Root/
1 | /* |
2 | * linux/mm/vmstat.c |
3 | * |
4 | * Manages VM statistics |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
6 | * |
7 | * zoned VM statistics |
8 | * Copyright (C) 2006 Silicon Graphics, Inc., |
9 | * Christoph Lameter <christoph@lameter.com> |
10 | */ |
11 | #include <linux/fs.h> |
12 | #include <linux/mm.h> |
13 | #include <linux/err.h> |
14 | #include <linux/module.h> |
15 | #include <linux/slab.h> |
16 | #include <linux/cpu.h> |
17 | #include <linux/vmstat.h> |
18 | #include <linux/sched.h> |
19 | #include <linux/math64.h> |
20 | #include <linux/writeback.h> |
21 | #include <linux/compaction.h> |
22 | #include <linux/mm_inline.h> |
23 | |
24 | #include "internal.h" |
25 | |
26 | #ifdef CONFIG_VM_EVENT_COUNTERS |
27 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
28 | EXPORT_PER_CPU_SYMBOL(vm_event_states); |
29 | |
30 | static void sum_vm_events(unsigned long *ret) |
31 | { |
32 | int cpu; |
33 | int i; |
34 | |
35 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
36 | |
37 | for_each_online_cpu(cpu) { |
38 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
39 | |
40 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
41 | ret[i] += this->event[i]; |
42 | } |
43 | } |
44 | |
45 | /* |
46 | * Accumulate the vm event counters across all CPUs. |
47 | * The result is unavoidably approximate - it can change |
48 | * during and after execution of this function. |
49 | */ |
50 | void all_vm_events(unsigned long *ret) |
51 | { |
52 | get_online_cpus(); |
53 | sum_vm_events(ret); |
54 | put_online_cpus(); |
55 | } |
56 | EXPORT_SYMBOL_GPL(all_vm_events); |
57 | |
58 | /* |
59 | * Fold the foreign cpu events into our own. |
60 | * |
61 | * This is adding to the events on one processor |
62 | * but keeps the global counts constant. |
63 | */ |
64 | void vm_events_fold_cpu(int cpu) |
65 | { |
66 | struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); |
67 | int i; |
68 | |
69 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { |
70 | count_vm_events(i, fold_state->event[i]); |
71 | fold_state->event[i] = 0; |
72 | } |
73 | } |
74 | |
75 | #endif /* CONFIG_VM_EVENT_COUNTERS */ |
76 | |
77 | /* |
78 | * Manage combined zone based / global counters |
79 | * |
80 | * vm_stat contains the global counters |
81 | */ |
82 | atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; |
83 | EXPORT_SYMBOL(vm_stat); |
84 | |
85 | #ifdef CONFIG_SMP |
86 | |
87 | int calculate_pressure_threshold(struct zone *zone) |
88 | { |
89 | int threshold; |
90 | int watermark_distance; |
91 | |
92 | /* |
93 | * As vmstats are not up to date, there is drift between the estimated |
94 | * and real values. For high thresholds and a high number of CPUs, it |
95 | * is possible for the min watermark to be breached while the estimated |
96 | * value looks fine. The pressure threshold is a reduced value such |
97 | * that even the maximum amount of drift will not accidentally breach |
98 | * the min watermark |
99 | */ |
100 | watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); |
101 | threshold = max(1, (int)(watermark_distance / num_online_cpus())); |
102 | |
103 | /* |
104 | * Maximum threshold is 125 |
105 | */ |
106 | threshold = min(125, threshold); |
107 | |
108 | return threshold; |
109 | } |
110 | |
111 | int calculate_normal_threshold(struct zone *zone) |
112 | { |
113 | int threshold; |
114 | int mem; /* memory in 128 MB units */ |
115 | |
116 | /* |
117 | * The threshold scales with the number of processors and the amount |
118 | * of memory per zone. More memory means that we can defer updates for |
119 | * longer, more processors could lead to more contention. |
120 | * fls() is used to have a cheap way of logarithmic scaling. |
121 | * |
122 | * Some sample thresholds: |
123 | * |
124 | * Threshold Processors (fls) Zonesize fls(mem+1) |
125 | * ------------------------------------------------------------------ |
126 | * 8 1 1 0.9-1 GB 4 |
127 | * 16 2 2 0.9-1 GB 4 |
128 | * 20 2 2 1-2 GB 5 |
129 | * 24 2 2 2-4 GB 6 |
130 | * 28 2 2 4-8 GB 7 |
131 | * 32 2 2 8-16 GB 8 |
132 | * 4 2 2 <128M 1 |
133 | * 30 4 3 2-4 GB 5 |
134 | * 48 4 3 8-16 GB 8 |
135 | * 32 8 4 1-2 GB 4 |
136 | * 32 8 4 0.9-1GB 4 |
137 | * 10 16 5 <128M 1 |
138 | * 40 16 5 900M 4 |
139 | * 70 64 7 2-4 GB 5 |
140 | * 84 64 7 4-8 GB 6 |
141 | * 108 512 9 4-8 GB 6 |
142 | * 125 1024 10 8-16 GB 8 |
143 | * 125 1024 10 16-32 GB 9 |
144 | */ |
145 | |
146 | mem = zone->managed_pages >> (27 - PAGE_SHIFT); |
147 | |
148 | threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); |
149 | |
150 | /* |
151 | * Maximum threshold is 125 |
152 | */ |
153 | threshold = min(125, threshold); |
154 | |
155 | return threshold; |
156 | } |
157 | |
158 | /* |
159 | * Refresh the thresholds for each zone. |
160 | */ |
161 | void refresh_zone_stat_thresholds(void) |
162 | { |
163 | struct zone *zone; |
164 | int cpu; |
165 | int threshold; |
166 | |
167 | for_each_populated_zone(zone) { |
168 | unsigned long max_drift, tolerate_drift; |
169 | |
170 | threshold = calculate_normal_threshold(zone); |
171 | |
172 | for_each_online_cpu(cpu) |
173 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold |
174 | = threshold; |
175 | |
176 | /* |
177 | * Only set percpu_drift_mark if there is a danger that |
178 | * NR_FREE_PAGES reports the low watermark is ok when in fact |
179 | * the min watermark could be breached by an allocation |
180 | */ |
181 | tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); |
182 | max_drift = num_online_cpus() * threshold; |
183 | if (max_drift > tolerate_drift) |
184 | zone->percpu_drift_mark = high_wmark_pages(zone) + |
