Root/mm/vmstat.c

1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/err.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16#include <linux/cpu.h>
17#include <linux/vmstat.h>
18#include <linux/sched.h>
19#include <linux/math64.h>
20#include <linux/writeback.h>
21#include <linux/compaction.h>
22#include <linux/mm_inline.h>
23
24#include "internal.h"
25
26#ifdef CONFIG_VM_EVENT_COUNTERS
27DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
28EXPORT_PER_CPU_SYMBOL(vm_event_states);
29
30static void sum_vm_events(unsigned long *ret)
31{
32    int cpu;
33    int i;
34
35    memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
36
37    for_each_online_cpu(cpu) {
38        struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
39
40        for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
41            ret[i] += this->event[i];
42    }
43}
44
45/*
46 * Accumulate the vm event counters across all CPUs.
47 * The result is unavoidably approximate - it can change
48 * during and after execution of this function.
49*/
50void all_vm_events(unsigned long *ret)
51{
52    get_online_cpus();
53    sum_vm_events(ret);
54    put_online_cpus();
55}
56EXPORT_SYMBOL_GPL(all_vm_events);
57
58/*
59 * Fold the foreign cpu events into our own.
60 *
61 * This is adding to the events on one processor
62 * but keeps the global counts constant.
63 */
64void vm_events_fold_cpu(int cpu)
65{
66    struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
67    int i;
68
69    for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
70        count_vm_events(i, fold_state->event[i]);
71        fold_state->event[i] = 0;
72    }
73}
74
75#endif /* CONFIG_VM_EVENT_COUNTERS */
76
77/*
78 * Manage combined zone based / global counters
79 *
80 * vm_stat contains the global counters
81 */
82atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
83EXPORT_SYMBOL(vm_stat);
84
85#ifdef CONFIG_SMP
86
87int calculate_pressure_threshold(struct zone *zone)
88{
89    int threshold;
90    int watermark_distance;
91
92    /*
93     * As vmstats are not up to date, there is drift between the estimated
94     * and real values. For high thresholds and a high number of CPUs, it
95     * is possible for the min watermark to be breached while the estimated
96     * value looks fine. The pressure threshold is a reduced value such
97     * that even the maximum amount of drift will not accidentally breach
98     * the min watermark
99     */
100    watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
101    threshold = max(1, (int)(watermark_distance / num_online_cpus()));
102
103    /*
104     * Maximum threshold is 125
105     */
106    threshold = min(125, threshold);
107
108    return threshold;
109}
110
111int calculate_normal_threshold(struct zone *zone)
112{
113    int threshold;
114    int mem; /* memory in 128 MB units */
115
116    /*
117     * The threshold scales with the number of processors and the amount
118     * of memory per zone. More memory means that we can defer updates for
119     * longer, more processors could lead to more contention.
120      * fls() is used to have a cheap way of logarithmic scaling.
121     *
122     * Some sample thresholds:
123     *
124     * Threshold Processors (fls) Zonesize fls(mem+1)
125     * ------------------------------------------------------------------
126     * 8 1 1 0.9-1 GB 4
127     * 16 2 2 0.9-1 GB 4
128     * 20 2 2 1-2 GB 5
129     * 24 2 2 2-4 GB 6
130     * 28 2 2 4-8 GB 7
131     * 32 2 2 8-16 GB 8
132     * 4 2 2 <128M 1
133     * 30 4 3 2-4 GB 5
134     * 48 4 3 8-16 GB 8
135     * 32 8 4 1-2 GB 4
136     * 32 8 4 0.9-1GB 4
137     * 10 16 5 <128M 1
138     * 40 16 5 900M 4
139     * 70 64 7 2-4 GB 5
140     * 84 64 7 4-8 GB 6
141     * 108 512 9 4-8 GB 6
142     * 125 1024 10 8-16 GB 8
143     * 125 1024 10 16-32 GB 9
144     */
145
146    mem = zone->managed_pages >> (27 - PAGE_SHIFT);
147
148    threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
149
150    /*
151     * Maximum threshold is 125
152     */
153    threshold = min(125, threshold);
154
155    return threshold;
156}
157
158/*
159 * Refresh the thresholds for each zone.
160 */
161void refresh_zone_stat_thresholds(void)
162{
163    struct zone *zone;
164    int cpu;
165    int threshold;
166
167    for_each_populated_zone(zone) {
168        unsigned long max_drift, tolerate_drift;
169
170        threshold = calculate_normal_threshold(zone);
171
172        for_each_online_cpu(cpu)
173            per_cpu_ptr(zone->pageset, cpu)->stat_threshold
174                            = threshold;
175
176        /*
177         * Only set percpu_drift_mark if there is a danger that
178         * NR_FREE_PAGES reports the low watermark is ok when in fact
179         * the min watermark could be breached by an allocation
180         */
181        tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
182        max_drift = num_online_cpus() * threshold;
183        if (max_drift > tolerate_drift)
184            zone->percpu_drift_mark = high_wmark_pages(zone) +
185                    max_drift;
186    }
187}
188
189void set_pgdat_percpu_threshold(pg_data_t *pgdat,
190                int (*calculate_pressure)(struct zone *))
191{
192    struct zone *zone;
193    int cpu;
194    int threshold;
195    int i;
196
197    for (i = 0; i < pgdat->nr_zones; i++) {
198        zone = &pgdat->node_zones[i];
199        if (!zone->percpu_drift_mark)
200            continue;
201
202        threshold = (*calculate_pressure)(zone);
203        for_each_possible_cpu(cpu)
204            per_cpu_ptr(zone->pageset, cpu)->stat_threshold
205                            = threshold;
206    }
207}
208
209/*
210 * For use when we know that interrupts are disabled.
