Root/
1 | /* |
2 | * linux/mm/vmscan.c |
3 | * |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
5 | * |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. |
7 | * kswapd added: 7.1.96 sct |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. |
12 | */ |
13 | |
14 | #include <linux/mm.h> |
15 | #include <linux/module.h> |
16 | #include <linux/gfp.h> |
17 | #include <linux/kernel_stat.h> |
18 | #include <linux/swap.h> |
19 | #include <linux/pagemap.h> |
20 | #include <linux/init.h> |
21 | #include <linux/highmem.h> |
22 | #include <linux/vmpressure.h> |
23 | #include <linux/vmstat.h> |
24 | #include <linux/file.h> |
25 | #include <linux/writeback.h> |
26 | #include <linux/blkdev.h> |
27 | #include <linux/buffer_head.h> /* for try_to_release_page(), |
28 | buffer_heads_over_limit */ |
29 | #include <linux/mm_inline.h> |
30 | #include <linux/backing-dev.h> |
31 | #include <linux/rmap.h> |
32 | #include <linux/topology.h> |
33 | #include <linux/cpu.h> |
34 | #include <linux/cpuset.h> |
35 | #include <linux/compaction.h> |
36 | #include <linux/notifier.h> |
37 | #include <linux/rwsem.h> |
38 | #include <linux/delay.h> |
39 | #include <linux/kthread.h> |
40 | #include <linux/freezer.h> |
41 | #include <linux/memcontrol.h> |
42 | #include <linux/delayacct.h> |
43 | #include <linux/sysctl.h> |
44 | #include <linux/oom.h> |
45 | #include <linux/prefetch.h> |
46 | |
47 | #include <asm/tlbflush.h> |
48 | #include <asm/div64.h> |
49 | |
50 | #include <linux/swapops.h> |
51 | #include <linux/balloon_compaction.h> |
52 | |
53 | #include "internal.h" |
54 | |
55 | #define CREATE_TRACE_POINTS |
56 | #include <trace/events/vmscan.h> |
57 | |
58 | struct scan_control { |
59 | /* Incremented by the number of inactive pages that were scanned */ |
60 | unsigned long nr_scanned; |
61 | |
62 | /* Number of pages freed so far during a call to shrink_zones() */ |
63 | unsigned long nr_reclaimed; |
64 | |
65 | /* How many pages shrink_list() should reclaim */ |
66 | unsigned long nr_to_reclaim; |
67 | |
68 | unsigned long hibernation_mode; |
69 | |
70 | /* This context's GFP mask */ |
71 | gfp_t gfp_mask; |
72 | |
73 | int may_writepage; |
74 | |
75 | /* Can mapped pages be reclaimed? */ |
76 | int may_unmap; |
77 | |
78 | /* Can pages be swapped as part of reclaim? */ |
79 | int may_swap; |
80 | |
81 | int order; |
82 | |
83 | /* Scan (total_size >> priority) pages at once */ |
84 | int priority; |
85 | |
86 | /* |
87 | * The memory cgroup that hit its limit and as a result is the |
88 | * primary target of this reclaim invocation. |
89 | */ |
90 | struct mem_cgroup *target_mem_cgroup; |
91 | |
92 | /* |
93 | * Nodemask of nodes allowed by the caller. If NULL, all nodes |
94 | * are scanned. |
95 | */ |
96 | nodemask_t *nodemask; |
97 | }; |
98 | |
99 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
100 | |
101 | #ifdef ARCH_HAS_PREFETCH |
102 | #define prefetch_prev_lru_page(_page, _base, _field) \ |
103 | do { \ |
104 | if ((_page)->lru.prev != _base) { \ |
105 | struct page *prev; \ |
106 | \ |
107 | prev = lru_to_page(&(_page->lru)); \ |
108 | prefetch(&prev->_field); \ |
109 | } \ |
110 | } while (0) |
111 | #else |
112 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) |
113 | #endif |
114 | |
115 | #ifdef ARCH_HAS_PREFETCHW |
116 | #define prefetchw_prev_lru_page(_page, _base, _field) \ |
117 | do { \ |
118 | if ((_page)->lru.prev != _base) { \ |
119 | struct page *prev; \ |
120 | \ |
121 | prev = lru_to_page(&(_page->lru)); \ |
122 | prefetchw(&prev->_field); \ |
123 | } \ |
124 | } while (0) |
125 | #else |
126 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) |
127 | #endif |
128 | |
129 | /* |
130 | * From 0 .. 100. Higher means more swappy. |
131 | */ |
132 | int vm_swappiness = 60; |
133 | unsigned long vm_total_pages; /* The total number of pages which the VM controls */ |
134 | |
135 | static LIST_HEAD(shrinker_list); |
136 | static DECLARE_RWSEM(shrinker_rwsem); |
137 | |
138 | #ifdef CONFIG_MEMCG |
139 | static bool global_reclaim(struct scan_control *sc) |
140 | { |
141 | return !sc->target_mem_cgroup; |
142 | } |
143 | #else |
144 | static bool global_reclaim(struct scan_control *sc) |
145 | { |
146 | return true; |
147 | } |
148 | #endif |
149 | |
150 | unsigned long zone_reclaimable_pages(struct zone *zone) |
151 | { |
152 | int nr; |
153 | |
154 | nr = zone_page_state(zone, NR_ACTIVE_FILE) + |
155 | zone_page_state(zone, NR_INACTIVE_FILE); |
156 | |
157 | if (get_nr_swap_pages() > 0) |
158 | nr += zone_page_state(zone, NR_ACTIVE_ANON) + |
159 | zone_page_state(zone, NR_INACTIVE_ANON); |
160 | |
161 | return nr; |
162 | } |
163 | |
164 | bool zone_reclaimable(struct zone *zone) |
165 | { |
166 | return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; |
167 | } |
168 | |
169 | static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
170 | { |
171 | if (!mem_cgroup_disabled()) |
172 | return mem_cgroup_get_lru_size(lruvec, lru); |
173 | |
174 | return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); |
175 | } |
176 | |
177 | /* |
178 | * Add a shrinker callback to be called from the vm. |
179 | */ |
180 | int register_shrinker(struct shrinker *shrinker) |
181 | { |
182 | size_t size = sizeof(*shrinker->nr_deferred); |
183 | |
184 | /* |
185 | * If we only have one possible node in the system anyway, save |
186 | * ourselves the trouble and disable NUMA aware behavior. This way we |
187 | * will save memory and some small loop time later. |
188 | */ |
189 | if (nr_node_ids == 1) |
190 | shrinker->flags &= ~SHRINKER_NUMA_AWARE; |
191 | |
192 | if (shrinker->flags & SHRINKER_NUMA_AWARE) |
193 | size *= nr_node_ids; |
194 | |
195 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); |
196 | if (!shrinker->nr_deferred) |
197 | return -ENOMEM; |
198 | |
199 | down_write(&shrinker_rwsem); |
200 | list_add_tail(&shrinker->list, &shrinker_list); |
201 | up_write(&shrinker_rwsem); |
202 | return 0; |
203 | } |
204 | EXPORT_SYMBOL(register_shrinker); |
205 | |
206 | /* |
207 | * Remove one |
208 | */ |
209 | void unregister_shrinker(struct shrinker *shrinker) |
210 | { |
211 | down_write(&shrinker_rwsem); |
212 | list_del(&shrinker->list); |
213 | up_write(&shrinker_rwsem); |
214 | kfree(shrinker->nr_deferred); |
215 | } |
216 | EXPORT_SYMBOL(unregister_shrinker); |
217 | |
218 | #define SHRINK_BATCH 128 |
219 | |
220 | static unsigned long |
221 | shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, |
222 | unsigned long nr_pages_scanned, unsigned long lru_pages) |
223 | { |
224 | unsigned long freed = 0; |
225 | unsigned long long delta; |
226 | long total_scan; |
227 | long max_pass; |
228 | long nr; |
229 | long new_nr; |
230 | int nid = shrinkctl->nid; |
231 | long batch_size = shrinker->batch ? shrinker->batch |
232 | : SHRINK_BATCH; |
233 | |
234 | max_pass = shrinker->count_objects(shrinker, shrinkctl); |
235 | if (max_pass == 0) |
236 | return 0; |
237 | |
238 | /* |
239 | * copy the current shrinker scan count into a local variable |
240 | * and zero it so that other concurrent shrinker invocations |
241 | * don't also do this scanning work. |
242 | */ |
243 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); |
244 | |
245 | total_scan = nr; |
246 | delta = (4 * nr_pages_scanned) / shrinker->seeks; |
247 | delta *= max_pass; |
248 | do_div(delta, lru_pages + 1); |
249 | total_scan += delta; |
250 | if (total_scan < 0) { |
251 | printk(KERN_ERR |
252 | "shrink_slab: %pF negative objects to delete nr=%ld\n", |
253 | shrinker->scan_objects, total_scan); |
254 | total_scan = max_pass; |
255 | } |
256 | |
257 | /* |
258 | * We need to avoid excessive windup on filesystem shrinkers |
259 | * due to large numbers of GFP_NOFS allocations causing the |
260 | * shrinkers to return -1 all the time. This results in a large |
261 | * nr being built up so when a shrink that can do some work |
262 | * comes along it empties the entire cache due to nr >>> |
263 | * max_pass. This is bad for sustaining a working set in |
264 | * memory. |
265 | * |
266 | * Hence only allow the shrinker to scan the entire cache when |
267 | * a large delta change is calculated directly. |
268 | */ |
269 | if (delta < max_pass / 4) |
270 | total_scan = min(total_scan, max_pass / 2); |
271 | |
272 | /* |
273 | * Avoid risking looping forever due to too large nr value: |
274 | * never try to free more than twice the estimate number of |
275 | * freeable entries. |
276 | */ |
277 | if (total_scan > max_pass * 2) |
278 | total_scan = max_pass * 2; |
279 | |
280 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, |
281 | nr_pages_scanned, lru_pages, |
282 | max_pass, delta, total_scan); |
283 | |
284 | while (total_scan >= batch_size) { |
285 | unsigned long ret; |
286 | |
287 | shrinkctl->nr_to_scan = batch_size; |
288 | ret = shrinker->scan_objects(shrinker, shrinkctl); |
289 | if (ret == SHRINK_STOP) |
290 | break; |
291 | freed += ret; |
292 | |
293 | count_vm_events(SLABS_SCANNED, batch_size); |
294 | total_scan -= batch_size; |
295 | |
296 | cond_resched(); |
297 | } |
298 | |
299 | /* |
300 | * move the unused scan count back into the shrinker in a |
301 | * manner that handles concurrent updates. If we exhausted the |
302 | * scan, there is no need to do an update. |
303 | */ |
304 | if (total_scan > 0) |
305 | new_nr = atomic_long_add_return(total_scan, |
306 | &shrinker->nr_deferred[nid]); |
307 | else |
308 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); |
309 | |
310 | trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); |
311 | return freed; |
312 | } |
313 | |
314 | /* |
315 | * Call the shrink functions to age shrinkable caches |
316 | * |
317 | * Here we assume it costs one seek to replace a lru page and that it also |
318 | * takes a seek to recreate a cache object. With this in mind we age equal |
319 | * percentages of the lru and ageable caches. This should balance the seeks |
320 | * generated by these structures. |
321 | * |
322 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
323 | * slab to avoid swapping. |
324 | * |
325 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. |
326 | * |
327 | * `lru_pages' represents the number of on-LRU pages in all the zones which |
328 | * are eligible for the caller's allocation attempt. It is used for balancing |
329 | * slab reclaim versus page reclaim. |
330 | * |
331 | * Returns the number of slab objects which we shrunk. |
332 | */ |
333 | unsigned long shrink_slab(struct shrink_control *shrinkctl, |
334 | unsigned long nr_pages_scanned, |
335 | unsigned long lru_pages) |
336 | { |
337 | struct shrinker *shrinker; |
338 | unsigned long freed = 0; |
339 | |
340 | if (nr_pages_scanned == 0) |
341 | nr_pages_scanned = SWAP_CLUSTER_MAX; |
342 | |
343 | if (!down_read_trylock(&shrinker_rwsem)) { |
344 | /* |
345 | * If we would return 0, our callers would understand that we |
346 | * have nothing else to shrink and give up trying. By returning |
347 | * 1 we keep it going and assume we'll be able to shrink next |
348 | * time. |
349 | */ |
350 | freed = 1; |
351 | goto out; |
352 | } |
353 | |
354 | list_for_each_entry(shrinker, &shrinker_list, list) { |
355 | for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { |
356 | if (!node_online(shrinkctl->nid)) |
357 | continue; |
358 | |
359 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && |
360 | (shrinkctl->nid != 0)) |
361 | break; |
362 | |
363 | freed += shrink_slab_node(shrinkctl, shrinker, |
364 | nr_pages_scanned, lru_pages); |
365 | |
366 | } |
367 | } |
368 | up_read(&shrinker_rwsem); |
369 | out: |
370 | cond_resched(); |
371 | return freed; |
372 | } |
373 | |
374 | static inline int is_page_cache_freeable(struct page *page) |
375 | { |
376 | /* |
377 | * A freeable page cache page is referenced only by the caller |
378 | * that isolated the page, the page cache radix tree and |
379 | * optional buffer heads at page->private. |
380 | */ |
381 | return page_count(page) - page_has_private(page) == 2; |
382 | } |
383 | |
384 | static int may_write_to_queue(struct backing_dev_info *bdi, |
385 | struct scan_control *sc) |
386 | { |
387 | if (current->flags & PF_SWAPWRITE) |
388 | return 1; |
389 | if (!bdi_write_congested(bdi)) |
390 | return 1; |
391 | if (bdi == current->backing_dev_info) |
392 | return 1; |
393 | return 0; |
394 | } |
395 | |
396 | /* |
397 | * We detected a synchronous write error writing a page out. Probably |
398 | * -ENOSPC. We need to propagate that into the address_space for a subsequent |
399 | * fsync(), msync() or close(). |
400 | * |
401 | * The tricky part is that after writepage we cannot touch the mapping: nothing |
402 | * prevents it from being freed up. But we have a ref on the page and once |
403 | * that page is locked, the mapping is pinned. |
404 | * |
405 | * We're allowed to run sleeping lock_page() here because we know the caller has |
406 | * __GFP_FS. |
407 | */ |
408 | static void handle_write_error(struct address_space *mapping, |
409 | struct page *page, int error) |
410 | { |
411 | lock_page(page); |
412 | if (page_mapping(page) == mapping) |
413 | mapping_set_error(mapping, error); |
414 | unlock_page(page); |
415 | } |
416 | |
417 | /* possible outcome of pageout() */ |
418 | typedef enum { |
419 | /* failed to write page out, page is locked */ |
420 | PAGE_KEEP, |
421 | /* move page to the active list, page is locked */ |
422 | PAGE_ACTIVATE, |
423 | /* page has been sent to the disk successfully, page is unlocked */ |
424 | PAGE_SUCCESS, |
425 | /* page is clean and locked */ |
426 | PAGE_CLEAN, |
427 | } pageout_t; |
428 | |
429 | /* |
430 | * pageout is called by shrink_page_list() for each dirty page. |
431 | * Calls ->writepage(). |
432 | */ |
433 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
434 | struct scan_control *sc) |
435 | { |
436 | /* |
437 | * If the page is dirty, only perform writeback if that write |
438 | * will be non-blocking. To prevent this allocation from being |
439 | * stalled by pagecache activity. But note that there may be |
440 | * stalls if we need to run get_block(). We could test |
441 | * PagePrivate for that. |
442 | * |
443 | * If this process is currently in __generic_file_aio_write() against |
444 | * this page's queue, we can perform writeback even if that |
445 | * will block. |
446 | * |
447 | * If the page is swapcache, write it back even if that would |
448 | * block, for some throttling. This happens by accident, because |
449 | * swap_backing_dev_info is bust: it doesn't reflect the |
450 | * congestion state of the swapdevs. Easy to fix, if needed. |
451 | */ |
452 | if (!is_page_cache_freeable(page)) |
453 | return PAGE_KEEP; |
454 | if (!mapping) { |
455 | /* |
456 | * Some data journaling orphaned pages can have |
457 | * page->mapping == NULL while being dirty with clean buffers. |
458 | */ |
459 | if (page_has_private(page)) { |
460 | if (try_to_free_buffers(page)) { |
461 | ClearPageDirty(page); |
462 | printk("%s: orphaned page\n", __func__); |
463 | return PAGE_CLEAN; |
464 | } |
465 | } |
466 | return PAGE_KEEP; |
467 | } |
468 | if (mapping->a_ops->writepage == NULL) |
469 | return PAGE_ACTIVATE; |
470 | if (!may_write_to_queue(mapping->backing_dev_info, sc)) |
471 | return PAGE_KEEP; |
472 | |
473 | if (clear_page_dirty_for_io(page)) { |
474 | int res; |
475 | struct writeback_control wbc = { |
476 | .sync_mode = WB_SYNC_NONE, |
477 | .nr_to_write = SWAP_CLUSTER_MAX, |
478 | .range_start = 0, |
479 | .range_end = LLONG_MAX, |
480 | .for_reclaim = 1, |
481 | }; |
482 | |
483 | SetPageReclaim(page); |
484 | res = mapping->a_ops->writepage(page, &wbc); |
485 | if (res < 0) |
486 | handle_write_error(mapping, page, res); |
487 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
488 | ClearPageReclaim(page); |
489 | return PAGE_ACTIVATE; |
490 | } |
491 | |
492 | if (!PageWriteback(page)) { |
493 | /* synchronous write or broken a_ops? */ |
494 | ClearPageReclaim(page); |
495 | } |
496 | trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); |
497 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
498 | return PAGE_SUCCESS; |
499 | } |
500 | |
501 | return PAGE_CLEAN; |
502 | } |
503 | |
504 | /* |
505 | * Same as remove_mapping, but if the page is removed from the mapping, it |
506 | * gets returned with a refcount of 0. |
507 | */ |
508 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
509 | { |
510 | BUG_ON(!PageLocked(page)); |
511 | BUG_ON(mapping != page_mapping(page)); |
512 | |
513 | spin_lock_irq(&mapping->tree_lock); |
514 | /* |
515 | * The non racy check for a busy page. |
516 | * |
517 | * Must be careful with the order of the tests. When someone has |
