Root/mm/swapfile.c

1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shmem_fs.h>
18#include <linux/blkdev.h>
19#include <linux/random.h>
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
28#include <linux/mutex.h>
29#include <linux/capability.h>
30#include <linux/syscalls.h>
31#include <linux/memcontrol.h>
32#include <linux/poll.h>
33#include <linux/oom.h>
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
36#include <linux/export.h>
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
41#include <linux/page_cgroup.h>
42
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48DEFINE_SPINLOCK(swap_lock);
49static unsigned int nr_swapfiles;
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52long total_swap_pages;
53static int least_priority;
54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
61struct swap_list_t swap_list = {-1, -1};
62
63struct swap_info_struct *swap_info[MAX_SWAPFILES];
64
65static DEFINE_MUTEX(swapon_mutex);
66
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
71static inline unsigned char swap_count(unsigned char ent)
72{
73    return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
74}
75
76/* returns 1 if swap entry is freed */
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
80    swp_entry_t entry = swp_entry(si->type, offset);
81    struct page *page;
82    int ret = 0;
83
84    page = find_get_page(swap_address_space(entry), entry.val);
85    if (!page)
86        return 0;
87    /*
88     * This function is called from scan_swap_map() and it's called
89     * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90     * We have to use trylock for avoiding deadlock. This is a special
91     * case and you should use try_to_free_swap() with explicit lock_page()
92     * in usual operations.
93     */
94    if (trylock_page(page)) {
95        ret = try_to_free_swap(page);
96        unlock_page(page);
97    }
98    page_cache_release(page);
99    return ret;
100}
101
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108    struct swap_extent *se;
109    sector_t start_block;
110    sector_t nr_blocks;
111    int err = 0;
112
113    /* Do not discard the swap header page! */
114    se = &si->first_swap_extent;
115    start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116    nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117    if (nr_blocks) {
118        err = blkdev_issue_discard(si->bdev, start_block,
119                nr_blocks, GFP_KERNEL, 0);
120        if (err)
121            return err;
122        cond_resched();
123    }
124
125    list_for_each_entry(se, &si->first_swap_extent.list, list) {
126        start_block = se->start_block << (PAGE_SHIFT - 9);
127        nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128
129        err = blkdev_issue_discard(si->bdev, start_block,
130                nr_blocks, GFP_KERNEL, 0);
131        if (err)
132            break;
133
134        cond_resched();
135    }
136    return err; /* That will often be -EOPNOTSUPP */
137}
138
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144                 pgoff_t start_page, pgoff_t nr_pages)
145{
146    struct swap_extent *se = si->curr_swap_extent;
147    int found_extent = 0;
148
149    while (nr_pages) {
150        struct list_head *lh;
151
152        if (se->start_page <= start_page &&
153            start_page < se->start_page + se->nr_pages) {
154            pgoff_t offset = start_page - se->start_page;
155            sector_t start_block = se->start_block + offset;
156            sector_t nr_blocks = se->nr_pages - offset;
157
158            if (nr_blocks > nr_pages)
159                nr_blocks = nr_pages;
160            start_page += nr_blocks;
161            nr_pages -= nr_blocks;
162
163            if (!found_extent++)
164                si->curr_swap_extent = se;
165
166            start_block <<= PAGE_SHIFT - 9;
167            nr_blocks <<= PAGE_SHIFT - 9;
168            if (blkdev_issue_discard(si->bdev, start_block,
169                    nr_blocks, GFP_NOIO, 0))
170                break;
171        }
172
173        lh = se->list.next;
174        se = list_entry(lh, struct swap_extent, list);
175    }
176}
177
178#define SWAPFILE_CLUSTER 256
179#define LATENCY_LIMIT 256
180
181static inline void cluster_set_flag(struct swap_cluster_info *info,
182    unsigned int flag)
183{
184    info->flags = flag;
185}
186
187static inline unsigned int cluster_count(struct swap_cluster_info *info)
188{
189    return info->data;
190}
191
192static inline void cluster_set_count(struct swap_cluster_info *info,
193                     unsigned int c)
194{
195    info->data = c;
196}
197
198static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199                     unsigned int c, unsigned int f)
200{
201    info->flags = f;
202    info->data = c;
203}
204
205static inline unsigned int cluster_next(struct swap_cluster_info *info)
206{
207    return info->data;
208}
209
210static inline void cluster_set_next(struct swap_cluster_info *info,
211                    unsigned int n)
212{
213    info->data = n;
214}
215
216static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217                     unsigned int n, unsigned int f)
218{
219    info->flags = f;
220    info->data = n;
221}
222
223static inline bool cluster_is_free(struct swap_cluster_info *info)
224{
225    return info->flags & CLUSTER_FLAG_FREE;
226}
227
228static inline bool cluster_is_null(struct swap_cluster_info *info)
229{
230    return info->flags & CLUSTER_FLAG_NEXT_NULL;
231}
232
233static inline void cluster_set_null(struct swap_cluster_info *info)
234{
235    info->flags = CLUSTER_FLAG_NEXT_NULL;
236    info->data = 0;
237}
238
239/* Add a cluster to discard list and schedule it to do discard */
240static void swap_cluster_schedule_discard(struct swap_info_struct *si,
241        unsigned int idx)
242{
243    /*
244     * If scan_swap_map() can't find a free cluster, it will check
245     * si->swap_map directly. To make sure the discarding cluster isn't
246     * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247     * will be cleared after discard
248     */
249    memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250            SWAP_MAP_BAD, SWAPFILE_CLUSTER);
251
252    if (cluster_is_null(&si->discard_cluster_head)) {
253        cluster_set_next_flag(&si->discard_cluster_head,
254                        idx, 0);
255        cluster_set_next_flag(&si->discard_cluster_tail,
256                        idx, 0);
257    } else {
258        unsigned int tail = cluster_next(&si->discard_cluster_tail);
259        cluster_set_next(&si->cluster_info[tail], idx);
260        cluster_set_next_flag(&si->discard_cluster_tail,
261                        idx, 0);
262    }
263
264    schedule_work(&si->discard_work);
265}
266
267/*
268 * Doing discard actually. After a cluster discard is finished, the cluster
269 * will be added to free cluster list. caller should hold si->lock.
270*/
271static void swap_do_scheduled_discard(struct swap_info_struct *si)
272{
273    struct swap_cluster_info *info;
274    unsigned int idx;
275
276    info = si->cluster_info;
277
278    while (!cluster_is_null(&si->discard_cluster_head)) {
279        idx = cluster_next(&si->discard_cluster_head);
280
281        cluster_set_next_flag(&si->discard_cluster_head,
282                        cluster_next(&info[idx]), 0);
283        if (cluster_next(&si->discard_cluster_tail) == idx) {
284            cluster_set_null(&si->discard_cluster_head);
285            cluster_set_null(&si->discard_cluster_tail);
286        }
287        spin_unlock(&si->lock);
288
289        discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
290                SWAPFILE_CLUSTER);
291
292        spin_lock(&si->lock);
293        cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294        if (cluster_is_null(&si->free_cluster_head)) {
295            cluster_set_next_flag(&si->free_cluster_head,
296                        idx, 0);
297            cluster_set_next_flag(&si->free_cluster_tail,
298                        idx, 0);
299        } else {
300            unsigned int tail;
301
302            tail = cluster_next(&si->free_cluster_tail);
303            cluster_set_next(&info[tail], idx);
304            cluster_set_next_flag(&si->free_cluster_tail,
305                        idx, 0);
306        }
307        memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308                0, SWAPFILE_CLUSTER);
309    }
310}
311
312static void swap_discard_work(struct work_struct *work)
313{
314    struct swap_info_struct *si;
315
316    si = container_of(work, struct swap_info_struct, discard_work);
317
318    spin_lock(&si->lock);
319    swap_do_scheduled_discard(si);
320    spin_unlock(&si->lock);
321}
322
323/*
324 * The cluster corresponding to page_nr will be used. The cluster will be
325 * removed from free cluster list and its usage counter will be increased.
326 */
327static void inc_cluster_info_page(struct swap_info_struct *p,
328    struct swap_cluster_info *cluster_info, unsigned long page_nr)
329{
330    unsigned long idx = page_nr / SWAPFILE_CLUSTER;
331
332    if (!cluster_info)
333        return;
334    if (cluster_is_free(&cluster_info[idx])) {
335        VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336        cluster_set_next_flag(&p->free_cluster_head,
337            cluster_next(&cluster_info[idx]), 0);
338        if (cluster_next(&p->free_cluster_tail) == idx) {
339            cluster_set_null(&p->free_cluster_tail);
340            cluster_set_null(&p->free_cluster_head);
341        }
342        cluster_set_count_flag(&cluster_info[idx], 0, 0);
343    }
344
345    VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346    cluster_set_count(&cluster_info[idx],
347        cluster_count(&cluster_info[idx]) + 1);
348}
349
350/*
351 * The cluster corresponding to page_nr decreases one usage. If the usage
352 * counter becomes 0, which means no page in the cluster is in using, we can
353 * optionally discard the cluster and add it to free cluster list.
354 */
355static void dec_cluster_info_page(struct swap_info_struct *p,
356    struct swap_cluster_info *cluster_info, unsigned long page_nr)
357{
358    unsigned long idx = page_nr / SWAPFILE_CLUSTER;
359
360    if (!cluster_info)
361        return;
362
363    VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364    cluster_set_count(&cluster_info[idx],
365        cluster_count(&cluster_info[idx]) - 1);
366
367    if (cluster_count(&cluster_info[idx]) == 0) {
368        /*
369         * If the swap is discardable, prepare discard the cluster
370         * instead of free it immediately. The cluster will be freed
371         * after discard.
372         */
373        if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374                 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
375            swap_cluster_schedule_discard(p, idx);
376            return;
377        }
378
379        cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380        if (cluster_is_null(&p->free_cluster_head)) {
381            cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382            cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
383        } else {
384            unsigned int tail = cluster_next(&p->free_cluster_tail);
385            cluster_set_next(&cluster_info[tail], idx);
386            cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
387        }
388    }
389}
390
391/*
392 * It's possible scan_swap_map() uses a free cluster in the middle of free
393 * cluster list. Avoiding such abuse to avoid list corruption.
394 */
395static bool
396scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
397    unsigned long offset)
398{
399    struct percpu_cluster *percpu_cluster;
400    bool conflict;
401
402    offset /= SWAPFILE_CLUSTER;
403    conflict = !cluster_is_null(&si->free_cluster_head) &&
404        offset != cluster_next(&si->free_cluster_head) &&
405        cluster_is_free(&si->cluster_info[offset]);
406
407    if (!conflict)
408        return false;
409
410    percpu_cluster = this_cpu_ptr(si->percpu_cluster);
411    cluster_set_null(&percpu_cluster->index);
412    return true;
413}
414
415/*
416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
417 * might involve allocating a new cluster for current CPU too.