185 | max_drift; |
186 | } |
187 | } |
188 | |
189 | void set_pgdat_percpu_threshold(pg_data_t *pgdat, |
190 | int (*calculate_pressure)(struct zone *)) |
191 | { |
192 | struct zone *zone; |
193 | int cpu; |
194 | int threshold; |
195 | int i; |
196 | |
197 | for (i = 0; i < pgdat->nr_zones; i++) { |
198 | zone = &pgdat->node_zones[i]; |
199 | if (!zone->percpu_drift_mark) |
200 | continue; |
201 | |
202 | threshold = (*calculate_pressure)(zone); |
203 | for_each_possible_cpu(cpu) |
204 | per_cpu_ptr(zone->pageset, cpu)->stat_threshold |
205 | = threshold; |
206 | } |
207 | } |
208 | |
209 | /* |
210 | * For use when we know that interrupts are disabled. |
211 | */ |
212 | void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
213 | int delta) |
214 | { |
215 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
216 | s8 __percpu *p = pcp->vm_stat_diff + item; |
217 | long x; |
218 | long t; |
219 | |
220 | x = delta + __this_cpu_read(*p); |
221 | |
222 | t = __this_cpu_read(pcp->stat_threshold); |
223 | |
224 | if (unlikely(x > t || x < -t)) { |
225 | zone_page_state_add(x, zone, item); |
226 | x = 0; |
227 | } |
228 | __this_cpu_write(*p, x); |
229 | } |
230 | EXPORT_SYMBOL(__mod_zone_page_state); |
231 | |
232 | /* |
233 | * Optimized increment and decrement functions. |
234 | * |
235 | * These are only for a single page and therefore can take a struct page * |
236 | * argument instead of struct zone *. This allows the inclusion of the code |
237 | * generated for page_zone(page) into the optimized functions. |
238 | * |
239 | * No overflow check is necessary and therefore the differential can be |
240 | * incremented or decremented in place which may allow the compilers to |
241 | * generate better code. |
242 | * The increment or decrement is known and therefore one boundary check can |
243 | * be omitted. |
244 | * |
245 | * NOTE: These functions are very performance sensitive. Change only |
246 | * with care. |
247 | * |
248 | * Some processors have inc/dec instructions that are atomic vs an interrupt. |
249 | * However, the code must first determine the differential location in a zone |
250 | * based on the processor number and then inc/dec the counter. There is no |
251 | * guarantee without disabling preemption that the processor will not change |
252 | * in between and therefore the atomicity vs. interrupt cannot be exploited |
253 | * in a useful way here. |
254 | */ |
255 | void __inc_zone_state(struct zone *zone, enum zone_stat_item item) |
256 | { |
257 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
258 | s8 __percpu *p = pcp->vm_stat_diff + item; |
259 | s8 v, t; |
260 | |
261 | v = __this_cpu_inc_return(*p); |
262 | t = __this_cpu_read(pcp->stat_threshold); |
263 | if (unlikely(v > t)) { |
264 | s8 overstep = t >> 1; |
265 | |
266 | zone_page_state_add(v + overstep, zone, item); |
267 | __this_cpu_write(*p, -overstep); |
268 | } |
269 | } |
270 | |
271 | void __inc_zone_page_state(struct page *page, enum zone_stat_item item) |
272 | { |
273 | __inc_zone_state(page_zone(page), item); |
274 | } |
275 | EXPORT_SYMBOL(__inc_zone_page_state); |
276 | |
277 | void __dec_zone_state(struct zone *zone, enum zone_stat_item item) |
278 | { |
279 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
280 | s8 __percpu *p = pcp->vm_stat_diff + item; |
281 | s8 v, t; |
282 | |
283 | v = __this_cpu_dec_return(*p); |
284 | t = __this_cpu_read(pcp->stat_threshold); |
285 | if (unlikely(v < - t)) { |
286 | s8 overstep = t >> 1; |
287 | |
288 | zone_page_state_add(v - overstep, zone, item); |
289 | __this_cpu_write(*p, overstep); |
290 | } |
291 | } |
292 | |
293 | void __dec_zone_page_state(struct page *page, enum zone_stat_item item) |
294 | { |
295 | __dec_zone_state(page_zone(page), item); |
296 | } |
297 | EXPORT_SYMBOL(__dec_zone_page_state); |
298 | |
299 | #ifdef CONFIG_HAVE_CMPXCHG_LOCAL |
300 | /* |
301 | * If we have cmpxchg_local support then we do not need to incur the overhead |
302 | * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. |
303 | * |
304 | * mod_state() modifies the zone counter state through atomic per cpu |
305 | * operations. |
306 | * |
307 | * Overstep mode specifies how overstep should handled: |
308 | * 0 No overstepping |
309 | * 1 Overstepping half of threshold |
310 | * -1 Overstepping minus half of threshold |
311 | */ |
312 | static inline void mod_state(struct zone *zone, |
313 | enum zone_stat_item item, int delta, int overstep_mode) |
314 | { |
315 | struct per_cpu_pageset __percpu *pcp = zone->pageset; |
316 | s8 __percpu *p = pcp->vm_stat_diff + item; |
317 | long o, n, t, z; |
318 | |
319 | do { |
320 | z = 0; /* overflow to zone counters */ |
321 | |
322 | /* |
323 | * The fetching of the stat_threshold is racy. We may apply |
324 | * a counter threshold to the wrong the cpu if we get |
325 | * rescheduled while executing here. However, the next |
326 | * counter update will apply the threshold again and |
327 | * therefore bring the counter under the threshold again. |
328 | * |
329 | * Most of the time the thresholds are the same anyways |
330 | * for all cpus in a zone. |
331 | */ |
332 | t = this_cpu_read(pcp->stat_threshold); |
333 | |
334 | o = this_cpu_read(*p); |
335 | n = delta + o; |
336 | |
337 | if (n > t || n < -t) { |
338 | int os = overstep_mode * (t >> 1) ; |
339 | |
340 | /* Overflow must be added to zone counters */ |
341 | z = n + os; |
342 | n = -os; |
343 | } |
344 | } while (this_cpu_cmpxchg(*p, o, n) != o); |
345 | |
346 | if (z) |
347 | zone_page_state_add(z, zone, item); |
348 | } |
349 | |
350 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
