | } else { |
384 | unsigned int tail = cluster_next(&p->free_cluster_tail); |
385 | cluster_set_next(&cluster_info[tail], idx); |
386 | cluster_set_next_flag(&p->free_cluster_tail, idx, 0); |
387 | } |
388 | } |
389 | } |
390 | |
391 | /* |
392 | * It's possible scan_swap_map() uses a free cluster in the middle of free |
393 | * cluster list. Avoiding such abuse to avoid list corruption. |
394 | */ |
395 | static bool |
396 | scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, |
397 | unsigned long offset) |
398 | { |
399 | struct percpu_cluster *percpu_cluster; |
400 | bool conflict; |
401 | |
402 | offset /= SWAPFILE_CLUSTER; |
403 | conflict = !cluster_is_null(&si->free_cluster_head) && |
404 | offset != cluster_next(&si->free_cluster_head) && |
405 | cluster_is_free(&si->cluster_info[offset]); |
406 | |
407 | if (!conflict) |
408 | return false; |
409 | |
410 | percpu_cluster = this_cpu_ptr(si->percpu_cluster); |
411 | cluster_set_null(&percpu_cluster->index); |
412 | return true; |
413 | } |
414 | |
415 | /* |
416 | * Try to get a swap entry from current cpu's swap entry pool (a cluster). This |
417 | * might involve allocating a new cluster for current CPU too. |
418 | */ |
419 | static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, |
420 | unsigned long *offset, unsigned long *scan_base) |
421 | { |
422 | struct percpu_cluster *cluster; |
423 | bool found_free; |
424 | unsigned long tmp; |
425 | |
426 | new_cluster: |
427 | cluster = this_cpu_ptr(si->percpu_cluster); |
428 | if (cluster_is_null(&cluster->index)) { |
429 | if (!cluster_is_null(&si->free_cluster_head)) { |
430 | cluster->index = si->free_cluster_head; |
431 | cluster->next = cluster_next(&cluster->index) * |
432 | SWAPFILE_CLUSTER; |
433 | } else if (!cluster_is_null(&si->discard_cluster_head)) { |
434 | /* |
435 | * we don't have free cluster but have some clusters in |
436 | * discarding, do discard now and reclaim them |
437 | */ |
438 | swap_do_scheduled_discard(si); |
439 | *scan_base = *offset = si->cluster_next; |
440 | goto new_cluster; |
441 | } else |
442 | return; |
443 | } |
444 | |
445 | found_free = false; |
446 | |
447 | /* |
448 | * Other CPUs can use our cluster if they can't find a free cluster, |
449 | * check if there is still free entry in the cluster |
450 | */ |
451 | tmp = cluster->next; |
452 | while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * |
453 | SWAPFILE_CLUSTER) { |
454 | if (!si->swap_map[tmp]) { |
455 | found_free = true; |
456 | break; |
457 | } |
458 | tmp++; |
459 | } |
460 | if (!found_free) { |
461 | cluster_set_null(&cluster->index); |
462 | goto new_cluster; |
463 | } |
464 | cluster->next = tmp + 1; |
465 | *offset = tmp; |
466 | *scan_base = tmp; |
467 | } |
468 | |
469 | static unsigned long scan_swap_map(struct swap_info_struct *si, |
470 | unsigned char usage) |
471 | { |
472 | unsigned long offset; |
473 | unsigned long scan_base; |
474 | unsigned long last_in_cluster = 0; |
475 | int latency_ration = LATENCY_LIMIT; |
476 | |
477 | /* |
478 | * We try to cluster swap pages by allocating them sequentially |
479 | * in swap. Once we've allocated SWAPFILE_CLUSTER pages this |
480 | * way, however, we resort to first-free allocation, starting |
481 | * a new cluster. This prevents us from scattering swap pages |
482 | * all over the entire swap partition, so that we reduce |
483 | * overall disk seek times between swap pages. -- sct |
484 | * But we do now try to find an empty cluster. -Andrea |
485 | * And we let swap pages go all over an SSD partition. Hugh |
486 | */ |
487 | |
488 | si->flags += SWP_SCANNING; |
489 | scan_base = offset = si->cluster_next; |
490 | |
491 | /* SSD algorithm */ |
492 | if (si->cluster_info) { |
493 | scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); |
494 | goto checks; |
495 | } |
496 | |
497 | if (unlikely(!si->cluster_nr--)) { |
498 | if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { |
499 | si->cluster_nr = SWAPFILE_CLUSTER - 1; |
500 | goto checks; |
501 | } |
502 | |
503 | spin_unlock(&si->lock); |
504 | |
505 | /* |
506 | * If seek is expensive, start searching for new cluster from |
507 | * start of partition, to minimize the span of allocated swap. |
508 | * But if seek is cheap, search from our current position, so |
509 | * that swap is allocated from all over the partition: if the |
510 | * Flash Translation Layer only remaps within limited zones, |
511 | * we don't want to wear out the first zone too quickly. |
512 | */ |
513 | if (!(si->flags & SWP_SOLIDSTATE)) |
514 | scan_base = offset = si->lowest_bit; |
515 | last_in_cluster = offset + SWAPFILE_CLUSTER - 1; |
516 | |
517 | /* Locate the first empty (unaligned) cluster */ |
518 | for (; last_in_cluster <= si->highest_bit; offset++) { |
519 | if (si->swap_map[offset]) |
520 | last_in_cluster = offset + SWAPFILE_CLUSTER; |
521 | else if (offset == last_in_cluster) { |
522 | spin_lock(&si->lock); |
523 | offset -= SWAPFILE_CLUSTER - 1; |
524 | si->cluster_next = offset; |
525 | si->cluster_nr = SWAPFILE_CLUSTER - 1; |
526 | goto checks; |
527 | } |
528 | if (unlikely(--latency_ration < 0)) { |
529 | cond_resched(); |
530 | latency_ration = LATENCY_LIMIT; |
531 | } |
532 | } |
533 | |
534 | offset = si->lowest_bit; |
535 | last_in_cluster = offset + SWAPFILE_CLUSTER - 1; |
536 | |
537 | /* Locate the first empty (unaligned) cluster */ |
538 | for (; last_in_cluster < scan_base; offset++) { |
539 | if (si->swap_map[offset]) |
540 | last_in_cluster = offset + SWAPFILE_CLUSTER; |
541 | else if (offset == last_in_cluster) { |
542 | spin_lock(&si->lock); |
543 | offset -= SWAPFILE_CLUSTER - 1; |
544 | si->cluster_next = offset; |
545 | si->cluster_nr = SWAPFILE_CLUSTER - 1; |
546 | goto checks; |
547 | } |
548 | if (unlikely(--latency_ration < 0)) { |
549 | cond_resched(); |
550 | latency_ration = LATENCY_LIMIT; |
551 | } |
552 | } |
553 | |
554 | offset = scan_base; |
555 | spin_lock(&si->lock); |
556 | si->cluster_nr = SWAPFILE_CLUSTER - 1; |
557 | } |
558 | |
559 | checks: |
560 | if (si->cluster_info) { |
561 | while (scan_swap_map_ssd_cluster_conflict(si, offset)) |
562 | scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); |
563 | } |
564 | if (!(si->flags & SWP_WRITEOK)) |
565 | goto no_page; |
566 | if (!si->highest_bit) |
567 | goto no_page; |
568 | if (offset > si->highest_bit) |
569 | scan_base = offset = si->lowest_bit; |
570 | |
571 | /* reuse swap entry of cache-only swap if not busy. */ |
572 | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { |
573 | int swap_was_freed; |
574 | spin_unlock(&si->lock); |
575 | swap_was_freed = __try_to_reclaim_swap(si, offset); |
576 | spin_lock(&si->lock); |
577 | /* entry was freed successfully, try to use this again */ |
578 | if (swap_was_freed) |
579 | goto checks; |
580 | goto scan; /* check next one */ |
581 | } |
582 | |
583 | if (si->swap_map[offset]) |
584 | goto scan; |
585 | |
586 | if (offset == si->lowest_bit) |
587 | si->lowest_bit++; |
588 | if (offset == si->highest_bit) |
589 | si->highest_bit--; |
590 | si->inuse_pages++; |
591 | if (si->inuse_pages == si->pages) { |
592 | si->lowest_bit = si->max; |
593 | si->highest_bit = 0; |
594 | } |
595 | si->swap_map[offset] = usage; |
596 | inc_cluster_info_page(si, si->cluster_info, offset); |
597 | si->cluster_next = offset + 1; |
598 | si->flags -= SWP_SCANNING; |
599 | |
600 | return offset; |
601 | |
602 | scan: |
603 | spin_unlock(&si->lock); |
604 | while (++offset <= si->highest_bit) { |
605 | if (!si->swap_map[offset]) { |
606 | spin_lock(&si->lock); |
607 | goto checks; |
608 | } |
609 | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { |
610 | spin_lock(&si->lock); |
611 | goto checks; |
612 | } |
613 | if (unlikely(--latency_ration < 0)) { |
614 | cond_resched(); |
615 | latency_ration = LATENCY_LIMIT; |
616 | } |
617 | } |
618 | offset = si->lowest_bit; |
619 | while (++offset < scan_base) { |
620 | if (!si->swap_map[offset]) { |
621 | spin_lock(&si->lock); |
622 | goto checks; |
623 | } |
624 | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { |
625 | spin_lock(&si->lock); |
626 | goto checks; |
627 | } |
628 | if (unlikely(--latency_ration < 0)) { |
629 | cond_resched(); |
630 | latency_ration = LATENCY_LIMIT; |
631 | } |
632 | } |
633 | spin_lock(&si->lock); |
634 | |
635 | no_page: |
636 | si->flags -= SWP_SCANNING; |
637 | return 0; |
638 | } |
639 | |
640 | swp_entry_t get_swap_page(void) |
641 | { |
642 | struct swap_info_struct *si; |
643 | pgoff_t offset; |
644 | int type, next; |
645 | int wrapped = 0; |
646 | int hp_index; |
647 | |
648 | spin_lock(&swap_lock); |
649 | if (atomic_long_read(&nr_swap_pages) <= 0) |
650 | goto noswap; |
651 | atomic_long_dec(&nr_swap_pages); |
652 | |
653 | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { |
654 | hp_index = atomic_xchg(&highest_priority_index, -1); |
655 | /* |
656 | * highest_priority_index records current highest priority swap |
657 | * type which just frees swap entries. If its priority is |
658 | * higher than that of swap_list.next swap type, we use it. It |
659 | * isn't protected by swap_lock, so it can be an invalid value |
660 | * if the corresponding swap type is swapoff. We double check |
661 | * the flags here. It's even possible the swap type is swapoff |
662 | * and swapon again and its priority is changed. In such rare |
663 | * case, low prority swap type might be used, but eventually |
664 | * high priority swap will be used after several rounds of |
665 | * swap. |
666 | */ |
667 | if (hp_index != -1 && hp_index != type && |
668 | swap_info[type]->prio < swap_info[hp_index]->prio && |
669 | (swap_info[hp_index]->flags & SWP_WRITEOK)) { |
670 | type = hp_index; |
671 | swap_list.next = type; |
672 | } |
673 | |
674 | si = swap_info[type]; |
675 | next = si->next; |
676 | if (next < 0 || |
677 | (!wrapped && si->prio != swap_info[next]->prio)) { |
678 | next = swap_list.head; |
679 | wrapped++; |
680 | } |
681 | |
682 | spin_lock(&si->lock); |
683 | if (!si->highest_bit) { |
684 | spin_unlock(&si->lock); |
685 | continue; |
686 | } |
687 | if (!(si->flags & SWP_WRITEOK)) { |
688 | spin_unlock(&si->lock); |
689 | continue; |
690 | } |
691 | |
692 | swap_list.next = next; |
693 | |
694 | spin_unlock(&swap_lock); |
695 | /* This is called for allocating swap entry for cache */ |
696 | offset = scan_swap_map(si, SWAP_HAS_CACHE); |
697 | spin_unlock(&si->lock); |
698 | if (offset) |
699 | return swp_entry(type, offset); |
700 | spin_lock(&swap_lock); |
701 | next = swap_list.next; |
702 | } |
703 | |
704 | atomic_long_inc(&nr_swap_pages); |
705 | noswap: |
706 | spin_unlock(&swap_lock); |