418 */
419static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
420    unsigned long *offset, unsigned long *scan_base)
421{
422    struct percpu_cluster *cluster;
423    bool found_free;
424    unsigned long tmp;
425
426new_cluster:
427    cluster = this_cpu_ptr(si->percpu_cluster);
428    if (cluster_is_null(&cluster->index)) {
429        if (!cluster_is_null(&si->free_cluster_head)) {
430            cluster->index = si->free_cluster_head;
431            cluster->next = cluster_next(&cluster->index) *
432                    SWAPFILE_CLUSTER;
433        } else if (!cluster_is_null(&si->discard_cluster_head)) {
434            /*
435             * we don't have free cluster but have some clusters in
436             * discarding, do discard now and reclaim them
437             */
438            swap_do_scheduled_discard(si);
439            *scan_base = *offset = si->cluster_next;
440            goto new_cluster;
441        } else
442            return;
443    }
444
445    found_free = false;
446
447    /*
448     * Other CPUs can use our cluster if they can't find a free cluster,
449     * check if there is still free entry in the cluster
450     */
451    tmp = cluster->next;
452    while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
453           SWAPFILE_CLUSTER) {
454        if (!si->swap_map[tmp]) {
455            found_free = true;
456            break;
457        }
458        tmp++;
459    }
460    if (!found_free) {
461        cluster_set_null(&cluster->index);
462        goto new_cluster;
463    }
464    cluster->next = tmp + 1;
465    *offset = tmp;
466    *scan_base = tmp;
467}
468
469static unsigned long scan_swap_map(struct swap_info_struct *si,
470                   unsigned char usage)
471{
472    unsigned long offset;
473    unsigned long scan_base;
474    unsigned long last_in_cluster = 0;
475    int latency_ration = LATENCY_LIMIT;
476
477    /*
478     * We try to cluster swap pages by allocating them sequentially
479     * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
480     * way, however, we resort to first-free allocation, starting
481     * a new cluster. This prevents us from scattering swap pages
482     * all over the entire swap partition, so that we reduce
483     * overall disk seek times between swap pages. -- sct
484     * But we do now try to find an empty cluster. -Andrea
485     * And we let swap pages go all over an SSD partition. Hugh
486     */
487
488    si->flags += SWP_SCANNING;
489    scan_base = offset = si->cluster_next;
490
491    /* SSD algorithm */
492    if (si->cluster_info) {
493        scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
494        goto checks;
495    }
496
497    if (unlikely(!si->cluster_nr--)) {
498        if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
499            si->cluster_nr = SWAPFILE_CLUSTER - 1;
500            goto checks;
501        }
502
503        spin_unlock(&si->lock);
504
505        /*
506         * If seek is expensive, start searching for new cluster from
507         * start of partition, to minimize the span of allocated swap.
508         * But if seek is cheap, search from our current position, so
509         * that swap is allocated from all over the partition: if the
510         * Flash Translation Layer only remaps within limited zones,
511         * we don't want to wear out the first zone too quickly.
512         */
513        if (!(si->flags & SWP_SOLIDSTATE))
514            scan_base = offset = si->lowest_bit;
515        last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
516
517        /* Locate the first empty (unaligned) cluster */
518        for (; last_in_cluster <= si->highest_bit; offset++) {
519            if (si->swap_map[offset])
520                last_in_cluster = offset + SWAPFILE_CLUSTER;
521            else if (offset == last_in_cluster) {
522                spin_lock(&si->lock);
523                offset -= SWAPFILE_CLUSTER - 1;
524                si->cluster_next = offset;
525                si->cluster_nr = SWAPFILE_CLUSTER - 1;
526                goto checks;
527            }
528            if (unlikely(--latency_ration < 0)) {
529                cond_resched();
530                latency_ration = LATENCY_LIMIT;
531            }
532        }
533
534        offset = si->lowest_bit;
535        last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
536
537        /* Locate the first empty (unaligned) cluster */
538        for (; last_in_cluster < scan_base; offset++) {
539            if (si->swap_map[offset])
540                last_in_cluster = offset + SWAPFILE_CLUSTER;
541            else if (offset == last_in_cluster) {
542                spin_lock(&si->lock);
543                offset -= SWAPFILE_CLUSTER - 1;
544                si->cluster_next = offset;
545                si->cluster_nr = SWAPFILE_CLUSTER - 1;
546                goto checks;
547            }
548            if (unlikely(--latency_ration < 0)) {
549                cond_resched();
550                latency_ration = LATENCY_LIMIT;
551            }
552        }
553
554        offset = scan_base;
555        spin_lock(&si->lock);
556        si->cluster_nr = SWAPFILE_CLUSTER - 1;
557    }
558
559checks:
560    if (si->cluster_info) {
561        while (scan_swap_map_ssd_cluster_conflict(si, offset))
562            scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
563    }
564    if (!(si->flags & SWP_WRITEOK))
565        goto no_page;
566    if (!si->highest_bit)
567        goto no_page;
568    if (offset > si->highest_bit)
569        scan_base = offset = si->lowest_bit;
570
571    /* reuse swap entry of cache-only swap if not busy. */
572    if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
573        int swap_was_freed;
574        spin_unlock(&si->lock);
575        swap_was_freed = __try_to_reclaim_swap(si, offset);
576        spin_lock(&si->lock);
577        /* entry was freed successfully, try to use this again */
578        if (swap_was_freed)
579            goto checks;
580        goto scan; /* check next one */
581    }
582
583    if (si->swap_map[offset])
584        goto scan;
585
586    if (offset == si->lowest_bit)
587        si->lowest_bit++;
588    if (offset == si->highest_bit)
589        si->highest_bit--;
590    si->inuse_pages++;
591    if (si->inuse_pages == si->pages) {
592        si->lowest_bit = si->max;
593        si->highest_bit = 0;
594    }
595    si->swap_map[offset] = usage;
596    inc_cluster_info_page(si, si->cluster_info, offset);
597    si->cluster_next = offset + 1;
598    si->flags -= SWP_SCANNING;
599
600    return offset;
601
602scan:
603    spin_unlock(&si->lock);
604    while (++offset <= si->highest_bit) {
605        if (!si->swap_map[offset]) {
606            spin_lock(&si->lock);
607            goto checks;
608        }
609        if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
610            spin_lock(&si->lock);
611            goto checks;
612        }
613        if (unlikely(--latency_ration < 0)) {
614            cond_resched();
615            latency_ration = LATENCY_LIMIT;
616        }
617    }
618    offset = si->lowest_bit;
619    while (++offset < scan_base) {
620        if (!si->swap_map[offset]) {
621            spin_lock(&si->lock);
622            goto checks;
623        }
624        if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
625            spin_lock(&si->lock);
626            goto checks;
627        }
628        if (unlikely(--latency_ration < 0)) {
629            cond_resched();
630            latency_ration = LATENCY_LIMIT;
631        }
632    }
633    spin_lock(&si->lock);
634
635no_page:
636    si->flags -= SWP_SCANNING;
637    return 0;
638}
639
640swp_entry_t get_swap_page(void)
641{
642    struct swap_info_struct *si;
643    pgoff_t offset;
644    int type, next;
645    int wrapped = 0;
646    int hp_index;
647
648    spin_lock(&swap_lock);
649    if (atomic_long_read(&nr_swap_pages) <= 0)
650        goto noswap;
651    atomic_long_dec(&nr_swap_pages);
652
653    for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
654        hp_index = atomic_xchg(&highest_priority_index, -1);
655        /*
656         * highest_priority_index records current highest priority swap
657         * type which just frees swap entries. If its priority is
658         * higher than that of swap_list.next swap type, we use it. It
659         * isn't protected by swap_lock, so it can be an invalid value
660         * if the corresponding swap type is swapoff. We double check
661         * the flags here. It's even possible the swap type is swapoff
662         * and swapon again and its priority is changed. In such rare
663         * case, low prority swap type might be used, but eventually
664         * high priority swap will be used after several rounds of
665         * swap.
666         */
667        if (hp_index != -1 && hp_index != type &&
668            swap_info[type]->prio < swap_info[hp_index]->prio &&
669            (swap_info[hp_index]->flags & SWP_WRITEOK)) {
670            type = hp_index;
671            swap_list.next = type;
672        }
673
674        si = swap_info[type];
675        next = si->next;
676        if (next < 0 ||
677            (!wrapped && si->prio != swap_info[next]->prio)) {
678            next = swap_list.head;
679            wrapped++;
680        }
681
682        spin_lock(&si->lock);
683        if (!si->highest_bit) {
684            spin_unlock(&si->lock);
685            continue;
686        }
687        if (!(si->flags & SWP_WRITEOK)) {
688            spin_unlock(&si->lock);
689            continue;
690        }
691
692        swap_list.next = next;
693
694        spin_unlock(&swap_lock);
695        /* This is called for allocating swap entry for cache */
696        offset = scan_swap_map(si, SWAP_HAS_CACHE);
697        spin_unlock(&si->lock);
698        if (offset)
699            return swp_entry(type, offset);
700        spin_lock(&swap_lock);
701        next = swap_list.next;
702    }
703
704    atomic_long_inc(&nr_swap_pages);
705noswap:
706    spin_unlock(&swap_lock);
707    return (swp_entry_t) {0};
708}
709
710/* The only caller of this function is now susupend routine */
711swp_entry_t get_swap_page_of_type(int type)
712{
713    struct swap_info_struct *si;
714    pgoff_t offset;
715
716    si = swap_info[type];
717    spin_lock(&si->lock);
718    if (si && (si->flags & SWP_WRITEOK)) {
719        atomic_long_dec(&nr_swap_pages);
720        /* This is called for allocating swap entry, not cache */
721        offset = scan_swap_map(si, 1);
722        if (offset) {
723            spin_unlock(&si->lock);
724            return swp_entry(type, offset);
725        }
726        atomic_long_inc(&nr_swap_pages);
727    }
728    spin_unlock(&si->lock);
729    return (swp_entry_t) {0};
730}
731
732static struct swap_info_struct *swap_info_get(swp_entry_t entry)
733{
734    struct swap_info_struct *p;
735    unsigned long offset, type;
736
737    if (!entry.val)
738        goto out;
739    type = swp_type(entry);
740    if (type >= nr_swapfiles)
741        goto bad_nofile;
742    p = swap_info[type];
743    if (!(p->flags & SWP_USED))
744        goto bad_device;
745    offset = swp_offset(entry);
746    if (offset >= p->max)
747        goto bad_offset;
748    if (!p->swap_map[offset])
749        goto bad_free;
750    spin_lock(&p->lock);
751    return p;
752
753bad_free:
754    pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
755    goto out;
756bad_offset:
757    pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
758    goto out;
759bad_device:
760    pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
761    goto out;
762bad_nofile:
763    pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
764out:
765    return NULL;
766}
767
768/*
769 * This swap type frees swap entry, check if it is the highest priority swap
770 * type which just frees swap entry. get_swap_page() uses
771 * highest_priority_index to search highest priority swap type. The
772 * swap_info_struct.lock can't protect us if there are multiple swap types
773 * active, so we use atomic_cmpxchg.
774 */
775static void set_highest_priority_index(int type)
776{
777    int old_hp_index, new_hp_index;
778
779    do {
780        old_hp_index = atomic_read(&highest_priority_index);
781        if (old_hp_index != -1 &&
782            swap_info[old_hp_index]->prio >= swap_info[type]->prio)
783            break;
784        new_hp_index = type;
785    } while (atomic_cmpxchg(&highest_priority_index,
786        old_hp_index, new_hp_index) != old_hp_index);
787}
788
789static unsigned char swap_entry_free(struct swap_info_struct *p,
790                     swp_entry_t entry, unsigned char usage)
791{
792    unsigned long offset = swp_offset(entry);
793    unsigned char count;
794    unsigned char has_cache;
795
796    count = p->swap_map[offset];
797    has_cache = count & SWAP_HAS_CACHE;
798    count &= ~SWAP_HAS_CACHE;
799
800    if (usage == SWAP_HAS_CACHE) {
801        VM_BUG_ON(!has_cache);
802        has_cache = 0;
803    } else if (count == SWAP_MAP_SHMEM) {
804        /*
805         * Or we could insist on shmem.c using a special
806         * swap_shmem_free() and free_shmem_swap_and_cache()...