351 | int delta) |
352 | { |
353 | mod_state(zone, item, delta, 0); |
354 | } |
355 | EXPORT_SYMBOL(mod_zone_page_state); |
356 | |
357 | void inc_zone_state(struct zone *zone, enum zone_stat_item item) |
358 | { |
359 | mod_state(zone, item, 1, 1); |
360 | } |
361 | |
362 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
363 | { |
364 | mod_state(page_zone(page), item, 1, 1); |
365 | } |
366 | EXPORT_SYMBOL(inc_zone_page_state); |
367 | |
368 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
369 | { |
370 | mod_state(page_zone(page), item, -1, -1); |
371 | } |
372 | EXPORT_SYMBOL(dec_zone_page_state); |
373 | #else |
374 | /* |
375 | * Use interrupt disable to serialize counter updates |
376 | */ |
377 | void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, |
378 | int delta) |
379 | { |
380 | unsigned long flags; |
381 | |
382 | local_irq_save(flags); |
383 | __mod_zone_page_state(zone, item, delta); |
384 | local_irq_restore(flags); |
385 | } |
386 | EXPORT_SYMBOL(mod_zone_page_state); |
387 | |
388 | void inc_zone_state(struct zone *zone, enum zone_stat_item item) |
389 | { |
390 | unsigned long flags; |
391 | |
392 | local_irq_save(flags); |
393 | __inc_zone_state(zone, item); |
394 | local_irq_restore(flags); |
395 | } |
396 | |
397 | void inc_zone_page_state(struct page *page, enum zone_stat_item item) |
398 | { |
399 | unsigned long flags; |
400 | struct zone *zone; |
401 | |
402 | zone = page_zone(page); |
403 | local_irq_save(flags); |
404 | __inc_zone_state(zone, item); |
405 | local_irq_restore(flags); |
406 | } |
407 | EXPORT_SYMBOL(inc_zone_page_state); |
408 | |
409 | void dec_zone_page_state(struct page *page, enum zone_stat_item item) |
410 | { |
411 | unsigned long flags; |
412 | |
413 | local_irq_save(flags); |
414 | __dec_zone_page_state(page, item); |
415 | local_irq_restore(flags); |
416 | } |
417 | EXPORT_SYMBOL(dec_zone_page_state); |
418 | #endif |
419 | |
420 | static inline void fold_diff(int *diff) |
421 | { |
422 | int i; |
423 | |
424 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
425 | if (diff[i]) |
426 | atomic_long_add(diff[i], &vm_stat[i]); |
427 | } |
428 | |
429 | /* |
430 | * Update the zone counters for the current cpu. |
431 | * |
432 | * Note that refresh_cpu_vm_stats strives to only access |
433 | * node local memory. The per cpu pagesets on remote zones are placed |
434 | * in the memory local to the processor using that pageset. So the |
435 | * loop over all zones will access a series of cachelines local to |
436 | * the processor. |
437 | * |
438 | * The call to zone_page_state_add updates the cachelines with the |
439 | * statistics in the remote zone struct as well as the global cachelines |
440 | * with the global counters. These could cause remote node cache line |
441 | * bouncing and will have to be only done when necessary. |
442 | */ |
443 | static void refresh_cpu_vm_stats(void) |
444 | { |
445 | struct zone *zone; |
446 | int i; |
447 | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
448 | |
449 | for_each_populated_zone(zone) { |
450 | struct per_cpu_pageset __percpu *p = zone->pageset; |
451 | |
452 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { |
453 | int v; |
454 | |
455 | v = this_cpu_xchg(p->vm_stat_diff[i], 0); |
456 | if (v) { |
457 | |
458 | atomic_long_add(v, &zone->vm_stat[i]); |
459 | global_diff[i] += v; |
460 | #ifdef CONFIG_NUMA |
461 | /* 3 seconds idle till flush */ |
462 | __this_cpu_write(p->expire, 3); |
463 | #endif |
464 | } |
465 | } |
466 | cond_resched(); |
467 | #ifdef CONFIG_NUMA |
468 | /* |
469 | * Deal with draining the remote pageset of this |
470 | * processor |
471 | * |
472 | * Check if there are pages remaining in this pageset |
473 | * if not then there is nothing to expire. |
474 | */ |
475 | if (!__this_cpu_read(p->expire) || |
476 | !__this_cpu_read(p->pcp.count)) |
477 | continue; |
478 | |
479 | /* |
480 | * We never drain zones local to this processor. |
481 | */ |
482 | if (zone_to_nid(zone) == numa_node_id()) { |
483 | __this_cpu_write(p->expire, 0); |
484 | continue; |
485 | } |
486 | |
487 | |
488 | if (__this_cpu_dec_return(p->expire)) |
489 | continue; |
490 | |
491 | if (__this_cpu_read(p->pcp.count)) |
492 | drain_zone_pages(zone, __this_cpu_ptr(&p->pcp)); |
493 | #endif |
494 | } |
495 | fold_diff(global_diff); |
496 | } |
497 | |
498 | /* |
499 | * Fold the data for an offline cpu into the global array. |
500 | * There cannot be any access by the offline cpu and therefore |
501 | * synchronization is simplified. |
502 | */ |
503 | void cpu_vm_stats_fold(int cpu) |
504 | { |
505 | struct zone *zone; |
506 | int i; |
507 | int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; |
508 | |
509 | for_each_populated_zone(zone) { |
510 | struct per_cpu_pageset *p; |
511 | |
512 | p = per_cpu_ptr(zone->pageset, cpu); |
513 | |
514 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
515 | if (p->vm_stat_diff[i]) { |
516 | int v; |
517 | |
518 | v = p->vm_stat_diff[i]; |
519 | p->vm_stat_diff[i] = 0; |
520 | atomic_long_add(v, &zone->vm_stat[i]); |
521 | global_diff[i] += v; |
522 | } |
523 | } |
524 | |
525 | fold_diff(global_diff); |
526 | } |
527 | |
528 | /* |
529 | * this is only called if !populated_zone(zone), which implies no other users of |
530 | * pset->vm_stat_diff[] exsist. |
531 | */ |
532 | void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) |
533 | { |
534 | int i; |
535 | |
536 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
537 | if (pset->vm_stat_diff[i]) { |
538 | int v = pset->vm_stat_diff[i]; |
539 | pset->vm_stat_diff[i] = 0; |
540 | atomic_long_add(v, &zone->vm_stat[i]); |