707 | return (swp_entry_t) {0}; |
708 | } |
709 | |
710 | /* The only caller of this function is now susupend routine */ |
711 | swp_entry_t get_swap_page_of_type(int type) |
712 | { |
713 | struct swap_info_struct *si; |
714 | pgoff_t offset; |
715 | |
716 | si = swap_info[type]; |
717 | spin_lock(&si->lock); |
718 | if (si && (si->flags & SWP_WRITEOK)) { |
719 | atomic_long_dec(&nr_swap_pages); |
720 | /* This is called for allocating swap entry, not cache */ |
721 | offset = scan_swap_map(si, 1); |
722 | if (offset) { |
723 | spin_unlock(&si->lock); |
724 | return swp_entry(type, offset); |
725 | } |
726 | atomic_long_inc(&nr_swap_pages); |
727 | } |
728 | spin_unlock(&si->lock); |
729 | return (swp_entry_t) {0}; |
730 | } |
731 | |
732 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) |
733 | { |
734 | struct swap_info_struct *p; |
735 | unsigned long offset, type; |
736 | |
737 | if (!entry.val) |
738 | goto out; |
739 | type = swp_type(entry); |
740 | if (type >= nr_swapfiles) |
741 | goto bad_nofile; |
742 | p = swap_info[type]; |
743 | if (!(p->flags & SWP_USED)) |
744 | goto bad_device; |
745 | offset = swp_offset(entry); |
746 | if (offset >= p->max) |
747 | goto bad_offset; |
748 | if (!p->swap_map[offset]) |
749 | goto bad_free; |
750 | spin_lock(&p->lock); |
751 | return p; |
752 | |
753 | bad_free: |
754 | pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); |
755 | goto out; |
756 | bad_offset: |
757 | pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); |
758 | goto out; |
759 | bad_device: |
760 | pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); |
761 | goto out; |
762 | bad_nofile: |
763 | pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); |
764 | out: |
765 | return NULL; |
766 | } |
767 | |
768 | /* |
769 | * This swap type frees swap entry, check if it is the highest priority swap |
770 | * type which just frees swap entry. get_swap_page() uses |
771 | * highest_priority_index to search highest priority swap type. The |
772 | * swap_info_struct.lock can't protect us if there are multiple swap types |
773 | * active, so we use atomic_cmpxchg. |
774 | */ |
775 | static void set_highest_priority_index(int type) |
776 | { |
777 | int old_hp_index, new_hp_index; |
778 | |
779 | do { |
780 | old_hp_index = atomic_read(&highest_priority_index); |
781 | if (old_hp_index != -1 && |
782 | swap_info[old_hp_index]->prio >= swap_info[type]->prio) |
783 | break; |
784 | new_hp_index = type; |
785 | } while (atomic_cmpxchg(&highest_priority_index, |
786 | old_hp_index, new_hp_index) != old_hp_index); |
787 | } |
788 | |
789 | static unsigned char swap_entry_free(struct swap_info_struct *p, |
790 | swp_entry_t entry, unsigned char usage) |
791 | { |
792 | unsigned long offset = swp_offset(entry); |
793 | unsigned char count; |
794 | unsigned char has_cache; |
795 | |
796 | count = p->swap_map[offset]; |
797 | has_cache = count & SWAP_HAS_CACHE; |
798 | count &= ~SWAP_HAS_CACHE; |
799 | |
800 | if (usage == SWAP_HAS_CACHE) { |
801 | VM_BUG_ON(!has_cache); |
802 | has_cache = 0; |
803 | } else if (count == SWAP_MAP_SHMEM) { |
804 | /* |
805 | * Or we could insist on shmem.c using a special |
806 | * swap_shmem_free() and free_shmem_swap_and_cache()... |
807 | */ |
808 | count = 0; |
809 | } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { |
810 | if (count == COUNT_CONTINUED) { |
811 | if (swap_count_continued(p, offset, count)) |
812 | count = SWAP_MAP_MAX | COUNT_CONTINUED; |
813 | else |
814 | count = SWAP_MAP_MAX; |
815 | } else |
816 | count--; |
817 | } |
818 | |
819 | if (!count) |
820 | mem_cgroup_uncharge_swap(entry); |
821 | |
822 | usage = count | has_cache; |
823 | p->swap_map[offset] = usage; |
824 | |
825 | /* free if no reference */ |
826 | if (!usage) { |
827 | dec_cluster_info_page(p, p->cluster_info, offset); |
828 | if (offset < p->lowest_bit) |
829 | p->lowest_bit = offset; |
830 | if (offset > p->highest_bit) |
831 | p->highest_bit = offset; |
832 | set_highest_priority_index(p->type); |
833 | atomic_long_inc(&nr_swap_pages); |
834 | p->inuse_pages--; |
835 | frontswap_invalidate_page(p->type, offset); |
836 | if (p->flags & SWP_BLKDEV) { |
837 | struct gendisk *disk = p->bdev->bd_disk; |
838 | if (disk->fops->swap_slot_free_notify) |
839 | disk->fops->swap_slot_free_notify(p->bdev, |
840 | offset); |
841 | } |
842 | } |
843 | |
844 | return usage; |
845 | } |
846 | |
847 | /* |
848 | * Caller has made sure that the swapdevice corresponding to entry |
849 | * is still around or has not been recycled. |
850 | */ |
851 | void swap_free(swp_entry_t entry) |
852 | { |
853 | struct swap_info_struct *p; |
854 | |
855 | p = swap_info_get(entry); |
856 | if (p) { |
857 | swap_entry_free(p, entry, 1); |
858 | spin_unlock(&p->lock); |
859 | } |
860 | } |
861 | |
862 | /* |
863 | * Called after dropping swapcache to decrease refcnt to swap entries. |
864 | */ |
865 | void swapcache_free(swp_entry_t entry, struct page *page) |
866 | { |
867 | struct swap_info_struct *p; |
868 | unsigned char count; |
869 | |
870 | p = swap_info_get(entry); |
871 | if (p) { |
872 | count = swap_entry_free(p, entry, SWAP_HAS_CACHE); |
873 | if (page) |
874 | mem_cgroup_uncharge_swapcache(page, entry, count != 0); |
875 | spin_unlock(&p->lock); |
876 | } |
877 | } |
878 | |
879 | /* |
880 | * How many references to page are currently swapped out? |
881 | * This does not give an exact answer when swap count is continued, |
882 | * but does include the high COUNT_CONTINUED flag to allow for that. |
883 | */ |
884 | int page_swapcount(struct page *page) |
885 | { |
886 | int count = 0; |
887 | struct swap_info_struct *p; |
888 | swp_entry_t entry; |
889 | |
890 | entry.val = page_private(page); |
891 | p = swap_info_get(entry); |
892 | if (p) { |
893 | count = swap_count(p->swap_map[swp_offset(entry)]); |
894 | spin_unlock(&p->lock); |
895 | } |
896 | return count; |
897 | } |
898 | |
899 | /* |
900 | * We can write to an anon page without COW if there are no other references |
901 | * to it. And as a side-effect, free up its swap: because the old content |
902 | * on disk will never be read, and seeking back there to write new content |
903 | * later would only waste time away from clustering. |
904 | */ |
905 | int reuse_swap_page(struct page *page) |
906 | { |
907 | int count; |
908 | |
909 | VM_BUG_ON(!PageLocked(page)); |
910 | if (unlikely(PageKsm(page))) |
911 | return 0; |
912 | count = page_mapcount(page); |
913 | if (count <= 1 && PageSwapCache(page)) { |
914 | count += page_swapcount(page); |
915 | if (count == 1 && !PageWriteback(page)) { |
916 | delete_from_swap_cache(page); |
917 | SetPageDirty(page); |
918 | } |
919 | } |
920 | return count <= 1; |
921 | } |
922 | |
923 | /* |
924 | * If swap is getting full, or if there are no more mappings of this page, |
925 | * then try_to_free_swap is called to free its swap space. |
926 | */ |
927 | int try_to_free_swap(struct page *page) |
928 | { |
929 | VM_BUG_ON(!PageLocked(page)); |
930 | |
931 | if (!PageSwapCache(page)) |
932 | return 0; |
933 | if (PageWriteback(page)) |
934 | return 0; |
935 | if (page_swapcount(page)) |
936 | return 0; |
937 | |
938 | /* |
939 | * Once hibernation has begun to create its image of memory, |
940 | * there's a danger that one of the calls to try_to_free_swap() |
941 | * - most probably a call from __try_to_reclaim_swap() while |
942 | * hibernation is allocating its own swap pages for the image, |
943 | * but conceivably even a call from memory reclaim - will free |
944 | * the swap from a page which has already been recorded in the |
945 | * image as a clean swapcache page, and then reuse its swap for |
946 | * another page of the image. On waking from hibernation, the |
947 | * original page might be freed under memory pressure, then |
948 | * later read back in from swap, now with the wrong data. |
949 | * |
950 | * Hibration suspends storage while it is writing the image |
951 | * to disk so check that here. |
952 | */ |
953 | if (pm_suspended_storage()) |
954 | return 0; |
955 | |
956 | delete_from_swap_cache(page); |
957 | SetPageDirty(page); |
958 | return 1; |
959 | } |
960 | |
961 | /* |
962 | * Free the swap entry like above, but also try to |
963 | * free the page cache entry if it is the last user. |
964 | */ |
965 | int free_swap_and_cache(swp_entry_t entry) |
966 | { |
967 | struct swap_info_struct *p; |
968 | struct page *page = NULL; |
969 | |
970 | if (non_swap_entry(entry)) |
971 | return 1; |
972 | |
973 | p = swap_info_get(entry); |
974 | if (p) { |
975 | if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { |
976 | page = find_get_page(swap_address_space(entry), |
977 | entry.val); |
978 | if (page && !trylock_page(page)) { |
979 | page_cache_release(page); |
980 | page = NULL; |
981 | } |
982 | } |
983 | spin_unlock(&p->lock); |
984 | } |
985 | if (page) { |
986 | /* |
987 | * Not mapped elsewhere, or swap space full? Free it! |
988 | * Also recheck PageSwapCache now page is locked (above). |
989 | */ |
990 | if (PageSwapCache(page) && !PageWriteback(page) && |
991 | (!page_mapped(page) || vm_swap_full())) { |
992 | delete_from_swap_cache(page); |
993 | SetPageDirty(page); |
994 | } |
995 | unlock_page(page); |
996 | page_cache_release(page); |
997 | } |
998 | return p != NULL; |
999 | } |
1000 | |
1001 | #ifdef CONFIG_HIBERNATION |
1002 | /* |
1003 | * Find the swap type that corresponds to given device (if any). |
1004 | * |
1005 | * @offset - number of the PAGE_SIZE-sized block of the device, starting |
1006 | * from 0, in which the swap header is expected to be located. |
1007 | * |
1008 | * This is needed for the suspend to disk (aka swsusp). |
1009 | */ |
1010 | int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) |
1011 | { |
1012 | struct block_device *bdev = NULL; |
1013 | int type; |
1014 | |
1015 | if (device) |
1016 | bdev = bdget(device); |
1017 | |
1018 | spin_lock(&swap_lock); |
1019 | for (type = 0; type < nr_swapfiles; type++) { |
1020 | struct swap_info_struct *sis = swap_info[type]; |
1021 | |
1022 | if (!(sis->flags & SWP_WRITEOK)) |
1023 | continue; |
1024 | |
1025 | if (!bdev) { |
1026 | if (bdev_p) |
1027 | *bdev_p = bdgrab(sis->bdev); |
1028 | |
1029 | spin_unlock(&swap_lock); |
1030 | return type; |
1031 | } |
1032 | if (bdev == sis->bdev) { |
1033 | struct swap_extent *se = &sis->first_swap_extent; |
1034 | |
1035 | if (se->start_block == offset) { |
1036 | if (bdev_p) |
1037 | *bdev_p = bdgrab(sis->bdev); |
1038 | |
1039 | spin_unlock(&swap_lock); |
1040 | bdput(bdev); |
1041 | return type; |
1042 | } |
1043 | } |
1044 | } |
1045 | spin_unlock(&swap_lock); |
1046 | if (bdev) |
1047 | bdput(bdev); |