211 */
212void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
213                int delta)
214{
215    struct per_cpu_pageset __percpu *pcp = zone->pageset;
216    s8 __percpu *p = pcp->vm_stat_diff + item;
217    long x;
218    long t;
219
220    x = delta + __this_cpu_read(*p);
221
222    t = __this_cpu_read(pcp->stat_threshold);
223
224    if (unlikely(x > t || x < -t)) {
225        zone_page_state_add(x, zone, item);
226        x = 0;
227    }
228    __this_cpu_write(*p, x);
229}
230EXPORT_SYMBOL(__mod_zone_page_state);
231
232/*
233 * Optimized increment and decrement functions.
234 *
235 * These are only for a single page and therefore can take a struct page *
236 * argument instead of struct zone *. This allows the inclusion of the code
237 * generated for page_zone(page) into the optimized functions.
238 *
239 * No overflow check is necessary and therefore the differential can be
240 * incremented or decremented in place which may allow the compilers to
241 * generate better code.
242 * The increment or decrement is known and therefore one boundary check can
243 * be omitted.
244 *
245 * NOTE: These functions are very performance sensitive. Change only
246 * with care.
247 *
248 * Some processors have inc/dec instructions that are atomic vs an interrupt.
249 * However, the code must first determine the differential location in a zone
250 * based on the processor number and then inc/dec the counter. There is no
251 * guarantee without disabling preemption that the processor will not change
252 * in between and therefore the atomicity vs. interrupt cannot be exploited
253 * in a useful way here.
254 */
255void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
256{
257    struct per_cpu_pageset __percpu *pcp = zone->pageset;
258    s8 __percpu *p = pcp->vm_stat_diff + item;
259    s8 v, t;
260
261    v = __this_cpu_inc_return(*p);
262    t = __this_cpu_read(pcp->stat_threshold);
263    if (unlikely(v > t)) {
264        s8 overstep = t >> 1;
265
266        zone_page_state_add(v + overstep, zone, item);
267        __this_cpu_write(*p, -overstep);
268    }
269}
270
271void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
272{
273    __inc_zone_state(page_zone(page), item);
274}
275EXPORT_SYMBOL(__inc_zone_page_state);
276
277void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
278{
279    struct per_cpu_pageset __percpu *pcp = zone->pageset;
280    s8 __percpu *p = pcp->vm_stat_diff + item;
281    s8 v, t;
282
283    v = __this_cpu_dec_return(*p);
284    t = __this_cpu_read(pcp->stat_threshold);
285    if (unlikely(v < - t)) {
286        s8 overstep = t >> 1;
287
288        zone_page_state_add(v - overstep, zone, item);
289        __this_cpu_write(*p, overstep);
290    }
291}
292
293void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
294{
295    __dec_zone_state(page_zone(page), item);
296}
297EXPORT_SYMBOL(__dec_zone_page_state);
298
299#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
300/*
301 * If we have cmpxchg_local support then we do not need to incur the overhead
302 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
303 *
304 * mod_state() modifies the zone counter state through atomic per cpu
305 * operations.
306 *
307 * Overstep mode specifies how overstep should handled:
308 * 0 No overstepping
309 * 1 Overstepping half of threshold
310 * -1 Overstepping minus half of threshold
311*/
312static inline void mod_state(struct zone *zone,
313       enum zone_stat_item item, int delta, int overstep_mode)
314{
315    struct per_cpu_pageset __percpu *pcp = zone->pageset;
316    s8 __percpu *p = pcp->vm_stat_diff + item;
317    long o, n, t, z;
318
319    do {
320        z = 0; /* overflow to zone counters */
321
322        /*
323         * The fetching of the stat_threshold is racy. We may apply
324         * a counter threshold to the wrong the cpu if we get
325         * rescheduled while executing here. However, the next
326         * counter update will apply the threshold again and
327         * therefore bring the counter under the threshold again.
328         *
329         * Most of the time the thresholds are the same anyways
330         * for all cpus in a zone.