807         */
808        count = 0;
809    } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
810        if (count == COUNT_CONTINUED) {
811            if (swap_count_continued(p, offset, count))
812                count = SWAP_MAP_MAX | COUNT_CONTINUED;
813            else
814                count = SWAP_MAP_MAX;
815        } else
816            count--;
817    }
818
819    if (!count)
820        mem_cgroup_uncharge_swap(entry);
821
822    usage = count | has_cache;
823    p->swap_map[offset] = usage;
824
825    /* free if no reference */
826    if (!usage) {
827        dec_cluster_info_page(p, p->cluster_info, offset);
828        if (offset < p->lowest_bit)
829            p->lowest_bit = offset;
830        if (offset > p->highest_bit)
831            p->highest_bit = offset;
832        set_highest_priority_index(p->type);
833        atomic_long_inc(&nr_swap_pages);
834        p->inuse_pages--;
835        frontswap_invalidate_page(p->type, offset);
836        if (p->flags & SWP_BLKDEV) {
837            struct gendisk *disk = p->bdev->bd_disk;
838            if (disk->fops->swap_slot_free_notify)
839                disk->fops->swap_slot_free_notify(p->bdev,
840                                  offset);
841        }
842    }
843
844    return usage;
845}
846
847/*
848 * Caller has made sure that the swapdevice corresponding to entry
849 * is still around or has not been recycled.
850 */
851void swap_free(swp_entry_t entry)
852{
853    struct swap_info_struct *p;
854
855    p = swap_info_get(entry);
856    if (p) {
857        swap_entry_free(p, entry, 1);
858        spin_unlock(&p->lock);
859    }
860}
861
862/*
863 * Called after dropping swapcache to decrease refcnt to swap entries.
864 */
865void swapcache_free(swp_entry_t entry, struct page *page)
866{
867    struct swap_info_struct *p;
868    unsigned char count;
869
870    p = swap_info_get(entry);
871    if (p) {
872        count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
873        if (page)
874            mem_cgroup_uncharge_swapcache(page, entry, count != 0);
875        spin_unlock(&p->lock);
876    }
877}
878
879/*
880 * How many references to page are currently swapped out?
881 * This does not give an exact answer when swap count is continued,
882 * but does include the high COUNT_CONTINUED flag to allow for that.
883 */
884int page_swapcount(struct page *page)
885{
886    int count = 0;
887    struct swap_info_struct *p;
888    swp_entry_t entry;
889
890    entry.val = page_private(page);
891    p = swap_info_get(entry);
892    if (p) {
893        count = swap_count(p->swap_map[swp_offset(entry)]);
894        spin_unlock(&p->lock);
895    }
896    return count;
897}
898
899/*
900 * We can write to an anon page without COW if there are no other references
901 * to it. And as a side-effect, free up its swap: because the old content
902 * on disk will never be read, and seeking back there to write new content
903 * later would only waste time away from clustering.
904 */
905int reuse_swap_page(struct page *page)
906{
907    int count;
908
909    VM_BUG_ON(!PageLocked(page));
910    if (unlikely(PageKsm(page)))
911        return 0;
912    count = page_mapcount(page);
913    if (count <= 1 && PageSwapCache(page)) {
914        count += page_swapcount(page);
915        if (count == 1 && !PageWriteback(page)) {
916            delete_from_swap_cache(page);
917            SetPageDirty(page);
918        }
919    }
920    return count <= 1;
921}
922
923/*
924 * If swap is getting full, or if there are no more mappings of this page,
925 * then try_to_free_swap is called to free its swap space.
926 */
927int try_to_free_swap(struct page *page)
928{
929    VM_BUG_ON(!PageLocked(page));
930
931    if (!PageSwapCache(page))
932        return 0;
933    if (PageWriteback(page))
934        return 0;
935    if (page_swapcount(page))
936        return 0;
937
938    /*
939     * Once hibernation has begun to create its image of memory,
940     * there's a danger that one of the calls to try_to_free_swap()
941     * - most probably a call from __try_to_reclaim_swap() while
942     * hibernation is allocating its own swap pages for the image,
943     * but conceivably even a call from memory reclaim - will free
944     * the swap from a page which has already been recorded in the
945     * image as a clean swapcache page, and then reuse its swap for
946     * another page of the image. On waking from hibernation, the
947     * original page might be freed under memory pressure, then
948     * later read back in from swap, now with the wrong data.
949     *
950     * Hibration suspends storage while it is writing the image
951     * to disk so check that here.
952     */
953    if (pm_suspended_storage())
954        return 0;
955
956    delete_from_swap_cache(page);
957    SetPageDirty(page);
958    return 1;
959}
960
961/*
962 * Free the swap entry like above, but also try to
963 * free the page cache entry if it is the last user.
964 */
965int free_swap_and_cache(swp_entry_t entry)
966{
967    struct swap_info_struct *p;
968    struct page *page = NULL;
969
970    if (non_swap_entry(entry))
971        return 1;
972
973    p = swap_info_get(entry);
974    if (p) {
975        if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
976            page = find_get_page(swap_address_space(entry),
977                        entry.val);
978            if (page && !trylock_page(page)) {
979                page_cache_release(page);
980                page = NULL;
981            }
982        }
983        spin_unlock(&p->lock);
984    }
985    if (page) {
986        /*
987         * Not mapped elsewhere, or swap space full? Free it!
988         * Also recheck PageSwapCache now page is locked (above).
989         */
990        if (PageSwapCache(page) && !PageWriteback(page) &&
991                (!page_mapped(page) || vm_swap_full())) {
992            delete_from_swap_cache(page);
993            SetPageDirty(page);
994        }
995        unlock_page(page);
996        page_cache_release(page);
997    }
998    return p != NULL;
999}
1000
1001#ifdef CONFIG_HIBERNATION
1002/*
1003 * Find the swap type that corresponds to given device (if any).
1004 *
1005 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1006 * from 0, in which the swap header is expected to be located.
1007 *
1008 * This is needed for the suspend to disk (aka swsusp).
1009 */
1010int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1011{
1012    struct block_device *bdev = NULL;
1013    int type;
1014
1015    if (device)
1016        bdev = bdget(device);
1017
1018    spin_lock(&swap_lock);
1019    for (type = 0; type < nr_swapfiles; type++) {
1020        struct swap_info_struct *sis = swap_info[type];
1021
1022        if (!(sis->flags & SWP_WRITEOK))
1023            continue;
1024
1025        if (!bdev) {
1026            if (bdev_p)
1027                *bdev_p = bdgrab(sis->bdev);
1028
1029            spin_unlock(&swap_lock);
1030            return type;
1031        }
1032        if (bdev == sis->bdev) {
1033            struct swap_extent *se = &sis->first_swap_extent;
1034
1035            if (se->start_block == offset) {
1036                if (bdev_p)
1037                    *bdev_p = bdgrab(sis->bdev);
1038
1039                spin_unlock(&swap_lock);
1040                bdput(bdev);
1041                return type;
1042            }
1043        }
1044    }
1045    spin_unlock(&swap_lock);
1046    if (bdev)
1047        bdput(bdev);
1048
1049    return -ENODEV;
1050}
1051
1052/*
1053 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1054 * corresponding to given index in swap_info (swap type).
1055 */
1056sector_t swapdev_block(int type, pgoff_t offset)
1057{
1058    struct block_device *bdev;
1059
1060    if ((unsigned int)type >= nr_swapfiles)
1061        return 0;
1062    if (!(swap_info[type]->flags & SWP_WRITEOK))
1063        return 0;
1064    return map_swap_entry(swp_entry(type, offset), &bdev);
1065}
1066
1067/*
1068 * Return either the total number of swap pages of given type, or the number
1069 * of free pages of that type (depending on @free)
1070 *
1071 * This is needed for software suspend
1072 */
1073unsigned int count_swap_pages(int type, int free)
1074{
1075    unsigned int n = 0;
1076
1077    spin_lock(&swap_lock);
1078    if ((unsigned int)type < nr_swapfiles) {
1079        struct swap_info_struct *sis = swap_info[type];
1080
1081        spin_lock(&sis->lock);
1082        if (sis->flags & SWP_WRITEOK) {
1083            n = sis->pages;
1084            if (free)
1085                n -= sis->inuse_pages;
1086        }
1087        spin_unlock(&sis->lock);
1088    }
1089    spin_unlock(&swap_lock);
1090    return n;
1091}
1092#endif /* CONFIG_HIBERNATION */
1093
1094static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1095{
1096#ifdef CONFIG_MEM_SOFT_DIRTY
1097    /*
1098     * When pte keeps soft dirty bit the pte generated
1099     * from swap entry does not has it, still it's same
1100     * pte from logical point of view.
1101     */
1102    pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1103    return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1104#else
1105    return pte_same(pte, swp_pte);
1106#endif
1107}
1108
1109/*
1110 * No need to decide whether this PTE shares the swap entry with others,
1111 * just let do_wp_page work it out if a write is requested later - to
1112 * force COW, vm_page_prot omits write permission from any private vma.
1113 */
1114static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1115        unsigned long addr, swp_entry_t entry, struct page *page)
1116{
1117    struct page *swapcache;
1118    struct mem_cgroup *memcg;
1119    spinlock_t *ptl;
1120    pte_t *pte;
1121    int ret = 1;
1122
1123    swapcache = page;
1124    page = ksm_might_need_to_copy(page, vma, addr);
1125    if (unlikely(!page))
1126        return -ENOMEM;
1127
1128    if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1129                     GFP_KERNEL, &memcg)) {
1130        ret = -ENOMEM;
1131        goto out_nolock;
1132    }
1133
1134    pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1135    if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1136        mem_cgroup_cancel_charge_swapin(memcg);
1137        ret = 0;
1138        goto out;
1139    }
1140
1141    dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1142    inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1143    get_page(page);
1144    set_pte_at(vma->vm_mm, addr, pte,
1145           pte_mkold(mk_pte(page, vma->vm_page_prot)));
1146    if (page == swapcache)
1147        page_add_anon_rmap(page, vma, addr);
1148    else /* ksm created a completely new copy */
1149        page_add_new_anon_rmap(page, vma, addr);
1150    mem_cgroup_commit_charge_swapin(page, memcg);
1151    swap_free(entry);
1152    /*
1153     * Move the page to the active list so it is not
1154     * immediately swapped out again after swapon.