518 | * a ref to the page, it may be possible that they dirty it then |
519 | * drop the reference. So if PageDirty is tested before page_count |
520 | * here, then the following race may occur: |
521 | * |
522 | * get_user_pages(&page); |
523 | * [user mapping goes away] |
524 | * write_to(page); |
525 | * !PageDirty(page) [good] |
526 | * SetPageDirty(page); |
527 | * put_page(page); |
528 | * !page_count(page) [good, discard it] |
529 | * |
530 | * [oops, our write_to data is lost] |
531 | * |
532 | * Reversing the order of the tests ensures such a situation cannot |
533 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags |
534 | * load is not satisfied before that of page->_count. |
535 | * |
536 | * Note that if SetPageDirty is always performed via set_page_dirty, |
537 | * and thus under tree_lock, then this ordering is not required. |
538 | */ |
539 | if (!page_freeze_refs(page, 2)) |
540 | goto cannot_free; |
541 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
542 | if (unlikely(PageDirty(page))) { |
543 | page_unfreeze_refs(page, 2); |
544 | goto cannot_free; |
545 | } |
546 | |
547 | if (PageSwapCache(page)) { |
548 | swp_entry_t swap = { .val = page_private(page) }; |
549 | __delete_from_swap_cache(page); |
550 | spin_unlock_irq(&mapping->tree_lock); |
551 | swapcache_free(swap, page); |
552 | } else { |
553 | void (*freepage)(struct page *); |
554 | |
555 | freepage = mapping->a_ops->freepage; |
556 | |
557 | __delete_from_page_cache(page); |
558 | spin_unlock_irq(&mapping->tree_lock); |
559 | mem_cgroup_uncharge_cache_page(page); |
560 | |
561 | if (freepage != NULL) |
562 | freepage(page); |
563 | } |
564 | |
565 | return 1; |
566 | |
567 | cannot_free: |
568 | spin_unlock_irq(&mapping->tree_lock); |
569 | return 0; |
570 | } |
571 | |
572 | /* |
573 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if |
574 | * someone else has a ref on the page, abort and return 0. If it was |
575 | * successfully detached, return 1. Assumes the caller has a single ref on |
576 | * this page. |
577 | */ |
578 | int remove_mapping(struct address_space *mapping, struct page *page) |
579 | { |
580 | if (__remove_mapping(mapping, page)) { |
581 | /* |
582 | * Unfreezing the refcount with 1 rather than 2 effectively |
583 | * drops the pagecache ref for us without requiring another |
584 | * atomic operation. |
585 | */ |
586 | page_unfreeze_refs(page, 1); |
587 | return 1; |
588 | } |
589 | return 0; |
590 | } |
591 | |
592 | /** |
593 | * putback_lru_page - put previously isolated page onto appropriate LRU list |
594 | * @page: page to be put back to appropriate lru list |
595 | * |
596 | * Add previously isolated @page to appropriate LRU list. |
597 | * Page may still be unevictable for other reasons. |
598 | * |
599 | * lru_lock must not be held, interrupts must be enabled. |
600 | */ |
601 | void putback_lru_page(struct page *page) |
602 | { |
603 | bool is_unevictable; |
604 | int was_unevictable = PageUnevictable(page); |
605 | |
606 | VM_BUG_ON(PageLRU(page)); |
607 | |
608 | redo: |
609 | ClearPageUnevictable(page); |
610 | |
611 | if (page_evictable(page)) { |
612 | /* |
613 | * For evictable pages, we can use the cache. |
614 | * In event of a race, worst case is we end up with an |
615 | * unevictable page on [in]active list. |
616 | * We know how to handle that. |
617 | */ |
618 | is_unevictable = false; |
619 | lru_cache_add(page); |
620 | } else { |
621 | /* |
622 | * Put unevictable pages directly on zone's unevictable |
623 | * list. |
624 | */ |
625 | is_unevictable = true; |
626 | add_page_to_unevictable_list(page); |
627 | /* |
628 | * When racing with an mlock or AS_UNEVICTABLE clearing |
629 | * (page is unlocked) make sure that if the other thread |
630 | * does not observe our setting of PG_lru and fails |
631 | * isolation/check_move_unevictable_pages, |
632 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move |
633 | * the page back to the evictable list. |
634 | * |
635 | * The other side is TestClearPageMlocked() or shmem_lock(). |
636 | */ |
637 | smp_mb(); |
638 | } |
639 | |
640 | /* |
641 | * page's status can change while we move it among lru. If an evictable |
642 | * page is on unevictable list, it never be freed. To avoid that, |
643 | * check after we added it to the list, again. |
644 | */ |
645 | if (is_unevictable && page_evictable(page)) { |
646 | if (!isolate_lru_page(page)) { |
647 | put_page(page); |
648 | goto redo; |
649 | } |
650 | /* This means someone else dropped this page from LRU |
651 | * So, it will be freed or putback to LRU again. There is |
652 | * nothing to do here. |
653 | */ |
654 | } |
655 | |
656 | if (was_unevictable && !is_unevictable) |
657 | count_vm_event(UNEVICTABLE_PGRESCUED); |
658 | else if (!was_unevictable && is_unevictable) |
659 | count_vm_event(UNEVICTABLE_PGCULLED); |
660 | |
661 | put_page(page); /* drop ref from isolate */ |
662 | } |
663 | |
664 | enum page_references { |
665 | PAGEREF_RECLAIM, |
666 | PAGEREF_RECLAIM_CLEAN, |
667 | PAGEREF_KEEP, |
668 | PAGEREF_ACTIVATE, |
669 | }; |
670 | |
671 | static enum page_references page_check_references(struct page *page, |
672 | struct scan_control *sc) |
673 | { |
674 | int referenced_ptes, referenced_page; |
675 | unsigned long vm_flags; |
676 | |
677 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
678 | &vm_flags); |
679 | referenced_page = TestClearPageReferenced(page); |
680 | |
681 | /* |
682 | * Mlock lost the isolation race with us. Let try_to_unmap() |
683 | * move the page to the unevictable list. |
684 | */ |
685 | if (vm_flags & VM_LOCKED) |
686 | return PAGEREF_RECLAIM; |
687 | |
688 | if (referenced_ptes) { |
689 | if (PageSwapBacked(page)) |
690 | return PAGEREF_ACTIVATE; |
691 | /* |
692 | * All mapped pages start out with page table |
693 | * references from the instantiating fault, so we need |
694 | * to look twice if a mapped file page is used more |
695 | * than once. |
696 | * |
697 | * Mark it and spare it for another trip around the |
698 | * inactive list. Another page table reference will |
699 | * lead to its activation. |
700 | * |
701 | * Note: the mark is set for activated pages as well |
702 | * so that recently deactivated but used pages are |
703 | * quickly recovered. |
704 | */ |
705 | SetPageReferenced(page); |
706 | |
707 | if (referenced_page || referenced_ptes > 1) |
708 | return PAGEREF_ACTIVATE; |
709 | |
710 | /* |
711 | * Activate file-backed executable pages after first usage. |
712 | */ |
713 | if (vm_flags & VM_EXEC) |
714 | return PAGEREF_ACTIVATE; |
715 | |
716 | return PAGEREF_KEEP; |
717 | } |
718 | |
719 | /* Reclaim if clean, defer dirty pages to writeback */ |
720 | if (referenced_page && !PageSwapBacked(page)) |
721 | return PAGEREF_RECLAIM_CLEAN; |
722 | |
723 | return PAGEREF_RECLAIM; |
724 | } |
725 | |
726 | /* Check if a page is dirty or under writeback */ |
727 | static void page_check_dirty_writeback(struct page *page, |
728 | bool *dirty, bool *writeback) |
729 | { |
730 | struct address_space *mapping; |
731 | |
732 | /* |
733 | * Anonymous pages are not handled by flushers and must be written |
734 | * from reclaim context. Do not stall reclaim based on them |
735 | */ |
736 | if (!page_is_file_cache(page)) { |
737 | *dirty = false; |
738 | *writeback = false; |
739 | return; |
740 | } |
741 | |
742 | /* By default assume that the page flags are accurate */ |
743 | *dirty = PageDirty(page); |
744 | *writeback = PageWriteback(page); |
745 | |
746 | /* Verify dirty/writeback state if the filesystem supports it */ |
747 | if (!page_has_private(page)) |
748 | return; |
749 | |
750 | mapping = page_mapping(page); |
751 | if (mapping && mapping->a_ops->is_dirty_writeback) |
752 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); |
753 | } |
754 | |
755 | /* |
756 | * shrink_page_list() returns the number of reclaimed pages |
757 | */ |
758 | static unsigned long shrink_page_list(struct list_head *page_list, |
759 | struct zone *zone, |
760 | struct scan_control *sc, |
761 | enum ttu_flags ttu_flags, |
762 | unsigned long *ret_nr_dirty, |
763 | unsigned long *ret_nr_unqueued_dirty, |
764 | unsigned long *ret_nr_congested, |
765 | unsigned long *ret_nr_writeback, |
766 | unsigned long *ret_nr_immediate, |
767 | bool force_reclaim) |
768 | { |
769 | LIST_HEAD(ret_pages); |
770 | LIST_HEAD(free_pages); |
771 | int pgactivate = 0; |
772 | unsigned long nr_unqueued_dirty = 0; |
773 | unsigned long nr_dirty = 0; |
774 | unsigned long nr_congested = 0; |
775 | unsigned long nr_reclaimed = 0; |
776 | unsigned long nr_writeback = 0; |
777 | unsigned long nr_immediate = 0; |
778 | |
779 | cond_resched(); |
780 | |
781 | mem_cgroup_uncharge_start(); |
782 | while (!list_empty(page_list)) { |
783 | struct address_space *mapping; |
784 | struct page *page; |
785 | int may_enter_fs; |
786 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
787 | bool dirty, writeback; |
788 | |
789 | cond_resched(); |
790 | |
791 | page = lru_to_page(page_list); |
792 | list_del(&page->lru); |
793 | |
794 | if (!trylock_page(page)) |
795 | goto keep; |
796 | |
797 | VM_BUG_ON(PageActive(page)); |
798 | VM_BUG_ON(page_zone(page) != zone); |
799 | |
800 | sc->nr_scanned++; |
801 | |
802 | if (unlikely(!page_evictable(page))) |
803 | goto cull_mlocked; |
804 | |
805 | if (!sc->may_unmap && page_mapped(page)) |
806 | goto keep_locked; |
807 | |
808 | /* Double the slab pressure for mapped and swapcache pages */ |
809 | if (page_mapped(page) || PageSwapCache(page)) |
810 | sc->nr_scanned++; |
811 | |
812 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
813 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); |
814 | |
815 | /* |
816 | * The number of dirty pages determines if a zone is marked |
817 | * reclaim_congested which affects wait_iff_congested. kswapd |
818 | * will stall and start writing pages if the tail of the LRU |
819 | * is all dirty unqueued pages. |
820 | */ |
821 | page_check_dirty_writeback(page, &dirty, &writeback); |
822 | if (dirty || writeback) |
823 | nr_dirty++; |
824 | |
825 | if (dirty && !writeback) |
826 | nr_unqueued_dirty++; |
827 | |
828 | /* |
829 | * Treat this page as congested if the underlying BDI is or if |
830 | * pages are cycling through the LRU so quickly that the |
831 | * pages marked for immediate reclaim are making it to the |
832 | * end of the LRU a second time. |
833 | */ |
834 | mapping = page_mapping(page); |
835 | if ((mapping && bdi_write_congested(mapping->backing_dev_info)) || |
836 | (writeback && PageReclaim(page))) |
837 | nr_congested++; |
838 | |
839 | /* |
840 | * If a page at the tail of the LRU is under writeback, there |
841 | * are three cases to consider. |
842 | * |
843 | * 1) If reclaim is encountering an excessive number of pages |
844 | * under writeback and this page is both under writeback and |
845 | * PageReclaim then it indicates that pages are being queued |
846 | * for IO but are being recycled through the LRU before the |
847 | * IO can complete. Waiting on the page itself risks an |
848 | * indefinite stall if it is impossible to writeback the |
849 | * page due to IO error or disconnected storage so instead |
850 | * note that the LRU is being scanned too quickly and the |
851 | * caller can stall after page list has been processed. |
852 | * |
853 | * 2) Global reclaim encounters a page, memcg encounters a |
854 | * page that is not marked for immediate reclaim or |
855 | * the caller does not have __GFP_IO. In this case mark |
856 | * the page for immediate reclaim and continue scanning. |
857 | * |
858 | * __GFP_IO is checked because a loop driver thread might |
859 | * enter reclaim, and deadlock if it waits on a page for |
860 | * which it is needed to do the write (loop masks off |
861 | * __GFP_IO|__GFP_FS for this reason); but more thought |
862 | * would probably show more reasons. |
863 | * |
864 | * Don't require __GFP_FS, since we're not going into the |
865 | * FS, just waiting on its writeback completion. Worryingly, |
866 | * ext4 gfs2 and xfs allocate pages with |
867 | * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing |
868 | * may_enter_fs here is liable to OOM on them. |
869 | * |
870 | * 3) memcg encounters a page that is not already marked |
871 | * PageReclaim. memcg does not have any dirty pages |
872 | * throttling so we could easily OOM just because too many |
873 | * pages are in writeback and there is nothing else to |
874 | * reclaim. Wait for the writeback to complete. |
875 | */ |
876 | if (PageWriteback(page)) { |
877 | /* Case 1 above */ |
878 | if (current_is_kswapd() && |
879 | PageReclaim(page) && |
880 | zone_is_reclaim_writeback(zone)) { |
881 | nr_immediate++; |
882 | goto keep_locked; |
883 | |
884 | /* Case 2 above */ |
885 | } else if (global_reclaim(sc) || |
886 | !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { |
887 | /* |
888 | * This is slightly racy - end_page_writeback() |
889 | * might have just cleared PageReclaim, then |
890 | * setting PageReclaim here end up interpreted |
891 | * as PageReadahead - but that does not matter |
892 | * enough to care. What we do want is for this |
893 | * page to have PageReclaim set next time memcg |
894 | * reclaim reaches the tests above, so it will |
895 | * then wait_on_page_writeback() to avoid OOM; |
896 | * and it's also appropriate in global reclaim. |
897 | */ |
898 | SetPageReclaim(page); |
899 | nr_writeback++; |
900 | |
901 | goto keep_locked; |
902 | |
903 | /* Case 3 above */ |
904 | } else { |
905 | wait_on_page_writeback(page); |
906 | } |
907 | } |
908 | |
909 | if (!force_reclaim) |
910 | references = page_check_references(page, sc); |
911 | |
912 | switch (references) { |
913 | case PAGEREF_ACTIVATE: |
914 | goto activate_locked; |
915 | case PAGEREF_KEEP: |
916 | goto keep_locked; |
917 | case PAGEREF_RECLAIM: |
918 | case PAGEREF_RECLAIM_CLEAN: |
919 | ; /* try to reclaim the page below */ |
920 | } |
921 | |
922 | /* |
923 | * Anonymous process memory has backing store? |
924 | * Try to allocate it some swap space here. |
925 | */ |
926 | if (PageAnon(page) && !PageSwapCache(page)) { |
927 | if (!(sc->gfp_mask & __GFP_IO)) |
928 | goto keep_locked; |
929 | if (!add_to_swap(page, page_list)) |
930 | goto activate_locked; |
931 | may_enter_fs = 1; |
932 | |
933 | /* Adding to swap updated mapping */ |
934 | mapping = page_mapping(page); |
935 | } |
936 | |
937 | /* |
938 | * The page is mapped into the page tables of one or more |
939 | * processes. Try to unmap it here. |
940 | */ |
941 | if (page_mapped(page) && mapping) { |
942 | switch (try_to_unmap(page, ttu_flags)) { |
943 | case SWAP_FAIL: |
944 | goto activate_locked; |
945 | case SWAP_AGAIN: |
946 | goto keep_locked; |
947 | case SWAP_MLOCK: |
948 | goto cull_mlocked; |
949 | case SWAP_SUCCESS: |
950 | ; /* try to free the page below */ |
951 | } |
952 | } |
953 | |
954 | if (PageDirty(page)) { |
955 | /* |
956 | * Only kswapd can writeback filesystem pages to |
957 | * avoid risk of stack overflow but only writeback |
958 | * if many dirty pages have been encountered. |
959 | */ |
960 | if (page_is_file_cache(page) && |
961 | (!current_is_kswapd() || |
962 | !zone_is_reclaim_dirty(zone))) { |
963 | /* |
964 | * Immediately reclaim when written back. |
965 | * Similar in principal to deactivate_page() |
966 | * except we already have the page isolated |
967 | * and know it's dirty |
968 | */ |
969 | inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); |
970 | SetPageReclaim(page); |
971 | |
972 | goto keep_locked; |
973 | } |
974 | |
975 | if (references == PAGEREF_RECLAIM_CLEAN) |
976 | goto keep_locked; |
977 | if (!may_enter_fs) |
978 | goto keep_locked; |
979 | if (!sc->may_writepage) |
980 | goto keep_locked; |
981 | |
982 | /* Page is dirty, try to write it out here */ |
983 | switch (pageout(page, mapping, sc)) { |
984 | case PAGE_KEEP: |
985 | goto keep_locked; |
986 | case PAGE_ACTIVATE: |
987 | goto activate_locked; |
988 | case PAGE_SUCCESS: |
989 | if (PageWriteback(page)) |
990 | goto keep; |
991 | if (PageDirty(page)) |
992 | goto keep; |
993 | |
994 | /* |
995 | * A synchronous write - probably a ramdisk. Go |
996 | * ahead and try to reclaim the page. |
997 | */ |
998 | if (!trylock_page(page)) |
999 | goto keep; |
1000 | if (PageDirty(page) || PageWriteback(page)) |
1001 | goto keep_locked; |
1002 | mapping = page_mapping(page); |
1003 | case PAGE_CLEAN: |
1004 | ; /* try to free the page below */ |
1005 | } |
1006 | } |
1007 | |
1008 | /* |
1009 | * If the page has buffers, try to free the buffer mappings |
1010 | * associated with this page. If we succeed we try to free |