331         */
332        t = this_cpu_read(pcp->stat_threshold);
333
334        o = this_cpu_read(*p);
335        n = delta + o;
336
337        if (n > t || n < -t) {
338            int os = overstep_mode * (t >> 1) ;
339
340            /* Overflow must be added to zone counters */
341            z = n + os;
342            n = -os;
343        }
344    } while (this_cpu_cmpxchg(*p, o, n) != o);
345
346    if (z)
347        zone_page_state_add(z, zone, item);
348}
349
350void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
351                    int delta)
352{
353    mod_state(zone, item, delta, 0);
354}
355EXPORT_SYMBOL(mod_zone_page_state);
356
357void inc_zone_state(struct zone *zone, enum zone_stat_item item)
358{
359    mod_state(zone, item, 1, 1);
360}
361
362void inc_zone_page_state(struct page *page, enum zone_stat_item item)
363{
364    mod_state(page_zone(page), item, 1, 1);
365}
366EXPORT_SYMBOL(inc_zone_page_state);
367
368void dec_zone_page_state(struct page *page, enum zone_stat_item item)
369{
370    mod_state(page_zone(page), item, -1, -1);
371}
372EXPORT_SYMBOL(dec_zone_page_state);
373#else
374/*
375 * Use interrupt disable to serialize counter updates
376 */
377void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
378                    int delta)
379{
380    unsigned long flags;
381
382    local_irq_save(flags);
383    __mod_zone_page_state(zone, item, delta);
384    local_irq_restore(flags);
385}
386EXPORT_SYMBOL(mod_zone_page_state);
387
388void inc_zone_state(struct zone *zone, enum zone_stat_item item)
389{
390    unsigned long flags;
391
392    local_irq_save(flags);
393    __inc_zone_state(zone, item);
394    local_irq_restore(flags);
395}
396
397void inc_zone_page_state(struct page *page, enum zone_stat_item item)
398{
399    unsigned long flags;
400    struct zone *zone;
401
402    zone = page_zone(page);
403    local_irq_save(flags);
404    __inc_zone_state(zone, item);
405    local_irq_restore(flags);
406}
407EXPORT_SYMBOL(inc_zone_page_state);
408
409void dec_zone_page_state(struct page *page, enum zone_stat_item item)
410{
411    unsigned long flags;
412
413    local_irq_save(flags);
414    __dec_zone_page_state(page, item);
415    local_irq_restore(flags);
416}
417EXPORT_SYMBOL(dec_zone_page_state);
418#endif
419
420static inline void fold_diff(int *diff)
421{
422    int i;
423
424    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
425        if (diff[i])
426            atomic_long_add(diff[i], &vm_stat[i]);
427}
428
429/*
430 * Update the zone counters for the current cpu.
431 *
432 * Note that refresh_cpu_vm_stats strives to only access
433 * node local memory. The per cpu pagesets on remote zones are placed
434 * in the memory local to the processor using that pageset. So the
435 * loop over all zones will access a series of cachelines local to
436 * the processor.
437 *
438 * The call to zone_page_state_add updates the cachelines with the
439 * statistics in the remote zone struct as well as the global cachelines
440 * with the global counters. These could cause remote node cache line
441 * bouncing and will have to be only done when necessary.
442 */
443static void refresh_cpu_vm_stats(void)
444{
445    struct zone *zone;
446    int i;
447    int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
448
449    for_each_populated_zone(zone) {
450        struct per_cpu_pageset __percpu *p = zone->pageset;
451
452        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
453            int v;
454
455            v = this_cpu_xchg(p->vm_stat_diff[i], 0);
456            if (v) {
457
458                atomic_long_add(v, &zone->vm_stat[i]);
459                global_diff[i] += v;
460#ifdef CONFIG_NUMA
461                /* 3 seconds idle till flush */
462                __this_cpu_write(p->expire, 3);
463#endif
464            }
465        }
466        cond_resched();
467#ifdef CONFIG_NUMA
468        /*
469         * Deal with draining the remote pageset of this
470         * processor
471         *
472         * Check if there are pages remaining in this pageset
473         * if not then there is nothing to expire.
474         */
475        if (!__this_cpu_read(p->expire) ||
476                   !__this_cpu_read(p->pcp.count))
477            continue;
478
479        /*
480         * We never drain zones local to this processor.
481         */
482        if (zone_to_nid(zone) == numa_node_id()) {
483            __this_cpu_write(p->expire, 0);
484            continue;
485        }
486
487
488        if (__this_cpu_dec_return(p->expire))
489            continue;
490
491        if (__this_cpu_read(p->pcp.count))
492            drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
493#endif
494    }
495    fold_diff(global_diff);
496}
497
498/*
499 * Fold the data for an offline cpu into the global array.
500 * There cannot be any access by the offline cpu and therefore
501 * synchronization is simplified.
502 */
503void cpu_vm_stats_fold(int cpu)
504{
505    struct zone *zone;
506    int i;
507    int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
508
509    for_each_populated_zone(zone) {
510        struct per_cpu_pageset *p;
511
512        p = per_cpu_ptr(zone->pageset, cpu);
513
514        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
515            if (p->vm_stat_diff[i]) {
516                int v;
517
518                v = p->vm_stat_diff[i];
519                p->vm_stat_diff[i] = 0;
520                atomic_long_add(v, &zone->vm_stat[i]);
521                global_diff[i] += v;
522            }
523    }
524
525    fold_diff(global_diff);
526}
527
528/*
529 * this is only called if !populated_zone(zone), which implies no other users of
530 * pset->vm_stat_diff[] exsist.
531 */
532void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
533{
534    int i;
535
536    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
537        if (pset->vm_stat_diff[i]) {
538            int v = pset->vm_stat_diff[i];
539            pset->vm_stat_diff[i] = 0;
540            atomic_long_add(v, &zone->vm_stat[i]);
541            atomic_long_add(v, &vm_stat[i]);
542        }
543}
544#endif
545
546#ifdef CONFIG_NUMA
547/*
548 * zonelist = the list of zones passed to the allocator
549 * z = the zone from which the allocation occurred.
550 *
551 * Must be called with interrupts disabled.
552 *
553 * When __GFP_OTHER_NODE is set assume the node of the preferred
554 * zone is the local node. This is useful for daemons who allocate
555 * memory on behalf of other processes.
556 */
557void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
558{
559    if (z->zone_pgdat == preferred_zone->zone_pgdat) {
560        __inc_zone_state(z, NUMA_HIT);
561    } else {
562        __inc_zone_state(z, NUMA_MISS);
563        __inc_zone_state(preferred_zone, NUMA_FOREIGN);
564    }
565    if (z->node == ((flags & __GFP_OTHER_NODE) ?