1155     */
1156    activate_page(page);
1157out:
1158    pte_unmap_unlock(pte, ptl);
1159out_nolock:
1160    if (page != swapcache) {
1161        unlock_page(page);
1162        put_page(page);
1163    }
1164    return ret;
1165}
1166
1167static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1168                unsigned long addr, unsigned long end,
1169                swp_entry_t entry, struct page *page)
1170{
1171    pte_t swp_pte = swp_entry_to_pte(entry);
1172    pte_t *pte;
1173    int ret = 0;
1174
1175    /*
1176     * We don't actually need pte lock while scanning for swp_pte: since
1177     * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1178     * page table while we're scanning; though it could get zapped, and on
1179     * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1180     * of unmatched parts which look like swp_pte, so unuse_pte must
1181     * recheck under pte lock. Scanning without pte lock lets it be
1182     * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1183     */
1184    pte = pte_offset_map(pmd, addr);
1185    do {
1186        /*
1187         * swapoff spends a _lot_ of time in this loop!
1188         * Test inline before going to call unuse_pte.
1189         */
1190        if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1191            pte_unmap(pte);
1192            ret = unuse_pte(vma, pmd, addr, entry, page);
1193            if (ret)
1194                goto out;
1195            pte = pte_offset_map(pmd, addr);
1196        }
1197    } while (pte++, addr += PAGE_SIZE, addr != end);
1198    pte_unmap(pte - 1);
1199out:
1200    return ret;
1201}
1202
1203static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1204                unsigned long addr, unsigned long end,
1205                swp_entry_t entry, struct page *page)
1206{
1207    pmd_t *pmd;
1208    unsigned long next;
1209    int ret;
1210
1211    pmd = pmd_offset(pud, addr);
1212    do {
1213        next = pmd_addr_end(addr, end);
1214        if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1215            continue;
1216        ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1217        if (ret)
1218            return ret;
1219    } while (pmd++, addr = next, addr != end);
1220    return 0;
1221}
1222
1223static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1224                unsigned long addr, unsigned long end,
1225                swp_entry_t entry, struct page *page)
1226{
1227    pud_t *pud;
1228    unsigned long next;
1229    int ret;
1230
1231    pud = pud_offset(pgd, addr);
1232    do {
1233        next = pud_addr_end(addr, end);
1234        if (pud_none_or_clear_bad(pud))
1235            continue;
1236        ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1237        if (ret)
1238            return ret;
1239    } while (pud++, addr = next, addr != end);
1240    return 0;
1241}
1242
1243static int unuse_vma(struct vm_area_struct *vma,
1244                swp_entry_t entry, struct page *page)
1245{
1246    pgd_t *pgd;
1247    unsigned long addr, end, next;
1248    int ret;
1249
1250    if (page_anon_vma(page)) {
1251        addr = page_address_in_vma(page, vma);
1252        if (addr == -EFAULT)
1253            return 0;
1254        else
1255            end = addr + PAGE_SIZE;
1256    } else {
1257        addr = vma->vm_start;
1258        end = vma->vm_end;
1259    }
1260
1261    pgd = pgd_offset(vma->vm_mm, addr);
1262    do {
1263        next = pgd_addr_end(addr, end);
1264        if (pgd_none_or_clear_bad(pgd))
1265            continue;
1266        ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1267        if (ret)
1268            return ret;
1269    } while (pgd++, addr = next, addr != end);
1270    return 0;
1271}
1272
1273static int unuse_mm(struct mm_struct *mm,
1274                swp_entry_t entry, struct page *page)
1275{
1276    struct vm_area_struct *vma;
1277    int ret = 0;
1278
1279    if (!down_read_trylock(&mm->mmap_sem)) {
1280        /*
1281         * Activate page so shrink_inactive_list is unlikely to unmap
1282         * its ptes while lock is dropped, so swapoff can make progress.
1283         */
1284        activate_page(page);
1285        unlock_page(page);
1286        down_read(&mm->mmap_sem);
1287        lock_page(page);
1288    }
1289    for (vma = mm->mmap; vma; vma = vma->vm_next) {
1290        if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1291            break;
1292    }
1293    up_read(&mm->mmap_sem);
1294    return (ret < 0)? ret: 0;
1295}
1296
1297/*
1298 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1299 * from current position to next entry still in use.
1300 * Recycle to start on reaching the end, returning 0 when empty.
1301 */
1302static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1303                    unsigned int prev, bool frontswap)
1304{
1305    unsigned int max = si->max;
1306    unsigned int i = prev;
1307    unsigned char count;
1308
1309    /*
1310     * No need for swap_lock here: we're just looking
1311     * for whether an entry is in use, not modifying it; false
1312     * hits are okay, and sys_swapoff() has already prevented new
1313     * allocations from this area (while holding swap_lock).
1314     */
1315    for (;;) {
1316        if (++i >= max) {
1317            if (!prev) {
1318                i = 0;
1319                break;
1320            }
1321            /*
1322             * No entries in use at top of swap_map,
1323             * loop back to start and recheck there.
1324             */
1325            max = prev + 1;
1326            prev = 0;
1327            i = 1;
1328        }
1329        if (frontswap) {
1330            if (frontswap_test(si, i))
1331                break;
1332            else
1333                continue;
1334        }
1335        count = ACCESS_ONCE(si->swap_map[i]);
1336        if (count && swap_count(count) != SWAP_MAP_BAD)
1337            break;
1338    }
1339    return i;
1340}
1341
1342/*
1343 * We completely avoid races by reading each swap page in advance,
1344 * and then search for the process using it. All the necessary
1345 * page table adjustments can then be made atomically.
1346 *
1347 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1348 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1349 */
1350int try_to_unuse(unsigned int type, bool frontswap,
1351         unsigned long pages_to_unuse)
1352{
1353    struct swap_info_struct *si = swap_info[type];
1354    struct mm_struct *start_mm;
1355    volatile unsigned char *swap_map; /* swap_map is accessed without
1356                       * locking. Mark it as volatile
1357                       * to prevent compiler doing
1358                       * something odd.
1359                       */
1360    unsigned char swcount;
1361    struct page *page;
1362    swp_entry_t entry;
1363    unsigned int i = 0;
1364    int retval = 0;
1365
1366    /*
1367     * When searching mms for an entry, a good strategy is to
1368     * start at the first mm we freed the previous entry from
1369     * (though actually we don't notice whether we or coincidence
1370     * freed the entry). Initialize this start_mm with a hold.
1371     *
1372     * A simpler strategy would be to start at the last mm we
1373     * freed the previous entry from; but that would take less
1374     * advantage of mmlist ordering, which clusters forked mms
1375     * together, child after parent. If we race with dup_mmap(), we
1376     * prefer to resolve parent before child, lest we miss entries
1377     * duplicated after we scanned child: using last mm would invert
1378     * that.
1379     */
1380    start_mm = &init_mm;
1381    atomic_inc(&init_mm.mm_users);
1382
1383    /*
1384     * Keep on scanning until all entries have gone. Usually,
1385     * one pass through swap_map is enough, but not necessarily:
1386     * there are races when an instance of an entry might be missed.
1387     */
1388    while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1389        if (signal_pending(current)) {
1390            retval = -EINTR;
1391            break;
1392        }
1393
1394        /*
1395         * Get a page for the entry, using the existing swap
1396         * cache page if there is one. Otherwise, get a clean
1397         * page and read the swap into it.
1398         */
1399        swap_map = &si->swap_map[i];
1400        entry = swp_entry(type, i);
1401        page = read_swap_cache_async(entry,
1402                    GFP_HIGHUSER_MOVABLE, NULL, 0);
1403        if (!page) {
1404            /*
1405             * Either swap_duplicate() failed because entry
1406             * has been freed independently, and will not be
1407             * reused since sys_swapoff() already disabled
1408             * allocation from here, or alloc_page() failed.
1409             */
1410            swcount = *swap_map;
1411            /*
1412             * We don't hold lock here, so the swap entry could be
1413             * SWAP_MAP_BAD (when the cluster is discarding).
1414             * Instead of fail out, We can just skip the swap
1415             * entry because swapoff will wait for discarding
1416             * finish anyway.
1417             */
1418            if (!swcount || swcount == SWAP_MAP_BAD)
1419                continue;
1420            retval = -ENOMEM;
1421            break;
1422        }
1423
1424        /*
1425         * Don't hold on to start_mm if it looks like exiting.
1426         */
1427        if (atomic_read(&start_mm->mm_users) == 1) {
1428            mmput(start_mm);
1429            start_mm = &init_mm;
1430            atomic_inc(&init_mm.mm_users);
1431        }
1432
1433        /*
1434         * Wait for and lock page. When do_swap_page races with
1435         * try_to_unuse, do_swap_page can handle the fault much
1436         * faster than try_to_unuse can locate the entry. This
1437         * apparently redundant "wait_on_page_locked" lets try_to_unuse
1438         * defer to do_swap_page in such a case - in some tests,
1439         * do_swap_page and try_to_unuse repeatedly compete.
1440         */
1441        wait_on_page_locked(page);
1442        wait_on_page_writeback(page);
1443        lock_page(page);
1444        wait_on_page_writeback(page);
1445
1446        /*
1447         * Remove all references to entry.
1448         */
1449        swcount = *swap_map;
1450        if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1451            retval = shmem_unuse(entry, page);
1452            /* page has already been unlocked and released */
1453            if (retval < 0)
1454                break;
1455            continue;
1456        }
1457        if (swap_count(swcount) && start_mm != &init_mm)
1458            retval = unuse_mm(start_mm, entry, page);
1459
1460        if (swap_count(*swap_map)) {
1461            int set_start_mm = (*swap_map >= swcount);
1462            struct list_head *p = &start_mm->mmlist;
1463            struct mm_struct *new_start_mm = start_mm;
1464            struct mm_struct *prev_mm = start_mm;
1465            struct mm_struct *mm;
1466
1467            atomic_inc(&new_start_mm->mm_users);
1468            atomic_inc(&prev_mm->mm_users);
1469            spin_lock(&mmlist_lock);
1470            while (swap_count(*swap_map) && !retval &&
1471                    (p = p->next) != &start_mm->mmlist) {
1472                mm = list_entry(p, struct mm_struct, mmlist);
1473                if (!atomic_inc_not_zero(&mm->mm_users))
1474                    continue;
1475                spin_unlock(&mmlist_lock);
1476                mmput(prev_mm);
1477                prev_mm = mm;
1478
1479                cond_resched();
1480
1481                swcount = *swap_map;
1482                if (!swap_count(swcount)) /* any usage ? */
1483                    ;
1484                else if (mm == &init_mm)
1485                    set_start_mm = 1;
1486                else
1487                    retval = unuse_mm(mm, entry, page);
1488
1489                if (set_start_mm && *swap_map < swcount) {
1490                    mmput(new_start_mm);
1491                    atomic_inc(&mm->mm_users);
1492                    new_start_mm = mm;
1493                    set_start_mm = 0;
1494                }
1495                spin_lock(&mmlist_lock);
1496            }
1497            spin_unlock(&mmlist_lock);
1498            mmput(prev_mm);
1499            mmput(start_mm);
1500            start_mm = new_start_mm;
1501        }
1502        if (retval) {
1503            unlock_page(page);
1504            page_cache_release(page);
1505            break;
1506        }
1507
1508        /*
1509         * If a reference remains (rare), we would like to leave
1510         * the page in the swap cache; but try_to_unmap could
1511         * then re-duplicate the entry once we drop page lock,
1512         * so we might loop indefinitely; also, that page could
1513         * not be swapped out to other storage meanwhile. So:
1514         * delete from cache even if there's another reference,
1515         * after ensuring that the data has been saved to disk -
1516         * since if the reference remains (rarer), it will be
1517         * read from disk into another page. Splitting into two
1518         * pages would be incorrect if swap supported "shared
1519         * private" pages, but they are handled by tmpfs files.