541 | atomic_long_add(v, &vm_stat[i]); |
542 | } |
543 | } |
544 | #endif |
545 | |
546 | #ifdef CONFIG_NUMA |
547 | /* |
548 | * zonelist = the list of zones passed to the allocator |
549 | * z = the zone from which the allocation occurred. |
550 | * |
551 | * Must be called with interrupts disabled. |
552 | * |
553 | * When __GFP_OTHER_NODE is set assume the node of the preferred |
554 | * zone is the local node. This is useful for daemons who allocate |
555 | * memory on behalf of other processes. |
556 | */ |
557 | void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) |
558 | { |
559 | if (z->zone_pgdat == preferred_zone->zone_pgdat) { |
560 | __inc_zone_state(z, NUMA_HIT); |
561 | } else { |
562 | __inc_zone_state(z, NUMA_MISS); |
563 | __inc_zone_state(preferred_zone, NUMA_FOREIGN); |
564 | } |
565 | if (z->node == ((flags & __GFP_OTHER_NODE) ? |
566 | preferred_zone->node : numa_node_id())) |
567 | __inc_zone_state(z, NUMA_LOCAL); |
568 | else |
569 | __inc_zone_state(z, NUMA_OTHER); |
570 | } |
571 | #endif |
572 | |
573 | #ifdef CONFIG_COMPACTION |
574 | |
575 | struct contig_page_info { |
576 | unsigned long free_pages; |
577 | unsigned long free_blocks_total; |
578 | unsigned long free_blocks_suitable; |
579 | }; |
580 | |
581 | /* |
582 | * Calculate the number of free pages in a zone, how many contiguous |
583 | * pages are free and how many are large enough to satisfy an allocation of |
584 | * the target size. Note that this function makes no attempt to estimate |
585 | * how many suitable free blocks there *might* be if MOVABLE pages were |
586 | * migrated. Calculating that is possible, but expensive and can be |
587 | * figured out from userspace |
588 | */ |
589 | static void fill_contig_page_info(struct zone *zone, |
590 | unsigned int suitable_order, |
591 | struct contig_page_info *info) |
592 | { |
593 | unsigned int order; |
594 | |
595 | info->free_pages = 0; |
596 | info->free_blocks_total = 0; |
597 | info->free_blocks_suitable = 0; |
598 | |
599 | for (order = 0; order < MAX_ORDER; order++) { |
600 | unsigned long blocks; |
601 | |
602 | /* Count number of free blocks */ |
603 | blocks = zone->free_area[order].nr_free; |
604 | info->free_blocks_total += blocks; |
605 | |
606 | /* Count free base pages */ |
607 | info->free_pages += blocks << order; |
608 | |
609 | /* Count the suitable free blocks */ |
610 | if (order >= suitable_order) |
611 | info->free_blocks_suitable += blocks << |
612 | (order - suitable_order); |
613 | } |
614 | } |
615 | |
616 | /* |
617 | * A fragmentation index only makes sense if an allocation of a requested |
618 | * size would fail. If that is true, the fragmentation index indicates |
619 | * whether external fragmentation or a lack of memory was the problem. |
620 | * The value can be used to determine if page reclaim or compaction |
621 | * should be used |
622 | */ |
623 | static int __fragmentation_index(unsigned int order, struct contig_page_info *info) |
624 | { |
625 | unsigned long requested = 1UL << order; |
626 | |
627 | if (!info->free_blocks_total) |
628 | return 0; |
629 | |
630 | /* Fragmentation index only makes sense when a request would fail */ |
631 | if (info->free_blocks_suitable) |
632 | return -1000; |
633 | |
634 | /* |
635 | * Index is between 0 and 1 so return within 3 decimal places |
636 | * |
637 | * 0 => allocation would fail due to lack of memory |
638 | * 1 => allocation would fail due to fragmentation |
639 | */ |
640 | return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); |
641 | } |
642 | |
643 | /* Same as __fragmentation index but allocs contig_page_info on stack */ |
644 | int fragmentation_index(struct zone *zone, unsigned int order) |
645 | { |
646 | struct contig_page_info info; |
647 | |
648 | fill_contig_page_info(zone, order, &info); |
649 | return __fragmentation_index(order, &info); |
650 | } |
651 | #endif |
652 | |
653 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) |
654 | #include <linux/proc_fs.h> |
655 | #include <linux/seq_file.h> |
656 | |
657 | static char * const migratetype_names[MIGRATE_TYPES] = { |
658 | "Unmovable", |
659 | "Reclaimable", |
660 | "Movable", |
661 | "Reserve", |
662 | #ifdef CONFIG_CMA |
663 | "CMA", |
664 | #endif |
665 | #ifdef CONFIG_MEMORY_ISOLATION |
666 | "Isolate", |
667 | #endif |
668 | }; |
669 | |
670 | static void *frag_start(struct seq_file *m, loff_t *pos) |
671 | { |
672 | pg_data_t *pgdat; |
673 | loff_t node = *pos; |
674 | for (pgdat = first_online_pgdat(); |
675 | pgdat && node; |
676 | pgdat = next_online_pgdat(pgdat)) |
677 | --node; |
678 | |
679 | return pgdat; |
680 | } |
681 | |
682 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) |
683 | { |
684 | pg_data_t *pgdat = (pg_data_t *)arg; |
685 | |
686 | (*pos)++; |
687 | return next_online_pgdat(pgdat); |
688 | } |
689 | |
690 | static void frag_stop(struct seq_file *m, void *arg) |
691 | { |
692 | } |
693 | |
694 | /* Walk all the zones in a node and print using a callback */ |
695 | static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, |
696 | void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) |
697 | { |
698 | struct zone *zone; |
699 | struct zone *node_zones = pgdat->node_zones; |
700 | unsigned long flags; |
701 | |
702 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { |
703 | if (!populated_zone(zone)) |
704 | continue; |
705 | |
706 | spin_lock_irqsave(&zone->lock, flags); |
707 | print(m, pgdat, zone); |
708 | spin_unlock_irqrestore(&zone->lock, flags); |
709 | } |
710 | } |
711 | #endif |
712 | |
713 | #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) |