1048 | |
1049 | return -ENODEV; |
1050 | } |
1051 | |
1052 | /* |
1053 | * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev |
1054 | * corresponding to given index in swap_info (swap type). |
1055 | */ |
1056 | sector_t swapdev_block(int type, pgoff_t offset) |
1057 | { |
1058 | struct block_device *bdev; |
1059 | |
1060 | if ((unsigned int)type >= nr_swapfiles) |
1061 | return 0; |
1062 | if (!(swap_info[type]->flags & SWP_WRITEOK)) |
1063 | return 0; |
1064 | return map_swap_entry(swp_entry(type, offset), &bdev); |
1065 | } |
1066 | |
1067 | /* |
1068 | * Return either the total number of swap pages of given type, or the number |
1069 | * of free pages of that type (depending on @free) |
1070 | * |
1071 | * This is needed for software suspend |
1072 | */ |
1073 | unsigned int count_swap_pages(int type, int free) |
1074 | { |
1075 | unsigned int n = 0; |
1076 | |
1077 | spin_lock(&swap_lock); |
1078 | if ((unsigned int)type < nr_swapfiles) { |
1079 | struct swap_info_struct *sis = swap_info[type]; |
1080 | |
1081 | spin_lock(&sis->lock); |
1082 | if (sis->flags & SWP_WRITEOK) { |
1083 | n = sis->pages; |
1084 | if (free) |
1085 | n -= sis->inuse_pages; |
1086 | } |
1087 | spin_unlock(&sis->lock); |
1088 | } |
1089 | spin_unlock(&swap_lock); |
1090 | return n; |
1091 | } |
1092 | #endif /* CONFIG_HIBERNATION */ |
1093 | |
1094 | static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) |
1095 | { |
1096 | #ifdef CONFIG_MEM_SOFT_DIRTY |
1097 | /* |
1098 | * When pte keeps soft dirty bit the pte generated |
1099 | * from swap entry does not has it, still it's same |
1100 | * pte from logical point of view. |
1101 | */ |
1102 | pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); |
1103 | return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); |
1104 | #else |
1105 | return pte_same(pte, swp_pte); |
1106 | #endif |
1107 | } |
1108 | |
1109 | /* |
1110 | * No need to decide whether this PTE shares the swap entry with others, |
1111 | * just let do_wp_page work it out if a write is requested later - to |
1112 | * force COW, vm_page_prot omits write permission from any private vma. |
1113 | */ |
1114 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, |
1115 | unsigned long addr, swp_entry_t entry, struct page *page) |
1116 | { |
1117 | struct page *swapcache; |
1118 | struct mem_cgroup *memcg; |
1119 | spinlock_t *ptl; |
1120 | pte_t *pte; |
1121 | int ret = 1; |
1122 | |
1123 | swapcache = page; |
1124 | page = ksm_might_need_to_copy(page, vma, addr); |
1125 | if (unlikely(!page)) |
1126 | return -ENOMEM; |
1127 | |
1128 | if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, |
1129 | GFP_KERNEL, &memcg)) { |
1130 | ret = -ENOMEM; |
1131 | goto out_nolock; |
1132 | } |
1133 | |
1134 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
1135 | if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { |
1136 | mem_cgroup_cancel_charge_swapin(memcg); |
1137 | ret = 0; |
1138 | goto out; |
1139 | } |
1140 | |
1141 | dec_mm_counter(vma->vm_mm, MM_SWAPENTS); |
1142 | inc_mm_counter(vma->vm_mm, MM_ANONPAGES); |
1143 | get_page(page); |
1144 | set_pte_at(vma->vm_mm, addr, pte, |
1145 | pte_mkold(mk_pte(page, vma->vm_page_prot))); |
1146 | if (page == swapcache) |
1147 | page_add_anon_rmap(page, vma, addr); |
1148 | else /* ksm created a completely new copy */ |
1149 | page_add_new_anon_rmap(page, vma, addr); |
1150 | mem_cgroup_commit_charge_swapin(page, memcg); |
1151 | swap_free(entry); |
1152 | /* |
1153 | * Move the page to the active list so it is not |
1154 | * immediately swapped out again after swapon. |
1155 | */ |
1156 | activate_page(page); |
1157 | out: |
1158 | pte_unmap_unlock(pte, ptl); |
1159 | out_nolock: |
1160 | if (page != swapcache) { |
1161 | unlock_page(page); |
1162 | put_page(page); |
1163 | } |
1164 | return ret; |
1165 | } |
1166 | |
1167 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
1168 | unsigned long addr, unsigned long end, |
1169 | swp_entry_t entry, struct page *page) |
1170 | { |
1171 | pte_t swp_pte = swp_entry_to_pte(entry); |
1172 | pte_t *pte; |
1173 | int ret = 0; |
1174 | |
1175 | /* |
1176 | * We don't actually need pte lock while scanning for swp_pte: since |
1177 | * we hold page lock and mmap_sem, swp_pte cannot be inserted into the |
1178 | * page table while we're scanning; though it could get zapped, and on |
1179 | * some architectures (e.g. x86_32 with PAE) we might catch a glimpse |
1180 | * of unmatched parts which look like swp_pte, so unuse_pte must |
1181 | * recheck under pte lock. Scanning without pte lock lets it be |
1182 | * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. |
1183 | */ |
1184 | pte = pte_offset_map(pmd, addr); |
1185 | do { |
1186 | /* |
1187 | * swapoff spends a _lot_ of time in this loop! |
1188 | * Test inline before going to call unuse_pte. |
1189 | */ |
1190 | if (unlikely(maybe_same_pte(*pte, swp_pte))) { |
1191 | pte_unmap(pte); |
1192 | ret = unuse_pte(vma, pmd, addr, entry, page); |
1193 | if (ret) |
1194 | goto out; |
1195 | pte = pte_offset_map(pmd, addr); |
1196 | } |
1197 | } while (pte++, addr += PAGE_SIZE, addr != end); |
1198 | pte_unmap(pte - 1); |
1199 | out: |
1200 | return ret; |
1201 | } |
1202 | |
1203 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
1204 | unsigned long addr, unsigned long end, |
1205 | swp_entry_t entry, struct page *page) |
1206 | { |
1207 | pmd_t *pmd; |
1208 | unsigned long next; |
1209 | int ret; |
1210 | |
1211 | pmd = pmd_offset(pud, addr); |
1212 | do { |
1213 | next = pmd_addr_end(addr, end); |
1214 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) |
1215 | continue; |
1216 | ret = unuse_pte_range(vma, pmd, addr, next, entry, page); |
1217 | if (ret) |
1218 | return ret; |
1219 | } while (pmd++, addr = next, addr != end); |
1220 | return 0; |
1221 | } |
1222 | |
1223 | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, |
1224 | unsigned long addr, unsigned long end, |
1225 | swp_entry_t entry, struct page *page) |
1226 | { |
1227 | pud_t *pud; |
1228 | unsigned long next; |
1229 | int ret; |
1230 | |
1231 | pud = pud_offset(pgd, addr); |
1232 | do { |
1233 | next = pud_addr_end(addr, end); |
1234 | if (pud_none_or_clear_bad(pud)) |
1235 | continue; |
1236 | ret = unuse_pmd_range(vma, pud, addr, next, entry, page); |
1237 | if (ret) |
1238 | return ret; |
1239 | } while (pud++, addr = next, addr != end); |
1240 | return 0; |
1241 | } |
1242 | |
1243 | static int unuse_vma(struct vm_area_struct *vma, |
1244 | swp_entry_t entry, struct page *page) |
1245 | { |
1246 | pgd_t *pgd; |
1247 | unsigned long addr, end, next; |
1248 | int ret; |
1249 | |
1250 | if (page_anon_vma(page)) { |
1251 | addr = page_address_in_vma(page, vma); |
1252 | if (addr == -EFAULT) |
1253 | return 0; |
1254 | else |
1255 | end = addr + PAGE_SIZE; |
1256 | } else { |
1257 | addr = vma->vm_start; |
1258 | end = vma->vm_end; |
1259 | } |
1260 | |
1261 | pgd = pgd_offset(vma->vm_mm, addr); |
1262 | do { |
1263 | next = pgd_addr_end(addr, end); |
1264 | if (pgd_none_or_clear_bad(pgd)) |
1265 | continue; |
1266 | ret = unuse_pud_range(vma, pgd, addr, next, entry, page); |
1267 | if (ret) |
1268 | return ret; |
1269 | } while (pgd++, addr = next, addr != end); |
1270 | return 0; |
1271 | } |
1272 | |
1273 | static int unuse_mm(struct mm_struct *mm, |
1274 | swp_entry_t entry, struct page *page) |
1275 | { |
1276 | struct vm_area_struct *vma; |
1277 | int ret = 0; |
1278 | |
1279 | if (!down_read_trylock(&mm->mmap_sem)) { |
1280 | /* |
1281 | * Activate page so shrink_inactive_list is unlikely to unmap |
1282 | * its ptes while lock is dropped, so swapoff can make progress. |
1283 | */ |
1284 | activate_page(page); |
1285 | unlock_page(page); |
1286 | down_read(&mm->mmap_sem); |
1287 | lock_page(page); |
1288 | } |
1289 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
1290 | if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) |
1291 | break; |
1292 | } |
1293 | up_read(&mm->mmap_sem); |
1294 | return (ret < 0)? ret: 0; |
1295 | } |
1296 | |
1297 | /* |
1298 | * Scan swap_map (or frontswap_map if frontswap parameter is true) |
1299 | * from current position to next entry still in use. |
1300 | * Recycle to start on reaching the end, returning 0 when empty. |
1301 | */ |
1302 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, |
1303 | unsigned int prev, bool frontswap) |
1304 | { |
1305 | unsigned int max = si->max; |
1306 | unsigned int i = prev; |
1307 | unsigned char count; |
1308 | |
1309 | /* |
1310 | * No need for swap_lock here: we're just looking |
1311 | * for whether an entry is in use, not modifying it; false |
1312 | * hits are okay, and sys_swapoff() has already prevented new |
1313 | * allocations from this area (while holding swap_lock). |
1314 | */ |
1315 | for (;;) { |
1316 | if (++i >= max) { |
1317 | if (!prev) { |
1318 | i = 0; |
1319 | break; |
1320 | } |
1321 | /* |
1322 | * No entries in use at top of swap_map, |
1323 | * loop back to start and recheck there. |
1324 | */ |
1325 | max = prev + 1; |
1326 | prev = 0; |
1327 | i = 1; |
1328 | } |
1329 | if (frontswap) { |
1330 | if (frontswap_test(si, i)) |
1331 | break; |
1332 | else |
1333 | continue; |
1334 | } |
1335 | count = ACCESS_ONCE(si->swap_map[i]); |
1336 | if (count && swap_count(count) != SWAP_MAP_BAD) |
1337 | break; |
1338 | } |
1339 | return i; |
1340 | } |
1341 | |
1342 | /* |
1343 | * We completely avoid races by reading each swap page in advance, |
1344 | * and then search for the process using it. All the necessary |
1345 | * page table adjustments can then be made atomically. |
1346 | * |
1347 | * if the boolean frontswap is true, only unuse pages_to_unuse pages; |
1348 | * pages_to_unuse==0 means all pages; ignored if frontswap is false |
1349 | */ |
1350 | int try_to_unuse(unsigned int type, bool frontswap, |
1351 | unsigned long pages_to_unuse) |
1352 | { |
1353 | struct swap_info_struct *si = swap_info[type]; |
1354 | struct mm_struct *start_mm; |
1355 | volatile unsigned char *swap_map; /* swap_map is accessed without |
1356 | * locking. Mark it as volatile |
1357 | * to prevent compiler doing |
1358 | * something odd. |
1359 | */ |
1360 | unsigned char swcount; |
1361 | struct page *page; |
1362 | swp_entry_t entry; |
1363 | unsigned int i = 0; |
1364 | int retval = 0; |
1365 | |
1366 | /* |
1367 | * When searching mms for an entry, a good strategy is to |
1368 | * start at the first mm we freed the previous entry from |
1369 | * (though actually we don't notice whether we or coincidence |
1370 | * freed the entry). Initialize this start_mm with a hold. |
1371 | * |
1372 | * A simpler strategy would be to start at the last mm we |