1520         *
1521         * Given how unuse_vma() targets one particular offset
1522         * in an anon_vma, once the anon_vma has been determined,
1523         * this splitting happens to be just what is needed to
1524         * handle where KSM pages have been swapped out: re-reading
1525         * is unnecessarily slow, but we can fix that later on.
1526         */
1527        if (swap_count(*swap_map) &&
1528             PageDirty(page) && PageSwapCache(page)) {
1529            struct writeback_control wbc = {
1530                .sync_mode = WB_SYNC_NONE,
1531            };
1532
1533            swap_writepage(page, &wbc);
1534            lock_page(page);
1535            wait_on_page_writeback(page);
1536        }
1537
1538        /*
1539         * It is conceivable that a racing task removed this page from
1540         * swap cache just before we acquired the page lock at the top,
1541         * or while we dropped it in unuse_mm(). The page might even
1542         * be back in swap cache on another swap area: that we must not
1543         * delete, since it may not have been written out to swap yet.
1544         */
1545        if (PageSwapCache(page) &&
1546            likely(page_private(page) == entry.val))
1547            delete_from_swap_cache(page);
1548
1549        /*
1550         * So we could skip searching mms once swap count went
1551         * to 1, we did not mark any present ptes as dirty: must
1552         * mark page dirty so shrink_page_list will preserve it.
1553         */
1554        SetPageDirty(page);
1555        unlock_page(page);
1556        page_cache_release(page);
1557
1558        /*
1559         * Make sure that we aren't completely killing
1560         * interactive performance.
1561         */
1562        cond_resched();
1563        if (frontswap && pages_to_unuse > 0) {
1564            if (!--pages_to_unuse)
1565                break;
1566        }
1567    }
1568
1569    mmput(start_mm);
1570    return retval;
1571}
1572
1573/*
1574 * After a successful try_to_unuse, if no swap is now in use, we know
1575 * we can empty the mmlist. swap_lock must be held on entry and exit.
1576 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1577 * added to the mmlist just after page_duplicate - before would be racy.
1578 */
1579static void drain_mmlist(void)
1580{
1581    struct list_head *p, *next;
1582    unsigned int type;
1583
1584    for (type = 0; type < nr_swapfiles; type++)
1585        if (swap_info[type]->inuse_pages)
1586            return;
1587    spin_lock(&mmlist_lock);
1588    list_for_each_safe(p, next, &init_mm.mmlist)
1589        list_del_init(p);
1590    spin_unlock(&mmlist_lock);
1591}
1592
1593/*
1594 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1595 * corresponds to page offset for the specified swap entry.
1596 * Note that the type of this function is sector_t, but it returns page offset
1597 * into the bdev, not sector offset.
1598 */
1599static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1600{
1601    struct swap_info_struct *sis;
1602    struct swap_extent *start_se;
1603    struct swap_extent *se;
1604    pgoff_t offset;
1605
1606    sis = swap_info[swp_type(entry)];
1607    *bdev = sis->bdev;
1608
1609    offset = swp_offset(entry);
1610    start_se = sis->curr_swap_extent;
1611    se = start_se;
1612
1613    for ( ; ; ) {
1614        struct list_head *lh;
1615
1616        if (se->start_page <= offset &&
1617                offset < (se->start_page + se->nr_pages)) {
1618            return se->start_block + (offset - se->start_page);
1619        }
1620        lh = se->list.next;
1621        se = list_entry(lh, struct swap_extent, list);
1622        sis->curr_swap_extent = se;
1623        BUG_ON(se == start_se); /* It *must* be present */
1624    }
1625}
1626
1627/*
1628 * Returns the page offset into bdev for the specified page's swap entry.
1629 */
1630sector_t map_swap_page(struct page *page, struct block_device **bdev)
1631{
1632    swp_entry_t entry;
1633    entry.val = page_private(page);
1634    return map_swap_entry(entry, bdev);
1635}
1636
1637/*
1638 * Free all of a swapdev's extent information
1639 */
1640static void destroy_swap_extents(struct swap_info_struct *sis)
1641{
1642    while (!list_empty(&sis->first_swap_extent.list)) {
1643        struct swap_extent *se;
1644
1645        se = list_entry(sis->first_swap_extent.list.next,
1646                struct swap_extent, list);
1647        list_del(&se->list);
1648        kfree(se);
1649    }
1650
1651    if (sis->flags & SWP_FILE) {
1652        struct file *swap_file = sis->swap_file;
1653        struct address_space *mapping = swap_file->f_mapping;
1654
1655        sis->flags &= ~SWP_FILE;
1656        mapping->a_ops->swap_deactivate(swap_file);
1657    }
1658}
1659
1660/*
1661 * Add a block range (and the corresponding page range) into this swapdev's
1662 * extent list. The extent list is kept sorted in page order.
1663 *
1664 * This function rather assumes that it is called in ascending page order.
1665 */
1666int
1667add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1668        unsigned long nr_pages, sector_t start_block)
1669{
1670    struct swap_extent *se;
1671    struct swap_extent *new_se;
1672    struct list_head *lh;
1673
1674    if (start_page == 0) {
1675        se = &sis->first_swap_extent;
1676        sis->curr_swap_extent = se;
1677        se->start_page = 0;
1678        se->nr_pages = nr_pages;
1679        se->start_block = start_block;
1680        return 1;
1681    } else {
1682        lh = sis->first_swap_extent.list.prev; /* Highest extent */
1683        se = list_entry(lh, struct swap_extent, list);
1684        BUG_ON(se->start_page + se->nr_pages != start_page);
1685        if (se->start_block + se->nr_pages == start_block) {
1686            /* Merge it */
1687            se->nr_pages += nr_pages;
1688            return 0;
1689        }
1690    }
1691
1692    /*
1693     * No merge. Insert a new extent, preserving ordering.
1694     */
1695    new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1696    if (new_se == NULL)
1697        return -ENOMEM;
1698    new_se->start_page = start_page;
1699    new_se->nr_pages = nr_pages;
1700    new_se->start_block = start_block;
1701
1702    list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1703    return 1;
1704}
1705
1706/*
1707 * A `swap extent' is a simple thing which maps a contiguous range of pages
1708 * onto a contiguous range of disk blocks. An ordered list of swap extents
1709 * is built at swapon time and is then used at swap_writepage/swap_readpage
1710 * time for locating where on disk a page belongs.
1711 *
1712 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1713 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1714 * swap files identically.
1715 *
1716 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1717 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1718 * swapfiles are handled *identically* after swapon time.
1719 *
1720 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1721 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1722 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1723 * requirements, they are simply tossed out - we will never use those blocks
1724 * for swapping.
1725 *
1726 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1727 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1728 * which will scribble on the fs.
1729 *
1730 * The amount of disk space which a single swap extent represents varies.
1731 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1732 * extents in the list. To avoid much list walking, we cache the previous
1733 * search location in `curr_swap_extent', and start new searches from there.
1734 * This is extremely effective. The average number of iterations in
1735 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1736 */
1737static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1738{
1739    struct file *swap_file = sis->swap_file;
1740    struct address_space *mapping = swap_file->f_mapping;
1741    struct inode *inode = mapping->host;
1742    int ret;
1743
1744    if (S_ISBLK(inode->i_mode)) {
1745        ret = add_swap_extent(sis, 0, sis->max, 0);
1746        *span = sis->pages;
1747        return ret;
1748    }
1749
1750    if (mapping->a_ops->swap_activate) {
1751        ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1752        if (!ret) {
1753            sis->flags |= SWP_FILE;
1754            ret = add_swap_extent(sis, 0, sis->max, 0);
1755            *span = sis->pages;
1756        }
1757        return ret;
1758    }
1759
1760    return generic_swapfile_activate(sis, swap_file, span);
1761}
1762
1763static void _enable_swap_info(struct swap_info_struct *p, int prio,
1764                unsigned char *swap_map,
1765                struct swap_cluster_info *cluster_info)
1766{
1767    int i, prev;
1768
1769    if (prio >= 0)
1770        p->prio = prio;
1771    else
1772        p->prio = --least_priority;
1773    p->swap_map = swap_map;
1774    p->cluster_info = cluster_info;
1775    p->flags |= SWP_WRITEOK;
1776    atomic_long_add(p->pages, &nr_swap_pages);
1777    total_swap_pages += p->pages;
1778
1779    /* insert swap space into swap_list: */
1780    prev = -1;
1781    for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1782        if (p->prio >= swap_info[i]->prio)
1783            break;
1784        prev = i;
1785    }
1786    p->next = i;
1787    if (prev < 0)
1788        swap_list.head = swap_list.next = p->type;
1789    else
1790        swap_info[prev]->next = p->type;
1791}
1792
1793static void enable_swap_info(struct swap_info_struct *p, int prio,
1794                unsigned char *swap_map,
1795                struct swap_cluster_info *cluster_info,
1796                unsigned long *frontswap_map)
1797{
1798    frontswap_init(p->type, frontswap_map);
1799    spin_lock(&swap_lock);
1800    spin_lock(&p->lock);
1801     _enable_swap_info(p, prio, swap_map, cluster_info);
1802    spin_unlock(&p->lock);
1803    spin_unlock(&swap_lock);
1804}
1805
1806static void reinsert_swap_info(struct swap_info_struct *p)
1807{
1808    spin_lock(&swap_lock);
1809    spin_lock(&p->lock);
1810    _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1811    spin_unlock(&p->lock);
1812    spin_unlock(&swap_lock);
1813}
1814
1815SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1816{
1817    struct swap_info_struct *p = NULL;
1818    unsigned char *swap_map;
1819    struct swap_cluster_info *cluster_info;
1820    unsigned long *frontswap_map;
1821    struct file *swap_file, *victim;
1822    struct address_space *mapping;
1823    struct inode *inode;
1824    struct filename *pathname;
1825    int i, type, prev;
1826    int err;
1827    unsigned int old_block_size;
1828
1829    if (!capable(CAP_SYS_ADMIN))
1830        return -EPERM;
1831
1832    BUG_ON(!current->mm);
1833
1834    pathname = getname(specialfile);
1835    if (IS_ERR(pathname))
1836        return PTR_ERR(pathname);
1837
1838    victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1839    err = PTR_ERR(victim);
1840    if (IS_ERR(victim))
1841        goto out;
1842
1843    mapping = victim->f_mapping;
1844    prev = -1;
1845    spin_lock(&swap_lock);
1846    for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1847        p = swap_info[type];