1011 | * the page as well. |
1012 | * |
1013 | * We do this even if the page is PageDirty(). |
1014 | * try_to_release_page() does not perform I/O, but it is |
1015 | * possible for a page to have PageDirty set, but it is actually |
1016 | * clean (all its buffers are clean). This happens if the |
1017 | * buffers were written out directly, with submit_bh(). ext3 |
1018 | * will do this, as well as the blockdev mapping. |
1019 | * try_to_release_page() will discover that cleanness and will |
1020 | * drop the buffers and mark the page clean - it can be freed. |
1021 | * |
1022 | * Rarely, pages can have buffers and no ->mapping. These are |
1023 | * the pages which were not successfully invalidated in |
1024 | * truncate_complete_page(). We try to drop those buffers here |
1025 | * and if that worked, and the page is no longer mapped into |
1026 | * process address space (page_count == 1) it can be freed. |
1027 | * Otherwise, leave the page on the LRU so it is swappable. |
1028 | */ |
1029 | if (page_has_private(page)) { |
1030 | if (!try_to_release_page(page, sc->gfp_mask)) |
1031 | goto activate_locked; |
1032 | if (!mapping && page_count(page) == 1) { |
1033 | unlock_page(page); |
1034 | if (put_page_testzero(page)) |
1035 | goto free_it; |
1036 | else { |
1037 | /* |
1038 | * rare race with speculative reference. |
1039 | * the speculative reference will free |
1040 | * this page shortly, so we may |
1041 | * increment nr_reclaimed here (and |
1042 | * leave it off the LRU). |
1043 | */ |
1044 | nr_reclaimed++; |
1045 | continue; |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | if (!mapping || !__remove_mapping(mapping, page)) |
1051 | goto keep_locked; |
1052 | |
1053 | /* |
1054 | * At this point, we have no other references and there is |
1055 | * no way to pick any more up (removed from LRU, removed |
1056 | * from pagecache). Can use non-atomic bitops now (and |
1057 | * we obviously don't have to worry about waking up a process |
1058 | * waiting on the page lock, because there are no references. |
1059 | */ |
1060 | __clear_page_locked(page); |
1061 | free_it: |
1062 | nr_reclaimed++; |
1063 | |
1064 | /* |
1065 | * Is there need to periodically free_page_list? It would |
1066 | * appear not as the counts should be low |
1067 | */ |
1068 | list_add(&page->lru, &free_pages); |
1069 | continue; |
1070 | |
1071 | cull_mlocked: |
1072 | if (PageSwapCache(page)) |
1073 | try_to_free_swap(page); |
1074 | unlock_page(page); |
1075 | putback_lru_page(page); |
1076 | continue; |
1077 | |
1078 | activate_locked: |
1079 | /* Not a candidate for swapping, so reclaim swap space. */ |
1080 | if (PageSwapCache(page) && vm_swap_full()) |
1081 | try_to_free_swap(page); |
1082 | VM_BUG_ON(PageActive(page)); |
1083 | SetPageActive(page); |
1084 | pgactivate++; |
1085 | keep_locked: |
1086 | unlock_page(page); |
1087 | keep: |
1088 | list_add(&page->lru, &ret_pages); |
1089 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
1090 | } |
1091 | |
1092 | free_hot_cold_page_list(&free_pages, 1); |
1093 | |
1094 | list_splice(&ret_pages, page_list); |
1095 | count_vm_events(PGACTIVATE, pgactivate); |
1096 | mem_cgroup_uncharge_end(); |
1097 | *ret_nr_dirty += nr_dirty; |
1098 | *ret_nr_congested += nr_congested; |
1099 | *ret_nr_unqueued_dirty += nr_unqueued_dirty; |
1100 | *ret_nr_writeback += nr_writeback; |
1101 | *ret_nr_immediate += nr_immediate; |
1102 | return nr_reclaimed; |
1103 | } |
1104 | |
1105 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
1106 | struct list_head *page_list) |
1107 | { |
1108 | struct scan_control sc = { |
1109 | .gfp_mask = GFP_KERNEL, |
1110 | .priority = DEF_PRIORITY, |
1111 | .may_unmap = 1, |
1112 | }; |
1113 | unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; |
1114 | struct page *page, *next; |
1115 | LIST_HEAD(clean_pages); |
1116 | |
1117 | list_for_each_entry_safe(page, next, page_list, lru) { |
1118 | if (page_is_file_cache(page) && !PageDirty(page) && |
1119 | !isolated_balloon_page(page)) { |
1120 | ClearPageActive(page); |
1121 | list_move(&page->lru, &clean_pages); |
1122 | } |
1123 | } |
1124 | |
1125 | ret = shrink_page_list(&clean_pages, zone, &sc, |
1126 | TTU_UNMAP|TTU_IGNORE_ACCESS, |
1127 | &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); |
1128 | list_splice(&clean_pages, page_list); |
1129 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); |
1130 | return ret; |
1131 | } |
1132 | |
1133 | /* |
1134 | * Attempt to remove the specified page from its LRU. Only take this page |
1135 | * if it is of the appropriate PageActive status. Pages which are being |
1136 | * freed elsewhere are also ignored. |
1137 | * |
1138 | * page: page to consider |
1139 | * mode: one of the LRU isolation modes defined above |
1140 | * |
1141 | * returns 0 on success, -ve errno on failure. |
1142 | */ |
1143 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
1144 | { |
1145 | int ret = -EINVAL; |
1146 | |
1147 | /* Only take pages on the LRU. */ |
1148 | if (!PageLRU(page)) |
1149 | return ret; |
1150 | |
1151 | /* Compaction should not handle unevictable pages but CMA can do so */ |
1152 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) |
1153 | return ret; |
1154 | |
1155 | ret = -EBUSY; |
1156 | |
1157 | /* |
1158 | * To minimise LRU disruption, the caller can indicate that it only |
1159 | * wants to isolate pages it will be able to operate on without |
1160 | * blocking - clean pages for the most part. |
1161 | * |
1162 | * ISOLATE_CLEAN means that only clean pages should be isolated. This |
1163 | * is used by reclaim when it is cannot write to backing storage |
1164 | * |
1165 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages |
1166 | * that it is possible to migrate without blocking |
1167 | */ |
1168 | if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { |
1169 | /* All the caller can do on PageWriteback is block */ |
1170 | if (PageWriteback(page)) |
1171 | return ret; |
1172 | |
1173 | if (PageDirty(page)) { |
1174 | struct address_space *mapping; |
1175 | |
1176 | /* ISOLATE_CLEAN means only clean pages */ |
1177 | if (mode & ISOLATE_CLEAN) |
1178 | return ret; |
1179 | |
1180 | /* |
1181 | * Only pages without mappings or that have a |
1182 | * ->migratepage callback are possible to migrate |
1183 | * without blocking |
1184 | */ |
1185 | mapping = page_mapping(page); |
1186 | if (mapping && !mapping->a_ops->migratepage) |
1187 | return ret; |
1188 | } |
1189 | } |
1190 | |
1191 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1192 | return ret; |
1193 | |
1194 | if (likely(get_page_unless_zero(page))) { |
1195 | /* |
1196 | * Be careful not to clear PageLRU until after we're |
1197 | * sure the page is not being freed elsewhere -- the |
1198 | * page release code relies on it. |
1199 | */ |
1200 | ClearPageLRU(page); |
1201 | ret = 0; |
1202 | } |
1203 | |
1204 | return ret; |
1205 | } |
1206 | |
1207 | /* |
1208 | * zone->lru_lock is heavily contended. Some of the functions that |
1209 | * shrink the lists perform better by taking out a batch of pages |
1210 | * and working on them outside the LRU lock. |
1211 | * |
1212 | * For pagecache intensive workloads, this function is the hottest |
1213 | * spot in the kernel (apart from copy_*_user functions). |
1214 | * |
1215 | * Appropriate locks must be held before calling this function. |
1216 | * |
1217 | * @nr_to_scan: The number of pages to look through on the list. |
1218 | * @lruvec: The LRU vector to pull pages from. |
1219 | * @dst: The temp list to put pages on to. |
1220 | * @nr_scanned: The number of pages that were scanned. |
1221 | * @sc: The scan_control struct for this reclaim session |
1222 | * @mode: One of the LRU isolation modes |
1223 | * @lru: LRU list id for isolating |
1224 | * |
1225 | * returns how many pages were moved onto *@dst. |
1226 | */ |
1227 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
1228 | struct lruvec *lruvec, struct list_head *dst, |
1229 | unsigned long *nr_scanned, struct scan_control *sc, |
1230 | isolate_mode_t mode, enum lru_list lru) |
1231 | { |
1232 | struct list_head *src = &lruvec->lists[lru]; |
1233 | unsigned long nr_taken = 0; |
1234 | unsigned long scan; |
1235 | |
1236 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
1237 | struct page *page; |
1238 | int nr_pages; |
1239 | |
1240 | page = lru_to_page(src); |
1241 | prefetchw_prev_lru_page(page, src, flags); |
1242 | |
1243 | VM_BUG_ON(!PageLRU(page)); |
1244 | |
1245 | switch (__isolate_lru_page(page, mode)) { |
1246 | case 0: |
1247 | nr_pages = hpage_nr_pages(page); |
1248 | mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); |
1249 | list_move(&page->lru, dst); |
1250 | nr_taken += nr_pages; |
1251 | break; |
1252 | |
1253 | case -EBUSY: |
1254 | /* else it is being freed elsewhere */ |
1255 | list_move(&page->lru, src); |
1256 | continue; |
1257 | |
1258 | default: |
1259 | BUG(); |
1260 | } |
1261 | } |
1262 | |
1263 | *nr_scanned = scan; |
1264 | trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, |
1265 | nr_taken, mode, is_file_lru(lru)); |
1266 | return nr_taken; |
1267 | } |
1268 | |
1269 | /** |
1270 | * isolate_lru_page - tries to isolate a page from its LRU list |
1271 | * @page: page to isolate from its LRU list |
1272 | * |
1273 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the |
1274 | * vmstat statistic corresponding to whatever LRU list the page was on. |
1275 | * |
1276 | * Returns 0 if the page was removed from an LRU list. |
1277 | * Returns -EBUSY if the page was not on an LRU list. |
1278 | * |
1279 | * The returned page will have PageLRU() cleared. If it was found on |
1280 | * the active list, it will have PageActive set. If it was found on |
1281 | * the unevictable list, it will have the PageUnevictable bit set. That flag |
1282 | * may need to be cleared by the caller before letting the page go. |
1283 | * |
1284 | * The vmstat statistic corresponding to the list on which the page was |
1285 | * found will be decremented. |
1286 | * |
1287 | * Restrictions: |
1288 | * (1) Must be called with an elevated refcount on the page. This is a |
1289 | * fundamentnal difference from isolate_lru_pages (which is called |
1290 | * without a stable reference). |
1291 | * (2) the lru_lock must not be held. |
1292 | * (3) interrupts must be enabled. |
1293 | */ |
1294 | int isolate_lru_page(struct page *page) |
1295 | { |
1296 | int ret = -EBUSY; |
1297 | |
1298 | VM_BUG_ON(!page_count(page)); |
1299 | |
1300 | if (PageLRU(page)) { |
1301 | struct zone *zone = page_zone(page); |
1302 | struct lruvec *lruvec; |
1303 | |
1304 | spin_lock_irq(&zone->lru_lock); |
1305 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1306 | if (PageLRU(page)) { |
1307 | int lru = page_lru(page); |
1308 | get_page(page); |
1309 | ClearPageLRU(page); |
1310 | del_page_from_lru_list(page, lruvec, lru); |
1311 | ret = 0; |
1312 | } |
1313 | spin_unlock_irq(&zone->lru_lock); |
1314 | } |
1315 | return ret; |
1316 | } |
1317 | |
1318 | /* |
1319 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1320 | * then get resheduled. When there are massive number of tasks doing page |
1321 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, |
1322 | * the LRU list will go small and be scanned faster than necessary, leading to |
1323 | * unnecessary swapping, thrashing and OOM. |
1324 | */ |
1325 | static int too_many_isolated(struct zone *zone, int file, |
1326 | struct scan_control *sc) |
1327 | { |
1328 | unsigned long inactive, isolated; |
1329 | |
1330 | if (current_is_kswapd()) |
1331 | return 0; |
1332 | |
1333 | if (!global_reclaim(sc)) |
1334 | return 0; |
1335 | |
1336 | if (file) { |
1337 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); |
1338 | isolated = zone_page_state(zone, NR_ISOLATED_FILE); |
1339 | } else { |
1340 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); |
1341 | isolated = zone_page_state(zone, NR_ISOLATED_ANON); |
1342 | } |
1343 | |
1344 | /* |
1345 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they |
1346 | * won't get blocked by normal direct-reclaimers, forming a circular |
1347 | * deadlock. |
1348 | */ |
1349 | if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) |
1350 | inactive >>= 3; |
1351 | |
1352 | return isolated > inactive; |
1353 | } |
1354 | |
1355 | static noinline_for_stack void |
1356 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
1357 | { |
1358 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1359 | struct zone *zone = lruvec_zone(lruvec); |
1360 | LIST_HEAD(pages_to_free); |
1361 | |
1362 | /* |
1363 | * Put back any unfreeable pages. |
1364 | */ |
1365 | while (!list_empty(page_list)) { |
1366 | struct page *page = lru_to_page(page_list); |
1367 | int lru; |
1368 | |
1369 | VM_BUG_ON(PageLRU(page)); |
1370 | list_del(&page->lru); |
1371 | if (unlikely(!page_evictable(page))) { |
1372 | spin_unlock_irq(&zone->lru_lock); |
1373 | putback_lru_page(page); |
1374 | spin_lock_irq(&zone->lru_lock); |
1375 | continue; |
1376 | } |
1377 | |
1378 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1379 | |
1380 | SetPageLRU(page); |
1381 | lru = page_lru(page); |
1382 | add_page_to_lru_list(page, lruvec, lru); |
1383 | |
1384 | if (is_active_lru(lru)) { |
1385 | int file = is_file_lru(lru); |
1386 | int numpages = hpage_nr_pages(page); |
1387 | reclaim_stat->recent_rotated[file] += numpages; |
1388 | } |
1389 | if (put_page_testzero(page)) { |
1390 | __ClearPageLRU(page); |
1391 | __ClearPageActive(page); |
1392 | del_page_from_lru_list(page, lruvec, lru); |
1393 | |
1394 | if (unlikely(PageCompound(page))) { |
1395 | spin_unlock_irq(&zone->lru_lock); |
1396 | (*get_compound_page_dtor(page))(page); |
1397 | spin_lock_irq(&zone->lru_lock); |
1398 | } else |
1399 | list_add(&page->lru, &pages_to_free); |
1400 | } |
1401 | } |
1402 | |
1403 | /* |
1404 | * To save our caller's stack, now use input list for pages to free. |
1405 | */ |
1406 | list_splice(&pages_to_free, page_list); |
1407 | } |
1408 | |
1409 | /* |
1410 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1411 | * of reclaimed pages |
1412 | */ |
1413 | static noinline_for_stack unsigned long |
1414 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
1415 | struct scan_control *sc, enum lru_list lru) |
1416 | { |
1417 | LIST_HEAD(page_list); |
1418 | unsigned long nr_scanned; |
1419 | unsigned long nr_reclaimed = 0; |
1420 | unsigned long nr_taken; |
1421 | unsigned long nr_dirty = 0; |
1422 | unsigned long nr_congested = 0; |
1423 | unsigned long nr_unqueued_dirty = 0; |
1424 | unsigned long nr_writeback = 0; |
1425 | unsigned long nr_immediate = 0; |
1426 | isolate_mode_t isolate_mode = 0; |
1427 | int file = is_file_lru(lru); |
1428 | struct zone *zone = lruvec_zone(lruvec); |
1429 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1430 | |
1431 | while (unlikely(too_many_isolated(zone, file, sc))) { |
1432 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
1433 | |
1434 | /* We are about to die and free our memory. Return now. */ |
1435 | if (fatal_signal_pending(current)) |
1436 | return SWAP_CLUSTER_MAX; |
1437 | } |
1438 | |
1439 | lru_add_drain(); |
1440 | |
1441 | if (!sc->may_unmap) |
1442 | isolate_mode |= ISOLATE_UNMAPPED; |
1443 | if (!sc->may_writepage) |
1444 | isolate_mode |= ISOLATE_CLEAN; |
1445 | |
1446 | spin_lock_irq(&zone->lru_lock); |
1447 | |
1448 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1449 | &nr_scanned, sc, isolate_mode, lru); |
1450 | |
1451 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
1452 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1453 | |
1454 | if (global_reclaim(sc)) { |
1455 | zone->pages_scanned += nr_scanned; |
1456 | if (current_is_kswapd()) |
1457 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); |
1458 | else |
1459 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); |
1460 | } |
1461 | spin_unlock_irq(&zone->lru_lock); |
1462 | |
1463 | if (nr_taken == 0) |
1464 | return 0; |
1465 | |
1466 | nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, |
1467 | &nr_dirty, &nr_unqueued_dirty, &nr_congested, |
1468 | &nr_writeback, &nr_immediate, |
1469 | false); |
1470 | |
1471 | spin_lock_irq(&zone->lru_lock); |
1472 | |
1473 | reclaim_stat->recent_scanned[file] += nr_taken; |
1474 | |
1475 | if (global_reclaim(sc)) { |
1476 | if (current_is_kswapd()) |
1477 | __count_zone_vm_events(PGSTEAL_KSWAPD, zone, |
1478 | nr_reclaimed); |
1479 | else |
1480 | __count_zone_vm_events(PGSTEAL_DIRECT, zone, |
1481 | nr_reclaimed); |
1482 | } |
1483 | |
1484 | putback_inactive_pages(lruvec, &page_list); |
1485 | |