714 | #ifdef CONFIG_ZONE_DMA |
715 | #define TEXT_FOR_DMA(xx) xx "_dma", |
716 | #else |
717 | #define TEXT_FOR_DMA(xx) |
718 | #endif |
719 | |
720 | #ifdef CONFIG_ZONE_DMA32 |
721 | #define TEXT_FOR_DMA32(xx) xx "_dma32", |
722 | #else |
723 | #define TEXT_FOR_DMA32(xx) |
724 | #endif |
725 | |
726 | #ifdef CONFIG_HIGHMEM |
727 | #define TEXT_FOR_HIGHMEM(xx) xx "_high", |
728 | #else |
729 | #define TEXT_FOR_HIGHMEM(xx) |
730 | #endif |
731 | |
732 | #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ |
733 | TEXT_FOR_HIGHMEM(xx) xx "_movable", |
734 | |
735 | const char * const vmstat_text[] = { |
736 | /* Zoned VM counters */ |
737 | "nr_free_pages", |
738 | "nr_alloc_batch", |
739 | "nr_inactive_anon", |
740 | "nr_active_anon", |
741 | "nr_inactive_file", |
742 | "nr_active_file", |
743 | "nr_unevictable", |
744 | "nr_mlock", |
745 | "nr_anon_pages", |
746 | "nr_mapped", |
747 | "nr_file_pages", |
748 | "nr_dirty", |
749 | "nr_writeback", |
750 | "nr_slab_reclaimable", |
751 | "nr_slab_unreclaimable", |
752 | "nr_page_table_pages", |
753 | "nr_kernel_stack", |
754 | "nr_unstable", |
755 | "nr_bounce", |
756 | "nr_vmscan_write", |
757 | "nr_vmscan_immediate_reclaim", |
758 | "nr_writeback_temp", |
759 | "nr_isolated_anon", |
760 | "nr_isolated_file", |
761 | "nr_shmem", |
762 | "nr_dirtied", |
763 | "nr_written", |
764 | |
765 | #ifdef CONFIG_NUMA |
766 | "numa_hit", |
767 | "numa_miss", |
768 | "numa_foreign", |
769 | "numa_interleave", |
770 | "numa_local", |
771 | "numa_other", |
772 | #endif |
773 | "nr_anon_transparent_hugepages", |
774 | "nr_free_cma", |
775 | "nr_dirty_threshold", |
776 | "nr_dirty_background_threshold", |
777 | |
778 | #ifdef CONFIG_VM_EVENT_COUNTERS |
779 | "pgpgin", |
780 | "pgpgout", |
781 | "pswpin", |
782 | "pswpout", |
783 | |
784 | TEXTS_FOR_ZONES("pgalloc") |
785 | |
786 | "pgfree", |
787 | "pgactivate", |
788 | "pgdeactivate", |
789 | |
790 | "pgfault", |
791 | "pgmajfault", |
792 | |
793 | TEXTS_FOR_ZONES("pgrefill") |
794 | TEXTS_FOR_ZONES("pgsteal_kswapd") |
795 | TEXTS_FOR_ZONES("pgsteal_direct") |
796 | TEXTS_FOR_ZONES("pgscan_kswapd") |
797 | TEXTS_FOR_ZONES("pgscan_direct") |
798 | "pgscan_direct_throttle", |
799 | |
800 | #ifdef CONFIG_NUMA |
801 | "zone_reclaim_failed", |
802 | #endif |
803 | "pginodesteal", |
804 | "slabs_scanned", |
805 | "kswapd_inodesteal", |
806 | "kswapd_low_wmark_hit_quickly", |
807 | "kswapd_high_wmark_hit_quickly", |
808 | "pageoutrun", |
809 | "allocstall", |
810 | |
811 | "pgrotated", |
812 | |
813 | #ifdef CONFIG_NUMA_BALANCING |
814 | "numa_pte_updates", |
815 | "numa_hint_faults", |
816 | "numa_hint_faults_local", |
817 | "numa_pages_migrated", |
818 | #endif |
819 | #ifdef CONFIG_MIGRATION |
820 | "pgmigrate_success", |
821 | "pgmigrate_fail", |
822 | #endif |
823 | #ifdef CONFIG_COMPACTION |
824 | "compact_migrate_scanned", |
825 | "compact_free_scanned", |
826 | "compact_isolated", |
827 | "compact_stall", |
828 | "compact_fail", |
829 | "compact_success", |
830 | #endif |
831 | |
832 | #ifdef CONFIG_HUGETLB_PAGE |
833 | "htlb_buddy_alloc_success", |
834 | "htlb_buddy_alloc_fail", |
835 | #endif |
836 | "unevictable_pgs_culled", |
837 | "unevictable_pgs_scanned", |
838 | "unevictable_pgs_rescued", |
839 | "unevictable_pgs_mlocked", |
840 | "unevictable_pgs_munlocked", |
841 | "unevictable_pgs_cleared", |
842 | "unevictable_pgs_stranded", |
843 | |
844 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
845 | "thp_fault_alloc", |
846 | "thp_fault_fallback", |
847 | "thp_collapse_alloc", |
848 | "thp_collapse_alloc_failed", |
849 | "thp_split", |
850 | "thp_zero_page_alloc", |
851 | "thp_zero_page_alloc_failed", |
852 | #endif |
853 | #ifdef CONFIG_SMP |
854 | "nr_tlb_remote_flush", |
855 | "nr_tlb_remote_flush_received", |
856 | #endif |
857 | "nr_tlb_local_flush_all", |
858 | "nr_tlb_local_flush_one", |
859 | |
860 | #endif /* CONFIG_VM_EVENTS_COUNTERS */ |
861 | }; |
862 | #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ |
863 | |
864 | |
865 | #ifdef CONFIG_PROC_FS |
866 | static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, |
867 | struct zone *zone) |
868 | { |
869 | int order; |
870 | |
871 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
872 | for (order = 0; order < MAX_ORDER; ++order) |
873 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); |
874 | seq_putc(m, '\n'); |
875 | } |
876 | |
877 | /* |
878 | * This walks the free areas for each zone. |
879 | */ |
880 | static int frag_show(struct seq_file *m, void *arg) |
881 | { |
882 | pg_data_t *pgdat = (pg_data_t *)arg; |
883 | walk_zones_in_node(m, pgdat, frag_show_print); |
884 | return 0; |
885 | } |
886 | |
887 | static void pagetypeinfo_showfree_print(struct seq_file *m, |
888 | pg_data_t *pgdat, struct zone *zone) |
889 | { |
890 | int order, mtype; |
891 | |
892 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { |
893 | seq_printf(m, "Node %4d, zone %8s, type %12s ", |
894 | pgdat->node_id, |
895 | zone->name, |
896 | migratetype_names[mtype]); |
897 | for (order = 0; order < MAX_ORDER; ++order) { |
898 | unsigned long freecount = 0; |
899 | struct free_area *area; |
900 | struct list_head *curr; |
901 | |
902 | area = &(zone->free_area[order]); |
903 | |
904 | list_for_each(curr, &area->free_list[mtype]) |
905 | freecount++; |
906 | seq_printf(m, "%6lu ", freecount); |
907 | } |
908 | seq_putc(m, '\n'); |
909 | } |
910 | } |
911 | |
912 | /* Print out the free pages at each order for each migatetype */ |
913 | static int pagetypeinfo_showfree(struct seq_file *m, void *arg) |
914 | { |
915 | int order; |
916 | pg_data_t *pgdat = (pg_data_t *)arg; |