1848        if (p->flags & SWP_WRITEOK) {
1849            if (p->swap_file->f_mapping == mapping)
1850                break;
1851        }
1852        prev = type;
1853    }
1854    if (type < 0) {
1855        err = -EINVAL;
1856        spin_unlock(&swap_lock);
1857        goto out_dput;
1858    }
1859    if (!security_vm_enough_memory_mm(current->mm, p->pages))
1860        vm_unacct_memory(p->pages);
1861    else {
1862        err = -ENOMEM;
1863        spin_unlock(&swap_lock);
1864        goto out_dput;
1865    }
1866    if (prev < 0)
1867        swap_list.head = p->next;
1868    else
1869        swap_info[prev]->next = p->next;
1870    if (type == swap_list.next) {
1871        /* just pick something that's safe... */
1872        swap_list.next = swap_list.head;
1873    }
1874    spin_lock(&p->lock);
1875    if (p->prio < 0) {
1876        for (i = p->next; i >= 0; i = swap_info[i]->next)
1877            swap_info[i]->prio = p->prio--;
1878        least_priority++;
1879    }
1880    atomic_long_sub(p->pages, &nr_swap_pages);
1881    total_swap_pages -= p->pages;
1882    p->flags &= ~SWP_WRITEOK;
1883    spin_unlock(&p->lock);
1884    spin_unlock(&swap_lock);
1885
1886    set_current_oom_origin();
1887    err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1888    clear_current_oom_origin();
1889
1890    if (err) {
1891        /* re-insert swap space back into swap_list */
1892        reinsert_swap_info(p);
1893        goto out_dput;
1894    }
1895
1896    flush_work(&p->discard_work);
1897
1898    destroy_swap_extents(p);
1899    if (p->flags & SWP_CONTINUED)
1900        free_swap_count_continuations(p);
1901
1902    mutex_lock(&swapon_mutex);
1903    spin_lock(&swap_lock);
1904    spin_lock(&p->lock);
1905    drain_mmlist();
1906
1907    /* wait for anyone still in scan_swap_map */
1908    p->highest_bit = 0; /* cuts scans short */
1909    while (p->flags >= SWP_SCANNING) {
1910        spin_unlock(&p->lock);
1911        spin_unlock(&swap_lock);
1912        schedule_timeout_uninterruptible(1);
1913        spin_lock(&swap_lock);
1914        spin_lock(&p->lock);
1915    }
1916
1917    swap_file = p->swap_file;
1918    old_block_size = p->old_block_size;
1919    p->swap_file = NULL;
1920    p->max = 0;
1921    swap_map = p->swap_map;
1922    p->swap_map = NULL;
1923    cluster_info = p->cluster_info;
1924    p->cluster_info = NULL;
1925    p->flags = 0;
1926    frontswap_map = frontswap_map_get(p);
1927    frontswap_map_set(p, NULL);
1928    spin_unlock(&p->lock);
1929    spin_unlock(&swap_lock);
1930    frontswap_invalidate_area(type);
1931    mutex_unlock(&swapon_mutex);
1932    free_percpu(p->percpu_cluster);
1933    p->percpu_cluster = NULL;
1934    vfree(swap_map);
1935    vfree(cluster_info);
1936    vfree(frontswap_map);
1937    /* Destroy swap account informatin */
1938    swap_cgroup_swapoff(type);
1939
1940    inode = mapping->host;
1941    if (S_ISBLK(inode->i_mode)) {
1942        struct block_device *bdev = I_BDEV(inode);
1943        set_blocksize(bdev, old_block_size);
1944        blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1945    } else {
1946        mutex_lock(&inode->i_mutex);
1947        inode->i_flags &= ~S_SWAPFILE;
1948        mutex_unlock(&inode->i_mutex);
1949    }
1950    filp_close(swap_file, NULL);
1951    err = 0;
1952    atomic_inc(&proc_poll_event);
1953    wake_up_interruptible(&proc_poll_wait);
1954
1955out_dput:
1956    filp_close(victim, NULL);
1957out:
1958    putname(pathname);
1959    return err;
1960}
1961
1962#ifdef CONFIG_PROC_FS
1963static unsigned swaps_poll(struct file *file, poll_table *wait)
1964{
1965    struct seq_file *seq = file->private_data;
1966
1967    poll_wait(file, &proc_poll_wait, wait);
1968
1969    if (seq->poll_event != atomic_read(&proc_poll_event)) {
1970        seq->poll_event = atomic_read(&proc_poll_event);
1971        return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1972    }
1973
1974    return POLLIN | POLLRDNORM;
1975}
1976
1977/* iterator */
1978static void *swap_start(struct seq_file *swap, loff_t *pos)
1979{
1980    struct swap_info_struct *si;
1981    int type;
1982    loff_t l = *pos;
1983
1984    mutex_lock(&swapon_mutex);
1985
1986    if (!l)
1987        return SEQ_START_TOKEN;
1988
1989    for (type = 0; type < nr_swapfiles; type++) {
1990        smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1991        si = swap_info[type];
1992        if (!(si->flags & SWP_USED) || !si->swap_map)
1993            continue;
1994        if (!--l)
1995            return si;
1996    }
1997
1998    return NULL;
1999}
2000
2001static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2002{
2003    struct swap_info_struct *si = v;
2004    int type;
2005
2006    if (v == SEQ_START_TOKEN)
2007        type = 0;
2008    else
2009        type = si->type + 1;
2010
2011    for (; type < nr_swapfiles; type++) {
2012        smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2013        si = swap_info[type];
2014        if (!(si->flags & SWP_USED) || !si->swap_map)
2015            continue;
2016        ++*pos;
2017        return si;
2018    }
2019
2020    return NULL;
2021}
2022
2023static void swap_stop(struct seq_file *swap, void *v)
2024{
2025    mutex_unlock(&swapon_mutex);
2026}
2027
2028static int swap_show(struct seq_file *swap, void *v)
2029{
2030    struct swap_info_struct *si = v;
2031    struct file *file;
2032    int len;
2033
2034    if (si == SEQ_START_TOKEN) {
2035        seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2036        return 0;
2037    }
2038
2039    file = si->swap_file;
2040    len = seq_path(swap, &file->f_path, " \t\n\\");
2041    seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2042            len < 40 ? 40 - len : 1, " ",
2043            S_ISBLK(file_inode(file)->i_mode) ?
2044                "partition" : "file\t",
2045            si->pages << (PAGE_SHIFT - 10),
2046            si->inuse_pages << (PAGE_SHIFT - 10),
2047            si->prio);
2048    return 0;
2049}
2050
2051static const struct seq_operations swaps_op = {
2052    .start = swap_start,
2053    .next = swap_next,
2054    .stop = swap_stop,
2055    .show = swap_show
2056};
2057
2058static int swaps_open(struct inode *inode, struct file *file)
2059{
2060    struct seq_file *seq;
2061    int ret;
2062
2063    ret = seq_open(file, &swaps_op);
2064    if (ret)
2065        return ret;
2066
2067    seq = file->private_data;
2068    seq->poll_event = atomic_read(&proc_poll_event);
2069    return 0;
2070}
2071
2072static const struct file_operations proc_swaps_operations = {
2073    .open = swaps_open,
2074    .read = seq_read,
2075    .llseek = seq_lseek,
2076    .release = seq_release,
2077    .poll = swaps_poll,
2078};
2079
2080static int __init procswaps_init(void)
2081{
2082    proc_create("swaps", 0, NULL, &proc_swaps_operations);
2083    return 0;
2084}
2085__initcall(procswaps_init);
2086#endif /* CONFIG_PROC_FS */
2087
2088#ifdef MAX_SWAPFILES_CHECK
2089static int __init max_swapfiles_check(void)
2090{
2091    MAX_SWAPFILES_CHECK();
2092    return 0;
2093}
2094late_initcall(max_swapfiles_check);
2095#endif
2096
2097static struct swap_info_struct *alloc_swap_info(void)
2098{
2099    struct swap_info_struct *p;
2100    unsigned int type;
2101
2102    p = kzalloc(sizeof(*p), GFP_KERNEL);
2103    if (!p)
2104        return ERR_PTR(-ENOMEM);
2105
2106    spin_lock(&swap_lock);
2107    for (type = 0; type < nr_swapfiles; type++) {
2108        if (!(swap_info[type]->flags & SWP_USED))
2109            break;
2110    }
2111    if (type >= MAX_SWAPFILES) {
2112        spin_unlock(&swap_lock);
2113        kfree(p);
2114        return ERR_PTR(-EPERM);
2115    }
2116    if (type >= nr_swapfiles) {
2117        p->type = type;
2118        swap_info[type] = p;
2119        /*
2120         * Write swap_info[type] before nr_swapfiles, in case a
2121         * racing procfs swap_start() or swap_next() is reading them.
2122         * (We never shrink nr_swapfiles, we never free this entry.)
2123         */
2124        smp_wmb();
2125        nr_swapfiles++;
2126    } else {
2127        kfree(p);
2128        p = swap_info[type];
2129        /*
2130         * Do not memset this entry: a racing procfs swap_next()
2131         * would be relying on p->type to remain valid.
2132         */
2133    }
2134    INIT_LIST_HEAD(&p->first_swap_extent.list);
2135    p->flags = SWP_USED;
2136    p->next = -1;
2137    spin_unlock(&swap_lock);
2138    spin_lock_init(&p->lock);
2139
2140    return p;
2141}
2142
2143static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2144{
2145    int error;
2146
2147    if (S_ISBLK(inode->i_mode)) {
2148        p->bdev = bdgrab(I_BDEV(inode));
2149        error = blkdev_get(p->bdev,
2150                   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2151                   sys_swapon);
2152        if (error < 0) {
2153            p->bdev = NULL;
2154            return -EINVAL;
2155        }
2156        p->old_block_size = block_size(p->bdev);
2157        error = set_blocksize(p->bdev, PAGE_SIZE);
2158        if (error < 0)
2159            return error;
2160        p->flags |= SWP_BLKDEV;
2161    } else if (S_ISREG(inode->i_mode)) {
2162        p->bdev = inode->i_sb->s_bdev;
2163        mutex_lock(&inode->i_mutex);
2164        if (IS_SWAPFILE(inode))
2165            return -EBUSY;
2166    } else
2167        return -EINVAL;
2168
2169    return 0;
2170}
2171
2172static unsigned long read_swap_header(struct swap_info_struct *p,
2173                    union swap_header *swap_header,
2174                    struct inode *inode)
2175{
2176    int i;
2177    unsigned long maxpages;
2178    unsigned long swapfilepages;
2179    unsigned long last_page;
2180
2181    if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2182        pr_err("Unable to find swap-space signature\n");
2183        return 0;
2184    }
2185
2186    /* swap partition endianess hack... */
2187    if (swab32(swap_header->info.version) == 1) {
2188        swab32s(&swap_header->info.version);
2189        swab32s(&swap_header->info.last_page);
2190        swab32s(&swap_header->info.nr_badpages);
2191        for (i = 0; i < swap_header->info.nr_badpages; i++)
2192            swab32s(&swap_header->info.badpages[i]);
2193    }
2194    /* Check the swap header's sub-version */
2195    if (swap_header->info.version != 1) {
2196        pr_warn("Unable to handle swap header version %d\n",
2197            swap_header->info.version);
2198        return 0;
2199    }
2200
2201    p->lowest_bit = 1;
2202    p->cluster_next = 1;
2203    p->cluster_nr = 0;
2204
2205    /*
2206     * Find out how many pages are allowed for a single swap
2207     * device. There are two limiting factors: 1) the number
2208     * of bits for the swap offset in the swp_entry_t type, and
2209     * 2) the number of bits in the swap pte as defined by the
2210     * different architectures. In order to find the
2211     * largest possible bit mask, a swap entry with swap type 0
2212     * and swap offset ~0UL is created, encoded to a swap pte,
2213     * decoded to a swp_entry_t again, and finally the swap
2214     * offset is extracted. This will mask all the bits from
2215     * the initial ~0UL mask that can't be encoded in either
2216     * the swp_entry_t or the architecture definition of a
2217     * swap pte.