1486 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
1487 | |
1488 | spin_unlock_irq(&zone->lru_lock); |
1489 | |
1490 | free_hot_cold_page_list(&page_list, 1); |
1491 | |
1492 | /* |
1493 | * If reclaim is isolating dirty pages under writeback, it implies |
1494 | * that the long-lived page allocation rate is exceeding the page |
1495 | * laundering rate. Either the global limits are not being effective |
1496 | * at throttling processes due to the page distribution throughout |
1497 | * zones or there is heavy usage of a slow backing device. The |
1498 | * only option is to throttle from reclaim context which is not ideal |
1499 | * as there is no guarantee the dirtying process is throttled in the |
1500 | * same way balance_dirty_pages() manages. |
1501 | * |
1502 | * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number |
1503 | * of pages under pages flagged for immediate reclaim and stall if any |
1504 | * are encountered in the nr_immediate check below. |
1505 | */ |
1506 | if (nr_writeback && nr_writeback == nr_taken) |
1507 | zone_set_flag(zone, ZONE_WRITEBACK); |
1508 | |
1509 | /* |
1510 | * memcg will stall in page writeback so only consider forcibly |
1511 | * stalling for global reclaim |
1512 | */ |
1513 | if (global_reclaim(sc)) { |
1514 | /* |
1515 | * Tag a zone as congested if all the dirty pages scanned were |
1516 | * backed by a congested BDI and wait_iff_congested will stall. |
1517 | */ |
1518 | if (nr_dirty && nr_dirty == nr_congested) |
1519 | zone_set_flag(zone, ZONE_CONGESTED); |
1520 | |
1521 | /* |
1522 | * If dirty pages are scanned that are not queued for IO, it |
1523 | * implies that flushers are not keeping up. In this case, flag |
1524 | * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing |
1525 | * pages from reclaim context. It will forcibly stall in the |
1526 | * next check. |
1527 | */ |
1528 | if (nr_unqueued_dirty == nr_taken) |
1529 | zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY); |
1530 | |
1531 | /* |
1532 | * In addition, if kswapd scans pages marked marked for |
1533 | * immediate reclaim and under writeback (nr_immediate), it |
1534 | * implies that pages are cycling through the LRU faster than |
1535 | * they are written so also forcibly stall. |
1536 | */ |
1537 | if (nr_unqueued_dirty == nr_taken || nr_immediate) |
1538 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
1539 | } |
1540 | |
1541 | /* |
1542 | * Stall direct reclaim for IO completions if underlying BDIs or zone |
1543 | * is congested. Allow kswapd to continue until it starts encountering |
1544 | * unqueued dirty pages or cycling through the LRU too quickly. |
1545 | */ |
1546 | if (!sc->hibernation_mode && !current_is_kswapd()) |
1547 | wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); |
1548 | |
1549 | trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, |
1550 | zone_idx(zone), |
1551 | nr_scanned, nr_reclaimed, |
1552 | sc->priority, |
1553 | trace_shrink_flags(file)); |
1554 | return nr_reclaimed; |
1555 | } |
1556 | |
1557 | /* |
1558 | * This moves pages from the active list to the inactive list. |
1559 | * |
1560 | * We move them the other way if the page is referenced by one or more |
1561 | * processes, from rmap. |
1562 | * |
1563 | * If the pages are mostly unmapped, the processing is fast and it is |
1564 | * appropriate to hold zone->lru_lock across the whole operation. But if |
1565 | * the pages are mapped, the processing is slow (page_referenced()) so we |
1566 | * should drop zone->lru_lock around each page. It's impossible to balance |
1567 | * this, so instead we remove the pages from the LRU while processing them. |
1568 | * It is safe to rely on PG_active against the non-LRU pages in here because |
1569 | * nobody will play with that bit on a non-LRU page. |
1570 | * |
1571 | * The downside is that we have to touch page->_count against each page. |
1572 | * But we had to alter page->flags anyway. |
1573 | */ |
1574 | |
1575 | static void move_active_pages_to_lru(struct lruvec *lruvec, |
1576 | struct list_head *list, |
1577 | struct list_head *pages_to_free, |
1578 | enum lru_list lru) |
1579 | { |
1580 | struct zone *zone = lruvec_zone(lruvec); |
1581 | unsigned long pgmoved = 0; |
1582 | struct page *page; |
1583 | int nr_pages; |
1584 | |
1585 | while (!list_empty(list)) { |
1586 | page = lru_to_page(list); |
1587 | lruvec = mem_cgroup_page_lruvec(page, zone); |
1588 | |
1589 | VM_BUG_ON(PageLRU(page)); |
1590 | SetPageLRU(page); |
1591 | |
1592 | nr_pages = hpage_nr_pages(page); |
1593 | mem_cgroup_update_lru_size(lruvec, lru, nr_pages); |
1594 | list_move(&page->lru, &lruvec->lists[lru]); |
1595 | pgmoved += nr_pages; |
1596 | |
1597 | if (put_page_testzero(page)) { |
1598 | __ClearPageLRU(page); |
1599 | __ClearPageActive(page); |
1600 | del_page_from_lru_list(page, lruvec, lru); |
1601 | |
1602 | if (unlikely(PageCompound(page))) { |
1603 | spin_unlock_irq(&zone->lru_lock); |
1604 | (*get_compound_page_dtor(page))(page); |
1605 | spin_lock_irq(&zone->lru_lock); |
1606 | } else |
1607 | list_add(&page->lru, pages_to_free); |
1608 | } |
1609 | } |
1610 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); |
1611 | if (!is_active_lru(lru)) |
1612 | __count_vm_events(PGDEACTIVATE, pgmoved); |
1613 | } |
1614 | |
1615 | static void shrink_active_list(unsigned long nr_to_scan, |
1616 | struct lruvec *lruvec, |
1617 | struct scan_control *sc, |
1618 | enum lru_list lru) |
1619 | { |
1620 | unsigned long nr_taken; |
1621 | unsigned long nr_scanned; |
1622 | unsigned long vm_flags; |
1623 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
1624 | LIST_HEAD(l_active); |
1625 | LIST_HEAD(l_inactive); |
1626 | struct page *page; |
1627 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1628 | unsigned long nr_rotated = 0; |
1629 | isolate_mode_t isolate_mode = 0; |
1630 | int file = is_file_lru(lru); |
1631 | struct zone *zone = lruvec_zone(lruvec); |
1632 | |
1633 | lru_add_drain(); |
1634 | |
1635 | if (!sc->may_unmap) |
1636 | isolate_mode |= ISOLATE_UNMAPPED; |
1637 | if (!sc->may_writepage) |
1638 | isolate_mode |= ISOLATE_CLEAN; |
1639 | |
1640 | spin_lock_irq(&zone->lru_lock); |
1641 | |
1642 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1643 | &nr_scanned, sc, isolate_mode, lru); |
1644 | if (global_reclaim(sc)) |
1645 | zone->pages_scanned += nr_scanned; |
1646 | |
1647 | reclaim_stat->recent_scanned[file] += nr_taken; |
1648 | |
1649 | __count_zone_vm_events(PGREFILL, zone, nr_scanned); |
1650 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
1651 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1652 | spin_unlock_irq(&zone->lru_lock); |
1653 | |
1654 | while (!list_empty(&l_hold)) { |
1655 | cond_resched(); |
1656 | page = lru_to_page(&l_hold); |
1657 | list_del(&page->lru); |
1658 | |
1659 | if (unlikely(!page_evictable(page))) { |
1660 | putback_lru_page(page); |
1661 | continue; |
1662 | } |
1663 | |
1664 | if (unlikely(buffer_heads_over_limit)) { |
1665 | if (page_has_private(page) && trylock_page(page)) { |
1666 | if (page_has_private(page)) |
1667 | try_to_release_page(page, 0); |
1668 | unlock_page(page); |
1669 | } |
1670 | } |
1671 | |
1672 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1673 | &vm_flags)) { |
1674 | nr_rotated += hpage_nr_pages(page); |
1675 | /* |
1676 | * Identify referenced, file-backed active pages and |
1677 | * give them one more trip around the active list. So |
1678 | * that executable code get better chances to stay in |
1679 | * memory under moderate memory pressure. Anon pages |
1680 | * are not likely to be evicted by use-once streaming |
1681 | * IO, plus JVM can create lots of anon VM_EXEC pages, |
1682 | * so we ignore them here. |
1683 | */ |
1684 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
1685 | list_add(&page->lru, &l_active); |
1686 | continue; |
1687 | } |
1688 | } |
1689 | |
1690 | ClearPageActive(page); /* we are de-activating */ |
1691 | list_add(&page->lru, &l_inactive); |
1692 | } |
1693 | |
1694 | /* |
1695 | * Move pages back to the lru list. |
1696 | */ |
1697 | spin_lock_irq(&zone->lru_lock); |
1698 | /* |
1699 | * Count referenced pages from currently used mappings as rotated, |
1700 | * even though only some of them are actually re-activated. This |
1701 | * helps balance scan pressure between file and anonymous pages in |
1702 | * get_scan_ratio. |
1703 | */ |
1704 | reclaim_stat->recent_rotated[file] += nr_rotated; |
1705 | |
1706 | move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1707 | move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); |
1708 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
1709 | spin_unlock_irq(&zone->lru_lock); |
1710 | |
1711 | free_hot_cold_page_list(&l_hold, 1); |
1712 | } |
1713 | |
1714 | #ifdef CONFIG_SWAP |
1715 | static int inactive_anon_is_low_global(struct zone *zone) |
1716 | { |
1717 | unsigned long active, inactive; |
1718 | |
1719 | active = zone_page_state(zone, NR_ACTIVE_ANON); |
1720 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); |
1721 | |
1722 | if (inactive * zone->inactive_ratio < active) |
1723 | return 1; |
1724 | |
1725 | return 0; |
1726 | } |
1727 | |
1728 | /** |
1729 | * inactive_anon_is_low - check if anonymous pages need to be deactivated |
1730 | * @lruvec: LRU vector to check |
1731 | * |
1732 | * Returns true if the zone does not have enough inactive anon pages, |
1733 | * meaning some active anon pages need to be deactivated. |
1734 | */ |
1735 | static int inactive_anon_is_low(struct lruvec *lruvec) |
1736 | { |
1737 | /* |
1738 | * If we don't have swap space, anonymous page deactivation |
1739 | * is pointless. |
1740 | */ |
1741 | if (!total_swap_pages) |
1742 | return 0; |
1743 | |
1744 | if (!mem_cgroup_disabled()) |
1745 | return mem_cgroup_inactive_anon_is_low(lruvec); |
1746 | |
1747 | return inactive_anon_is_low_global(lruvec_zone(lruvec)); |
1748 | } |
1749 | #else |
1750 | static inline int inactive_anon_is_low(struct lruvec *lruvec) |
1751 | { |
1752 | return 0; |
1753 | } |
1754 | #endif |
1755 | |
1756 | /** |
1757 | * inactive_file_is_low - check if file pages need to be deactivated |
1758 | * @lruvec: LRU vector to check |
1759 | * |
1760 | * When the system is doing streaming IO, memory pressure here |
1761 | * ensures that active file pages get deactivated, until more |
1762 | * than half of the file pages are on the inactive list. |
1763 | * |
1764 | * Once we get to that situation, protect the system's working |
1765 | * set from being evicted by disabling active file page aging. |
1766 | * |
1767 | * This uses a different ratio than the anonymous pages, because |
1768 | * the page cache uses a use-once replacement algorithm. |
1769 | */ |
1770 | static int inactive_file_is_low(struct lruvec *lruvec) |
1771 | { |
1772 | unsigned long inactive; |
1773 | unsigned long active; |
1774 | |
1775 | inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); |
1776 | active = get_lru_size(lruvec, LRU_ACTIVE_FILE); |
1777 | |
1778 | return active > inactive; |
1779 | } |
1780 | |
1781 | static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) |
1782 | { |
1783 | if (is_file_lru(lru)) |
1784 | return inactive_file_is_low(lruvec); |
1785 | else |
1786 | return inactive_anon_is_low(lruvec); |
1787 | } |
1788 | |
1789 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
1790 | struct lruvec *lruvec, struct scan_control *sc) |
1791 | { |
1792 | if (is_active_lru(lru)) { |
1793 | if (inactive_list_is_low(lruvec, lru)) |
1794 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
1795 | return 0; |
1796 | } |
1797 | |
1798 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
1799 | } |
1800 | |
1801 | static int vmscan_swappiness(struct scan_control *sc) |
1802 | { |
1803 | if (global_reclaim(sc)) |
1804 | return vm_swappiness; |
1805 | return mem_cgroup_swappiness(sc->target_mem_cgroup); |
1806 | } |
1807 | |
1808 | enum scan_balance { |
1809 | SCAN_EQUAL, |
1810 | SCAN_FRACT, |
1811 | SCAN_ANON, |
1812 | SCAN_FILE, |
1813 | }; |
1814 | |
1815 | /* |
1816 | * Determine how aggressively the anon and file LRU lists should be |
1817 | * scanned. The relative value of each set of LRU lists is determined |
1818 | * by looking at the fraction of the pages scanned we did rotate back |
1819 | * onto the active list instead of evict. |
1820 | * |
1821 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
1822 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan |
1823 | */ |
1824 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
1825 | unsigned long *nr) |
1826 | { |
1827 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1828 | u64 fraction[2]; |
1829 | u64 denominator = 0; /* gcc */ |
1830 | struct zone *zone = lruvec_zone(lruvec); |
1831 | unsigned long anon_prio, file_prio; |
1832 | enum scan_balance scan_balance; |
1833 | unsigned long anon, file, free; |
1834 | bool force_scan = false; |
1835 | unsigned long ap, fp; |
1836 | enum lru_list lru; |
1837 | |
1838 | /* |
1839 | * If the zone or memcg is small, nr[l] can be 0. This |
1840 | * results in no scanning on this priority and a potential |
1841 | * priority drop. Global direct reclaim can go to the next |
1842 | * zone and tends to have no problems. Global kswapd is for |
1843 | * zone balancing and it needs to scan a minimum amount. When |
1844 | * reclaiming for a memcg, a priority drop can cause high |
1845 | * latencies, so it's better to scan a minimum amount there as |
1846 | * well. |
1847 | */ |
1848 | if (current_is_kswapd() && !zone_reclaimable(zone)) |
1849 | force_scan = true; |
1850 | if (!global_reclaim(sc)) |
1851 | force_scan = true; |
1852 | |
1853 | /* If we have no swap space, do not bother scanning anon pages. */ |
1854 | if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { |
1855 | scan_balance = SCAN_FILE; |
1856 | goto out; |
1857 | } |
1858 | |
1859 | /* |
1860 | * Global reclaim will swap to prevent OOM even with no |
1861 | * swappiness, but memcg users want to use this knob to |
1862 | * disable swapping for individual groups completely when |
1863 | * using the memory controller's swap limit feature would be |
1864 | * too expensive. |
1865 | */ |
1866 | if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { |
1867 | scan_balance = SCAN_FILE; |
1868 | goto out; |
1869 | } |
1870 | |
1871 | /* |
1872 | * Do not apply any pressure balancing cleverness when the |
1873 | * system is close to OOM, scan both anon and file equally |
1874 | * (unless the swappiness setting disagrees with swapping). |
1875 | */ |
1876 | if (!sc->priority && vmscan_swappiness(sc)) { |
1877 | scan_balance = SCAN_EQUAL; |
1878 | goto out; |
1879 | } |
1880 | |
1881 | anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + |
1882 | get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1883 | file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + |
1884 | get_lru_size(lruvec, LRU_INACTIVE_FILE); |
1885 | |
1886 | /* |
1887 | * If it's foreseeable that reclaiming the file cache won't be |
1888 | * enough to get the zone back into a desirable shape, we have |
1889 | * to swap. Better start now and leave the - probably heavily |
1890 | * thrashing - remaining file pages alone. |
1891 | */ |
1892 | if (global_reclaim(sc)) { |
1893 | free = zone_page_state(zone, NR_FREE_PAGES); |
1894 | if (unlikely(file + free <= high_wmark_pages(zone))) { |
1895 | scan_balance = SCAN_ANON; |
1896 | goto out; |
1897 | } |
1898 | } |
1899 | |
1900 | /* |
1901 | * There is enough inactive page cache, do not reclaim |
1902 | * anything from the anonymous working set right now. |
1903 | */ |
1904 | if (!inactive_file_is_low(lruvec)) { |
1905 | scan_balance = SCAN_FILE; |
1906 | goto out; |
1907 | } |
1908 | |
1909 | scan_balance = SCAN_FRACT; |
1910 | |
1911 | /* |
1912 | * With swappiness at 100, anonymous and file have the same priority. |
1913 | * This scanning priority is essentially the inverse of IO cost. |
1914 | */ |
1915 | anon_prio = vmscan_swappiness(sc); |
1916 | file_prio = 200 - anon_prio; |
1917 | |
1918 | /* |
1919 | * OK, so we have swap space and a fair amount of page cache |
1920 | * pages. We use the recently rotated / recently scanned |
1921 | * ratios to determine how valuable each cache is. |
1922 | * |
1923 | * Because workloads change over time (and to avoid overflow) |
1924 | * we keep these statistics as a floating average, which ends |
1925 | * up weighing recent references more than old ones. |
1926 | * |
1927 | * anon in [0], file in [1] |
1928 | */ |
1929 | spin_lock_irq(&zone->lru_lock); |
1930 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
1931 | reclaim_stat->recent_scanned[0] /= 2; |