566            preferred_zone->node : numa_node_id()))
567        __inc_zone_state(z, NUMA_LOCAL);
568    else
569        __inc_zone_state(z, NUMA_OTHER);
570}
571#endif
572
573#ifdef CONFIG_COMPACTION
574
575struct contig_page_info {
576    unsigned long free_pages;
577    unsigned long free_blocks_total;
578    unsigned long free_blocks_suitable;
579};
580
581/*
582 * Calculate the number of free pages in a zone, how many contiguous
583 * pages are free and how many are large enough to satisfy an allocation of
584 * the target size. Note that this function makes no attempt to estimate
585 * how many suitable free blocks there *might* be if MOVABLE pages were
586 * migrated. Calculating that is possible, but expensive and can be
587 * figured out from userspace
588 */
589static void fill_contig_page_info(struct zone *zone,
590                unsigned int suitable_order,
591                struct contig_page_info *info)
592{
593    unsigned int order;
594
595    info->free_pages = 0;
596    info->free_blocks_total = 0;
597    info->free_blocks_suitable = 0;
598
599    for (order = 0; order < MAX_ORDER; order++) {
600        unsigned long blocks;
601
602        /* Count number of free blocks */
603        blocks = zone->free_area[order].nr_free;
604        info->free_blocks_total += blocks;
605
606        /* Count free base pages */
607        info->free_pages += blocks << order;
608
609        /* Count the suitable free blocks */
610        if (order >= suitable_order)
611            info->free_blocks_suitable += blocks <<
612                        (order - suitable_order);
613    }
614}
615
616/*
617 * A fragmentation index only makes sense if an allocation of a requested
618 * size would fail. If that is true, the fragmentation index indicates
619 * whether external fragmentation or a lack of memory was the problem.
620 * The value can be used to determine if page reclaim or compaction
621 * should be used
622 */
623static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
624{
625    unsigned long requested = 1UL << order;
626
627    if (!info->free_blocks_total)
628        return 0;
629
630    /* Fragmentation index only makes sense when a request would fail */
631    if (info->free_blocks_suitable)
632        return -1000;
633
634    /*
635     * Index is between 0 and 1 so return within 3 decimal places
636     *
637     * 0 => allocation would fail due to lack of memory
638     * 1 => allocation would fail due to fragmentation
639     */
640    return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
641}
642
643/* Same as __fragmentation index but allocs contig_page_info on stack */
644int fragmentation_index(struct zone *zone, unsigned int order)
645{
646    struct contig_page_info info;
647
648    fill_contig_page_info(zone, order, &info);
649    return __fragmentation_index(order, &info);
650}
651#endif
652
653#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
654#include <linux/proc_fs.h>
655#include <linux/seq_file.h>
656
657static char * const migratetype_names[MIGRATE_TYPES] = {
658    "Unmovable",
659    "Reclaimable",
660    "Movable",
661    "Reserve",
662#ifdef CONFIG_CMA
663    "CMA",
664#endif
665#ifdef CONFIG_MEMORY_ISOLATION
666    "Isolate",
667#endif
668};
669
670static void *frag_start(struct seq_file *m, loff_t *pos)
671{
672    pg_data_t *pgdat;
673    loff_t node = *pos;
674    for (pgdat = first_online_pgdat();
675         pgdat && node;
676         pgdat = next_online_pgdat(pgdat))
677        --node;
678
679    return pgdat;
680}
681
682static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
683{
684    pg_data_t *pgdat = (pg_data_t *)arg;
685
686    (*pos)++;
687    return next_online_pgdat(pgdat);
688}
689
690static void frag_stop(struct seq_file *m, void *arg)
691{
692}
693
694/* Walk all the zones in a node and print using a callback */
695static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
696        void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
697{
698    struct zone *zone;
699    struct zone *node_zones = pgdat->node_zones;
700    unsigned long flags;
701
702    for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
703        if (!populated_zone(zone))
704            continue;
705
706        spin_lock_irqsave(&zone->lock, flags);