2218     */
2219    maxpages = swp_offset(pte_to_swp_entry(
2220            swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2221    last_page = swap_header->info.last_page;
2222    if (last_page > maxpages) {
2223        pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2224            maxpages << (PAGE_SHIFT - 10),
2225            last_page << (PAGE_SHIFT - 10));
2226    }
2227    if (maxpages > last_page) {
2228        maxpages = last_page + 1;
2229        /* p->max is an unsigned int: don't overflow it */
2230        if ((unsigned int)maxpages == 0)
2231            maxpages = UINT_MAX;
2232    }
2233    p->highest_bit = maxpages - 1;
2234
2235    if (!maxpages)
2236        return 0;
2237    swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2238    if (swapfilepages && maxpages > swapfilepages) {
2239        pr_warn("Swap area shorter than signature indicates\n");
2240        return 0;
2241    }
2242    if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2243        return 0;
2244    if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2245        return 0;
2246
2247    return maxpages;
2248}
2249
2250static int setup_swap_map_and_extents(struct swap_info_struct *p,
2251                    union swap_header *swap_header,
2252                    unsigned char *swap_map,
2253                    struct swap_cluster_info *cluster_info,
2254                    unsigned long maxpages,
2255                    sector_t *span)
2256{
2257    int i;
2258    unsigned int nr_good_pages;
2259    int nr_extents;
2260    unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2261    unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2262
2263    nr_good_pages = maxpages - 1; /* omit header page */
2264
2265    cluster_set_null(&p->free_cluster_head);
2266    cluster_set_null(&p->free_cluster_tail);
2267    cluster_set_null(&p->discard_cluster_head);
2268    cluster_set_null(&p->discard_cluster_tail);
2269
2270    for (i = 0; i < swap_header->info.nr_badpages; i++) {
2271        unsigned int page_nr = swap_header->info.badpages[i];
2272        if (page_nr == 0 || page_nr > swap_header->info.last_page)
2273            return -EINVAL;
2274        if (page_nr < maxpages) {
2275            swap_map[page_nr] = SWAP_MAP_BAD;
2276            nr_good_pages--;
2277            /*
2278             * Haven't marked the cluster free yet, no list
2279             * operation involved
2280             */
2281            inc_cluster_info_page(p, cluster_info, page_nr);
2282        }
2283    }
2284
2285    /* Haven't marked the cluster free yet, no list operation involved */
2286    for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2287        inc_cluster_info_page(p, cluster_info, i);
2288
2289    if (nr_good_pages) {
2290        swap_map[0] = SWAP_MAP_BAD;
2291        /*
2292         * Not mark the cluster free yet, no list
2293         * operation involved
2294         */
2295        inc_cluster_info_page(p, cluster_info, 0);
2296        p->max = maxpages;
2297        p->pages = nr_good_pages;
2298        nr_extents = setup_swap_extents(p, span);
2299        if (nr_extents < 0)
2300            return nr_extents;
2301        nr_good_pages = p->pages;
2302    }
2303    if (!nr_good_pages) {
2304        pr_warn("Empty swap-file\n");
2305        return -EINVAL;
2306    }
2307
2308    if (!cluster_info)
2309        return nr_extents;
2310
2311    for (i = 0; i < nr_clusters; i++) {
2312        if (!cluster_count(&cluster_info[idx])) {
2313            cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2314            if (cluster_is_null(&p->free_cluster_head)) {
2315                cluster_set_next_flag(&p->free_cluster_head,
2316                                idx, 0);
2317                cluster_set_next_flag(&p->free_cluster_tail,
2318                                idx, 0);
2319            } else {
2320                unsigned int tail;
2321
2322                tail = cluster_next(&p->free_cluster_tail);
2323                cluster_set_next(&cluster_info[tail], idx);
2324                cluster_set_next_flag(&p->free_cluster_tail,
2325                                idx, 0);
2326            }
2327        }
2328        idx++;
2329        if (idx == nr_clusters)
2330            idx = 0;
2331    }
2332    return nr_extents;
2333}
2334
2335/*
2336 * Helper to sys_swapon determining if a given swap
2337 * backing device queue supports DISCARD operations.
2338 */
2339static bool swap_discardable(struct swap_info_struct *si)
2340{
2341    struct request_queue *q = bdev_get_queue(si->bdev);
2342
2343    if (!q || !blk_queue_discard(q))
2344        return false;
2345
2346    return true;
2347}
2348
2349SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2350{
2351    struct swap_info_struct *p;
2352    struct filename *name;
2353    struct file *swap_file = NULL;
2354    struct address_space *mapping;
2355    int i;
2356    int prio;
2357    int error;
2358    union swap_header *swap_header;
2359    int nr_extents;
2360    sector_t span;
2361    unsigned long maxpages;
2362    unsigned char *swap_map = NULL;
2363    struct swap_cluster_info *cluster_info = NULL;
2364    unsigned long *frontswap_map = NULL;
2365    struct page *page = NULL;
2366    struct inode *inode = NULL;
2367
2368    if (swap_flags & ~SWAP_FLAGS_VALID)
2369        return -EINVAL;
2370
2371    if (!capable(CAP_SYS_ADMIN))
2372        return -EPERM;
2373
2374    p = alloc_swap_info();
2375    if (IS_ERR(p))
2376        return PTR_ERR(p);
2377
2378    INIT_WORK(&p->discard_work, swap_discard_work);
2379
2380    name = getname(specialfile);
2381    if (IS_ERR(name)) {
2382        error = PTR_ERR(name);
2383        name = NULL;
2384        goto bad_swap;
2385    }
2386    swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2387    if (IS_ERR(swap_file)) {
2388        error = PTR_ERR(swap_file);
2389        swap_file = NULL;
2390        goto bad_swap;
2391    }
2392
2393    p->swap_file = swap_file;
2394    mapping = swap_file->f_mapping;
2395
2396    for (i = 0; i < nr_swapfiles; i++) {
2397        struct swap_info_struct *q = swap_info[i];
2398
2399        if (q == p || !q->swap_file)
2400            continue;
2401        if (mapping == q->swap_file->f_mapping) {
2402            error = -EBUSY;
2403            goto bad_swap;
2404        }
2405    }
2406
2407    inode = mapping->host;
2408    /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2409    error = claim_swapfile(p, inode);
2410    if (unlikely(error))
2411        goto bad_swap;
2412
2413    /*
2414     * Read the swap header.
2415     */
2416    if (!mapping->a_ops->readpage) {
2417        error = -EINVAL;
2418        goto bad_swap;
2419    }
2420    page = read_mapping_page(mapping, 0, swap_file);
2421    if (IS_ERR(page)) {
2422        error = PTR_ERR(page);
2423        goto bad_swap;
2424    }
2425    swap_header = kmap(page);
2426
2427    maxpages = read_swap_header(p, swap_header, inode);
2428    if (unlikely(!maxpages)) {
2429        error = -EINVAL;
2430        goto bad_swap;
2431    }
2432
2433    /* OK, set up the swap map and apply the bad block list */
2434    swap_map = vzalloc(maxpages);
2435    if (!swap_map) {
2436        error = -ENOMEM;
2437        goto bad_swap;
2438    }
2439    if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2440        p->flags |= SWP_SOLIDSTATE;
2441        /*
2442         * select a random position to start with to help wear leveling
2443         * SSD
2444         */
2445        p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2446
2447        cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2448            SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2449        if (!cluster_info) {
2450            error = -ENOMEM;
2451            goto bad_swap;
2452        }
2453        p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2454        if (!p->percpu_cluster) {
2455            error = -ENOMEM;
2456            goto bad_swap;
2457        }
2458        for_each_possible_cpu(i) {
2459            struct percpu_cluster *cluster;
2460            cluster = per_cpu_ptr(p->percpu_cluster, i);
2461            cluster_set_null(&cluster->index);
2462        }
2463    }
2464
2465    error = swap_cgroup_swapon(p->type, maxpages);
2466    if (error)
2467        goto bad_swap;
2468
2469    nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2470        cluster_info, maxpages, &span);
2471    if (unlikely(nr_extents < 0)) {
2472        error = nr_extents;
2473        goto bad_swap;
2474    }
2475    /* frontswap enabled? set up bit-per-page map for frontswap */
2476    if (frontswap_enabled)
2477        frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2478
2479    if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2480        /*
2481         * When discard is enabled for swap with no particular
2482         * policy flagged, we set all swap discard flags here in
2483         * order to sustain backward compatibility with older
2484         * swapon(8) releases.
2485         */
2486        p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2487                 SWP_PAGE_DISCARD);
2488
2489        /*
2490         * By flagging sys_swapon, a sysadmin can tell us to
2491         * either do single-time area discards only, or to just
2492         * perform discards for released swap page-clusters.
2493         * Now it's time to adjust the p->flags accordingly.
2494         */
2495        if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2496            p->flags &= ~SWP_PAGE_DISCARD;
2497        else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2498            p->flags &= ~SWP_AREA_DISCARD;
2499
2500        /* issue a swapon-time discard if it's still required */
2501        if (p->flags & SWP_AREA_DISCARD) {
2502            int err = discard_swap(p);
2503            if (unlikely(err))
2504                pr_err("swapon: discard_swap(%p): %d\n",
2505                    p, err);
2506        }
2507    }
2508
2509    mutex_lock(&swapon_mutex);
2510    prio = -1;
2511    if (swap_flags & SWAP_FLAG_PREFER)
2512        prio =
2513          (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2514    enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2515
2516    pr_info("Adding %uk swap on %s. "
2517            "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2518        p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2519        nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2520        (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2521        (p->flags & SWP_DISCARDABLE) ? "D" : "",
2522        (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2523        (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2524        (frontswap_map) ? "FS" : "");
2525
2526    mutex_unlock(&swapon_mutex);
2527    atomic_inc(&proc_poll_event);
2528    wake_up_interruptible(&proc_poll_wait);
2529
2530    if (S_ISREG(inode->i_mode))
2531        inode->i_flags |= S_SWAPFILE;
2532    error = 0;
2533    goto out;
2534bad_swap:
2535    free_percpu(p->percpu_cluster);
2536    p->percpu_cluster = NULL;
2537    if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2538        set_blocksize(p->bdev, p->old_block_size);
2539        blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2540    }
2541    destroy_swap_extents(p);
2542    swap_cgroup_swapoff(p->type);
2543    spin_lock(&swap_lock);
2544    p->swap_file = NULL;
2545    p->flags = 0;
2546    spin_unlock(&swap_lock);
2547    vfree(swap_map);
2548    vfree(cluster_info);
2549    if (swap_file) {
2550        if (inode && S_ISREG(inode->i_mode)) {
2551            mutex_unlock(&inode->i_mutex);
2552            inode = NULL;
2553        }
2554        filp_close(swap_file, NULL);
2555    }
2556out:
2557    if (page && !IS_ERR(page)) {
2558        kunmap(page);
2559        page_cache_release(page);
2560    }
2561    if (name)
2562        putname(name);
2563    if (inode && S_ISREG(inode->i_mode))
2564        mutex_unlock(&inode->i_mutex);
2565    return error;
2566}
2567
2568void si_swapinfo(struct sysinfo *val)
2569{
2570    unsigned int type;
2571    unsigned long nr_to_be_unused = 0;
2572
2573    spin_lock(&swap_lock);
2574    for (type = 0; type < nr_swapfiles; type++) {
2575        struct swap_info_struct *si = swap_info[type];
2576
2577        if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2578            nr_to_be_unused += si->inuse_pages;
2579    }
2580    val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2581    val->totalswap = total_swap_pages + nr_to_be_unused;
2582    spin_unlock(&swap_lock);
2583}
2584
2585/*
2586 * Verify that a swap entry is valid and increment its swap map count.