1373 | * freed the previous entry from; but that would take less |
1374 | * advantage of mmlist ordering, which clusters forked mms |
1375 | * together, child after parent. If we race with dup_mmap(), we |
1376 | * prefer to resolve parent before child, lest we miss entries |
1377 | * duplicated after we scanned child: using last mm would invert |
1378 | * that. |
1379 | */ |
1380 | start_mm = &init_mm; |
1381 | atomic_inc(&init_mm.mm_users); |
1382 | |
1383 | /* |
1384 | * Keep on scanning until all entries have gone. Usually, |
1385 | * one pass through swap_map is enough, but not necessarily: |
1386 | * there are races when an instance of an entry might be missed. |
1387 | */ |
1388 | while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { |
1389 | if (signal_pending(current)) { |
1390 | retval = -EINTR; |
1391 | break; |
1392 | } |
1393 | |
1394 | /* |
1395 | * Get a page for the entry, using the existing swap |
1396 | * cache page if there is one. Otherwise, get a clean |
1397 | * page and read the swap into it. |
1398 | */ |
1399 | swap_map = &si->swap_map[i]; |
1400 | entry = swp_entry(type, i); |
1401 | page = read_swap_cache_async(entry, |
1402 | GFP_HIGHUSER_MOVABLE, NULL, 0); |
1403 | if (!page) { |
1404 | /* |
1405 | * Either swap_duplicate() failed because entry |
1406 | * has been freed independently, and will not be |
1407 | * reused since sys_swapoff() already disabled |
1408 | * allocation from here, or alloc_page() failed. |
1409 | */ |
1410 | swcount = *swap_map; |
1411 | /* |
1412 | * We don't hold lock here, so the swap entry could be |
1413 | * SWAP_MAP_BAD (when the cluster is discarding). |
1414 | * Instead of fail out, We can just skip the swap |
1415 | * entry because swapoff will wait for discarding |
1416 | * finish anyway. |
1417 | */ |
1418 | if (!swcount || swcount == SWAP_MAP_BAD) |
1419 | continue; |
1420 | retval = -ENOMEM; |
1421 | break; |
1422 | } |
1423 | |
1424 | /* |
1425 | * Don't hold on to start_mm if it looks like exiting. |
1426 | */ |
1427 | if (atomic_read(&start_mm->mm_users) == 1) { |
1428 | mmput(start_mm); |
1429 | start_mm = &init_mm; |
1430 | atomic_inc(&init_mm.mm_users); |
1431 | } |
1432 | |
1433 | /* |
1434 | * Wait for and lock page. When do_swap_page races with |
1435 | * try_to_unuse, do_swap_page can handle the fault much |
1436 | * faster than try_to_unuse can locate the entry. This |
1437 | * apparently redundant "wait_on_page_locked" lets try_to_unuse |
1438 | * defer to do_swap_page in such a case - in some tests, |
1439 | * do_swap_page and try_to_unuse repeatedly compete. |
1440 | */ |
1441 | wait_on_page_locked(page); |
1442 | wait_on_page_writeback(page); |
1443 | lock_page(page); |
1444 | wait_on_page_writeback(page); |
1445 | |
1446 | /* |
1447 | * Remove all references to entry. |
1448 | */ |
1449 | swcount = *swap_map; |
1450 | if (swap_count(swcount) == SWAP_MAP_SHMEM) { |
1451 | retval = shmem_unuse(entry, page); |
1452 | /* page has already been unlocked and released */ |
1453 | if (retval < 0) |
1454 | break; |
1455 | continue; |
1456 | } |
1457 | if (swap_count(swcount) && start_mm != &init_mm) |
1458 | retval = unuse_mm(start_mm, entry, page); |
1459 | |
1460 | if (swap_count(*swap_map)) { |
1461 | int set_start_mm = (*swap_map >= swcount); |
1462 | struct list_head *p = &start_mm->mmlist; |
1463 | struct mm_struct *new_start_mm = start_mm; |
1464 | struct mm_struct *prev_mm = start_mm; |
1465 | struct mm_struct *mm; |
1466 | |
1467 | atomic_inc(&new_start_mm->mm_users); |
1468 | atomic_inc(&prev_mm->mm_users); |
1469 | spin_lock(&mmlist_lock); |
1470 | while (swap_count(*swap_map) && !retval && |
1471 | (p = p->next) != &start_mm->mmlist) { |
1472 | mm = list_entry(p, struct mm_struct, mmlist); |
1473 | if (!atomic_inc_not_zero(&mm->mm_users)) |
1474 | continue; |
1475 | spin_unlock(&mmlist_lock); |
1476 | mmput(prev_mm); |
1477 | prev_mm = mm; |
1478 | |
1479 | cond_resched(); |
1480 | |
1481 | swcount = *swap_map; |
1482 | if (!swap_count(swcount)) /* any usage ? */ |
1483 | ; |
1484 | else if (mm == &init_mm) |
1485 | set_start_mm = 1; |
1486 | else |
1487 | retval = unuse_mm(mm, entry, page); |
1488 | |
1489 | if (set_start_mm && *swap_map < swcount) { |
1490 | mmput(new_start_mm); |
1491 | atomic_inc(&mm->mm_users); |
1492 | new_start_mm = mm; |
1493 | set_start_mm = 0; |
1494 | } |
1495 | spin_lock(&mmlist_lock); |
1496 | } |
1497 | spin_unlock(&mmlist_lock); |
1498 | mmput(prev_mm); |
1499 | mmput(start_mm); |
1500 | start_mm = new_start_mm; |
1501 | } |
1502 | if (retval) { |
1503 | unlock_page(page); |
1504 | page_cache_release(page); |
1505 | break; |
1506 | } |
1507 | |
1508 | /* |
1509 | * If a reference remains (rare), we would like to leave |
1510 | * the page in the swap cache; but try_to_unmap could |
1511 | * then re-duplicate the entry once we drop page lock, |
1512 | * so we might loop indefinitely; also, that page could |
1513 | * not be swapped out to other storage meanwhile. So: |
1514 | * delete from cache even if there's another reference, |
1515 | * after ensuring that the data has been saved to disk - |
1516 | * since if the reference remains (rarer), it will be |
1517 | * read from disk into another page. Splitting into two |
1518 | * pages would be incorrect if swap supported "shared |
1519 | * private" pages, but they are handled by tmpfs files. |
1520 | * |
1521 | * Given how unuse_vma() targets one particular offset |
1522 | * in an anon_vma, once the anon_vma has been determined, |
1523 | * this splitting happens to be just what is needed to |
1524 | * handle where KSM pages have been swapped out: re-reading |
1525 | * is unnecessarily slow, but we can fix that later on. |
1526 | */ |
1527 | if (swap_count(*swap_map) && |
1528 | PageDirty(page) && PageSwapCache(page)) { |
1529 | struct writeback_control wbc = { |
1530 | .sync_mode = WB_SYNC_NONE, |
1531 | }; |
1532 | |
1533 | swap_writepage(page, &wbc); |
1534 | lock_page(page); |
1535 | wait_on_page_writeback(page); |
1536 | } |
1537 | |
1538 | /* |
1539 | * It is conceivable that a racing task removed this page from |
1540 | * swap cache just before we acquired the page lock at the top, |
1541 | * or while we dropped it in unuse_mm(). The page might even |
1542 | * be back in swap cache on another swap area: that we must not |
1543 | * delete, since it may not have been written out to swap yet. |
1544 | */ |
1545 | if (PageSwapCache(page) && |
1546 | likely(page_private(page) == entry.val)) |
1547 | delete_from_swap_cache(page); |
1548 | |
1549 | /* |
1550 | * So we could skip searching mms once swap count went |
1551 | * to 1, we did not mark any present ptes as dirty: must |
1552 | * mark page dirty so shrink_page_list will preserve it. |
1553 | */ |
1554 | SetPageDirty(page); |
1555 | unlock_page(page); |
1556 | page_cache_release(page); |
1557 | |
1558 | /* |
1559 | * Make sure that we aren't completely killing |
1560 | * interactive performance. |
1561 | */ |
1562 | cond_resched(); |
1563 | if (frontswap && pages_to_unuse > 0) { |
1564 | if (!--pages_to_unuse) |
1565 | break; |
1566 | } |
1567 | } |
1568 | |
1569 | mmput(start_mm); |
1570 | return retval; |
1571 | } |
1572 | |
1573 | /* |
1574 | * After a successful try_to_unuse, if no swap is now in use, we know |
1575 | * we can empty the mmlist. swap_lock must be held on entry and exit. |
1576 | * Note that mmlist_lock nests inside swap_lock, and an mm must be |
1577 | * added to the mmlist just after page_duplicate - before would be racy. |
1578 | */ |
1579 | static void drain_mmlist(void) |
1580 | { |
1581 | struct list_head *p, *next; |
1582 | unsigned int type; |
1583 | |
1584 | for (type = 0; type < nr_swapfiles; type++) |
1585 | if (swap_info[type]->inuse_pages) |
1586 | return; |
1587 | spin_lock(&mmlist_lock); |
1588 | list_for_each_safe(p, next, &init_mm.mmlist) |
1589 | list_del_init(p); |
1590 | spin_unlock(&mmlist_lock); |
1591 | } |
1592 | |
1593 | /* |
1594 | * Use this swapdev's extent info to locate the (PAGE_SIZE) block which |
1595 | * corresponds to page offset for the specified swap entry. |
1596 | * Note that the type of this function is sector_t, but it returns page offset |
1597 | * into the bdev, not sector offset. |
1598 | */ |
1599 | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) |
1600 | { |
1601 | struct swap_info_struct *sis; |
1602 | struct swap_extent *start_se; |
1603 | struct swap_extent *se; |
1604 | pgoff_t offset; |
1605 | |
1606 | sis = swap_info[swp_type(entry)]; |
1607 | *bdev = sis->bdev; |
1608 | |
1609 | offset = swp_offset(entry); |
1610 | start_se = sis->curr_swap_extent; |
1611 | se = start_se; |
1612 | |
1613 | for ( ; ; ) { |
1614 | struct list_head *lh; |
1615 | |
1616 | if (se->start_page <= offset && |
1617 | offset < (se->start_page + se->nr_pages)) { |
1618 | return se->start_block + (offset - se->start_page); |
1619 | } |
1620 | lh = se->list.next; |
1621 | se = list_entry(lh, struct swap_extent, list); |
1622 | sis->curr_swap_extent = se; |
1623 | BUG_ON(se == start_se); /* It *must* be present */ |
1624 | } |
1625 | } |
1626 | |
1627 | /* |
1628 | * Returns the page offset into bdev for the specified page's swap entry. |
1629 | */ |
1630 | sector_t map_swap_page(struct page *page, struct block_device **bdev) |
1631 | { |
1632 | swp_entry_t entry; |
1633 | entry.val = page_private(page); |
1634 | return map_swap_entry(entry, bdev); |
1635 | } |
1636 | |
1637 | /* |
1638 | * Free all of a swapdev's extent information |
1639 | */ |
1640 | static void destroy_swap_extents(struct swap_info_struct *sis) |
1641 | { |
1642 | while (!list_empty(&sis->first_swap_extent.list)) { |
1643 | struct swap_extent *se; |
1644 | |
1645 | se = list_entry(sis->first_swap_extent.list.next, |
1646 | struct swap_extent, list); |
1647 | list_del(&se->list); |
1648 | kfree(se); |
1649 | } |
1650 | |
1651 | if (sis->flags & SWP_FILE) { |
1652 | struct file *swap_file = sis->swap_file; |
1653 | struct address_space *mapping = swap_file->f_mapping; |
1654 | |
1655 | sis->flags &= ~SWP_FILE; |
1656 | mapping->a_ops->swap_deactivate(swap_file); |
1657 | } |
1658 | } |
1659 | |
1660 | /* |
1661 | * Add a block range (and the corresponding page range) into this swapdev's |
1662 | * extent list. The extent list is kept sorted in page order. |
1663 | * |
1664 | * This function rather assumes that it is called in ascending page order. |
1665 | */ |
1666 | int |
1667 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, |
1668 | unsigned long nr_pages, sector_t start_block) |
1669 | { |
1670 | struct swap_extent *se; |
1671 | struct swap_extent *new_se; |
1672 | struct list_head *lh; |
1673 | |