707        print(m, pgdat, zone);
708        spin_unlock_irqrestore(&zone->lock, flags);
709    }
710}
711#endif
712
713#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
714#ifdef CONFIG_ZONE_DMA
715#define TEXT_FOR_DMA(xx) xx "_dma",
716#else
717#define TEXT_FOR_DMA(xx)
718#endif
719
720#ifdef CONFIG_ZONE_DMA32
721#define TEXT_FOR_DMA32(xx) xx "_dma32",
722#else
723#define TEXT_FOR_DMA32(xx)
724#endif
725
726#ifdef CONFIG_HIGHMEM
727#define TEXT_FOR_HIGHMEM(xx) xx "_high",
728#else
729#define TEXT_FOR_HIGHMEM(xx)
730#endif
731
732#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
733                    TEXT_FOR_HIGHMEM(xx) xx "_movable",
734
735const char * const vmstat_text[] = {
736    /* Zoned VM counters */
737    "nr_free_pages",
738    "nr_alloc_batch",
739    "nr_inactive_anon",
740    "nr_active_anon",
741    "nr_inactive_file",
742    "nr_active_file",
743    "nr_unevictable",
744    "nr_mlock",
745    "nr_anon_pages",
746    "nr_mapped",
747    "nr_file_pages",
748    "nr_dirty",
749    "nr_writeback",
750    "nr_slab_reclaimable",
751    "nr_slab_unreclaimable",
752    "nr_page_table_pages",
753    "nr_kernel_stack",
754    "nr_unstable",
755    "nr_bounce",
756    "nr_vmscan_write",
757    "nr_vmscan_immediate_reclaim",
758    "nr_writeback_temp",
759    "nr_isolated_anon",
760    "nr_isolated_file",
761    "nr_shmem",
762    "nr_dirtied",
763    "nr_written",
764
765#ifdef CONFIG_NUMA
766    "numa_hit",
767    "numa_miss",
768    "numa_foreign",
769    "numa_interleave",
770    "numa_local",
771    "numa_other",
772#endif
773    "nr_anon_transparent_hugepages",
774    "nr_free_cma",
775    "nr_dirty_threshold",
776    "nr_dirty_background_threshold",
777
778#ifdef CONFIG_VM_EVENT_COUNTERS
779    "pgpgin",
780    "pgpgout",
781    "pswpin",
782    "pswpout",
783
784    TEXTS_FOR_ZONES("pgalloc")
785
786    "pgfree",
787    "pgactivate",
788    "pgdeactivate",
789
790    "pgfault",
791    "pgmajfault",
792
793    TEXTS_FOR_ZONES("pgrefill")
794    TEXTS_FOR_ZONES("pgsteal_kswapd")
795    TEXTS_FOR_ZONES("pgsteal_direct")
796    TEXTS_FOR_ZONES("pgscan_kswapd")
797    TEXTS_FOR_ZONES("pgscan_direct")
798    "pgscan_direct_throttle",
799
800#ifdef CONFIG_NUMA
801    "zone_reclaim_failed",
802#endif
803    "pginodesteal",
804    "slabs_scanned",
805    "kswapd_inodesteal",
806    "kswapd_low_wmark_hit_quickly",
807    "kswapd_high_wmark_hit_quickly",
808    "pageoutrun",
809    "allocstall",
810
811    "pgrotated",
812
813#ifdef CONFIG_NUMA_BALANCING
814    "numa_pte_updates",
815    "numa_hint_faults",
816    "numa_hint_faults_local",
817    "numa_pages_migrated",
818#endif
819#ifdef CONFIG_MIGRATION
820    "pgmigrate_success",
821    "pgmigrate_fail",
822#endif
823#ifdef CONFIG_COMPACTION
824    "compact_migrate_scanned",
825    "compact_free_scanned",
826    "compact_isolated",
827    "compact_stall",
828    "compact_fail",
829    "compact_success",
830#endif
831
832#ifdef CONFIG_HUGETLB_PAGE
833    "htlb_buddy_alloc_success",
834    "htlb_buddy_alloc_fail",
835#endif
836    "unevictable_pgs_culled",
837    "unevictable_pgs_scanned",
838    "unevictable_pgs_rescued",
839    "unevictable_pgs_mlocked",
840    "unevictable_pgs_munlocked",
841    "unevictable_pgs_cleared",
842    "unevictable_pgs_stranded",
843
844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
845    "thp_fault_alloc",
846    "thp_fault_fallback",
847    "thp_collapse_alloc",
848    "thp_collapse_alloc_failed",
849    "thp_split",
850    "thp_zero_page_alloc",
851    "thp_zero_page_alloc_failed",
852#endif
853#ifdef CONFIG_SMP
854    "nr_tlb_remote_flush",
855    "nr_tlb_remote_flush_received",
856#endif
857    "nr_tlb_local_flush_all",
858    "nr_tlb_local_flush_one",
859
860#endif /* CONFIG_VM_EVENTS_COUNTERS */
861};
862#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
863
864
865#ifdef CONFIG_PROC_FS
866static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
867                        struct zone *zone)
868{
869    int order;
870
871    seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
872    for (order = 0; order < MAX_ORDER; ++order)
873        seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
874    seq_putc(m, '\n');
875}
876
877/*
878 * This walks the free areas for each zone.