1932 | reclaim_stat->recent_rotated[0] /= 2; |
1933 | } |
1934 | |
1935 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
1936 | reclaim_stat->recent_scanned[1] /= 2; |
1937 | reclaim_stat->recent_rotated[1] /= 2; |
1938 | } |
1939 | |
1940 | /* |
1941 | * The amount of pressure on anon vs file pages is inversely |
1942 | * proportional to the fraction of recently scanned pages on |
1943 | * each list that were recently referenced and in active use. |
1944 | */ |
1945 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
1946 | ap /= reclaim_stat->recent_rotated[0] + 1; |
1947 | |
1948 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
1949 | fp /= reclaim_stat->recent_rotated[1] + 1; |
1950 | spin_unlock_irq(&zone->lru_lock); |
1951 | |
1952 | fraction[0] = ap; |
1953 | fraction[1] = fp; |
1954 | denominator = ap + fp + 1; |
1955 | out: |
1956 | for_each_evictable_lru(lru) { |
1957 | int file = is_file_lru(lru); |
1958 | unsigned long size; |
1959 | unsigned long scan; |
1960 | |
1961 | size = get_lru_size(lruvec, lru); |
1962 | scan = size >> sc->priority; |
1963 | |
1964 | if (!scan && force_scan) |
1965 | scan = min(size, SWAP_CLUSTER_MAX); |
1966 | |
1967 | switch (scan_balance) { |
1968 | case SCAN_EQUAL: |
1969 | /* Scan lists relative to size */ |
1970 | break; |
1971 | case SCAN_FRACT: |
1972 | /* |
1973 | * Scan types proportional to swappiness and |
1974 | * their relative recent reclaim efficiency. |
1975 | */ |
1976 | scan = div64_u64(scan * fraction[file], denominator); |
1977 | break; |
1978 | case SCAN_FILE: |
1979 | case SCAN_ANON: |
1980 | /* Scan one type exclusively */ |
1981 | if ((scan_balance == SCAN_FILE) != file) |
1982 | scan = 0; |
1983 | break; |
1984 | default: |
1985 | /* Look ma, no brain */ |
1986 | BUG(); |
1987 | } |
1988 | nr[lru] = scan; |
1989 | } |
1990 | } |
1991 | |
1992 | /* |
1993 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. |
1994 | */ |
1995 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
1996 | { |
1997 | unsigned long nr[NR_LRU_LISTS]; |
1998 | unsigned long targets[NR_LRU_LISTS]; |
1999 | unsigned long nr_to_scan; |
2000 | enum lru_list lru; |
2001 | unsigned long nr_reclaimed = 0; |
2002 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; |
2003 | struct blk_plug plug; |
2004 | bool scan_adjusted = false; |
2005 | |
2006 | get_scan_count(lruvec, sc, nr); |
2007 | |
2008 | /* Record the original scan target for proportional adjustments later */ |
2009 | memcpy(targets, nr, sizeof(nr)); |
2010 | |
2011 | blk_start_plug(&plug); |
2012 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
2013 | nr[LRU_INACTIVE_FILE]) { |
2014 | unsigned long nr_anon, nr_file, percentage; |
2015 | unsigned long nr_scanned; |
2016 | |
2017 | for_each_evictable_lru(lru) { |
2018 | if (nr[lru]) { |
2019 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); |
2020 | nr[lru] -= nr_to_scan; |
2021 | |
2022 | nr_reclaimed += shrink_list(lru, nr_to_scan, |
2023 | lruvec, sc); |
2024 | } |
2025 | } |
2026 | |
2027 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) |
2028 | continue; |
2029 | |
2030 | /* |
2031 | * For global direct reclaim, reclaim only the number of pages |
2032 | * requested. Less care is taken to scan proportionally as it |
2033 | * is more important to minimise direct reclaim stall latency |
2034 | * than it is to properly age the LRU lists. |
2035 | */ |
2036 | if (global_reclaim(sc) && !current_is_kswapd()) |
2037 | break; |
2038 | |
2039 | /* |
2040 | * For kswapd and memcg, reclaim at least the number of pages |
2041 | * requested. Ensure that the anon and file LRUs shrink |
2042 | * proportionally what was requested by get_scan_count(). We |
2043 | * stop reclaiming one LRU and reduce the amount scanning |
2044 | * proportional to the original scan target. |
2045 | */ |
2046 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; |
2047 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; |
2048 | |
2049 | if (nr_file > nr_anon) { |
2050 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + |
2051 | targets[LRU_ACTIVE_ANON] + 1; |
2052 | lru = LRU_BASE; |
2053 | percentage = nr_anon * 100 / scan_target; |
2054 | } else { |
2055 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + |
2056 | targets[LRU_ACTIVE_FILE] + 1; |
2057 | lru = LRU_FILE; |
2058 | percentage = nr_file * 100 / scan_target; |
2059 | } |
2060 | |
2061 | /* Stop scanning the smaller of the LRU */ |
2062 | nr[lru] = 0; |
2063 | nr[lru + LRU_ACTIVE] = 0; |
2064 | |
2065 | /* |
2066 | * Recalculate the other LRU scan count based on its original |
2067 | * scan target and the percentage scanning already complete |
2068 | */ |
2069 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; |
2070 | nr_scanned = targets[lru] - nr[lru]; |
2071 | nr[lru] = targets[lru] * (100 - percentage) / 100; |
2072 | nr[lru] -= min(nr[lru], nr_scanned); |
2073 | |
2074 | lru += LRU_ACTIVE; |
2075 | nr_scanned = targets[lru] - nr[lru]; |
2076 | nr[lru] = targets[lru] * (100 - percentage) / 100; |
2077 | nr[lru] -= min(nr[lru], nr_scanned); |
2078 | |
2079 | scan_adjusted = true; |
2080 | } |
2081 | blk_finish_plug(&plug); |
2082 | sc->nr_reclaimed += nr_reclaimed; |
2083 | |
2084 | /* |
2085 | * Even if we did not try to evict anon pages at all, we want to |
2086 | * rebalance the anon lru active/inactive ratio. |
2087 | */ |
2088 | if (inactive_anon_is_low(lruvec)) |
2089 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
2090 | sc, LRU_ACTIVE_ANON); |
2091 | |
2092 | throttle_vm_writeout(sc->gfp_mask); |
2093 | } |
2094 | |
2095 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
2096 | static bool in_reclaim_compaction(struct scan_control *sc) |
2097 | { |
2098 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
2099 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
2100 | sc->priority < DEF_PRIORITY - 2)) |
2101 | return true; |
2102 | |
2103 | return false; |
2104 | } |
2105 | |
2106 | /* |
2107 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
2108 | * order-0 pages before compacting the zone. should_continue_reclaim() returns |
2109 | * true if more pages should be reclaimed such that when the page allocator |
2110 | * calls try_to_compact_zone() that it will have enough free pages to succeed. |
2111 | * It will give up earlier than that if there is difficulty reclaiming pages. |
2112 | */ |
2113 | static inline bool should_continue_reclaim(struct zone *zone, |
2114 | unsigned long nr_reclaimed, |
2115 | unsigned long nr_scanned, |
2116 | struct scan_control *sc) |
2117 | { |
2118 | unsigned long pages_for_compaction; |
2119 | unsigned long inactive_lru_pages; |
2120 | |
2121 | /* If not in reclaim/compaction mode, stop */ |
2122 | if (!in_reclaim_compaction(sc)) |
2123 | return false; |
2124 | |
2125 | /* Consider stopping depending on scan and reclaim activity */ |
2126 | if (sc->gfp_mask & __GFP_REPEAT) { |
2127 | /* |
2128 | * For __GFP_REPEAT allocations, stop reclaiming if the |
2129 | * full LRU list has been scanned and we are still failing |
2130 | * to reclaim pages. This full LRU scan is potentially |
2131 | * expensive but a __GFP_REPEAT caller really wants to succeed |
2132 | */ |
2133 | if (!nr_reclaimed && !nr_scanned) |
2134 | return false; |
2135 | } else { |
2136 | /* |
2137 | * For non-__GFP_REPEAT allocations which can presumably |
2138 | * fail without consequence, stop if we failed to reclaim |
2139 | * any pages from the last SWAP_CLUSTER_MAX number of |
2140 | * pages that were scanned. This will return to the |
2141 | * caller faster at the risk reclaim/compaction and |
2142 | * the resulting allocation attempt fails |
2143 | */ |
2144 | if (!nr_reclaimed) |
2145 | return false; |
2146 | } |
2147 | |
2148 | /* |
2149 | * If we have not reclaimed enough pages for compaction and the |
2150 | * inactive lists are large enough, continue reclaiming |
2151 | */ |
2152 | pages_for_compaction = (2UL << sc->order); |
2153 | inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); |
2154 | if (get_nr_swap_pages() > 0) |
2155 | inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); |
2156 | if (sc->nr_reclaimed < pages_for_compaction && |
2157 | inactive_lru_pages > pages_for_compaction) |
2158 | return true; |
2159 | |
2160 | /* If compaction would go ahead or the allocation would succeed, stop */ |
2161 | switch (compaction_suitable(zone, sc->order)) { |
2162 | case COMPACT_PARTIAL: |
2163 | case COMPACT_CONTINUE: |
2164 | return false; |
2165 | default: |
2166 | return true; |
2167 | } |
2168 | } |
2169 | |
2170 | static void shrink_zone(struct zone *zone, struct scan_control *sc) |
2171 | { |
2172 | unsigned long nr_reclaimed, nr_scanned; |
2173 | |
2174 | do { |
2175 | struct mem_cgroup *root = sc->target_mem_cgroup; |
2176 | struct mem_cgroup_reclaim_cookie reclaim = { |
2177 | .zone = zone, |
2178 | .priority = sc->priority, |
2179 | }; |
2180 | struct mem_cgroup *memcg; |
2181 | |
2182 | nr_reclaimed = sc->nr_reclaimed; |
2183 | nr_scanned = sc->nr_scanned; |
2184 | |
2185 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
2186 | do { |
2187 | struct lruvec *lruvec; |
2188 | |
2189 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
2190 | |
2191 | shrink_lruvec(lruvec, sc); |
2192 | |
2193 | /* |
2194 | * Direct reclaim and kswapd have to scan all memory |
2195 | * cgroups to fulfill the overall scan target for the |
2196 | * zone. |
2197 | * |
2198 | * Limit reclaim, on the other hand, only cares about |
2199 | * nr_to_reclaim pages to be reclaimed and it will |
2200 | * retry with decreasing priority if one round over the |
2201 | * whole hierarchy is not sufficient. |
2202 | */ |
2203 | if (!global_reclaim(sc) && |
2204 | sc->nr_reclaimed >= sc->nr_to_reclaim) { |
2205 | mem_cgroup_iter_break(root, memcg); |
2206 | break; |
2207 | } |
2208 | memcg = mem_cgroup_iter(root, memcg, &reclaim); |
2209 | } while (memcg); |
2210 | |
2211 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, |
2212 | sc->nr_scanned - nr_scanned, |
2213 | sc->nr_reclaimed - nr_reclaimed); |
2214 | |
2215 | } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, |
2216 | sc->nr_scanned - nr_scanned, sc)); |
2217 | } |
2218 | |
2219 | /* Returns true if compaction should go ahead for a high-order request */ |
2220 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
2221 | { |
2222 | unsigned long balance_gap, watermark; |
2223 | bool watermark_ok; |
2224 | |
2225 | /* Do not consider compaction for orders reclaim is meant to satisfy */ |
2226 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) |
2227 | return false; |
2228 | |
2229 | /* |
2230 | * Compaction takes time to run and there are potentially other |
2231 | * callers using the pages just freed. Continue reclaiming until |
2232 | * there is a buffer of free pages available to give compaction |
2233 | * a reasonable chance of completing and allocating the page |
2234 | */ |
2235 | balance_gap = min(low_wmark_pages(zone), |
2236 | (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
2237 | KSWAPD_ZONE_BALANCE_GAP_RATIO); |
2238 | watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); |
2239 | watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); |
2240 | |
2241 | /* |
2242 | * If compaction is deferred, reclaim up to a point where |
2243 | * compaction will have a chance of success when re-enabled |
2244 | */ |
2245 | if (compaction_deferred(zone, sc->order)) |
2246 | return watermark_ok; |
2247 | |
2248 | /* If compaction is not ready to start, keep reclaiming */ |
2249 | if (!compaction_suitable(zone, sc->order)) |
2250 | return false; |
2251 | |
2252 | return watermark_ok; |
2253 | } |
2254 | |
2255 | /* |
2256 | * This is the direct reclaim path, for page-allocating processes. We only |
2257 | * try to reclaim pages from zones which will satisfy the caller's allocation |
2258 | * request. |
2259 | * |
2260 | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). |
2261 | * Because: |
2262 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order |
2263 | * allocation or |
2264 | * b) The target zone may be at high_wmark_pages(zone) but the lower zones |
2265 | * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' |
2266 | * zone defense algorithm. |
2267 | * |
2268 | * If a zone is deemed to be full of pinned pages then just give it a light |
2269 | * scan then give up on it. |
2270 | * |
2271 | * This function returns true if a zone is being reclaimed for a costly |
2272 | * high-order allocation and compaction is ready to begin. This indicates to |
2273 | * the caller that it should consider retrying the allocation instead of |
2274 | * further reclaim. |
2275 | */ |
2276 | static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
2277 | { |
2278 | struct zoneref *z; |
2279 | struct zone *zone; |
2280 | unsigned long nr_soft_reclaimed; |
2281 | unsigned long nr_soft_scanned; |
2282 | bool aborted_reclaim = false; |
2283 | |
2284 | /* |
2285 | * If the number of buffer_heads in the machine exceeds the maximum |
2286 | * allowed level, force direct reclaim to scan the highmem zone as |
2287 | * highmem pages could be pinning lowmem pages storing buffer_heads |
2288 | */ |
2289 | if (buffer_heads_over_limit) |
2290 | sc->gfp_mask |= __GFP_HIGHMEM; |
2291 | |
2292 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
2293 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
2294 | if (!populated_zone(zone)) |
2295 | continue; |
2296 | /* |
2297 | * Take care memory controller reclaiming has small influence |
2298 | * to global LRU. |
2299 | */ |
2300 | if (global_reclaim(sc)) { |
2301 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2302 | continue; |
2303 | if (sc->priority != DEF_PRIORITY && |
2304 | !zone_reclaimable(zone)) |
2305 | continue; /* Let kswapd poll it */ |
2306 | if (IS_ENABLED(CONFIG_COMPACTION)) { |
2307 | /* |
2308 | * If we already have plenty of memory free for |
2309 | * compaction in this zone, don't free any more. |
2310 | * Even though compaction is invoked for any |
2311 | * non-zero order, only frequent costly order |
2312 | * reclamation is disruptive enough to become a |
2313 | * noticeable problem, like transparent huge |
2314 | * page allocations. |
2315 | */ |
2316 | if (compaction_ready(zone, sc)) { |
2317 | aborted_reclaim = true; |
2318 | continue; |
2319 | } |
2320 | } |
2321 | /* |
2322 | * This steals pages from memory cgroups over softlimit |
2323 | * and returns the number of reclaimed pages and |
2324 | * scanned pages. This works for global memory pressure |
2325 | * and balancing, not for a memcg's limit. |
2326 | */ |
2327 | nr_soft_scanned = 0; |
2328 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
2329 | sc->order, sc->gfp_mask, |
2330 | &nr_soft_scanned); |
2331 | sc->nr_reclaimed += nr_soft_reclaimed; |
2332 | sc->nr_scanned += nr_soft_scanned; |
2333 | /* need some check for avoid more shrink_zone() */ |
2334 | } |
2335 | |
2336 | shrink_zone(zone, sc); |
2337 | } |
2338 | |
2339 | return aborted_reclaim; |
2340 | } |
2341 | |
2342 | /* All zones in zonelist are unreclaimable? */ |
2343 | static bool all_unreclaimable(struct zonelist *zonelist, |
2344 | struct scan_control *sc) |
2345 | { |
2346 | struct zoneref *z; |
2347 | struct zone *zone; |
2348 | |
2349 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
2350 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
2351 | if (!populated_zone(zone)) |
2352 | continue; |
2353 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2354 | continue; |
2355 | if (zone_reclaimable(zone)) |
2356 | return false; |
2357 | } |
2358 | |
2359 | return true; |
2360 | } |
2361 | |
2362 | /* |
2363 | * This is the main entry point to direct page reclaim. |
2364 | * |
2365 | * If a full scan of the inactive list fails to free enough memory then we |
2366 | * are "out of memory" and something needs to be killed. |
2367 | * |
2368 | * If the caller is !__GFP_FS then the probability of a failure is reasonably |
2369 | * high - the zone may be full of dirty or under-writeback pages, which this |
2370 | * caller can't do much about. We kick the writeback threads and take explicit |
2371 | * naps in the hope that some of these pages can be written. But if the |
2372 | * allocating task holds filesystem locks which prevent writeout this might not |
2373 | * work, and the allocation attempt will fail. |
2374 | * |
2375 | * returns: 0, if no pages reclaimed |
2376 | * else, the number of pages reclaimed |
2377 | */ |
2378 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
2379 | struct scan_control *sc, |
2380 | struct shrink_control *shrink) |
2381 | { |
2382 | unsigned long total_scanned = 0; |