2587 *
2588 * Returns error code in following case.
2589 * - success -> 0
2590 * - swp_entry is invalid -> EINVAL
2591 * - swp_entry is migration entry -> EINVAL
2592 * - swap-cache reference is requested but there is already one. -> EEXIST
2593 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2594 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2595 */
2596static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2597{
2598    struct swap_info_struct *p;
2599    unsigned long offset, type;
2600    unsigned char count;
2601    unsigned char has_cache;
2602    int err = -EINVAL;
2603
2604    if (non_swap_entry(entry))
2605        goto out;
2606
2607    type = swp_type(entry);
2608    if (type >= nr_swapfiles)
2609        goto bad_file;
2610    p = swap_info[type];
2611    offset = swp_offset(entry);
2612
2613    spin_lock(&p->lock);
2614    if (unlikely(offset >= p->max))
2615        goto unlock_out;
2616
2617    count = p->swap_map[offset];
2618
2619    /*
2620     * swapin_readahead() doesn't check if a swap entry is valid, so the
2621     * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2622     */
2623    if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2624        err = -ENOENT;
2625        goto unlock_out;
2626    }
2627
2628    has_cache = count & SWAP_HAS_CACHE;
2629    count &= ~SWAP_HAS_CACHE;
2630    err = 0;
2631
2632    if (usage == SWAP_HAS_CACHE) {
2633
2634        /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2635        if (!has_cache && count)
2636            has_cache = SWAP_HAS_CACHE;
2637        else if (has_cache) /* someone else added cache */
2638            err = -EEXIST;
2639        else /* no users remaining */
2640            err = -ENOENT;
2641
2642    } else if (count || has_cache) {
2643
2644        if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2645            count += usage;
2646        else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2647            err = -EINVAL;
2648        else if (swap_count_continued(p, offset, count))
2649            count = COUNT_CONTINUED;
2650        else
2651            err = -ENOMEM;
2652    } else
2653        err = -ENOENT; /* unused swap entry */
2654
2655    p->swap_map[offset] = count | has_cache;
2656
2657unlock_out:
2658    spin_unlock(&p->lock);
2659out:
2660    return err;
2661
2662bad_file:
2663    pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2664    goto out;
2665}
2666
2667/*
2668 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2669 * (in which case its reference count is never incremented).
2670 */
2671void swap_shmem_alloc(swp_entry_t entry)
2672{
2673    __swap_duplicate(entry, SWAP_MAP_SHMEM);
2674}
2675
2676/*
2677 * Increase reference count of swap entry by 1.
2678 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2679 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2680 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2681 * might occur if a page table entry has got corrupted.
2682 */
2683int swap_duplicate(swp_entry_t entry)
2684{
2685    int err = 0;
2686
2687    while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2688        err = add_swap_count_continuation(entry, GFP_ATOMIC);
2689    return err;
2690}
2691
2692/*
2693 * @entry: swap entry for which we allocate swap cache.
2694 *
2695 * Called when allocating swap cache for existing swap entry,
2696 * This can return error codes. Returns 0 at success.
2697 * -EBUSY means there is a swap cache.
2698 * Note: return code is different from swap_duplicate().
2699 */
2700int swapcache_prepare(swp_entry_t entry)
2701{
2702    return __swap_duplicate(entry, SWAP_HAS_CACHE);
2703}
2704
2705struct swap_info_struct *page_swap_info(struct page *page)
2706{
2707    swp_entry_t swap = { .val = page_private(page) };
2708    BUG_ON(!PageSwapCache(page));
2709    return swap_info[swp_type(swap)];
2710}
2711
2712/*
2713 * out-of-line __page_file_ methods to avoid include hell.
2714 */
2715struct address_space *__page_file_mapping(struct page *page)
2716{
2717    VM_BUG_ON(!PageSwapCache(page));
2718    return page_swap_info(page)->swap_file->f_mapping;
2719}
2720EXPORT_SYMBOL_GPL(__page_file_mapping);
2721
2722pgoff_t __page_file_index(struct page *page)
2723{
2724    swp_entry_t swap = { .val = page_private(page) };
2725    VM_BUG_ON(!PageSwapCache(page));
2726    return swp_offset(swap);
2727}
2728EXPORT_SYMBOL_GPL(__page_file_index);
2729
2730/*
2731 * add_swap_count_continuation - called when a swap count is duplicated
2732 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2733 * page of the original vmalloc'ed swap_map, to hold the continuation count
2734 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2735 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2736 *
2737 * These continuation pages are seldom referenced: the common paths all work
2738 * on the original swap_map, only referring to a continuation page when the
2739 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2740 *
2741 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2742 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2743 * can be called after dropping locks.
2744 */
2745int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2746{
2747    struct swap_info_struct *si;
2748    struct page *head;
2749    struct page *page;
2750    struct page *list_page;
2751    pgoff_t offset;
2752    unsigned char count;
2753
2754    /*
2755     * When debugging, it's easier to use __GFP_ZERO here; but it's better
2756     * for latency not to zero a page while GFP_ATOMIC and holding locks.
2757     */
2758    page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2759
2760    si = swap_info_get(entry);
2761    if (!si) {
2762        /*
2763         * An acceptable race has occurred since the failing
2764         * __swap_duplicate(): the swap entry has been freed,
2765         * perhaps even the whole swap_map cleared for swapoff.
2766         */
2767        goto outer;
2768    }
2769
2770    offset = swp_offset(entry);
2771    count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2772
2773    if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2774        /*
2775         * The higher the swap count, the more likely it is that tasks
2776         * will race to add swap count continuation: we need to avoid
2777         * over-provisioning.
2778         */
2779        goto out;
2780    }
2781
2782    if (!page) {
2783        spin_unlock(&si->lock);
2784        return -ENOMEM;
2785    }
2786
2787    /*
2788     * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2789     * no architecture is using highmem pages for kernel pagetables: so it
2790     * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2791     */
2792    head = vmalloc_to_page(si->swap_map + offset);
2793    offset &= ~PAGE_MASK;
2794
2795    /*
2796     * Page allocation does not initialize the page's lru field,
2797     * but it does always reset its private field.
2798     */
2799    if (!page_private(head)) {
2800        BUG_ON(count & COUNT_CONTINUED);
2801        INIT_LIST_HEAD(&head->lru);
2802        set_page_private(head, SWP_CONTINUED);
2803        si->flags |= SWP_CONTINUED;
2804    }
2805
2806    list_for_each_entry(list_page, &head->lru, lru) {
2807        unsigned char *map;
2808
2809        /*
2810         * If the previous map said no continuation, but we've found
2811         * a continuation page, free our allocation and use this one.
2812         */
2813        if (!(count & COUNT_CONTINUED))
2814            goto out;
2815
2816        map = kmap_atomic(list_page) + offset;
2817        count = *map;
2818        kunmap_atomic(map);
2819
2820        /*
2821         * If this continuation count now has some space in it,
2822         * free our allocation and use this one.
2823         */
2824        if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2825            goto out;
2826    }
2827
2828    list_add_tail(&page->lru, &head->lru);
2829    page = NULL; /* now it's attached, don't free it */
2830out:
2831    spin_unlock(&si->lock);
2832outer:
2833    if (page)
2834        __free_page(page);
2835    return 0;
2836}
2837
2838/*
2839 * swap_count_continued - when the original swap_map count is incremented
2840 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2841 * into, carry if so, or else fail until a new continuation page is allocated;
2842 * when the original swap_map count is decremented from 0 with continuation,
2843 * borrow from the continuation and report whether it still holds more.
2844 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2845 */
2846static bool swap_count_continued(struct swap_info_struct *si,
2847                 pgoff_t offset, unsigned char count)
2848{
2849    struct page *head;
2850    struct page *page;
2851    unsigned char *map;
2852
2853    head = vmalloc_to_page(si->swap_map + offset);
2854    if (page_private(head) != SWP_CONTINUED) {
2855        BUG_ON(count & COUNT_CONTINUED);
2856        return false; /* need to add count continuation */
2857    }
2858
2859    offset &= ~PAGE_MASK;
2860    page = list_entry(head->lru.next, struct page, lru);
2861    map = kmap_atomic(page) + offset;
2862
2863    if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2864        goto init_map; /* jump over SWAP_CONT_MAX checks */
2865
2866    if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2867        /*
2868         * Think of how you add 1 to 999
2869         */
2870        while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2871            kunmap_atomic(map);
2872            page = list_entry(page->lru.next, struct page, lru);
2873            BUG_ON(page == head);
2874            map = kmap_atomic(page) + offset;
2875        }
2876        if (*map == SWAP_CONT_MAX) {
2877            kunmap_atomic(map);
2878            page = list_entry(page->lru.next, struct page, lru);
2879            if (page == head)
2880                return false; /* add count continuation */
2881            map = kmap_atomic(page) + offset;
2882init_map: *map = 0; /* we didn't zero the page */
2883        }
2884        *map += 1;
2885        kunmap_atomic(map);
2886        page = list_entry(page->lru.prev, struct page, lru);
2887        while (page != head) {
2888            map = kmap_atomic(page) + offset;
2889            *map = COUNT_CONTINUED;
2890            kunmap_atomic(map);
2891            page = list_entry(page->lru.prev, struct page, lru);
2892        }
2893        return true; /* incremented */
2894
2895    } else { /* decrementing */
2896        /*
2897         * Think of how you subtract 1 from 1000
2898         */
2899        BUG_ON(count != COUNT_CONTINUED);
2900        while (*map == COUNT_CONTINUED) {
2901            kunmap_atomic(map);
2902            page = list_entry(page->lru.next, struct page, lru);
2903            BUG_ON(page == head);
2904            map = kmap_atomic(page) + offset;
2905        }
2906        BUG_ON(*map == 0);
2907        *map -= 1;
2908        if (*map == 0)
2909            count = 0;
2910        kunmap_atomic(map);
2911        page = list_entry(page->lru.prev, struct page, lru);
2912        while (page != head) {
2913            map = kmap_atomic(page) + offset;
2914            *map = SWAP_CONT_MAX | count;
2915            count = COUNT_CONTINUED;
2916            kunmap_atomic(map);
2917            page = list_entry(page->lru.prev, struct page, lru);
2918        }
2919        return count == COUNT_CONTINUED;
2920    }
2921}
2922
2923/*
2924 * free_swap_count_continuations - swapoff free all the continuation pages
2925 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2926 */
2927static void free_swap_count_continuations(struct swap_info_struct *si)
2928{
2929    pgoff_t offset;
2930
2931    for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2932        struct page *head;
2933        head = vmalloc_to_page(si->swap_map + offset);
2934        if (page_private(head)) {
2935            struct list_head *this, *next;
2936            list_for_each_safe(this, next, &head->lru) {
2937                struct page *page;
2938                page = list_entry(this, struct page, lru);
2939                list_del(this);
2940                __free_page(page);
2941            }
2942        }
2943    }
2944}
2945

Archive Download this file



interactive