1674 | if (start_page == 0) { |
1675 | se = &sis->first_swap_extent; |
1676 | sis->curr_swap_extent = se; |
1677 | se->start_page = 0; |
1678 | se->nr_pages = nr_pages; |
1679 | se->start_block = start_block; |
1680 | return 1; |
1681 | } else { |
1682 | lh = sis->first_swap_extent.list.prev; /* Highest extent */ |
1683 | se = list_entry(lh, struct swap_extent, list); |
1684 | BUG_ON(se->start_page + se->nr_pages != start_page); |
1685 | if (se->start_block + se->nr_pages == start_block) { |
1686 | /* Merge it */ |
1687 | se->nr_pages += nr_pages; |
1688 | return 0; |
1689 | } |
1690 | } |
1691 | |
1692 | /* |
1693 | * No merge. Insert a new extent, preserving ordering. |
1694 | */ |
1695 | new_se = kmalloc(sizeof(*se), GFP_KERNEL); |
1696 | if (new_se == NULL) |
1697 | return -ENOMEM; |
1698 | new_se->start_page = start_page; |
1699 | new_se->nr_pages = nr_pages; |
1700 | new_se->start_block = start_block; |
1701 | |
1702 | list_add_tail(&new_se->list, &sis->first_swap_extent.list); |
1703 | return 1; |
1704 | } |
1705 | |
1706 | /* |
1707 | * A `swap extent' is a simple thing which maps a contiguous range of pages |
1708 | * onto a contiguous range of disk blocks. An ordered list of swap extents |
1709 | * is built at swapon time and is then used at swap_writepage/swap_readpage |
1710 | * time for locating where on disk a page belongs. |
1711 | * |
1712 | * If the swapfile is an S_ISBLK block device, a single extent is installed. |
1713 | * This is done so that the main operating code can treat S_ISBLK and S_ISREG |
1714 | * swap files identically. |
1715 | * |
1716 | * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap |
1717 | * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK |
1718 | * swapfiles are handled *identically* after swapon time. |
1719 | * |
1720 | * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks |
1721 | * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If |
1722 | * some stray blocks are found which do not fall within the PAGE_SIZE alignment |
1723 | * requirements, they are simply tossed out - we will never use those blocks |
1724 | * for swapping. |
1725 | * |
1726 | * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This |
1727 | * prevents root from shooting her foot off by ftruncating an in-use swapfile, |
1728 | * which will scribble on the fs. |
1729 | * |
1730 | * The amount of disk space which a single swap extent represents varies. |
1731 | * Typically it is in the 1-4 megabyte range. So we can have hundreds of |
1732 | * extents in the list. To avoid much list walking, we cache the previous |
1733 | * search location in `curr_swap_extent', and start new searches from there. |
1734 | * This is extremely effective. The average number of iterations in |
1735 | * map_swap_page() has been measured at about 0.3 per page. - akpm. |
1736 | */ |
1737 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) |
1738 | { |
1739 | struct file *swap_file = sis->swap_file; |
1740 | struct address_space *mapping = swap_file->f_mapping; |
1741 | struct inode *inode = mapping->host; |
1742 | int ret; |
1743 | |
1744 | if (S_ISBLK(inode->i_mode)) { |
1745 | ret = add_swap_extent(sis, 0, sis->max, 0); |
1746 | *span = sis->pages; |
1747 | return ret; |
1748 | } |
1749 | |
1750 | if (mapping->a_ops->swap_activate) { |
1751 | ret = mapping->a_ops->swap_activate(sis, swap_file, span); |
1752 | if (!ret) { |
1753 | sis->flags |= SWP_FILE; |
1754 | ret = add_swap_extent(sis, 0, sis->max, 0); |
1755 | *span = sis->pages; |
1756 | } |
1757 | return ret; |
1758 | } |
1759 | |
1760 | return generic_swapfile_activate(sis, swap_file, span); |
1761 | } |
1762 | |
1763 | static void _enable_swap_info(struct swap_info_struct *p, int prio, |
1764 | unsigned char *swap_map, |
1765 | struct swap_cluster_info *cluster_info) |
1766 | { |
1767 | int i, prev; |
1768 | |
1769 | if (prio >= 0) |
1770 | p->prio = prio; |
1771 | else |
1772 | p->prio = --least_priority; |
1773 | p->swap_map = swap_map; |
1774 | p->cluster_info = cluster_info; |
1775 | p->flags |= SWP_WRITEOK; |
1776 | atomic_long_add(p->pages, &nr_swap_pages); |
1777 | total_swap_pages += p->pages; |
1778 | |
1779 | /* insert swap space into swap_list: */ |
1780 | prev = -1; |
1781 | for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { |
1782 | if (p->prio >= swap_info[i]->prio) |
1783 | break; |
1784 | prev = i; |
1785 | } |
1786 | p->next = i; |
1787 | if (prev < 0) |
1788 | swap_list.head = swap_list.next = p->type; |
1789 | else |
1790 | swap_info[prev]->next = p->type; |
1791 | } |
1792 | |
1793 | static void enable_swap_info(struct swap_info_struct *p, int prio, |
1794 | unsigned char *swap_map, |
1795 | struct swap_cluster_info *cluster_info, |
1796 | unsigned long *frontswap_map) |
1797 | { |
1798 | frontswap_init(p->type, frontswap_map); |
1799 | spin_lock(&swap_lock); |
1800 | spin_lock(&p->lock); |
1801 | _enable_swap_info(p, prio, swap_map, cluster_info); |
1802 | spin_unlock(&p->lock); |
1803 | spin_unlock(&swap_lock); |
1804 | } |
1805 | |
1806 | static void reinsert_swap_info(struct swap_info_struct *p) |
1807 | { |
1808 | spin_lock(&swap_lock); |
1809 | spin_lock(&p->lock); |
1810 | _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); |
1811 | spin_unlock(&p->lock); |
1812 | spin_unlock(&swap_lock); |
1813 | } |
1814 | |
1815 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) |
1816 | { |
1817 | struct swap_info_struct *p = NULL; |
1818 | unsigned char *swap_map; |
1819 | struct swap_cluster_info *cluster_info; |
1820 | unsigned long *frontswap_map; |
1821 | struct file *swap_file, *victim; |
1822 | struct address_space *mapping; |
1823 | struct inode *inode; |
1824 | struct filename *pathname; |
1825 | int i, type, prev; |
1826 | int err; |
1827 | unsigned int old_block_size; |
1828 | |
1829 | if (!capable(CAP_SYS_ADMIN)) |
1830 | return -EPERM; |
1831 | |
1832 | BUG_ON(!current->mm); |
1833 | |
1834 | pathname = getname(specialfile); |
1835 | if (IS_ERR(pathname)) |
1836 | return PTR_ERR(pathname); |
1837 | |
1838 | victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); |
1839 | err = PTR_ERR(victim); |
1840 | if (IS_ERR(victim)) |
1841 | goto out; |
1842 | |
1843 | mapping = victim->f_mapping; |
1844 | prev = -1; |
1845 | spin_lock(&swap_lock); |
1846 | for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { |
1847 | p = swap_info[type]; |
1848 | if (p->flags & SWP_WRITEOK) { |
1849 | if (p->swap_file->f_mapping == mapping) |
1850 | break; |
1851 | } |
1852 | prev = type; |
1853 | } |
1854 | if (type < 0) { |
1855 | err = -EINVAL; |
1856 | spin_unlock(&swap_lock); |
1857 | goto out_dput; |
1858 | } |
1859 | if (!security_vm_enough_memory_mm(current->mm, p->pages)) |
1860 | vm_unacct_memory(p->pages); |
1861 | else { |
1862 | err = -ENOMEM; |
1863 | spin_unlock(&swap_lock); |
1864 | goto out_dput; |
1865 | } |
1866 | if (prev < 0) |
1867 | swap_list.head = p->next; |
1868 | else |
1869 | swap_info[prev]->next = p->next; |
1870 | if (type == swap_list.next) { |
1871 | /* just pick something that's safe... */ |
1872 | swap_list.next = swap_list.head; |
1873 | } |
1874 | spin_lock(&p->lock); |
1875 | if (p->prio < 0) { |
1876 | for (i = p->next; i >= 0; i = swap_info[i]->next) |
1877 | swap_info[i]->prio = p->prio--; |
1878 | least_priority++; |
1879 | } |
1880 | atomic_long_sub(p->pages, &nr_swap_pages); |
1881 | total_swap_pages -= p->pages; |
1882 | p->flags &= ~SWP_WRITEOK; |
1883 | spin_unlock(&p->lock); |
1884 | spin_unlock(&swap_lock); |
1885 | |
1886 | set_current_oom_origin(); |
1887 | err = try_to_unuse(type, false, 0); /* force all pages to be unused */ |
1888 | clear_current_oom_origin(); |
1889 | |
1890 | if (err) { |
1891 | /* re-insert swap space back into swap_list */ |
1892 | reinsert_swap_info(p); |
1893 | goto out_dput; |
1894 | } |
1895 | |
1896 | flush_work(&p->discard_work); |
1897 | |
1898 | destroy_swap_extents(p); |
1899 | if (p->flags & SWP_CONTINUED) |
1900 | free_swap_count_continuations(p); |
1901 | |
1902 | mutex_lock(&swapon_mutex); |
1903 | spin_lock(&swap_lock); |
1904 | spin_lock(&p->lock); |
1905 | drain_mmlist(); |
1906 | |
1907 | /* wait for anyone still in scan_swap_map */ |
1908 | p->highest_bit = 0; /* cuts scans short */ |
1909 | while (p->flags >= SWP_SCANNING) { |
1910 | spin_unlock(&p->lock); |
1911 | spin_unlock(&swap_lock); |
1912 | schedule_timeout_uninterruptible(1); |
1913 | spin_lock(&swap_lock); |
1914 | spin_lock(&p->lock); |
1915 | } |
1916 | |
1917 | swap_file = p->swap_file; |
1918 | old_block_size = p->old_block_size; |
1919 | p->swap_file = NULL; |
1920 | p->max = 0; |
1921 | swap_map = p->swap_map; |
1922 | p->swap_map = NULL; |
1923 | cluster_info = p->cluster_info; |
1924 | p->cluster_info = NULL; |
1925 | p->flags = 0; |
1926 | frontswap_map = frontswap_map_get(p); |
1927 | frontswap_map_set(p, NULL); |
1928 | spin_unlock(&p->lock); |
1929 | spin_unlock(&swap_lock); |
1930 | frontswap_invalidate_area(type); |
1931 | mutex_unlock(&swapon_mutex); |
1932 | free_percpu(p->percpu_cluster); |
1933 | p->percpu_cluster = NULL; |
1934 | vfree(swap_map); |
1935 | vfree(cluster_info); |
1936 | vfree(frontswap_map); |
1937 | /* Destroy swap account informatin */ |
1938 | swap_cgroup_swapoff(type); |
1939 | |
1940 | inode = mapping->host; |
1941 | if (S_ISBLK(inode->i_mode)) { |
1942 | struct block_device *bdev = I_BDEV(inode); |
1943 | set_blocksize(bdev, old_block_size); |
1944 | blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
1945 | } else { |
1946 | mutex_lock(&inode->i_mutex); |
1947 | inode->i_flags &= ~S_SWAPFILE; |
1948 | mutex_unlock(&inode->i_mutex); |
1949 | } |
1950 | filp_close(swap_file, NULL); |
1951 | err = 0; |
1952 | atomic_inc(&proc_poll_event); |
1953 | wake_up_interruptible(&proc_poll_wait); |
1954 | |
1955 | out_dput: |
1956 | filp_close(victim, NULL); |
1957 | out: |
1958 | putname(pathname); |
1959 | return err; |
1960 | } |
1961 | |
1962 | #ifdef CONFIG_PROC_FS |
1963 | static unsigned swaps_poll(struct file *file, poll_table *wait) |
1964 | { |
1965 | struct seq_file *seq = file->private_data; |
1966 | |
1967 | poll_wait(file, &proc_poll_wait, wait); |
1968 | |
1969 | if (seq->poll_event != atomic_read(&proc_poll_event)) { |
1970 | seq->poll_event = atomic_read(&proc_poll_event); |
1971 | return POLLIN | POLLRDNORM | POLLERR | POLLPRI; |
1972 | } |
1973 | |
1974 | return POLLIN | POLLRDNORM; |
1975 | } |
1976 | |
1977 | /* iterator */ |
1978 | static void *swap_start(struct seq_file *swap, loff_t *pos) |
1979 | { |
1980 | struct swap_info_struct *si; |
1981 | int type; |
1982 | loff_t l = *pos; |
1983 | |
1984 | mutex_lock(&swapon_mutex); |
1985 | |
1986 | if (!l) |