2383 | struct reclaim_state *reclaim_state = current->reclaim_state; |
2384 | struct zoneref *z; |
2385 | struct zone *zone; |
2386 | unsigned long writeback_threshold; |
2387 | bool aborted_reclaim; |
2388 | |
2389 | delayacct_freepages_start(); |
2390 | |
2391 | if (global_reclaim(sc)) |
2392 | count_vm_event(ALLOCSTALL); |
2393 | |
2394 | do { |
2395 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
2396 | sc->priority); |
2397 | sc->nr_scanned = 0; |
2398 | aborted_reclaim = shrink_zones(zonelist, sc); |
2399 | |
2400 | /* |
2401 | * Don't shrink slabs when reclaiming memory from over limit |
2402 | * cgroups but do shrink slab at least once when aborting |
2403 | * reclaim for compaction to avoid unevenly scanning file/anon |
2404 | * LRU pages over slab pages. |
2405 | */ |
2406 | if (global_reclaim(sc)) { |
2407 | unsigned long lru_pages = 0; |
2408 | |
2409 | nodes_clear(shrink->nodes_to_scan); |
2410 | for_each_zone_zonelist(zone, z, zonelist, |
2411 | gfp_zone(sc->gfp_mask)) { |
2412 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2413 | continue; |
2414 | |
2415 | lru_pages += zone_reclaimable_pages(zone); |
2416 | node_set(zone_to_nid(zone), |
2417 | shrink->nodes_to_scan); |
2418 | } |
2419 | |
2420 | shrink_slab(shrink, sc->nr_scanned, lru_pages); |
2421 | if (reclaim_state) { |
2422 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
2423 | reclaim_state->reclaimed_slab = 0; |
2424 | } |
2425 | } |
2426 | total_scanned += sc->nr_scanned; |
2427 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
2428 | goto out; |
2429 | |
2430 | /* |
2431 | * If we're getting trouble reclaiming, start doing |
2432 | * writepage even in laptop mode. |
2433 | */ |
2434 | if (sc->priority < DEF_PRIORITY - 2) |
2435 | sc->may_writepage = 1; |
2436 | |
2437 | /* |
2438 | * Try to write back as many pages as we just scanned. This |
2439 | * tends to cause slow streaming writers to write data to the |
2440 | * disk smoothly, at the dirtying rate, which is nice. But |
2441 | * that's undesirable in laptop mode, where we *want* lumpy |
2442 | * writeout. So in laptop mode, write out the whole world. |
2443 | */ |
2444 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2445 | if (total_scanned > writeback_threshold) { |
2446 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2447 | WB_REASON_TRY_TO_FREE_PAGES); |
2448 | sc->may_writepage = 1; |
2449 | } |
2450 | } while (--sc->priority >= 0 && !aborted_reclaim); |
2451 | |
2452 | out: |
2453 | delayacct_freepages_end(); |
2454 | |
2455 | if (sc->nr_reclaimed) |
2456 | return sc->nr_reclaimed; |
2457 | |
2458 | /* |
2459 | * As hibernation is going on, kswapd is freezed so that it can't mark |
2460 | * the zone into all_unreclaimable. Thus bypassing all_unreclaimable |
2461 | * check. |
2462 | */ |
2463 | if (oom_killer_disabled) |
2464 | return 0; |
2465 | |
2466 | /* Aborted reclaim to try compaction? don't OOM, then */ |
2467 | if (aborted_reclaim) |
2468 | return 1; |
2469 | |
2470 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
2471 | if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) |
2472 | return 1; |
2473 | |
2474 | return 0; |
2475 | } |
2476 | |
2477 | static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) |
2478 | { |
2479 | struct zone *zone; |
2480 | unsigned long pfmemalloc_reserve = 0; |
2481 | unsigned long free_pages = 0; |
2482 | int i; |
2483 | bool wmark_ok; |
2484 | |
2485 | for (i = 0; i <= ZONE_NORMAL; i++) { |
2486 | zone = &pgdat->node_zones[i]; |
2487 | pfmemalloc_reserve += min_wmark_pages(zone); |
2488 | free_pages += zone_page_state(zone, NR_FREE_PAGES); |
2489 | } |
2490 | |
2491 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
2492 | |
2493 | /* kswapd must be awake if processes are being throttled */ |
2494 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { |
2495 | pgdat->classzone_idx = min(pgdat->classzone_idx, |
2496 | (enum zone_type)ZONE_NORMAL); |
2497 | wake_up_interruptible(&pgdat->kswapd_wait); |
2498 | } |
2499 | |
2500 | return wmark_ok; |
2501 | } |
2502 | |
2503 | /* |
2504 | * Throttle direct reclaimers if backing storage is backed by the network |
2505 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously |
2506 | * depleted. kswapd will continue to make progress and wake the processes |
2507 | * when the low watermark is reached. |
2508 | * |
2509 | * Returns true if a fatal signal was delivered during throttling. If this |
2510 | * happens, the page allocator should not consider triggering the OOM killer. |
2511 | */ |
2512 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
2513 | nodemask_t *nodemask) |
2514 | { |
2515 | struct zone *zone; |
2516 | int high_zoneidx = gfp_zone(gfp_mask); |
2517 | pg_data_t *pgdat; |
2518 | |
2519 | /* |
2520 | * Kernel threads should not be throttled as they may be indirectly |
2521 | * responsible for cleaning pages necessary for reclaim to make forward |
2522 | * progress. kjournald for example may enter direct reclaim while |
2523 | * committing a transaction where throttling it could forcing other |
2524 | * processes to block on log_wait_commit(). |
2525 | */ |
2526 | if (current->flags & PF_KTHREAD) |
2527 | goto out; |
2528 | |
2529 | /* |
2530 | * If a fatal signal is pending, this process should not throttle. |
2531 | * It should return quickly so it can exit and free its memory |
2532 | */ |
2533 | if (fatal_signal_pending(current)) |
2534 | goto out; |
2535 | |
2536 | /* Check if the pfmemalloc reserves are ok */ |
2537 | first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); |
2538 | pgdat = zone->zone_pgdat; |
2539 | if (pfmemalloc_watermark_ok(pgdat)) |
2540 | goto out; |
2541 | |
2542 | /* Account for the throttling */ |
2543 | count_vm_event(PGSCAN_DIRECT_THROTTLE); |
2544 | |
2545 | /* |
2546 | * If the caller cannot enter the filesystem, it's possible that it |
2547 | * is due to the caller holding an FS lock or performing a journal |
2548 | * transaction in the case of a filesystem like ext[3|4]. In this case, |
2549 | * it is not safe to block on pfmemalloc_wait as kswapd could be |
2550 | * blocked waiting on the same lock. Instead, throttle for up to a |
2551 | * second before continuing. |
2552 | */ |
2553 | if (!(gfp_mask & __GFP_FS)) { |
2554 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, |
2555 | pfmemalloc_watermark_ok(pgdat), HZ); |
2556 | |
2557 | goto check_pending; |
2558 | } |
2559 | |
2560 | /* Throttle until kswapd wakes the process */ |
2561 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, |
2562 | pfmemalloc_watermark_ok(pgdat)); |
2563 | |
2564 | check_pending: |
2565 | if (fatal_signal_pending(current)) |
2566 | return true; |
2567 | |
2568 | out: |
2569 | return false; |
2570 | } |
2571 | |
2572 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
2573 | gfp_t gfp_mask, nodemask_t *nodemask) |
2574 | { |
2575 | unsigned long nr_reclaimed; |
2576 | struct scan_control sc = { |
2577 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
2578 | .may_writepage = !laptop_mode, |
2579 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
2580 | .may_unmap = 1, |
2581 | .may_swap = 1, |
2582 | .order = order, |
2583 | .priority = DEF_PRIORITY, |
2584 | .target_mem_cgroup = NULL, |
2585 | .nodemask = nodemask, |
2586 | }; |
2587 | struct shrink_control shrink = { |
2588 | .gfp_mask = sc.gfp_mask, |
2589 | }; |
2590 | |
2591 | /* |
2592 | * Do not enter reclaim if fatal signal was delivered while throttled. |
2593 | * 1 is returned so that the page allocator does not OOM kill at this |
2594 | * point. |
2595 | */ |
2596 | if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) |
2597 | return 1; |
2598 | |
2599 | trace_mm_vmscan_direct_reclaim_begin(order, |
2600 | sc.may_writepage, |
2601 | gfp_mask); |
2602 | |
2603 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
2604 | |
2605 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); |
2606 | |
2607 | return nr_reclaimed; |
2608 | } |
2609 | |
2610 | #ifdef CONFIG_MEMCG |
2611 | |
2612 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, |
2613 | gfp_t gfp_mask, bool noswap, |
2614 | struct zone *zone, |
2615 | unsigned long *nr_scanned) |
2616 | { |
2617 | struct scan_control sc = { |
2618 | .nr_scanned = 0, |
2619 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
2620 | .may_writepage = !laptop_mode, |
2621 | .may_unmap = 1, |
2622 | .may_swap = !noswap, |
2623 | .order = 0, |
2624 | .priority = 0, |
2625 | .target_mem_cgroup = memcg, |
2626 | }; |
2627 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
2628 | |
2629 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2630 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
2631 | |
2632 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
2633 | sc.may_writepage, |
2634 | sc.gfp_mask); |
2635 | |
2636 | /* |
2637 | * NOTE: Although we can get the priority field, using it |
2638 | * here is not a good idea, since it limits the pages we can scan. |
2639 | * if we don't reclaim here, the shrink_zone from balance_pgdat |
2640 | * will pick up pages from other mem cgroup's as well. We hack |
2641 | * the priority and make it zero. |
2642 | */ |
2643 | shrink_lruvec(lruvec, &sc); |
2644 | |
2645 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); |
2646 | |
2647 | *nr_scanned = sc.nr_scanned; |
2648 | return sc.nr_reclaimed; |
2649 | } |
2650 | |
2651 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
2652 | gfp_t gfp_mask, |
2653 | bool noswap) |
2654 | { |
2655 | struct zonelist *zonelist; |
2656 | unsigned long nr_reclaimed; |
2657 | int nid; |
2658 | struct scan_control sc = { |
2659 | .may_writepage = !laptop_mode, |
2660 | .may_unmap = 1, |
2661 | .may_swap = !noswap, |
2662 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
2663 | .order = 0, |
2664 | .priority = DEF_PRIORITY, |
2665 | .target_mem_cgroup = memcg, |
2666 | .nodemask = NULL, /* we don't care the placement */ |
2667 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2668 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
2669 | }; |
2670 | struct shrink_control shrink = { |
2671 | .gfp_mask = sc.gfp_mask, |
2672 | }; |
2673 | |
2674 | /* |
2675 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't |
2676 | * take care of from where we get pages. So the node where we start the |
2677 | * scan does not need to be the current node. |
2678 | */ |
2679 | nid = mem_cgroup_select_victim_node(memcg); |
2680 | |
2681 | zonelist = NODE_DATA(nid)->node_zonelists; |
2682 | |
2683 | trace_mm_vmscan_memcg_reclaim_begin(0, |
2684 | sc.may_writepage, |
2685 | sc.gfp_mask); |
2686 | |
2687 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
2688 | |
2689 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); |
2690 | |
2691 | return nr_reclaimed; |
2692 | } |
2693 | #endif |
2694 | |
2695 | static void age_active_anon(struct zone *zone, struct scan_control *sc) |
2696 | { |
2697 | struct mem_cgroup *memcg; |
2698 | |
2699 | if (!total_swap_pages) |
2700 | return; |
2701 | |
2702 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
2703 | do { |
2704 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
2705 | |
2706 | if (inactive_anon_is_low(lruvec)) |
2707 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
2708 | sc, LRU_ACTIVE_ANON); |
2709 | |
2710 | memcg = mem_cgroup_iter(NULL, memcg, NULL); |
2711 | } while (memcg); |
2712 | } |
2713 | |
2714 | static bool zone_balanced(struct zone *zone, int order, |
2715 | unsigned long balance_gap, int classzone_idx) |
2716 | { |
2717 | if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + |
2718 | balance_gap, classzone_idx, 0)) |
2719 | return false; |
2720 | |
2721 | if (IS_ENABLED(CONFIG_COMPACTION) && order && |
2722 | !compaction_suitable(zone, order)) |
2723 | return false; |
2724 | |
2725 | return true; |
2726 | } |
2727 | |
2728 | /* |
2729 | * pgdat_balanced() is used when checking if a node is balanced. |
2730 | * |
2731 | * For order-0, all zones must be balanced! |
2732 | * |
2733 | * For high-order allocations only zones that meet watermarks and are in a |
2734 | * zone allowed by the callers classzone_idx are added to balanced_pages. The |
2735 | * total of balanced pages must be at least 25% of the zones allowed by |
2736 | * classzone_idx for the node to be considered balanced. Forcing all zones to |
2737 | * be balanced for high orders can cause excessive reclaim when there are |
2738 | * imbalanced zones. |
2739 | * The choice of 25% is due to |
2740 | * o a 16M DMA zone that is balanced will not balance a zone on any |
2741 | * reasonable sized machine |
2742 | * o On all other machines, the top zone must be at least a reasonable |
2743 | * percentage of the middle zones. For example, on 32-bit x86, highmem |
2744 | * would need to be at least 256M for it to be balance a whole node. |
2745 | * Similarly, on x86-64 the Normal zone would need to be at least 1G |
2746 | * to balance a node on its own. These seemed like reasonable ratios. |
2747 | */ |
2748 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) |
2749 | { |
2750 | unsigned long managed_pages = 0; |
2751 | unsigned long balanced_pages = 0; |
2752 | int i; |
2753 | |
2754 | /* Check the watermark levels */ |
2755 | for (i = 0; i <= classzone_idx; i++) { |
2756 | struct zone *zone = pgdat->node_zones + i; |
2757 | |
2758 | if (!populated_zone(zone)) |
2759 | continue; |
2760 | |
2761 | managed_pages += zone->managed_pages; |
2762 | |
2763 | /* |
2764 | * A special case here: |
2765 | * |
2766 | * balance_pgdat() skips over all_unreclaimable after |
2767 | * DEF_PRIORITY. Effectively, it considers them balanced so |
2768 | * they must be considered balanced here as well! |
2769 | */ |
2770 | if (!zone_reclaimable(zone)) { |
2771 | balanced_pages += zone->managed_pages; |
2772 | continue; |
2773 | } |
2774 | |
2775 | if (zone_balanced(zone, order, 0, i)) |
2776 | balanced_pages += zone->managed_pages; |
2777 | else if (!order) |
2778 | return false; |
2779 | } |
2780 | |
2781 | if (order) |
2782 | return balanced_pages >= (managed_pages >> 2); |
2783 | else |
2784 | return true; |
2785 | } |
2786 | |
2787 | /* |
2788 | * Prepare kswapd for sleeping. This verifies that there are no processes |
2789 | * waiting in throttle_direct_reclaim() and that watermarks have been met. |
2790 | * |
2791 | * Returns true if kswapd is ready to sleep |
2792 | */ |
2793 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, |
2794 | int classzone_idx) |
2795 | { |
2796 | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ |
2797 | if (remaining) |
2798 | return false; |
2799 | |
2800 | /* |
2801 | * There is a potential race between when kswapd checks its watermarks |
2802 | * and a process gets throttled. There is also a potential race if |
2803 | * processes get throttled, kswapd wakes, a large process exits therby |
2804 | * balancing the zones that causes kswapd to miss a wakeup. If kswapd |
2805 | * is going to sleep, no process should be sleeping on pfmemalloc_wait |
2806 | * so wake them now if necessary. If necessary, processes will wake |
2807 | * kswapd and get throttled again |
2808 | */ |
2809 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) { |
2810 | wake_up(&pgdat->pfmemalloc_wait); |
2811 | return false; |
2812 | } |
2813 | |
2814 | return pgdat_balanced(pgdat, order, classzone_idx); |
2815 | } |
2816 | |
2817 | /* |
2818 | * kswapd shrinks the zone by the number of pages required to reach |
2819 | * the high watermark. |
2820 | * |
2821 | * Returns true if kswapd scanned at least the requested number of pages to |
2822 | * reclaim or if the lack of progress was due to pages under writeback. |
2823 | * This is used to determine if the scanning priority needs to be raised. |
2824 | */ |
2825 | static bool kswapd_shrink_zone(struct zone *zone, |
2826 | int classzone_idx, |
2827 | struct scan_control *sc, |
2828 | unsigned long lru_pages, |
2829 | unsigned long *nr_attempted) |
2830 | { |
2831 | int testorder = sc->order; |
2832 | unsigned long balance_gap; |
2833 | struct reclaim_state *reclaim_state = current->reclaim_state; |
2834 | struct shrink_control shrink = { |
2835 | .gfp_mask = sc->gfp_mask, |
2836 | }; |
2837 | bool lowmem_pressure; |
2838 | |
2839 | /* Reclaim above the high watermark. */ |
2840 | sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); |
2841 | |
2842 | /* |
2843 | * Kswapd reclaims only single pages with compaction enabled. Trying |
2844 | * too hard to reclaim until contiguous free pages have become |
2845 | * available can hurt performance by evicting too much useful data |
2846 | * from memory. Do not reclaim more than needed for compaction. |
2847 | */ |