917 | |
918 | /* Print header */ |
919 | seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); |
920 | for (order = 0; order < MAX_ORDER; ++order) |
921 | seq_printf(m, "%6d ", order); |
922 | seq_putc(m, '\n'); |
923 | |
924 | walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); |
925 | |
926 | return 0; |
927 | } |
928 | |
929 | static void pagetypeinfo_showblockcount_print(struct seq_file *m, |
930 | pg_data_t *pgdat, struct zone *zone) |
931 | { |
932 | int mtype; |
933 | unsigned long pfn; |
934 | unsigned long start_pfn = zone->zone_start_pfn; |
935 | unsigned long end_pfn = zone_end_pfn(zone); |
936 | unsigned long count[MIGRATE_TYPES] = { 0, }; |
937 | |
938 | for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { |
939 | struct page *page; |
940 | |
941 | if (!pfn_valid(pfn)) |
942 | continue; |
943 | |
944 | page = pfn_to_page(pfn); |
945 | |
946 | /* Watch for unexpected holes punched in the memmap */ |
947 | if (!memmap_valid_within(pfn, page, zone)) |
948 | continue; |
949 | |
950 | mtype = get_pageblock_migratetype(page); |
951 | |
952 | if (mtype < MIGRATE_TYPES) |
953 | count[mtype]++; |
954 | } |
955 | |
956 | /* Print counts */ |
957 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); |
958 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
959 | seq_printf(m, "%12lu ", count[mtype]); |
960 | seq_putc(m, '\n'); |
961 | } |
962 | |
963 | /* Print out the free pages at each order for each migratetype */ |
964 | static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) |
965 | { |
966 | int mtype; |
967 | pg_data_t *pgdat = (pg_data_t *)arg; |
968 | |
969 | seq_printf(m, "\n%-23s", "Number of blocks type "); |
970 | for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) |
971 | seq_printf(m, "%12s ", migratetype_names[mtype]); |
972 | seq_putc(m, '\n'); |
973 | walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); |
974 | |
975 | return 0; |
976 | } |
977 | |
978 | /* |
979 | * This prints out statistics in relation to grouping pages by mobility. |
980 | * It is expensive to collect so do not constantly read the file. |
981 | */ |
982 | static int pagetypeinfo_show(struct seq_file *m, void *arg) |
983 | { |
984 | pg_data_t *pgdat = (pg_data_t *)arg; |
985 | |
986 | /* check memoryless node */ |
987 | if (!node_state(pgdat->node_id, N_MEMORY)) |
988 | return 0; |
989 | |
990 | seq_printf(m, "Page block order: %d\n", pageblock_order); |
991 | seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); |
992 | seq_putc(m, '\n'); |
993 | pagetypeinfo_showfree(m, pgdat); |
994 | pagetypeinfo_showblockcount(m, pgdat); |
995 | |
996 | return 0; |
997 | } |
998 | |
999 | static const struct seq_operations fragmentation_op = { |
1000 | .start = frag_start, |
1001 | .next = frag_next, |
1002 | .stop = frag_stop, |
1003 | .show = frag_show, |
1004 | }; |
1005 | |
1006 | static int fragmentation_open(struct inode *inode, struct file *file) |
1007 | { |
1008 | return seq_open(file, &fragmentation_op); |
1009 | } |
1010 | |
1011 | static const struct file_operations fragmentation_file_operations = { |
1012 | .open = fragmentation_open, |
1013 | .read = seq_read, |
1014 | .llseek = seq_lseek, |
1015 | .release = seq_release, |
1016 | }; |
1017 | |
1018 | static const struct seq_operations pagetypeinfo_op = { |
1019 | .start = frag_start, |
1020 | .next = frag_next, |
1021 | .stop = frag_stop, |
1022 | .show = pagetypeinfo_show, |
1023 | }; |
1024 | |
1025 | static int pagetypeinfo_open(struct inode *inode, struct file *file) |
1026 | { |
1027 | return seq_open(file, &pagetypeinfo_op); |
1028 | } |
1029 | |
1030 | static const struct file_operations pagetypeinfo_file_ops = { |
1031 | .open = pagetypeinfo_open, |
1032 | .read = seq_read, |
1033 | .llseek = seq_lseek, |
1034 | .release = seq_release, |
1035 | }; |
1036 | |
1037 | static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, |
1038 | struct zone *zone) |
1039 | { |
1040 | int i; |
1041 | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); |
1042 | seq_printf(m, |
1043 | "\n pages free %lu" |
1044 | "\n min %lu" |
1045 | "\n low %lu" |
1046 | "\n high %lu" |
1047 | "\n scanned %lu" |
1048 | "\n spanned %lu" |
1049 | "\n present %lu" |
1050 | "\n managed %lu", |
1051 | zone_page_state(zone, NR_FREE_PAGES), |
1052 | min_wmark_pages(zone), |
1053 | low_wmark_pages(zone), |
1054 | high_wmark_pages(zone), |
1055 | zone->pages_scanned, |
1056 | zone->spanned_pages, |
1057 | zone->present_pages, |
1058 | zone->managed_pages); |
1059 | |
1060 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
1061 | seq_printf(m, "\n %-12s %lu", vmstat_text[i], |
1062 | zone_page_state(zone, i)); |
1063 | |
1064 | seq_printf(m, |
1065 | "\n protection: (%lu", |
1066 | zone->lowmem_reserve[0]); |
1067 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) |
1068 | seq_printf(m, ", %lu", zone->lowmem_reserve[i]); |
1069 | seq_printf(m, |
1070 | ")" |
1071 | "\n pagesets"); |
1072 | for_each_online_cpu(i) { |
1073 | struct per_cpu_pageset *pageset; |
1074 | |
1075 | pageset = per_cpu_ptr(zone->pageset, i); |
1076 | seq_printf(m, |
1077 | "\n cpu: %i" |
1078 | "\n count: %i" |
1079 | "\n high: %i" |
1080 | "\n batch: %i", |
1081 | i, |
1082 | pageset->pcp.count, |
1083 | pageset->pcp.high, |
1084 | pageset->pcp.batch); |
1085 | #ifdef CONFIG_SMP |
1086 | seq_printf(m, "\n vm stats threshold: %d", |
1087 | pageset->stat_threshold); |
1088 | #endif |
1089 | } |
1090 | seq_printf(m, |
1091 | "\n all_unreclaimable: %u" |
1092 | "\n start_pfn: %lu" |
1093 | "\n inactive_ratio: %u", |
1094 | !zone_reclaimable(zone), |
1095 | zone->zone_start_pfn, |