879 */
880static int frag_show(struct seq_file *m, void *arg)
881{
882    pg_data_t *pgdat = (pg_data_t *)arg;
883    walk_zones_in_node(m, pgdat, frag_show_print);
884    return 0;
885}
886
887static void pagetypeinfo_showfree_print(struct seq_file *m,
888                    pg_data_t *pgdat, struct zone *zone)
889{
890    int order, mtype;
891
892    for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
893        seq_printf(m, "Node %4d, zone %8s, type %12s ",
894                    pgdat->node_id,
895                    zone->name,
896                    migratetype_names[mtype]);
897        for (order = 0; order < MAX_ORDER; ++order) {
898            unsigned long freecount = 0;
899            struct free_area *area;
900            struct list_head *curr;
901
902            area = &(zone->free_area[order]);
903
904            list_for_each(curr, &area->free_list[mtype])
905                freecount++;
906            seq_printf(m, "%6lu ", freecount);
907        }
908        seq_putc(m, '\n');
909    }
910}
911
912/* Print out the free pages at each order for each migatetype */
913static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
914{
915    int order;
916    pg_data_t *pgdat = (pg_data_t *)arg;
917
918    /* Print header */
919    seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
920    for (order = 0; order < MAX_ORDER; ++order)
921        seq_printf(m, "%6d ", order);
922    seq_putc(m, '\n');
923
924    walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
925
926    return 0;
927}
928
929static void pagetypeinfo_showblockcount_print(struct seq_file *m,
930                    pg_data_t *pgdat, struct zone *zone)
931{
932    int mtype;
933    unsigned long pfn;
934    unsigned long start_pfn = zone->zone_start_pfn;
935    unsigned long end_pfn = zone_end_pfn(zone);
936    unsigned long count[MIGRATE_TYPES] = { 0, };
937
938    for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
939        struct page *page;
940
941        if (!pfn_valid(pfn))
942            continue;
943
944        page = pfn_to_page(pfn);
945
946        /* Watch for unexpected holes punched in the memmap */
947        if (!memmap_valid_within(pfn, page, zone))
948            continue;
949
950        mtype = get_pageblock_migratetype(page);
951
952        if (mtype < MIGRATE_TYPES)
953            count[mtype]++;
954    }
955
956    /* Print counts */
957    seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
958    for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
959        seq_printf(m, "%12lu ", count[mtype]);
960    seq_putc(m, '\n');
961}
962
963/* Print out the free pages at each order for each migratetype */
964static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
965{
966    int mtype;
967    pg_data_t *pgdat = (pg_data_t *)arg;
968
969    seq_printf(m, "\n%-23s", "Number of blocks type ");
970    for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
971        seq_printf(m, "%12s ", migratetype_names[mtype]);
972    seq_putc(m, '\n');
973    walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
974
975    return 0;
976}
977
978/*
979 * This prints out statistics in relation to grouping pages by mobility.
980 * It is expensive to collect so do not constantly read the file.
981 */
982static int pagetypeinfo_show(struct seq_file *m, void *arg)
983{
984    pg_data_t *pgdat = (pg_data_t *)arg;
985
986    /* check memoryless node */
987    if (!node_state(pgdat->node_id, N_MEMORY))
988        return 0;
989
990    seq_printf(m, "Page block order: %d\n", pageblock_order);
991    seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
992    seq_putc(m, '\n');
993    pagetypeinfo_showfree(m, pgdat);
994    pagetypeinfo_showblockcount(m, pgdat);
995
996    return 0;
997}
998
999static const struct seq_operations fragmentation_op = {
1000    .start = frag_start,
1001    .next = frag_next,
1002    .stop = frag_stop,
1003    .show = frag_show,
1004};
1005
1006static int fragmentation_open(struct inode *inode, struct file *file)
1007{
1008    return seq_open(file, &fragmentation_op);
1009}
1010
1011static const struct file_operations fragmentation_file_operations = {
1012    .open = fragmentation_open,
1013    .read = seq_read,
1014    .llseek = seq_lseek,
1015    .release = seq_release,
1016};
1017
1018static const struct seq_operations pagetypeinfo_op = {
1019    .start = frag_start,
1020    .next = frag_next,
1021    .stop = frag_stop,
1022    .show = pagetypeinfo_show,
1023};
1024
1025static int pagetypeinfo_open(struct inode *inode, struct file *file)
1026{
1027    return seq_open(file, &pagetypeinfo_op);
1028}
1029
1030static const struct file_operations pagetypeinfo_file_ops = {
1031    .open = pagetypeinfo_open,
1032    .read = seq_read,
1033    .llseek = seq_lseek,
1034    .release = seq_release,
1035};
1036
1037static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1038                            struct zone *zone)
1039{
1040    int i;
1041    seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1042    seq_printf(m,
1043           "\n pages free %lu"
1044           "\n min %lu"
1045           "\n low %lu"
1046           "\n high %lu"
1047           "\n scanned %lu"
1048           "\n spanned %lu"
1049           "\n present %lu"
1050           "\n managed %lu",
1051           zone_page_state(zone, NR_FREE_PAGES),
1052           min_wmark_pages(zone),
1053           low_wmark_pages(zone),
1054           high_wmark_pages(zone),
1055           zone->pages_scanned,
1056           zone->spanned_pages,
1057           zone->present_pages,
1058           zone->managed_pages);
1059
1060    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1061        seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1062                zone_page_state(zone, i));
1063
1064    seq_printf(m,
1065           "\n protection: (%lu",
1066           zone->lowmem_reserve[0]);
1067    for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1068        seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1069    seq_printf(m,
1070           ")"
1071           "\n pagesets");
1072    for_each_online_cpu(i) {
1073        struct per_cpu_pageset *pageset;
1074
1075        pageset = per_cpu_ptr(zone->pageset, i);
1076        seq_printf(m,
1077               "\n cpu: %i"
1078               "\n count: %i"
1079               "\n high: %i"
1080               "\n batch: %i",
1081               i,
1082               pageset->pcp.count,
1083               pageset->pcp.high,
1084               pageset->pcp.batch);
1085#ifdef CONFIG_SMP
1086        seq_printf(m, "\n vm stats threshold: %d",
1087                pageset->stat_threshold);
1088#endif
1089    }
1090    seq_printf(m,
1091           "\n all_unreclaimable: %u"
1092           "\n start_pfn: %lu"
1093           "\n inactive_ratio: %u",
1094           !zone_reclaimable(zone),
1095           zone->zone_start_pfn,
1096           zone->inactive_ratio);
1097    seq_putc(m, '\n');
1098}
1099
1100/*
1101 * Output information about zones in @pgdat.