2848 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
2849 | compaction_suitable(zone, sc->order) != |
2850 | COMPACT_SKIPPED) |
2851 | testorder = 0; |
2852 | |
2853 | /* |
2854 | * We put equal pressure on every zone, unless one zone has way too |
2855 | * many pages free already. The "too many pages" is defined as the |
2856 | * high wmark plus a "gap" where the gap is either the low |
2857 | * watermark or 1% of the zone, whichever is smaller. |
2858 | */ |
2859 | balance_gap = min(low_wmark_pages(zone), |
2860 | (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
2861 | KSWAPD_ZONE_BALANCE_GAP_RATIO); |
2862 | |
2863 | /* |
2864 | * If there is no low memory pressure or the zone is balanced then no |
2865 | * reclaim is necessary |
2866 | */ |
2867 | lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); |
2868 | if (!lowmem_pressure && zone_balanced(zone, testorder, |
2869 | balance_gap, classzone_idx)) |
2870 | return true; |
2871 | |
2872 | shrink_zone(zone, sc); |
2873 | nodes_clear(shrink.nodes_to_scan); |
2874 | node_set(zone_to_nid(zone), shrink.nodes_to_scan); |
2875 | |
2876 | reclaim_state->reclaimed_slab = 0; |
2877 | shrink_slab(&shrink, sc->nr_scanned, lru_pages); |
2878 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
2879 | |
2880 | /* Account for the number of pages attempted to reclaim */ |
2881 | *nr_attempted += sc->nr_to_reclaim; |
2882 | |
2883 | zone_clear_flag(zone, ZONE_WRITEBACK); |
2884 | |
2885 | /* |
2886 | * If a zone reaches its high watermark, consider it to be no longer |
2887 | * congested. It's possible there are dirty pages backed by congested |
2888 | * BDIs but as pressure is relieved, speculatively avoid congestion |
2889 | * waits. |
2890 | */ |
2891 | if (zone_reclaimable(zone) && |
2892 | zone_balanced(zone, testorder, 0, classzone_idx)) { |
2893 | zone_clear_flag(zone, ZONE_CONGESTED); |
2894 | zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); |
2895 | } |
2896 | |
2897 | return sc->nr_scanned >= sc->nr_to_reclaim; |
2898 | } |
2899 | |
2900 | /* |
2901 | * For kswapd, balance_pgdat() will work across all this node's zones until |
2902 | * they are all at high_wmark_pages(zone). |
2903 | * |
2904 | * Returns the final order kswapd was reclaiming at |
2905 | * |
2906 | * There is special handling here for zones which are full of pinned pages. |
2907 | * This can happen if the pages are all mlocked, or if they are all used by |
2908 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. |
2909 | * What we do is to detect the case where all pages in the zone have been |
2910 | * scanned twice and there has been zero successful reclaim. Mark the zone as |
2911 | * dead and from now on, only perform a short scan. Basically we're polling |
2912 | * the zone for when the problem goes away. |
2913 | * |
2914 | * kswapd scans the zones in the highmem->normal->dma direction. It skips |
2915 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
2916 | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the |
2917 | * lower zones regardless of the number of free pages in the lower zones. This |
2918 | * interoperates with the page allocator fallback scheme to ensure that aging |
2919 | * of pages is balanced across the zones. |
2920 | */ |
2921 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order, |
2922 | int *classzone_idx) |
2923 | { |
2924 | int i; |
2925 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
2926 | unsigned long nr_soft_reclaimed; |
2927 | unsigned long nr_soft_scanned; |
2928 | struct scan_control sc = { |
2929 | .gfp_mask = GFP_KERNEL, |
2930 | .priority = DEF_PRIORITY, |
2931 | .may_unmap = 1, |
2932 | .may_swap = 1, |
2933 | .may_writepage = !laptop_mode, |
2934 | .order = order, |
2935 | .target_mem_cgroup = NULL, |
2936 | }; |
2937 | count_vm_event(PAGEOUTRUN); |
2938 | |
2939 | do { |
2940 | unsigned long lru_pages = 0; |
2941 | unsigned long nr_attempted = 0; |
2942 | bool raise_priority = true; |
2943 | bool pgdat_needs_compaction = (order > 0); |
2944 | |
2945 | sc.nr_reclaimed = 0; |
2946 | |
2947 | /* |
2948 | * Scan in the highmem->dma direction for the highest |
2949 | * zone which needs scanning |
2950 | */ |
2951 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { |
2952 | struct zone *zone = pgdat->node_zones + i; |
2953 | |
2954 | if (!populated_zone(zone)) |
2955 | continue; |
2956 | |
2957 | if (sc.priority != DEF_PRIORITY && |
2958 | !zone_reclaimable(zone)) |
2959 | continue; |
2960 | |
2961 | /* |
2962 | * Do some background aging of the anon list, to give |
2963 | * pages a chance to be referenced before reclaiming. |
2964 | */ |
2965 | age_active_anon(zone, &sc); |
2966 | |
2967 | /* |
2968 | * If the number of buffer_heads in the machine |
2969 | * exceeds the maximum allowed level and this node |
2970 | * has a highmem zone, force kswapd to reclaim from |
2971 | * it to relieve lowmem pressure. |
2972 | */ |
2973 | if (buffer_heads_over_limit && is_highmem_idx(i)) { |
2974 | end_zone = i; |
2975 | break; |
2976 | } |
2977 | |
2978 | if (!zone_balanced(zone, order, 0, 0)) { |
2979 | end_zone = i; |
2980 | break; |
2981 | } else { |
2982 | /* |
2983 | * If balanced, clear the dirty and congested |
2984 | * flags |
2985 | */ |
2986 | zone_clear_flag(zone, ZONE_CONGESTED); |
2987 | zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); |
2988 | } |
2989 | } |
2990 | |
2991 | if (i < 0) |
2992 | goto out; |
2993 | |
2994 | for (i = 0; i <= end_zone; i++) { |
2995 | struct zone *zone = pgdat->node_zones + i; |
2996 | |
2997 | if (!populated_zone(zone)) |
2998 | continue; |
2999 | |
3000 | lru_pages += zone_reclaimable_pages(zone); |
3001 | |
3002 | /* |
3003 | * If any zone is currently balanced then kswapd will |
3004 | * not call compaction as it is expected that the |
3005 | * necessary pages are already available. |
3006 | */ |
3007 | if (pgdat_needs_compaction && |
3008 | zone_watermark_ok(zone, order, |
3009 | low_wmark_pages(zone), |
3010 | *classzone_idx, 0)) |
3011 | pgdat_needs_compaction = false; |
3012 | } |
3013 | |
3014 | /* |
3015 | * If we're getting trouble reclaiming, start doing writepage |
3016 | * even in laptop mode. |
3017 | */ |
3018 | if (sc.priority < DEF_PRIORITY - 2) |
3019 | sc.may_writepage = 1; |
3020 | |
3021 | /* |
3022 | * Now scan the zone in the dma->highmem direction, stopping |
3023 | * at the last zone which needs scanning. |
3024 | * |
3025 | * We do this because the page allocator works in the opposite |
3026 | * direction. This prevents the page allocator from allocating |
3027 | * pages behind kswapd's direction of progress, which would |
3028 | * cause too much scanning of the lower zones. |
3029 | */ |
3030 | for (i = 0; i <= end_zone; i++) { |
3031 | struct zone *zone = pgdat->node_zones + i; |
3032 | |
3033 | if (!populated_zone(zone)) |
3034 | continue; |
3035 | |
3036 | if (sc.priority != DEF_PRIORITY && |
3037 | !zone_reclaimable(zone)) |
3038 | continue; |
3039 | |
3040 | sc.nr_scanned = 0; |
3041 | |
3042 | nr_soft_scanned = 0; |
3043 | /* |
3044 | * Call soft limit reclaim before calling shrink_zone. |
3045 | */ |
3046 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
3047 | order, sc.gfp_mask, |
3048 | &nr_soft_scanned); |
3049 | sc.nr_reclaimed += nr_soft_reclaimed; |
3050 | |
3051 | /* |
3052 | * There should be no need to raise the scanning |
3053 | * priority if enough pages are already being scanned |
3054 | * that that high watermark would be met at 100% |
3055 | * efficiency. |
3056 | */ |
3057 | if (kswapd_shrink_zone(zone, end_zone, &sc, |
3058 | lru_pages, &nr_attempted)) |
3059 | raise_priority = false; |
3060 | } |
3061 | |
3062 | /* |
3063 | * If the low watermark is met there is no need for processes |
3064 | * to be throttled on pfmemalloc_wait as they should not be |
3065 | * able to safely make forward progress. Wake them |
3066 | */ |
3067 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && |
3068 | pfmemalloc_watermark_ok(pgdat)) |
3069 | wake_up(&pgdat->pfmemalloc_wait); |
3070 | |
3071 | /* |
3072 | * Fragmentation may mean that the system cannot be rebalanced |
3073 | * for high-order allocations in all zones. If twice the |
3074 | * allocation size has been reclaimed and the zones are still |
3075 | * not balanced then recheck the watermarks at order-0 to |
3076 | * prevent kswapd reclaiming excessively. Assume that a |
3077 | * process requested a high-order can direct reclaim/compact. |
3078 | */ |
3079 | if (order && sc.nr_reclaimed >= 2UL << order) |
3080 | order = sc.order = 0; |
3081 | |
3082 | /* Check if kswapd should be suspending */ |
3083 | if (try_to_freeze() || kthread_should_stop()) |
3084 | break; |
3085 | |
3086 | /* |
3087 | * Compact if necessary and kswapd is reclaiming at least the |
3088 | * high watermark number of pages as requsted |
3089 | */ |
3090 | if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) |
3091 | compact_pgdat(pgdat, order); |
3092 | |
3093 | /* |
3094 | * Raise priority if scanning rate is too low or there was no |
3095 | * progress in reclaiming pages |
3096 | */ |
3097 | if (raise_priority || !sc.nr_reclaimed) |
3098 | sc.priority--; |
3099 | } while (sc.priority >= 1 && |
3100 | !pgdat_balanced(pgdat, order, *classzone_idx)); |
3101 | |
3102 | out: |
3103 | /* |
3104 | * Return the order we were reclaiming at so prepare_kswapd_sleep() |
3105 | * makes a decision on the order we were last reclaiming at. However, |
3106 | * if another caller entered the allocator slow path while kswapd |
3107 | * was awake, order will remain at the higher level |
3108 | */ |
3109 | *classzone_idx = end_zone; |
3110 | return order; |
3111 | } |
3112 | |
3113 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
3114 | { |
3115 | long remaining = 0; |
3116 | DEFINE_WAIT(wait); |
3117 | |
3118 | if (freezing(current) || kthread_should_stop()) |
3119 | return; |
3120 | |
3121 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
3122 | |
3123 | /* Try to sleep for a short interval */ |
3124 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
3125 | remaining = schedule_timeout(HZ/10); |
3126 | finish_wait(&pgdat->kswapd_wait, &wait); |
3127 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
3128 | } |
3129 | |
3130 | /* |
3131 | * After a short sleep, check if it was a premature sleep. If not, then |
3132 | * go fully to sleep until explicitly woken up. |
3133 | */ |
3134 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
3135 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
3136 | |
3137 | /* |
3138 | * vmstat counters are not perfectly accurate and the estimated |
3139 | * value for counters such as NR_FREE_PAGES can deviate from the |
3140 | * true value by nr_online_cpus * threshold. To avoid the zone |
3141 | * watermarks being breached while under pressure, we reduce the |
3142 | * per-cpu vmstat threshold while kswapd is awake and restore |
3143 | * them before going back to sleep. |
3144 | */ |
3145 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); |
3146 | |
3147 | /* |
3148 | * Compaction records what page blocks it recently failed to |
3149 | * isolate pages from and skips them in the future scanning. |
3150 | * When kswapd is going to sleep, it is reasonable to assume |
3151 | * that pages and compaction may succeed so reset the cache. |
3152 | */ |
3153 | reset_isolation_suitable(pgdat); |
3154 | |
3155 | if (!kthread_should_stop()) |
3156 | schedule(); |
3157 | |
3158 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
3159 | } else { |
3160 | if (remaining) |
3161 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); |
3162 | else |
3163 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); |
3164 | } |
3165 | finish_wait(&pgdat->kswapd_wait, &wait); |
3166 | } |
3167 | |
3168 | /* |
3169 | * The background pageout daemon, started as a kernel thread |
3170 | * from the init process. |
3171 | * |
3172 | * This basically trickles out pages so that we have _some_ |
3173 | * free memory available even if there is no other activity |
3174 | * that frees anything up. This is needed for things like routing |
3175 | * etc, where we otherwise might have all activity going on in |
3176 | * asynchronous contexts that cannot page things out. |
3177 | * |
3178 | * If there are applications that are active memory-allocators |
3179 | * (most normal use), this basically shouldn't matter. |
3180 | */ |
3181 | static int kswapd(void *p) |
3182 | { |
3183 | unsigned long order, new_order; |
3184 | unsigned balanced_order; |
3185 | int classzone_idx, new_classzone_idx; |
3186 | int balanced_classzone_idx; |
3187 | pg_data_t *pgdat = (pg_data_t*)p; |
3188 | struct task_struct *tsk = current; |
3189 | |
3190 | struct reclaim_state reclaim_state = { |
3191 | .reclaimed_slab = 0, |
3192 | }; |
3193 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
3194 | |
3195 | lockdep_set_current_reclaim_state(GFP_KERNEL); |
3196 | |
3197 | if (!cpumask_empty(cpumask)) |
3198 | set_cpus_allowed_ptr(tsk, cpumask); |
3199 | current->reclaim_state = &reclaim_state; |
3200 | |
3201 | /* |
3202 | * Tell the memory management that we're a "memory allocator", |
3203 | * and that if we need more memory we should get access to it |
3204 | * regardless (see "__alloc_pages()"). "kswapd" should |
3205 | * never get caught in the normal page freeing logic. |
3206 | * |
3207 | * (Kswapd normally doesn't need memory anyway, but sometimes |
3208 | * you need a small amount of memory in order to be able to |
3209 | * page out something else, and this flag essentially protects |
3210 | * us from recursively trying to free more memory as we're |
3211 | * trying to free the first piece of memory in the first place). |
3212 | */ |
3213 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
3214 | set_freezable(); |
3215 | |
3216 | order = new_order = 0; |
3217 | balanced_order = 0; |
3218 | classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; |
3219 | balanced_classzone_idx = classzone_idx; |
3220 | for ( ; ; ) { |
3221 | bool ret; |
3222 | |
3223 | /* |
3224 | * If the last balance_pgdat was unsuccessful it's unlikely a |
3225 | * new request of a similar or harder type will succeed soon |
3226 | * so consider going to sleep on the basis we reclaimed at |
3227 | */ |
3228 | if (balanced_classzone_idx >= new_classzone_idx && |
3229 | balanced_order == new_order) { |
3230 | new_order = pgdat->kswapd_max_order; |
3231 | new_classzone_idx = pgdat->classzone_idx; |
3232 | pgdat->kswapd_max_order = 0; |
3233 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
3234 | } |
3235 | |
3236 | if (order < new_order || classzone_idx > new_classzone_idx) { |
3237 | /* |
3238 | * Don't sleep if someone wants a larger 'order' |
3239 | * allocation or has tigher zone constraints |
3240 | */ |
3241 | order = new_order; |
3242 | classzone_idx = new_classzone_idx; |
3243 | } else { |
3244 | kswapd_try_to_sleep(pgdat, balanced_order, |
3245 | balanced_classzone_idx); |
3246 | order = pgdat->kswapd_max_order; |
3247 | classzone_idx = pgdat->classzone_idx; |
3248 | new_order = order; |
3249 | new_classzone_idx = classzone_idx; |
3250 | pgdat->kswapd_max_order = 0; |
3251 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
3252 | } |
3253 | |
3254 | ret = try_to_freeze(); |
3255 | if (kthread_should_stop()) |
3256 | break; |
3257 | |
3258 | /* |
3259 | * We can speed up thawing tasks if we don't call balance_pgdat |
3260 | * after returning from the refrigerator |
3261 | */ |
3262 | if (!ret) { |
3263 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); |
3264 | balanced_classzone_idx = classzone_idx; |
3265 | balanced_order = balance_pgdat(pgdat, order, |
3266 | &balanced_classzone_idx); |
3267 | } |
3268 | } |
3269 | |
3270 | current->reclaim_state = NULL; |
3271 | return 0; |
3272 | } |
3273 | |
3274 | /* |
3275 | * A zone is low on free memory, so wake its kswapd task to service it. |
3276 | */ |
3277 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) |
3278 | { |
3279 | pg_data_t *pgdat; |
3280 | |
3281 | if (!populated_zone(zone)) |
3282 | return; |
3283 | |
3284 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
3285 | return; |
3286 | pgdat = zone->zone_pgdat; |
3287 | if (pgdat->kswapd_max_order < order) { |
3288 | pgdat->kswapd_max_order = order; |
3289 | pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); |
3290 | } |
3291 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
3292 | return; |
3293 | if (zone_balanced(zone, order, 0, 0)) |
3294 | return; |
3295 | |
3296 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); |
3297 | wake_up_interruptible(&pgdat->kswapd_wait); |
3298 | } |
3299 | |
3300 | /* |