1096 | zone->inactive_ratio); |
1097 | seq_putc(m, '\n'); |
1098 | } |
1099 | |
1100 | /* |
1101 | * Output information about zones in @pgdat. |
1102 | */ |
1103 | static int zoneinfo_show(struct seq_file *m, void *arg) |
1104 | { |
1105 | pg_data_t *pgdat = (pg_data_t *)arg; |
1106 | walk_zones_in_node(m, pgdat, zoneinfo_show_print); |
1107 | return 0; |
1108 | } |
1109 | |
1110 | static const struct seq_operations zoneinfo_op = { |
1111 | .start = frag_start, /* iterate over all zones. The same as in |
1112 | * fragmentation. */ |
1113 | .next = frag_next, |
1114 | .stop = frag_stop, |
1115 | .show = zoneinfo_show, |
1116 | }; |
1117 | |
1118 | static int zoneinfo_open(struct inode *inode, struct file *file) |
1119 | { |
1120 | return seq_open(file, &zoneinfo_op); |
1121 | } |
1122 | |
1123 | static const struct file_operations proc_zoneinfo_file_operations = { |
1124 | .open = zoneinfo_open, |
1125 | .read = seq_read, |
1126 | .llseek = seq_lseek, |
1127 | .release = seq_release, |
1128 | }; |
1129 | |
1130 | enum writeback_stat_item { |
1131 | NR_DIRTY_THRESHOLD, |
1132 | NR_DIRTY_BG_THRESHOLD, |
1133 | NR_VM_WRITEBACK_STAT_ITEMS, |
1134 | }; |
1135 | |
1136 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
1137 | { |
1138 | unsigned long *v; |
1139 | int i, stat_items_size; |
1140 | |
1141 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
1142 | return NULL; |
1143 | stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + |
1144 | NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); |
1145 | |
1146 | #ifdef CONFIG_VM_EVENT_COUNTERS |
1147 | stat_items_size += sizeof(struct vm_event_state); |
1148 | #endif |
1149 | |
1150 | v = kmalloc(stat_items_size, GFP_KERNEL); |
1151 | m->private = v; |
1152 | if (!v) |
1153 | return ERR_PTR(-ENOMEM); |
1154 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
1155 | v[i] = global_page_state(i); |
1156 | v += NR_VM_ZONE_STAT_ITEMS; |
1157 | |
1158 | global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, |
1159 | v + NR_DIRTY_THRESHOLD); |
1160 | v += NR_VM_WRITEBACK_STAT_ITEMS; |
1161 | |
1162 | #ifdef CONFIG_VM_EVENT_COUNTERS |
1163 | all_vm_events(v); |
1164 | v[PGPGIN] /= 2; /* sectors -> kbytes */ |
1165 | v[PGPGOUT] /= 2; |
1166 | #endif |
1167 | return (unsigned long *)m->private + *pos; |
1168 | } |
1169 | |
1170 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |
1171 | { |
1172 | (*pos)++; |
1173 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
1174 | return NULL; |
1175 | return (unsigned long *)m->private + *pos; |
1176 | } |
1177 | |
1178 | static int vmstat_show(struct seq_file *m, void *arg) |
1179 | { |
1180 | unsigned long *l = arg; |
1181 | unsigned long off = l - (unsigned long *)m->private; |
1182 | |
1183 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); |
1184 | return 0; |
1185 | } |
1186 | |
1187 | static void vmstat_stop(struct seq_file *m, void *arg) |
1188 | { |
1189 | kfree(m->private); |
1190 | m->private = NULL; |
1191 | } |
1192 | |
1193 | static const struct seq_operations vmstat_op = { |
1194 | .start = vmstat_start, |
1195 | .next = vmstat_next, |
1196 | .stop = vmstat_stop, |
1197 | .show = vmstat_show, |
1198 | }; |
1199 | |
1200 | static int vmstat_open(struct inode *inode, struct file *file) |
1201 | { |
1202 | return seq_open(file, &vmstat_op); |
1203 | } |
1204 | |
1205 | static const struct file_operations proc_vmstat_file_operations = { |
1206 | .open = vmstat_open, |
1207 | .read = seq_read, |
1208 | .llseek = seq_lseek, |
1209 | .release = seq_release, |
1210 | }; |
1211 | #endif /* CONFIG_PROC_FS */ |
1212 | |
1213 | #ifdef CONFIG_SMP |
1214 | static DEFINE_PER_CPU(struct delayed_work, vmstat_work); |
1215 | int sysctl_stat_interval __read_mostly = HZ; |
1216 | |
1217 | static void vmstat_update(struct work_struct *w) |
1218 | { |
1219 | refresh_cpu_vm_stats(); |
1220 | schedule_delayed_work(&__get_cpu_var(vmstat_work), |
1221 | round_jiffies_relative(sysctl_stat_interval)); |
1222 | } |
1223 | |
1224 | static void start_cpu_timer(int cpu) |
1225 | { |
1226 | struct delayed_work *work = &per_cpu(vmstat_work, cpu); |
1227 | |
1228 | INIT_DEFERRABLE_WORK(work, vmstat_update); |
1229 | schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); |
1230 | } |
1231 | |
1232 | /* |
1233 | * Use the cpu notifier to insure that the thresholds are recalculated |
1234 | * when necessary. |
1235 | */ |
1236 | static int vmstat_cpuup_callback(struct notifier_block *nfb, |
1237 | unsigned long action, |
1238 | void *hcpu) |
1239 | { |
1240 | long cpu = (long)hcpu; |
1241 | |
1242 | switch (action) { |
1243 | case CPU_ONLINE: |
1244 | case CPU_ONLINE_FROZEN: |
1245 | refresh_zone_stat_thresholds(); |
1246 | start_cpu_timer(cpu); |
1247 | node_set_state(cpu_to_node(cpu), N_CPU); |
1248 | break; |
1249 | case CPU_DOWN_PREPARE: |
1250 | case CPU_DOWN_PREPARE_FROZEN: |
1251 | cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); |
1252 | per_cpu(vmstat_work, cpu).work.func = NULL; |
1253 | break; |
1254 | case CPU_DOWN_FAILED: |
1255 | case CPU_DOWN_FAILED_FROZEN: |
1256 | start_cpu_timer(cpu); |
1257 | break; |
1258 | case CPU_DEAD: |
1259 | case CPU_DEAD_FROZEN: |
1260 | refresh_zone_stat_thresholds(); |
1261 | break; |
1262 | default: |
1263 | break; |
1264 | } |
1265 | return NOTIFY_OK; |
1266 | } |
1267 | |
1268 | static struct notifier_block vmstat_notifier = |
1269 | { &vmstat_cpuup_callback, NULL, 0 }; |
1270 | #endif |
1271 | |
1272 | static int __init setup_vmstat(void) |
1273 | { |
1274 | #ifdef CONFIG_SMP |
1275 | int cpu; |
1276 | |
1277 | register_cpu_notifier(&vmstat_notifier); |
1278 | |
1279 | for_each_online_cpu(cpu) |