1987 | return SEQ_START_TOKEN; |
1988 | |
1989 | for (type = 0; type < nr_swapfiles; type++) { |
1990 | smp_rmb(); /* read nr_swapfiles before swap_info[type] */ |
1991 | si = swap_info[type]; |
1992 | if (!(si->flags & SWP_USED) || !si->swap_map) |
1993 | continue; |
1994 | if (!--l) |
1995 | return si; |
1996 | } |
1997 | |
1998 | return NULL; |
1999 | } |
2000 | |
2001 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) |
2002 | { |
2003 | struct swap_info_struct *si = v; |
2004 | int type; |
2005 | |
2006 | if (v == SEQ_START_TOKEN) |
2007 | type = 0; |
2008 | else |
2009 | type = si->type + 1; |
2010 | |
2011 | for (; type < nr_swapfiles; type++) { |
2012 | smp_rmb(); /* read nr_swapfiles before swap_info[type] */ |
2013 | si = swap_info[type]; |
2014 | if (!(si->flags & SWP_USED) || !si->swap_map) |
2015 | continue; |
2016 | ++*pos; |
2017 | return si; |
2018 | } |
2019 | |
2020 | return NULL; |
2021 | } |
2022 | |
2023 | static void swap_stop(struct seq_file *swap, void *v) |
2024 | { |
2025 | mutex_unlock(&swapon_mutex); |
2026 | } |
2027 | |
2028 | static int swap_show(struct seq_file *swap, void *v) |
2029 | { |
2030 | struct swap_info_struct *si = v; |
2031 | struct file *file; |
2032 | int len; |
2033 | |
2034 | if (si == SEQ_START_TOKEN) { |
2035 | seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); |
2036 | return 0; |
2037 | } |
2038 | |
2039 | file = si->swap_file; |
2040 | len = seq_path(swap, &file->f_path, " \t\n\\"); |
2041 | seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", |
2042 | len < 40 ? 40 - len : 1, " ", |
2043 | S_ISBLK(file_inode(file)->i_mode) ? |
2044 | "partition" : "file\t", |
2045 | si->pages << (PAGE_SHIFT - 10), |
2046 | si->inuse_pages << (PAGE_SHIFT - 10), |
2047 | si->prio); |
2048 | return 0; |
2049 | } |
2050 | |
2051 | static const struct seq_operations swaps_op = { |
2052 | .start = swap_start, |
2053 | .next = swap_next, |
2054 | .stop = swap_stop, |
2055 | .show = swap_show |
2056 | }; |
2057 | |
2058 | static int swaps_open(struct inode *inode, struct file *file) |
2059 | { |
2060 | struct seq_file *seq; |
2061 | int ret; |
2062 | |
2063 | ret = seq_open(file, &swaps_op); |
2064 | if (ret) |
2065 | return ret; |
2066 | |
2067 | seq = file->private_data; |
2068 | seq->poll_event = atomic_read(&proc_poll_event); |
2069 | return 0; |
2070 | } |
2071 | |
2072 | static const struct file_operations proc_swaps_operations = { |
2073 | .open = swaps_open, |
2074 | .read = seq_read, |
2075 | .llseek = seq_lseek, |
2076 | .release = seq_release, |
2077 | .poll = swaps_poll, |
2078 | }; |
2079 | |
2080 | static int __init procswaps_init(void) |
2081 | { |
2082 | proc_create("swaps", 0, NULL, &proc_swaps_operations); |
2083 | return 0; |
2084 | } |
2085 | __initcall(procswaps_init); |
2086 | #endif /* CONFIG_PROC_FS */ |
2087 | |
2088 | #ifdef MAX_SWAPFILES_CHECK |
2089 | static int __init max_swapfiles_check(void) |
2090 | { |
2091 | MAX_SWAPFILES_CHECK(); |
2092 | return 0; |
2093 | } |
2094 | late_initcall(max_swapfiles_check); |
2095 | #endif |
2096 | |
2097 | static struct swap_info_struct *alloc_swap_info(void) |
2098 | { |
2099 | struct swap_info_struct *p; |
2100 | unsigned int type; |
2101 | |
2102 | p = kzalloc(sizeof(*p), GFP_KERNEL); |
2103 | if (!p) |
2104 | return ERR_PTR(-ENOMEM); |
2105 | |
2106 | spin_lock(&swap_lock); |
2107 | for (type = 0; type < nr_swapfiles; type++) { |
2108 | if (!(swap_info[type]->flags & SWP_USED)) |
2109 | break; |
2110 | } |
2111 | if (type >= MAX_SWAPFILES) { |
2112 | spin_unlock(&swap_lock); |
2113 | kfree(p); |
2114 | return ERR_PTR(-EPERM); |
2115 | } |
2116 | if (type >= nr_swapfiles) { |
2117 | p->type = type; |
2118 | swap_info[type] = p; |
2119 | /* |
2120 | * Write swap_info[type] before nr_swapfiles, in case a |
2121 | * racing procfs swap_start() or swap_next() is reading them. |
2122 | * (We never shrink nr_swapfiles, we never free this entry.) |
2123 | */ |
2124 | smp_wmb(); |
2125 | nr_swapfiles++; |
2126 | } else { |
2127 | kfree(p); |
2128 | p = swap_info[type]; |
2129 | /* |
2130 | * Do not memset this entry: a racing procfs swap_next() |
2131 | * would be relying on p->type to remain valid. |
2132 | */ |
2133 | } |
2134 | INIT_LIST_HEAD(&p->first_swap_extent.list); |
2135 | p->flags = SWP_USED; |
2136 | p->next = -1; |
2137 | spin_unlock(&swap_lock); |
2138 | spin_lock_init(&p->lock); |
2139 | |
2140 | return p; |
2141 | } |
2142 | |
2143 | static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) |
2144 | { |
2145 | int error; |
2146 | |
2147 | if (S_ISBLK(inode->i_mode)) { |
2148 | p->bdev = bdgrab(I_BDEV(inode)); |
2149 | error = blkdev_get(p->bdev, |
2150 | FMODE_READ | FMODE_WRITE | FMODE_EXCL, |
2151 | sys_swapon); |
2152 | if (error < 0) { |
2153 | p->bdev = NULL; |
2154 | return -EINVAL; |
2155 | } |
2156 | p->old_block_size = block_size(p->bdev); |
2157 | error = set_blocksize(p->bdev, PAGE_SIZE); |
2158 | if (error < 0) |
2159 | return error; |
2160 | p->flags |= SWP_BLKDEV; |
2161 | } else if (S_ISREG(inode->i_mode)) { |
2162 | p->bdev = inode->i_sb->s_bdev; |
2163 | mutex_lock(&inode->i_mutex); |
2164 | if (IS_SWAPFILE(inode)) |
2165 | return -EBUSY; |
2166 | } else |
2167 | return -EINVAL; |
2168 | |
2169 | return 0; |
2170 | } |
2171 | |
2172 | static unsigned long read_swap_header(struct swap_info_struct *p, |
2173 | union swap_header *swap_header, |
2174 | struct inode *inode) |
2175 | { |
2176 | int i; |
2177 | unsigned long maxpages; |
2178 | unsigned long swapfilepages; |
2179 | unsigned long last_page; |
2180 | |
2181 | if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { |
2182 | pr_err("Unable to find swap-space signature\n"); |
2183 | return 0; |
2184 | } |
2185 | |
2186 | /* swap partition endianess hack... */ |
2187 | if (swab32(swap_header->info.version) == 1) { |
2188 | swab32s(&swap_header->info.version); |
2189 | swab32s(&swap_header->info.last_page); |
2190 | swab32s(&swap_header->info.nr_badpages); |
2191 | for (i = 0; i < swap_header->info.nr_badpages; i++) |
2192 | swab32s(&swap_header->info.badpages[i]); |
2193 | } |
2194 | /* Check the swap header's sub-version */ |
2195 | if (swap_header->info.version != 1) { |
2196 | pr_warn("Unable to handle swap header version %d\n", |
2197 | swap_header->info.version); |
2198 | return 0; |
2199 | } |
2200 | |
2201 | p->lowest_bit = 1; |
2202 | p->cluster_next = 1; |
2203 | p->cluster_nr = 0; |
2204 | |
2205 | /* |
2206 | * Find out how many pages are allowed for a single swap |
2207 | * device. There are two limiting factors: 1) the number |
2208 | * of bits for the swap offset in the swp_entry_t type, and |
2209 | * 2) the number of bits in the swap pte as defined by the |
2210 | * different architectures. In order to find the |
2211 | * largest possible bit mask, a swap entry with swap type 0 |
2212 | * and swap offset ~0UL is created, encoded to a swap pte, |
2213 | * decoded to a swp_entry_t again, and finally the swap |
2214 | * offset is extracted. This will mask all the bits from |
2215 | * the initial ~0UL mask that can't be encoded in either |
2216 | * the swp_entry_t or the architecture definition of a |
2217 | * swap pte. |
2218 | */ |
2219 | maxpages = swp_offset(pte_to_swp_entry( |
2220 | swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; |
2221 | last_page = swap_header->info.last_page; |
2222 | if (last_page > maxpages) { |
2223 | pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", |
2224 | maxpages << (PAGE_SHIFT - 10), |
2225 | last_page << (PAGE_SHIFT - 10)); |
2226 | } |
2227 | if (maxpages > last_page) { |
2228 | maxpages = last_page + 1; |
2229 | /* p->max is an unsigned int: don't overflow it */ |
2230 | if ((unsigned int)maxpages == 0) |
2231 | maxpages = UINT_MAX; |
2232 | } |
2233 | p->highest_bit = maxpages - 1; |
2234 | |
2235 | if (!maxpages) |
2236 | return 0; |
2237 | swapfilepages = i_size_read(inode) >> PAGE_SHIFT; |
2238 | if (swapfilepages && maxpages > swapfilepages) { |
2239 | pr_warn("Swap area shorter than signature indicates\n"); |
2240 | return 0; |
2241 | } |
2242 | if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) |
2243 | return 0; |
2244 | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) |
2245 | return 0; |
2246 | |
2247 | return maxpages; |
2248 | } |
2249 | |
2250 | static int setup_swap_map_and_extents(struct swap_info_struct *p, |
2251 | union swap_header *swap_header, |
2252 | unsigned char *swap_map, |
2253 | struct swap_cluster_info *cluster_info, |
2254 | unsigned long maxpages, |
2255 | sector_t *span) |
2256 | { |
2257 | int i; |
2258 | unsigned int nr_good_pages; |
2259 | int nr_extents; |
2260 | unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); |
2261 | unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; |
2262 | |
2263 | nr_good_pages = maxpages - 1; /* omit header page */ |
2264 | |
2265 | cluster_set_null(&p->free_cluster_head); |
2266 | cluster_set_null(&p->free_cluster_tail); |
2267 | cluster_set_null(&p->discard_cluster_head); |
2268 | cluster_set_null(&p->discard_cluster_tail); |
2269 | |
2270 | for (i = 0; i < swap_header->info.nr_badpages; i++) { |
2271 | unsigned int page_nr = swap_header->info.badpages[i]; |
2272 | if (page_nr == 0 || page_nr > swap_header->info.last_page) |
2273 | return -EINVAL; |
2274 | if (page_nr < maxpages) { |
2275 | swap_map[page_nr] = SWAP_MAP_BAD; |
2276 | nr_good_pages--; |
2277 | /* |
2278 | * Haven't marked the cluster free yet, no list |
2279 | * operation involved |
2280 | */ |
2281 | inc_cluster_info_page(p, cluster_info, page_nr); |
2282 | } |
2283 | } |
2284 | |
2285 | /* Haven't marked the cluster free yet, no list operation involved */ |
2286 | for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) |
2287 | inc_cluster_info_page(p, cluster_info, i); |
2288 | |
2289 | if (nr_good_pages) { |
2290 | swap_map[0] = SWAP_MAP_BAD; |
2291 | /* |
2292 | * Not mark the cluster free yet, no list |
2293 | * operation involved |
2294 | */ |
2295 | inc_cluster_info_page(p, cluster_info, 0); |
2296 | p->max = maxpages; |
2297 | p->pages = nr_good_pages; |
2298 | nr_extents = setup_swap_extents(p, span); |
2299 | if (nr_extents < 0) |
2300 | return nr_extents; |
2301 | nr_good_pages = p->pages; |
2302 | } |
2303 | if (!nr_good_pages) { |
2304 | pr_warn("Empty swap-file\n"); |
2305 | return -EINVAL; |
2306 | } |
2307 | |
2308 | if (!cluster_info) |
2309 | return nr_extents; |
2310 | |
2311 | for (i = 0; i < nr_clusters; i++) { |
2312 | if (!cluster_count(&cluster_info[idx])) { |
2313 | cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); |
2314 | if (cluster_is_null(&p->free_cluster_head)) { |
2315 | cluster_set_next_flag(&p->free_cluster_head, |