3301 | * The reclaimable count would be mostly accurate. |
3302 | * The less reclaimable pages may be |
3303 | * - mlocked pages, which will be moved to unevictable list when encountered |
3304 | * - mapped pages, which may require several travels to be reclaimed |
3305 | * - dirty pages, which is not "instantly" reclaimable |
3306 | */ |
3307 | unsigned long global_reclaimable_pages(void) |
3308 | { |
3309 | int nr; |
3310 | |
3311 | nr = global_page_state(NR_ACTIVE_FILE) + |
3312 | global_page_state(NR_INACTIVE_FILE); |
3313 | |
3314 | if (get_nr_swap_pages() > 0) |
3315 | nr += global_page_state(NR_ACTIVE_ANON) + |
3316 | global_page_state(NR_INACTIVE_ANON); |
3317 | |
3318 | return nr; |
3319 | } |
3320 | |
3321 | #ifdef CONFIG_HIBERNATION |
3322 | /* |
3323 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
3324 | * freed pages. |
3325 | * |
3326 | * Rather than trying to age LRUs the aim is to preserve the overall |
3327 | * LRU order by reclaiming preferentially |
3328 | * inactive > active > active referenced > active mapped |
3329 | */ |
3330 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
3331 | { |
3332 | struct reclaim_state reclaim_state; |
3333 | struct scan_control sc = { |
3334 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
3335 | .may_swap = 1, |
3336 | .may_unmap = 1, |
3337 | .may_writepage = 1, |
3338 | .nr_to_reclaim = nr_to_reclaim, |
3339 | .hibernation_mode = 1, |
3340 | .order = 0, |
3341 | .priority = DEF_PRIORITY, |
3342 | }; |
3343 | struct shrink_control shrink = { |
3344 | .gfp_mask = sc.gfp_mask, |
3345 | }; |
3346 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
3347 | struct task_struct *p = current; |
3348 | unsigned long nr_reclaimed; |
3349 | |
3350 | p->flags |= PF_MEMALLOC; |
3351 | lockdep_set_current_reclaim_state(sc.gfp_mask); |
3352 | reclaim_state.reclaimed_slab = 0; |
3353 | p->reclaim_state = &reclaim_state; |
3354 | |
3355 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
3356 | |
3357 | p->reclaim_state = NULL; |
3358 | lockdep_clear_current_reclaim_state(); |
3359 | p->flags &= ~PF_MEMALLOC; |
3360 | |
3361 | return nr_reclaimed; |
3362 | } |
3363 | #endif /* CONFIG_HIBERNATION */ |
3364 | |
3365 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3366 | not required for correctness. So if the last cpu in a node goes |
3367 | away, we get changed to run anywhere: as the first one comes back, |
3368 | restore their cpu bindings. */ |
3369 | static int cpu_callback(struct notifier_block *nfb, unsigned long action, |
3370 | void *hcpu) |
3371 | { |
3372 | int nid; |
3373 | |
3374 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
3375 | for_each_node_state(nid, N_MEMORY) { |
3376 | pg_data_t *pgdat = NODE_DATA(nid); |
3377 | const struct cpumask *mask; |
3378 | |
3379 | mask = cpumask_of_node(pgdat->node_id); |
3380 | |
3381 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
3382 | /* One of our CPUs online: restore mask */ |
3383 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
3384 | } |
3385 | } |
3386 | return NOTIFY_OK; |
3387 | } |
3388 | |
3389 | /* |
3390 | * This kswapd start function will be called by init and node-hot-add. |
3391 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. |
3392 | */ |
3393 | int kswapd_run(int nid) |
3394 | { |
3395 | pg_data_t *pgdat = NODE_DATA(nid); |
3396 | int ret = 0; |
3397 | |
3398 | if (pgdat->kswapd) |
3399 | return 0; |
3400 | |
3401 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); |
3402 | if (IS_ERR(pgdat->kswapd)) { |
3403 | /* failure at boot is fatal */ |
3404 | BUG_ON(system_state == SYSTEM_BOOTING); |
3405 | pr_err("Failed to start kswapd on node %d\n", nid); |
3406 | ret = PTR_ERR(pgdat->kswapd); |
3407 | pgdat->kswapd = NULL; |
3408 | } |
3409 | return ret; |
3410 | } |
3411 | |
3412 | /* |
3413 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
3414 | * hold lock_memory_hotplug(). |
3415 | */ |
3416 | void kswapd_stop(int nid) |
3417 | { |
3418 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; |
3419 | |
3420 | if (kswapd) { |
3421 | kthread_stop(kswapd); |
3422 | NODE_DATA(nid)->kswapd = NULL; |
3423 | } |
3424 | } |
3425 | |
3426 | static int __init kswapd_init(void) |
3427 | { |
3428 | int nid; |
3429 | |
3430 | swap_setup(); |
3431 | for_each_node_state(nid, N_MEMORY) |
3432 | kswapd_run(nid); |
3433 | hotcpu_notifier(cpu_callback, 0); |
3434 | return 0; |
3435 | } |
3436 | |
3437 | module_init(kswapd_init) |
3438 | |
3439 | #ifdef CONFIG_NUMA |
3440 | /* |
3441 | * Zone reclaim mode |
3442 | * |
3443 | * If non-zero call zone_reclaim when the number of free pages falls below |
3444 | * the watermarks. |
3445 | */ |
3446 | int zone_reclaim_mode __read_mostly; |
3447 | |
3448 | #define RECLAIM_OFF 0 |
3449 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
3450 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
3451 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ |
3452 | |
3453 | /* |
3454 | * Priority for ZONE_RECLAIM. This determines the fraction of pages |
3455 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
3456 | * a zone. |
3457 | */ |
3458 | #define ZONE_RECLAIM_PRIORITY 4 |
3459 | |
3460 | /* |
3461 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to |
3462 | * occur. |
3463 | */ |
3464 | int sysctl_min_unmapped_ratio = 1; |
3465 | |
3466 | /* |
3467 | * If the number of slab pages in a zone grows beyond this percentage then |
3468 | * slab reclaim needs to occur. |
3469 | */ |
3470 | int sysctl_min_slab_ratio = 5; |
3471 | |
3472 | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) |
3473 | { |
3474 | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); |
3475 | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + |
3476 | zone_page_state(zone, NR_ACTIVE_FILE); |
3477 | |
3478 | /* |
3479 | * It's possible for there to be more file mapped pages than |
3480 | * accounted for by the pages on the file LRU lists because |
3481 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED |
3482 | */ |
3483 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; |
3484 | } |
3485 | |
3486 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ |
3487 | static long zone_pagecache_reclaimable(struct zone *zone) |
3488 | { |
3489 | long nr_pagecache_reclaimable; |
3490 | long delta = 0; |
3491 | |
3492 | /* |
3493 | * If RECLAIM_SWAP is set, then all file pages are considered |
3494 | * potentially reclaimable. Otherwise, we have to worry about |
3495 | * pages like swapcache and zone_unmapped_file_pages() provides |
3496 | * a better estimate |
3497 | */ |
3498 | if (zone_reclaim_mode & RECLAIM_SWAP) |
3499 | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); |
3500 | else |
3501 | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); |
3502 | |
3503 | /* If we can't clean pages, remove dirty pages from consideration */ |
3504 | if (!(zone_reclaim_mode & RECLAIM_WRITE)) |
3505 | delta += zone_page_state(zone, NR_FILE_DIRTY); |
3506 | |
3507 | /* Watch for any possible underflows due to delta */ |
3508 | if (unlikely(delta > nr_pagecache_reclaimable)) |
3509 | delta = nr_pagecache_reclaimable; |
3510 | |
3511 | return nr_pagecache_reclaimable - delta; |
3512 | } |
3513 | |
3514 | /* |
3515 | * Try to free up some pages from this zone through reclaim. |
3516 | */ |
3517 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
3518 | { |
3519 | /* Minimum pages needed in order to stay on node */ |
3520 | const unsigned long nr_pages = 1 << order; |
3521 | struct task_struct *p = current; |
3522 | struct reclaim_state reclaim_state; |
3523 | struct scan_control sc = { |
3524 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), |
3525 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), |
3526 | .may_swap = 1, |
3527 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
3528 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
3529 | .order = order, |
3530 | .priority = ZONE_RECLAIM_PRIORITY, |
3531 | }; |
3532 | struct shrink_control shrink = { |
3533 | .gfp_mask = sc.gfp_mask, |
3534 | }; |
3535 | unsigned long nr_slab_pages0, nr_slab_pages1; |
3536 | |
3537 | cond_resched(); |
3538 | /* |
3539 | * We need to be able to allocate from the reserves for RECLAIM_SWAP |
3540 | * and we also need to be able to write out pages for RECLAIM_WRITE |
3541 | * and RECLAIM_SWAP. |
3542 | */ |
3543 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; |
3544 | lockdep_set_current_reclaim_state(gfp_mask); |
3545 | reclaim_state.reclaimed_slab = 0; |
3546 | p->reclaim_state = &reclaim_state; |
3547 | |
3548 | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { |
3549 | /* |
3550 | * Free memory by calling shrink zone with increasing |
3551 | * priorities until we have enough memory freed. |
3552 | */ |
3553 | do { |
3554 | shrink_zone(zone, &sc); |
3555 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
3556 | } |
3557 | |
3558 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3559 | if (nr_slab_pages0 > zone->min_slab_pages) { |
3560 | /* |
3561 | * shrink_slab() does not currently allow us to determine how |
3562 | * many pages were freed in this zone. So we take the current |
3563 | * number of slab pages and shake the slab until it is reduced |
3564 | * by the same nr_pages that we used for reclaiming unmapped |
3565 | * pages. |
3566 | */ |
3567 | nodes_clear(shrink.nodes_to_scan); |
3568 | node_set(zone_to_nid(zone), shrink.nodes_to_scan); |
3569 | for (;;) { |
3570 | unsigned long lru_pages = zone_reclaimable_pages(zone); |
3571 | |
3572 | /* No reclaimable slab or very low memory pressure */ |
3573 | if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) |
3574 | break; |
3575 | |
3576 | /* Freed enough memory */ |
3577 | nr_slab_pages1 = zone_page_state(zone, |
3578 | NR_SLAB_RECLAIMABLE); |
3579 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) |
3580 | break; |
3581 | } |
3582 | |
3583 | /* |
3584 | * Update nr_reclaimed by the number of slab pages we |
3585 | * reclaimed from this zone. |
3586 | */ |
3587 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3588 | if (nr_slab_pages1 < nr_slab_pages0) |
3589 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; |
3590 | } |
3591 | |
3592 | p->reclaim_state = NULL; |
3593 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
3594 | lockdep_clear_current_reclaim_state(); |
3595 | return sc.nr_reclaimed >= nr_pages; |
3596 | } |
3597 | |
3598 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
3599 | { |
3600 | int node_id; |
3601 | int ret; |
3602 | |
3603 | /* |
3604 | * Zone reclaim reclaims unmapped file backed pages and |
3605 | * slab pages if we are over the defined limits. |
3606 | * |
3607 | * A small portion of unmapped file backed pages is needed for |
3608 | * file I/O otherwise pages read by file I/O will be immediately |
3609 | * thrown out if the zone is overallocated. So we do not reclaim |
3610 | * if less than a specified percentage of the zone is used by |
3611 | * unmapped file backed pages. |
3612 | */ |
3613 | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && |
3614 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) |
3615 | return ZONE_RECLAIM_FULL; |
3616 | |
3617 | if (!zone_reclaimable(zone)) |
3618 | return ZONE_RECLAIM_FULL; |
3619 | |
3620 | /* |
3621 | * Do not scan if the allocation should not be delayed. |
3622 | */ |
3623 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
3624 | return ZONE_RECLAIM_NOSCAN; |
3625 | |
3626 | /* |
3627 | * Only run zone reclaim on the local zone or on zones that do not |
3628 | * have associated processors. This will favor the local processor |
3629 | * over remote processors and spread off node memory allocations |
3630 | * as wide as possible. |
3631 | */ |
3632 | node_id = zone_to_nid(zone); |
3633 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
3634 | return ZONE_RECLAIM_NOSCAN; |
3635 | |
3636 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) |
3637 | return ZONE_RECLAIM_NOSCAN; |
3638 | |
3639 | ret = __zone_reclaim(zone, gfp_mask, order); |
3640 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); |
3641 | |
3642 | if (!ret) |
3643 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); |
3644 | |
3645 | return ret; |
3646 | } |
3647 | #endif |
3648 | |
3649 | /* |
3650 | * page_evictable - test whether a page is evictable |
3651 | * @page: the page to test |
3652 | * |
3653 | * Test whether page is evictable--i.e., should be placed on active/inactive |
3654 | * lists vs unevictable list. |
3655 | * |
3656 | * Reasons page might not be evictable: |
3657 | * (1) page's mapping marked unevictable |
3658 | * (2) page is part of an mlocked VMA |
3659 | * |
3660 | */ |
3661 | int page_evictable(struct page *page) |
3662 | { |
3663 | return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); |
3664 | } |
3665 | |
3666 | #ifdef CONFIG_SHMEM |
3667 | /** |
3668 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3669 | * @pages: array of pages to check |
3670 | * @nr_pages: number of pages to check |
3671 | * |
3672 | * Checks pages for evictability and moves them to the appropriate lru list. |
3673 | * |
3674 | * This function is only used for SysV IPC SHM_UNLOCK. |
3675 | */ |
3676 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
3677 | { |
3678 | struct lruvec *lruvec; |
3679 | struct zone *zone = NULL; |
3680 | int pgscanned = 0; |
3681 | int pgrescued = 0; |
3682 | int i; |
3683 | |
3684 | for (i = 0; i < nr_pages; i++) { |
3685 | struct page *page = pages[i]; |
3686 | struct zone *pagezone; |
3687 | |
3688 | pgscanned++; |
3689 | pagezone = page_zone(page); |
3690 | if (pagezone != zone) { |
3691 | if (zone) |
3692 | spin_unlock_irq(&zone->lru_lock); |
3693 | zone = pagezone; |
3694 | spin_lock_irq(&zone->lru_lock); |
3695 | } |
3696 | lruvec = mem_cgroup_page_lruvec(page, zone); |
3697 | |
3698 | if (!PageLRU(page) || !PageUnevictable(page)) |
3699 | continue; |
3700 | |
3701 | if (page_evictable(page)) { |
3702 | enum lru_list lru = page_lru_base_type(page); |
3703 | |
3704 | VM_BUG_ON(PageActive(page)); |
3705 | ClearPageUnevictable(page); |
3706 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
3707 | add_page_to_lru_list(page, lruvec, lru); |
3708 | pgrescued++; |
3709 | } |
3710 | } |
3711 | |
3712 | if (zone) { |
3713 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
3714 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); |
3715 | spin_unlock_irq(&zone->lru_lock); |
3716 | } |
3717 | } |
3718 | #endif /* CONFIG_SHMEM */ |
3719 | |
3720 | static void warn_scan_unevictable_pages(void) |
3721 | { |
3722 | printk_once(KERN_WARNING |
3723 | "%s: The scan_unevictable_pages sysctl/node-interface has been " |
3724 | "disabled for lack of a legitimate use case. If you have " |
3725 | "one, please send an email to linux-mm@kvack.org.\n", |
3726 | current->comm); |
3727 | } |
3728 | |
3729 | /* |
3730 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of |
3731 | * all nodes' unevictable lists for evictable pages |
3732 | */ |
3733 | unsigned long scan_unevictable_pages; |
3734 | |
3735 | int scan_unevictable_handler(struct ctl_table *table, int write, |
3736 | void __user *buffer, |
3737 | size_t *length, loff_t *ppos) |
3738 | { |
3739 | warn_scan_unevictable_pages(); |
3740 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
3741 | scan_unevictable_pages = 0; |
3742 | return 0; |
3743 | } |
3744 | |
3745 | #ifdef CONFIG_NUMA |
3746 | /* |
3747 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of |
3748 | * a specified node's per zone unevictable lists for evictable pages. |
3749 | */ |
3750 | |
3751 | static ssize_t read_scan_unevictable_node(struct device *dev, |
3752 | struct device_attribute *attr, |
3753 | char *buf) |
3754 | { |
3755 | warn_scan_unevictable_pages(); |
3756 | return sprintf(buf, "0\n"); /* always zero; should fit... */ |
3757 | } |
3758 | |
3759 | static ssize_t write_scan_unevictable_node(struct device *dev, |
3760 | struct device_attribute *attr, |
3761 | const char *buf, size_t count) |
3762 | { |
3763 | warn_scan_unevictable_pages(); |
3764 | return 1; |
3765 | } |
3766 | |
3767 | |
3768 | static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, |
3769 | read_scan_unevictable_node, |
3770 | write_scan_unevictable_node); |
3771 | |
3772 | int scan_unevictable_register_node(struct node *node) |
3773 | { |
3774 | return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); |
3775 | } |
3776 | |
3777 | void scan_unevictable_unregister_node(struct node *node) |
3778 | { |
3779 | device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); |
3780 | } |
3781 | #endif |
3782 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9