1280 | start_cpu_timer(cpu); |
1281 | #endif |
1282 | #ifdef CONFIG_PROC_FS |
1283 | proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); |
1284 | proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); |
1285 | proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); |
1286 | proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); |
1287 | #endif |
1288 | return 0; |
1289 | } |
1290 | module_init(setup_vmstat) |
1291 | |
1292 | #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) |
1293 | #include <linux/debugfs.h> |
1294 | |
1295 | |
1296 | /* |
1297 | * Return an index indicating how much of the available free memory is |
1298 | * unusable for an allocation of the requested size. |
1299 | */ |
1300 | static int unusable_free_index(unsigned int order, |
1301 | struct contig_page_info *info) |
1302 | { |
1303 | /* No free memory is interpreted as all free memory is unusable */ |
1304 | if (info->free_pages == 0) |
1305 | return 1000; |
1306 | |
1307 | /* |
1308 | * Index should be a value between 0 and 1. Return a value to 3 |
1309 | * decimal places. |
1310 | * |
1311 | * 0 => no fragmentation |
1312 | * 1 => high fragmentation |
1313 | */ |
1314 | return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); |
1315 | |
1316 | } |
1317 | |
1318 | static void unusable_show_print(struct seq_file *m, |
1319 | pg_data_t *pgdat, struct zone *zone) |
1320 | { |
1321 | unsigned int order; |
1322 | int index; |
1323 | struct contig_page_info info; |
1324 | |
1325 | seq_printf(m, "Node %d, zone %8s ", |
1326 | pgdat->node_id, |
1327 | zone->name); |
1328 | for (order = 0; order < MAX_ORDER; ++order) { |
1329 | fill_contig_page_info(zone, order, &info); |
1330 | index = unusable_free_index(order, &info); |
1331 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); |
1332 | } |
1333 | |
1334 | seq_putc(m, '\n'); |
1335 | } |
1336 | |
1337 | /* |
1338 | * Display unusable free space index |
1339 | * |
1340 | * The unusable free space index measures how much of the available free |
1341 | * memory cannot be used to satisfy an allocation of a given size and is a |
1342 | * value between 0 and 1. The higher the value, the more of free memory is |
1343 | * unusable and by implication, the worse the external fragmentation is. This |
1344 | * can be expressed as a percentage by multiplying by 100. |
1345 | */ |
1346 | static int unusable_show(struct seq_file *m, void *arg) |
1347 | { |
1348 | pg_data_t *pgdat = (pg_data_t *)arg; |
1349 | |
1350 | /* check memoryless node */ |
1351 | if (!node_state(pgdat->node_id, N_MEMORY)) |
1352 | return 0; |
1353 | |
1354 | walk_zones_in_node(m, pgdat, unusable_show_print); |
1355 | |
1356 | return 0; |
1357 | } |
1358 | |
1359 | static const struct seq_operations unusable_op = { |
1360 | .start = frag_start, |
1361 | .next = frag_next, |
1362 | .stop = frag_stop, |
1363 | .show = unusable_show, |
1364 | }; |
1365 | |
1366 | static int unusable_open(struct inode *inode, struct file *file) |
1367 | { |
1368 | return seq_open(file, &unusable_op); |
1369 | } |
1370 | |
1371 | static const struct file_operations unusable_file_ops = { |
1372 | .open = unusable_open, |
1373 | .read = seq_read, |
1374 | .llseek = seq_lseek, |
1375 | .release = seq_release, |
1376 | }; |
1377 | |
1378 | static void extfrag_show_print(struct seq_file *m, |
1379 | pg_data_t *pgdat, struct zone *zone) |
1380 | { |
1381 | unsigned int order; |
1382 | int index; |
1383 | |
1384 | /* Alloc on stack as interrupts are disabled for zone walk */ |
1385 | struct contig_page_info info; |
1386 | |
1387 | seq_printf(m, "Node %d, zone %8s ", |
1388 | pgdat->node_id, |
1389 | zone->name); |
1390 | for (order = 0; order < MAX_ORDER; ++order) { |
1391 | fill_contig_page_info(zone, order, &info); |
1392 | index = __fragmentation_index(order, &info); |
1393 | seq_printf(m, "%d.%03d ", index / 1000, index % 1000); |
1394 | } |
1395 | |
1396 | seq_putc(m, '\n'); |
1397 | } |
1398 | |
1399 | /* |
1400 | * Display fragmentation index for orders that allocations would fail for |
1401 | */ |
1402 | static int extfrag_show(struct seq_file *m, void *arg) |
1403 | { |
1404 | pg_data_t *pgdat = (pg_data_t *)arg; |
1405 | |
1406 | walk_zones_in_node(m, pgdat, extfrag_show_print); |
1407 | |
1408 | return 0; |
1409 | } |
1410 | |
1411 | static const struct seq_operations extfrag_op = { |
1412 | .start = frag_start, |
1413 | .next = frag_next, |
1414 | .stop = frag_stop, |
1415 | .show = extfrag_show, |
1416 | }; |
1417 | |
1418 | static int extfrag_open(struct inode *inode, struct file *file) |
1419 | { |
1420 | return seq_open(file, &extfrag_op); |
1421 | } |
1422 | |
1423 | static const struct file_operations extfrag_file_ops = { |
1424 | .open = extfrag_open, |
1425 | .read = seq_read, |
1426 | .llseek = seq_lseek, |
1427 | .release = seq_release, |
1428 | }; |
1429 | |
1430 | static int __init extfrag_debug_init(void) |
1431 | { |
1432 | struct dentry *extfrag_debug_root; |
1433 | |
1434 | extfrag_debug_root = debugfs_create_dir("extfrag", NULL); |
1435 | if (!extfrag_debug_root) |
1436 | return -ENOMEM; |
1437 | |
1438 | if (!debugfs_create_file("unusable_index", 0444, |
1439 | extfrag_debug_root, NULL, &unusable_file_ops)) |
1440 | goto fail; |
1441 | |
1442 | if (!debugfs_create_file("extfrag_index", 0444, |
1443 | extfrag_debug_root, NULL, &extfrag_file_ops)) |
1444 | goto fail; |
1445 | |
1446 | return 0; |
1447 | fail: |
1448 | debugfs_remove_recursive(extfrag_debug_root); |
1449 | return -ENOMEM; |
1450 | } |
1451 | |
1452 | module_init(extfrag_debug_init); |
1453 | #endif |
1454 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9