1102 */
1103static int zoneinfo_show(struct seq_file *m, void *arg)
1104{
1105    pg_data_t *pgdat = (pg_data_t *)arg;
1106    walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1107    return 0;
1108}
1109
1110static const struct seq_operations zoneinfo_op = {
1111    .start = frag_start, /* iterate over all zones. The same as in
1112                   * fragmentation. */
1113    .next = frag_next,
1114    .stop = frag_stop,
1115    .show = zoneinfo_show,
1116};
1117
1118static int zoneinfo_open(struct inode *inode, struct file *file)
1119{
1120    return seq_open(file, &zoneinfo_op);
1121}
1122
1123static const struct file_operations proc_zoneinfo_file_operations = {
1124    .open = zoneinfo_open,
1125    .read = seq_read,
1126    .llseek = seq_lseek,
1127    .release = seq_release,
1128};
1129
1130enum writeback_stat_item {
1131    NR_DIRTY_THRESHOLD,
1132    NR_DIRTY_BG_THRESHOLD,
1133    NR_VM_WRITEBACK_STAT_ITEMS,
1134};
1135
1136static void *vmstat_start(struct seq_file *m, loff_t *pos)
1137{
1138    unsigned long *v;
1139    int i, stat_items_size;
1140
1141    if (*pos >= ARRAY_SIZE(vmstat_text))
1142        return NULL;
1143    stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1144              NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1145
1146#ifdef CONFIG_VM_EVENT_COUNTERS
1147    stat_items_size += sizeof(struct vm_event_state);
1148#endif
1149
1150    v = kmalloc(stat_items_size, GFP_KERNEL);
1151    m->private = v;
1152    if (!v)
1153        return ERR_PTR(-ENOMEM);
1154    for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1155        v[i] = global_page_state(i);
1156    v += NR_VM_ZONE_STAT_ITEMS;
1157
1158    global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1159                v + NR_DIRTY_THRESHOLD);
1160    v += NR_VM_WRITEBACK_STAT_ITEMS;
1161
1162#ifdef CONFIG_VM_EVENT_COUNTERS
1163    all_vm_events(v);
1164    v[PGPGIN] /= 2; /* sectors -> kbytes */
1165    v[PGPGOUT] /= 2;
1166#endif
1167    return (unsigned long *)m->private + *pos;
1168}
1169
1170static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1171{
1172    (*pos)++;
1173    if (*pos >= ARRAY_SIZE(vmstat_text))
1174        return NULL;
1175    return (unsigned long *)m->private + *pos;
1176}
1177
1178static int vmstat_show(struct seq_file *m, void *arg)
1179{
1180    unsigned long *l = arg;
1181    unsigned long off = l - (unsigned long *)m->private;
1182
1183    seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1184    return 0;
1185}
1186
1187static void vmstat_stop(struct seq_file *m, void *arg)
1188{
1189    kfree(m->private);
1190    m->private = NULL;
1191}
1192
1193static const struct seq_operations vmstat_op = {
1194    .start = vmstat_start,
1195    .next = vmstat_next,
1196    .stop = vmstat_stop,
1197    .show = vmstat_show,
1198};
1199
1200static int vmstat_open(struct inode *inode, struct file *file)
1201{
1202    return seq_open(file, &vmstat_op);
1203}
1204
1205static const struct file_operations proc_vmstat_file_operations = {
1206    .open = vmstat_open,
1207    .read = seq_read,
1208    .llseek = seq_lseek,
1209    .release = seq_release,
1210};
1211#endif /* CONFIG_PROC_FS */
1212
1213#ifdef CONFIG_SMP
1214static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1215int sysctl_stat_interval __read_mostly = HZ;
1216
1217static void vmstat_update(struct work_struct *w)
1218{
1219    refresh_cpu_vm_stats();
1220    schedule_delayed_work(&__get_cpu_var(vmstat_work),
1221        round_jiffies_relative(sysctl_stat_interval));
1222}
1223
1224static void start_cpu_timer(int cpu)
1225{
1226    struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1227
1228    INIT_DEFERRABLE_WORK(work, vmstat_update);
1229    schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1230}
1231
1232/*
1233 * Use the cpu notifier to insure that the thresholds are recalculated
1234 * when necessary.
1235 */
1236static int vmstat_cpuup_callback(struct notifier_block *nfb,
1237        unsigned long action,
1238        void *hcpu)
1239{
1240    long cpu = (long)hcpu;
1241
1242    switch (action) {
1243    case CPU_ONLINE:
1244    case CPU_ONLINE_FROZEN:
1245        refresh_zone_stat_thresholds();
1246        start_cpu_timer(cpu);
1247        node_set_state(cpu_to_node(cpu), N_CPU);
1248        break;
1249    case CPU_DOWN_PREPARE:
1250    case CPU_DOWN_PREPARE_FROZEN:
1251        cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1252        per_cpu(vmstat_work, cpu).work.func = NULL;
1253        break;
1254    case CPU_DOWN_FAILED:
1255    case CPU_DOWN_FAILED_FROZEN:
1256        start_cpu_timer(cpu);
1257        break;
1258    case CPU_DEAD:
1259    case CPU_DEAD_FROZEN:
1260        refresh_zone_stat_thresholds();
1261        break;
1262    default:
1263        break;
1264    }
1265    return NOTIFY_OK;
1266}
1267
1268static struct notifier_block vmstat_notifier =
1269    { &vmstat_cpuup_callback, NULL, 0 };
1270#endif
1271
1272static int __init setup_vmstat(void)
1273{
1274#ifdef CONFIG_SMP
1275    int cpu;
1276
1277    register_cpu_notifier(&vmstat_notifier);
1278
1279    for_each_online_cpu(cpu)
1280        start_cpu_timer(cpu);
1281#endif
1282#ifdef CONFIG_PROC_FS
1283    proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1284    proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1285    proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1286    proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1287#endif
1288    return 0;
1289}
1290module_init(setup_vmstat)
1291
1292#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1293#include <linux/debugfs.h>
1294
1295
1296/*
1297 * Return an index indicating how much of the available free memory is
1298 * unusable for an allocation of the requested size.