2316 | idx, 0); |
2317 | cluster_set_next_flag(&p->free_cluster_tail, |
2318 | idx, 0); |
2319 | } else { |
2320 | unsigned int tail; |
2321 | |
2322 | tail = cluster_next(&p->free_cluster_tail); |
2323 | cluster_set_next(&cluster_info[tail], idx); |
2324 | cluster_set_next_flag(&p->free_cluster_tail, |
2325 | idx, 0); |
2326 | } |
2327 | } |
2328 | idx++; |
2329 | if (idx == nr_clusters) |
2330 | idx = 0; |
2331 | } |
2332 | return nr_extents; |
2333 | } |
2334 | |
2335 | /* |
2336 | * Helper to sys_swapon determining if a given swap |
2337 | * backing device queue supports DISCARD operations. |
2338 | */ |
2339 | static bool swap_discardable(struct swap_info_struct *si) |
2340 | { |
2341 | struct request_queue *q = bdev_get_queue(si->bdev); |
2342 | |
2343 | if (!q || !blk_queue_discard(q)) |
2344 | return false; |
2345 | |
2346 | return true; |
2347 | } |
2348 | |
2349 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) |
2350 | { |
2351 | struct swap_info_struct *p; |
2352 | struct filename *name; |
2353 | struct file *swap_file = NULL; |
2354 | struct address_space *mapping; |
2355 | int i; |
2356 | int prio; |
2357 | int error; |
2358 | union swap_header *swap_header; |
2359 | int nr_extents; |
2360 | sector_t span; |
2361 | unsigned long maxpages; |
2362 | unsigned char *swap_map = NULL; |
2363 | struct swap_cluster_info *cluster_info = NULL; |
2364 | unsigned long *frontswap_map = NULL; |
2365 | struct page *page = NULL; |
2366 | struct inode *inode = NULL; |
2367 | |
2368 | if (swap_flags & ~SWAP_FLAGS_VALID) |
2369 | return -EINVAL; |
2370 | |
2371 | if (!capable(CAP_SYS_ADMIN)) |
2372 | return -EPERM; |
2373 | |
2374 | p = alloc_swap_info(); |
2375 | if (IS_ERR(p)) |
2376 | return PTR_ERR(p); |
2377 | |
2378 | INIT_WORK(&p->discard_work, swap_discard_work); |
2379 | |
2380 | name = getname(specialfile); |
2381 | if (IS_ERR(name)) { |
2382 | error = PTR_ERR(name); |
2383 | name = NULL; |
2384 | goto bad_swap; |
2385 | } |
2386 | swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); |
2387 | if (IS_ERR(swap_file)) { |
2388 | error = PTR_ERR(swap_file); |
2389 | swap_file = NULL; |
2390 | goto bad_swap; |
2391 | } |
2392 | |
2393 | p->swap_file = swap_file; |
2394 | mapping = swap_file->f_mapping; |
2395 | |
2396 | for (i = 0; i < nr_swapfiles; i++) { |
2397 | struct swap_info_struct *q = swap_info[i]; |
2398 | |
2399 | if (q == p || !q->swap_file) |
2400 | continue; |
2401 | if (mapping == q->swap_file->f_mapping) { |
2402 | error = -EBUSY; |
2403 | goto bad_swap; |
2404 | } |
2405 | } |
2406 | |
2407 | inode = mapping->host; |
2408 | /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ |
2409 | error = claim_swapfile(p, inode); |
2410 | if (unlikely(error)) |
2411 | goto bad_swap; |
2412 | |
2413 | /* |
2414 | * Read the swap header. |
2415 | */ |
2416 | if (!mapping->a_ops->readpage) { |
2417 | error = -EINVAL; |
2418 | goto bad_swap; |
2419 | } |
2420 | page = read_mapping_page(mapping, 0, swap_file); |
2421 | if (IS_ERR(page)) { |
2422 | error = PTR_ERR(page); |
2423 | goto bad_swap; |
2424 | } |
2425 | swap_header = kmap(page); |
2426 | |
2427 | maxpages = read_swap_header(p, swap_header, inode); |
2428 | if (unlikely(!maxpages)) { |
2429 | error = -EINVAL; |
2430 | goto bad_swap; |
2431 | } |
2432 | |
2433 | /* OK, set up the swap map and apply the bad block list */ |
2434 | swap_map = vzalloc(maxpages); |
2435 | if (!swap_map) { |
2436 | error = -ENOMEM; |
2437 | goto bad_swap; |
2438 | } |
2439 | if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { |
2440 | p->flags |= SWP_SOLIDSTATE; |
2441 | /* |
2442 | * select a random position to start with to help wear leveling |
2443 | * SSD |
2444 | */ |
2445 | p->cluster_next = 1 + (prandom_u32() % p->highest_bit); |
2446 | |
2447 | cluster_info = vzalloc(DIV_ROUND_UP(maxpages, |
2448 | SWAPFILE_CLUSTER) * sizeof(*cluster_info)); |
2449 | if (!cluster_info) { |
2450 | error = -ENOMEM; |
2451 | goto bad_swap; |
2452 | } |
2453 | p->percpu_cluster = alloc_percpu(struct percpu_cluster); |
2454 | if (!p->percpu_cluster) { |
2455 | error = -ENOMEM; |
2456 | goto bad_swap; |
2457 | } |
2458 | for_each_possible_cpu(i) { |
2459 | struct percpu_cluster *cluster; |
2460 | cluster = per_cpu_ptr(p->percpu_cluster, i); |
2461 | cluster_set_null(&cluster->index); |
2462 | } |
2463 | } |
2464 | |
2465 | error = swap_cgroup_swapon(p->type, maxpages); |
2466 | if (error) |
2467 | goto bad_swap; |
2468 | |
2469 | nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, |
2470 | cluster_info, maxpages, &span); |
2471 | if (unlikely(nr_extents < 0)) { |
2472 | error = nr_extents; |
2473 | goto bad_swap; |
2474 | } |
2475 | /* frontswap enabled? set up bit-per-page map for frontswap */ |
2476 | if (frontswap_enabled) |
2477 | frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); |
2478 | |
2479 | if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { |
2480 | /* |
2481 | * When discard is enabled for swap with no particular |
2482 | * policy flagged, we set all swap discard flags here in |
2483 | * order to sustain backward compatibility with older |
2484 | * swapon(8) releases. |
2485 | */ |
2486 | p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | |
2487 | SWP_PAGE_DISCARD); |
2488 | |
2489 | /* |
2490 | * By flagging sys_swapon, a sysadmin can tell us to |
2491 | * either do single-time area discards only, or to just |
2492 | * perform discards for released swap page-clusters. |
2493 | * Now it's time to adjust the p->flags accordingly. |
2494 | */ |
2495 | if (swap_flags & SWAP_FLAG_DISCARD_ONCE) |
2496 | p->flags &= ~SWP_PAGE_DISCARD; |
2497 | else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) |
2498 | p->flags &= ~SWP_AREA_DISCARD; |
2499 | |
2500 | /* issue a swapon-time discard if it's still required */ |
2501 | if (p->flags & SWP_AREA_DISCARD) { |
2502 | int err = discard_swap(p); |
2503 | if (unlikely(err)) |
2504 | pr_err("swapon: discard_swap(%p): %d\n", |
2505 | p, err); |
2506 | } |
2507 | } |
2508 | |
2509 | mutex_lock(&swapon_mutex); |
2510 | prio = -1; |
2511 | if (swap_flags & SWAP_FLAG_PREFER) |
2512 | prio = |
2513 | (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; |
2514 | enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); |
2515 | |
2516 | pr_info("Adding %uk swap on %s. " |
2517 | "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", |
2518 | p->pages<<(PAGE_SHIFT-10), name->name, p->prio, |
2519 | nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), |
2520 | (p->flags & SWP_SOLIDSTATE) ? "SS" : "", |
2521 | (p->flags & SWP_DISCARDABLE) ? "D" : "", |
2522 | (p->flags & SWP_AREA_DISCARD) ? "s" : "", |
2523 | (p->flags & SWP_PAGE_DISCARD) ? "c" : "", |
2524 | (frontswap_map) ? "FS" : ""); |
2525 | |
2526 | mutex_unlock(&swapon_mutex); |
2527 | atomic_inc(&proc_poll_event); |
2528 | wake_up_interruptible(&proc_poll_wait); |
2529 | |
2530 | if (S_ISREG(inode->i_mode)) |
2531 | inode->i_flags |= S_SWAPFILE; |
2532 | error = 0; |
2533 | goto out; |
2534 | bad_swap: |
2535 | free_percpu(p->percpu_cluster); |
2536 | p->percpu_cluster = NULL; |
2537 | if (inode && S_ISBLK(inode->i_mode) && p->bdev) { |
2538 | set_blocksize(p->bdev, p->old_block_size); |
2539 | blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); |
2540 | } |
2541 | destroy_swap_extents(p); |
2542 | swap_cgroup_swapoff(p->type); |
2543 | spin_lock(&swap_lock); |
2544 | p->swap_file = NULL; |
2545 | p->flags = 0; |
2546 | spin_unlock(&swap_lock); |
2547 | vfree(swap_map); |
2548 | vfree(cluster_info); |
2549 | if (swap_file) { |
2550 | if (inode && S_ISREG(inode->i_mode)) { |
2551 | mutex_unlock(&inode->i_mutex); |
2552 | inode = NULL; |
2553 | } |
2554 | filp_close(swap_file, NULL); |
2555 | } |
2556 | out: |
2557 | if (page && !IS_ERR(page)) { |
2558 | kunmap(page); |
2559 | page_cache_release(page); |
2560 | } |
2561 | if (name) |
2562 | putname(name); |
2563 | if (inode && S_ISREG(inode->i_mode)) |
2564 | mutex_unlock(&inode->i_mutex); |
2565 | return error; |
2566 | } |
2567 | |
2568 | void si_swapinfo(struct sysinfo *val) |
2569 | { |
2570 | unsigned int type; |
2571 | unsigned long nr_to_be_unused = 0; |
2572 | |
2573 | spin_lock(&swap_lock); |
2574 | for (type = 0; type < nr_swapfiles; type++) { |
2575 | struct swap_info_struct *si = swap_info[type]; |
2576 | |
2577 | if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) |
2578 | nr_to_be_unused += si->inuse_pages; |
2579 | } |
2580 | val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; |
2581 | val->totalswap = total_swap_pages + nr_to_be_unused; |
2582 | spin_unlock(&swap_lock); |
2583 | } |
2584 | |
2585 | /* |
2586 | * Verify that a swap entry is valid and increment its swap map count. |
2587 | * |
2588 | * Returns error code in following case. |
2589 | * - success -> 0 |
2590 | * - swp_entry is invalid -> EINVAL |
2591 | * - swp_entry is migration entry -> EINVAL |
2592 | * - swap-cache reference is requested but there is already one. -> EEXIST |
2593 | * - swap-cache reference is requested but the entry is not used. -> ENOENT |
2594 | * - swap-mapped reference requested but needs continued swap count. -> ENOMEM |
2595 | */ |
2596 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage) |
2597 | { |
2598 | struct swap_info_struct *p; |
2599 | unsigned long offset, type; |
2600 | unsigned char count; |
2601 | unsigned char has_cache; |
2602 | int err = -EINVAL; |
2603 | |
2604 | if (non_swap_entry(entry)) |
2605 | goto out; |
2606 | |
2607 | type = swp_type(entry); |
2608 | if (type >= nr_swapfiles) |
2609 | goto bad_file; |
2610 | p = swap_info[type]; |
2611 | offset = swp_offset(entry); |
2612 | |
2613 | spin_lock(&p->lock); |
2614 | if (unlikely(offset >= p->max)) |
2615 | goto unlock_out; |
2616 | |
2617 | count = p->swap_map[offset]; |
2618 | |
2619 | /* |
2620 | * swapin_readahead() doesn't check if a swap entry is valid, so the |
2621 | * swap entry could be SWAP_MAP_BAD. Check here with lock held. |
2622 | */ |
2623 | if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { |
2624 | err = -ENOENT; |
2625 | goto unlock_out; |
2626 | } |
2627 | |
2628 | has_cache = count & SWAP_HAS_CACHE; |
2629 | count &= ~SWAP_HAS_CACHE; |
2630 | err = 0; |
2631 | |
2632 | if (usage == SWAP_HAS_CACHE) { |
2633 | |
2634 | /* set SWAP_HAS_CACHE if there is no cache and entry is used */ |
2635 | if (!has_cache && count) |
2636 | has_cache = SWAP_HAS_CACHE; |
2637 | else if (has_cache) /* someone else added cache */ |
2638 | err = -EEXIST; |
2639 | else /* no users remaining */ |
2640 | err = -ENOENT; |
2641 | |
2642 | } else if (count || has_cache) { |
2643 | |
2644 | if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) |