1299 */
1300static int unusable_free_index(unsigned int order,
1301                struct contig_page_info *info)
1302{
1303    /* No free memory is interpreted as all free memory is unusable */
1304    if (info->free_pages == 0)
1305        return 1000;
1306
1307    /*
1308     * Index should be a value between 0 and 1. Return a value to 3
1309     * decimal places.
1310     *
1311     * 0 => no fragmentation
1312     * 1 => high fragmentation
1313     */
1314    return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1315
1316}
1317
1318static void unusable_show_print(struct seq_file *m,
1319                    pg_data_t *pgdat, struct zone *zone)
1320{
1321    unsigned int order;
1322    int index;
1323    struct contig_page_info info;
1324
1325    seq_printf(m, "Node %d, zone %8s ",
1326                pgdat->node_id,
1327                zone->name);
1328    for (order = 0; order < MAX_ORDER; ++order) {
1329        fill_contig_page_info(zone, order, &info);
1330        index = unusable_free_index(order, &info);
1331        seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1332    }
1333
1334    seq_putc(m, '\n');
1335}
1336
1337/*
1338 * Display unusable free space index
1339 *
1340 * The unusable free space index measures how much of the available free
1341 * memory cannot be used to satisfy an allocation of a given size and is a
1342 * value between 0 and 1. The higher the value, the more of free memory is
1343 * unusable and by implication, the worse the external fragmentation is. This
1344 * can be expressed as a percentage by multiplying by 100.
1345 */
1346static int unusable_show(struct seq_file *m, void *arg)
1347{
1348    pg_data_t *pgdat = (pg_data_t *)arg;
1349
1350    /* check memoryless node */
1351    if (!node_state(pgdat->node_id, N_MEMORY))
1352        return 0;
1353
1354    walk_zones_in_node(m, pgdat, unusable_show_print);
1355
1356    return 0;
1357}
1358
1359static const struct seq_operations unusable_op = {
1360    .start = frag_start,
1361    .next = frag_next,
1362    .stop = frag_stop,
1363    .show = unusable_show,
1364};
1365
1366static int unusable_open(struct inode *inode, struct file *file)
1367{
1368    return seq_open(file, &unusable_op);
1369}
1370
1371static const struct file_operations unusable_file_ops = {
1372    .open = unusable_open,
1373    .read = seq_read,
1374    .llseek = seq_lseek,
1375    .release = seq_release,
1376};
1377
1378static void extfrag_show_print(struct seq_file *m,
1379                    pg_data_t *pgdat, struct zone *zone)
1380{
1381    unsigned int order;
1382    int index;
1383
1384    /* Alloc on stack as interrupts are disabled for zone walk */
1385    struct contig_page_info info;
1386
1387    seq_printf(m, "Node %d, zone %8s ",
1388                pgdat->node_id,
1389                zone->name);
1390    for (order = 0; order < MAX_ORDER; ++order) {
1391        fill_contig_page_info(zone, order, &info);
1392        index = __fragmentation_index(order, &info);
1393        seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1394    }
1395
1396    seq_putc(m, '\n');
1397}
1398
1399/*
1400 * Display fragmentation index for orders that allocations would fail for
1401 */
1402static int extfrag_show(struct seq_file *m, void *arg)
1403{
1404    pg_data_t *pgdat = (pg_data_t *)arg;
1405
1406    walk_zones_in_node(m, pgdat, extfrag_show_print);
1407
1408    return 0;
1409}
1410
1411static const struct seq_operations extfrag_op = {
1412    .start = frag_start,
1413    .next = frag_next,
1414    .stop = frag_stop,
1415    .show = extfrag_show,
1416};
1417
1418static int extfrag_open(struct inode *inode, struct file *file)
1419{
1420    return seq_open(file, &extfrag_op);
1421}
1422
1423static const struct file_operations extfrag_file_ops = {
1424    .open = extfrag_open,
1425    .read = seq_read,
1426    .llseek = seq_lseek,
1427    .release = seq_release,
1428};
1429
1430static int __init extfrag_debug_init(void)
1431{
1432    struct dentry *extfrag_debug_root;
1433
1434    extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1435    if (!extfrag_debug_root)
1436        return -ENOMEM;
1437
1438    if (!debugfs_create_file("unusable_index", 0444,
1439            extfrag_debug_root, NULL, &unusable_file_ops))
1440        goto fail;
1441
1442    if (!debugfs_create_file("extfrag_index", 0444,
1443            extfrag_debug_root, NULL, &extfrag_file_ops))
1444        goto fail;
1445
1446    return 0;
1447fail:
1448    debugfs_remove_recursive(extfrag_debug_root);
1449    return -ENOMEM;
1450}
1451
1452module_init(extfrag_debug_init);
1453#endif
1454

Archive Download this file



interactive