2645 | count += usage; |
2646 | else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) |
2647 | err = -EINVAL; |
2648 | else if (swap_count_continued(p, offset, count)) |
2649 | count = COUNT_CONTINUED; |
2650 | else |
2651 | err = -ENOMEM; |
2652 | } else |
2653 | err = -ENOENT; /* unused swap entry */ |
2654 | |
2655 | p->swap_map[offset] = count | has_cache; |
2656 | |
2657 | unlock_out: |
2658 | spin_unlock(&p->lock); |
2659 | out: |
2660 | return err; |
2661 | |
2662 | bad_file: |
2663 | pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); |
2664 | goto out; |
2665 | } |
2666 | |
2667 | /* |
2668 | * Help swapoff by noting that swap entry belongs to shmem/tmpfs |
2669 | * (in which case its reference count is never incremented). |
2670 | */ |
2671 | void swap_shmem_alloc(swp_entry_t entry) |
2672 | { |
2673 | __swap_duplicate(entry, SWAP_MAP_SHMEM); |
2674 | } |
2675 | |
2676 | /* |
2677 | * Increase reference count of swap entry by 1. |
2678 | * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required |
2679 | * but could not be atomically allocated. Returns 0, just as if it succeeded, |
2680 | * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which |
2681 | * might occur if a page table entry has got corrupted. |
2682 | */ |
2683 | int swap_duplicate(swp_entry_t entry) |
2684 | { |
2685 | int err = 0; |
2686 | |
2687 | while (!err && __swap_duplicate(entry, 1) == -ENOMEM) |
2688 | err = add_swap_count_continuation(entry, GFP_ATOMIC); |
2689 | return err; |
2690 | } |
2691 | |
2692 | /* |
2693 | * @entry: swap entry for which we allocate swap cache. |
2694 | * |
2695 | * Called when allocating swap cache for existing swap entry, |
2696 | * This can return error codes. Returns 0 at success. |
2697 | * -EBUSY means there is a swap cache. |
2698 | * Note: return code is different from swap_duplicate(). |
2699 | */ |
2700 | int swapcache_prepare(swp_entry_t entry) |
2701 | { |
2702 | return __swap_duplicate(entry, SWAP_HAS_CACHE); |
2703 | } |
2704 | |
2705 | struct swap_info_struct *page_swap_info(struct page *page) |
2706 | { |
2707 | swp_entry_t swap = { .val = page_private(page) }; |
2708 | BUG_ON(!PageSwapCache(page)); |
2709 | return swap_info[swp_type(swap)]; |
2710 | } |
2711 | |
2712 | /* |
2713 | * out-of-line __page_file_ methods to avoid include hell. |
2714 | */ |
2715 | struct address_space *__page_file_mapping(struct page *page) |
2716 | { |
2717 | VM_BUG_ON(!PageSwapCache(page)); |
2718 | return page_swap_info(page)->swap_file->f_mapping; |
2719 | } |
2720 | EXPORT_SYMBOL_GPL(__page_file_mapping); |
2721 | |
2722 | pgoff_t __page_file_index(struct page *page) |
2723 | { |
2724 | swp_entry_t swap = { .val = page_private(page) }; |
2725 | VM_BUG_ON(!PageSwapCache(page)); |
2726 | return swp_offset(swap); |
2727 | } |
2728 | EXPORT_SYMBOL_GPL(__page_file_index); |
2729 | |
2730 | /* |
2731 | * add_swap_count_continuation - called when a swap count is duplicated |
2732 | * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's |
2733 | * page of the original vmalloc'ed swap_map, to hold the continuation count |
2734 | * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called |
2735 | * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. |
2736 | * |
2737 | * These continuation pages are seldom referenced: the common paths all work |
2738 | * on the original swap_map, only referring to a continuation page when the |
2739 | * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. |
2740 | * |
2741 | * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding |
2742 | * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) |
2743 | * can be called after dropping locks. |
2744 | */ |
2745 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) |
2746 | { |
2747 | struct swap_info_struct *si; |
2748 | struct page *head; |
2749 | struct page *page; |
2750 | struct page *list_page; |
2751 | pgoff_t offset; |
2752 | unsigned char count; |
2753 | |
2754 | /* |
2755 | * When debugging, it's easier to use __GFP_ZERO here; but it's better |
2756 | * for latency not to zero a page while GFP_ATOMIC and holding locks. |
2757 | */ |
2758 | page = alloc_page(gfp_mask | __GFP_HIGHMEM); |
2759 | |
2760 | si = swap_info_get(entry); |
2761 | if (!si) { |
2762 | /* |
2763 | * An acceptable race has occurred since the failing |
2764 | * __swap_duplicate(): the swap entry has been freed, |
2765 | * perhaps even the whole swap_map cleared for swapoff. |
2766 | */ |
2767 | goto outer; |
2768 | } |
2769 | |
2770 | offset = swp_offset(entry); |
2771 | count = si->swap_map[offset] & ~SWAP_HAS_CACHE; |
2772 | |
2773 | if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { |
2774 | /* |
2775 | * The higher the swap count, the more likely it is that tasks |
2776 | * will race to add swap count continuation: we need to avoid |
2777 | * over-provisioning. |
2778 | */ |
2779 | goto out; |
2780 | } |
2781 | |
2782 | if (!page) { |
2783 | spin_unlock(&si->lock); |
2784 | return -ENOMEM; |
2785 | } |
2786 | |
2787 | /* |
2788 | * We are fortunate that although vmalloc_to_page uses pte_offset_map, |
2789 | * no architecture is using highmem pages for kernel pagetables: so it |
2790 | * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. |
2791 | */ |
2792 | head = vmalloc_to_page(si->swap_map + offset); |
2793 | offset &= ~PAGE_MASK; |
2794 | |
2795 | /* |
2796 | * Page allocation does not initialize the page's lru field, |
2797 | * but it does always reset its private field. |
2798 | */ |
2799 | if (!page_private(head)) { |
2800 | BUG_ON(count & COUNT_CONTINUED); |
2801 | INIT_LIST_HEAD(&head->lru); |
2802 | set_page_private(head, SWP_CONTINUED); |
2803 | si->flags |= SWP_CONTINUED; |
2804 | } |
2805 | |
2806 | list_for_each_entry(list_page, &head->lru, lru) { |
2807 | unsigned char *map; |
2808 | |
2809 | /* |
2810 | * If the previous map said no continuation, but we've found |
2811 | * a continuation page, free our allocation and use this one. |
2812 | */ |
2813 | if (!(count & COUNT_CONTINUED)) |
2814 | goto out; |
2815 | |
2816 | map = kmap_atomic(list_page) + offset; |
2817 | count = *map; |
2818 | kunmap_atomic(map); |
2819 | |
2820 | /* |
2821 | * If this continuation count now has some space in it, |
2822 | * free our allocation and use this one. |
2823 | */ |
2824 | if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) |
2825 | goto out; |
2826 | } |
2827 | |
2828 | list_add_tail(&page->lru, &head->lru); |
2829 | page = NULL; /* now it's attached, don't free it */ |
2830 | out: |
2831 | spin_unlock(&si->lock); |
2832 | outer: |
2833 | if (page) |
2834 | __free_page(page); |
2835 | return 0; |
2836 | } |
2837 | |
2838 | /* |
2839 | * swap_count_continued - when the original swap_map count is incremented |
2840 | * from SWAP_MAP_MAX, check if there is already a continuation page to carry |
2841 | * into, carry if so, or else fail until a new continuation page is allocated; |
2842 | * when the original swap_map count is decremented from 0 with continuation, |
2843 | * borrow from the continuation and report whether it still holds more. |
2844 | * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. |
2845 | */ |
2846 | static bool swap_count_continued(struct swap_info_struct *si, |
2847 | pgoff_t offset, unsigned char count) |
2848 | { |
2849 | struct page *head; |
2850 | struct page *page; |
2851 | unsigned char *map; |
2852 | |
2853 | head = vmalloc_to_page(si->swap_map + offset); |
2854 | if (page_private(head) != SWP_CONTINUED) { |
2855 | BUG_ON(count & COUNT_CONTINUED); |
2856 | return false; /* need to add count continuation */ |
2857 | } |
2858 | |
2859 | offset &= ~PAGE_MASK; |
2860 | page = list_entry(head->lru.next, struct page, lru); |
2861 | map = kmap_atomic(page) + offset; |
2862 | |
2863 | if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ |
2864 | goto init_map; /* jump over SWAP_CONT_MAX checks */ |
2865 | |
2866 | if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ |
2867 | /* |
2868 | * Think of how you add 1 to 999 |
2869 | */ |
2870 | while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { |
2871 | kunmap_atomic(map); |
2872 | page = list_entry(page->lru.next, struct page, lru); |
2873 | BUG_ON(page == head); |
2874 | map = kmap_atomic(page) + offset; |
2875 | } |
2876 | if (*map == SWAP_CONT_MAX) { |
2877 | kunmap_atomic(map); |
2878 | page = list_entry(page->lru.next, struct page, lru); |
2879 | if (page == head) |
2880 | return false; /* add count continuation */ |
2881 | map = kmap_atomic(page) + offset; |
2882 | init_map: *map = 0; /* we didn't zero the page */ |
2883 | } |
2884 | *map += 1; |
2885 | kunmap_atomic(map); |
2886 | page = list_entry(page->lru.prev, struct page, lru); |
2887 | while (page != head) { |
2888 | map = kmap_atomic(page) + offset; |
2889 | *map = COUNT_CONTINUED; |
2890 | kunmap_atomic(map); |
2891 | page = list_entry(page->lru.prev, struct page, lru); |
2892 | } |
2893 | return true; /* incremented */ |
2894 | |
2895 | } else { /* decrementing */ |
2896 | /* |
2897 | * Think of how you subtract 1 from 1000 |
2898 | */ |
2899 | BUG_ON(count != COUNT_CONTINUED); |
2900 | while (*map == COUNT_CONTINUED) { |
2901 | kunmap_atomic(map); |
2902 | page = list_entry(page->lru.next, struct page, lru); |
2903 | BUG_ON(page == head); |
2904 | map = kmap_atomic(page) + offset; |
2905 | } |
2906 | BUG_ON(*map == 0); |
2907 | *map -= 1; |
2908 | if (*map == 0) |
2909 | count = 0; |
2910 | kunmap_atomic(map); |
2911 | page = list_entry(page->lru.prev, struct page, lru); |
2912 | while (page != head) { |
2913 | map = kmap_atomic(page) + offset; |
2914 | *map = SWAP_CONT_MAX | count; |
2915 | count = COUNT_CONTINUED; |
2916 | kunmap_atomic(map); |
2917 | page = list_entry(page->lru.prev, struct page, lru); |
2918 | } |
2919 | return count == COUNT_CONTINUED; |
2920 | } |
2921 | } |
2922 | |
2923 | /* |
2924 | * free_swap_count_continuations - swapoff free all the continuation pages |
2925 | * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. |
2926 | */ |
2927 | static void free_swap_count_continuations(struct swap_info_struct *si) |
2928 | { |
2929 | pgoff_t offset; |
2930 | |
2931 | for (offset = 0; offset < si->max; offset += PAGE_SIZE) { |
2932 | struct page *head; |
2933 | head = vmalloc_to_page(si->swap_map + offset); |
2934 | if (page_private(head)) { |
2935 | struct list_head *this, *next; |
2936 | list_for_each_safe(this, next, &head->lru) { |
2937 | struct page *page; |
2938 | page = list_entry(this, struct page, lru); |
2939 | list_del(this); |
2940 | __free_page(page); |
2941 | } |
2942 | } |
2943 | } |
2944 | } |
2945 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9