Root/mm/zswap.c

1/*
2 * zswap.c - zswap driver file
3 *
4 * zswap is a backend for frontswap that takes pages that are in the process
5 * of being swapped out and attempts to compress and store them in a
6 * RAM-based memory pool. This can result in a significant I/O reduction on
7 * the swap device and, in the case where decompressing from RAM is faster
8 * than reading from the swap device, can also improve workload performance.
9 *
10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version 2
15 * of the License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21*/
22
23#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24
25#include <linux/module.h>
26#include <linux/cpu.h>
27#include <linux/highmem.h>
28#include <linux/slab.h>
29#include <linux/spinlock.h>
30#include <linux/types.h>
31#include <linux/atomic.h>
32#include <linux/frontswap.h>
33#include <linux/rbtree.h>
34#include <linux/swap.h>
35#include <linux/crypto.h>
36#include <linux/mempool.h>
37#include <linux/zbud.h>
38
39#include <linux/mm_types.h>
40#include <linux/page-flags.h>
41#include <linux/swapops.h>
42#include <linux/writeback.h>
43#include <linux/pagemap.h>
44
45/*********************************
46* statistics
47**********************************/
48/* Number of memory pages used by the compressed pool */
49static u64 zswap_pool_pages;
50/* The number of compressed pages currently stored in zswap */
51static atomic_t zswap_stored_pages = ATOMIC_INIT(0);
52
53/*
54 * The statistics below are not protected from concurrent access for
55 * performance reasons so they may not be a 100% accurate. However,
56 * they do provide useful information on roughly how many times a
57 * certain event is occurring.
58*/
59
60/* Pool limit was hit (see zswap_max_pool_percent) */
61static u64 zswap_pool_limit_hit;
62/* Pages written back when pool limit was reached */
63static u64 zswap_written_back_pages;
64/* Store failed due to a reclaim failure after pool limit was reached */
65static u64 zswap_reject_reclaim_fail;
66/* Compressed page was too big for the allocator to (optimally) store */
67static u64 zswap_reject_compress_poor;
68/* Store failed because underlying allocator could not get memory */
69static u64 zswap_reject_alloc_fail;
70/* Store failed because the entry metadata could not be allocated (rare) */
71static u64 zswap_reject_kmemcache_fail;
72/* Duplicate store was encountered (rare) */
73static u64 zswap_duplicate_entry;
74
75/*********************************
76* tunables
77**********************************/
78/* Enable/disable zswap (disabled by default, fixed at boot for now) */
79static bool zswap_enabled __read_mostly;
80module_param_named(enabled, zswap_enabled, bool, 0);
81
82/* Compressor to be used by zswap (fixed at boot for now) */
83#define ZSWAP_COMPRESSOR_DEFAULT "lzo"
84static char *zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
85module_param_named(compressor, zswap_compressor, charp, 0);
86
87/* The maximum percentage of memory that the compressed pool can occupy */
88static unsigned int zswap_max_pool_percent = 20;
89module_param_named(max_pool_percent,
90            zswap_max_pool_percent, uint, 0644);
91
92/*********************************
93* compression functions
94**********************************/
95/* per-cpu compression transforms */
96static struct crypto_comp * __percpu *zswap_comp_pcpu_tfms;
97
98enum comp_op {
99    ZSWAP_COMPOP_COMPRESS,
100    ZSWAP_COMPOP_DECOMPRESS
101};
102
103static int zswap_comp_op(enum comp_op op, const u8 *src, unsigned int slen,
104                u8 *dst, unsigned int *dlen)
105{
106    struct crypto_comp *tfm;
107    int ret;
108
109    tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, get_cpu());
110    switch (op) {
111    case ZSWAP_COMPOP_COMPRESS:
112        ret = crypto_comp_compress(tfm, src, slen, dst, dlen);
113        break;
114    case ZSWAP_COMPOP_DECOMPRESS:
115        ret = crypto_comp_decompress(tfm, src, slen, dst, dlen);
116        break;
117    default:
118        ret = -EINVAL;
119    }
120
121    put_cpu();
122    return ret;
123}
124
125static int __init zswap_comp_init(void)
126{
127    if (!crypto_has_comp(zswap_compressor, 0, 0)) {
128        pr_info("%s compressor not available\n", zswap_compressor);
129        /* fall back to default compressor */
130        zswap_compressor = ZSWAP_COMPRESSOR_DEFAULT;
131        if (!crypto_has_comp(zswap_compressor, 0, 0))
132            /* can't even load the default compressor */
133            return -ENODEV;
134    }
135    pr_info("using %s compressor\n", zswap_compressor);
136
137    /* alloc percpu transforms */
138    zswap_comp_pcpu_tfms = alloc_percpu(struct crypto_comp *);
139    if (!zswap_comp_pcpu_tfms)
140        return -ENOMEM;
141    return 0;
142}
143
144static void zswap_comp_exit(void)
145{
146    /* free percpu transforms */
147    if (zswap_comp_pcpu_tfms)
148        free_percpu(zswap_comp_pcpu_tfms);
149}
150
151/*********************************
152* data structures
153**********************************/
154/*
155 * struct zswap_entry
156 *
157 * This structure contains the metadata for tracking a single compressed
158 * page within zswap.
159 *
160 * rbnode - links the entry into red-black tree for the appropriate swap type
161 * refcount - the number of outstanding reference to the entry. This is needed
162 * to protect against premature freeing of the entry by code
163 * concurent calls to load, invalidate, and writeback. The lock
164 * for the zswap_tree structure that contains the entry must
165 * be held while changing the refcount. Since the lock must
166 * be held, there is no reason to also make refcount atomic.
167 * offset - the swap offset for the entry. Index into the red-black tree.
168 * handle - zsmalloc allocation handle that stores the compressed page data
169 * length - the length in bytes of the compressed page data. Needed during
170 * decompression
171 */
172struct zswap_entry {
173    struct rb_node rbnode;
174    pgoff_t offset;
175    int refcount;
176    unsigned int length;
177    unsigned long handle;
178};
179
180struct zswap_header {
181    swp_entry_t swpentry;
182};
183
184/*
185 * The tree lock in the zswap_tree struct protects a few things:
186 * - the rbtree
187 * - the refcount field of each entry in the tree
188 */
189struct zswap_tree {
190    struct rb_root rbroot;
191    spinlock_t lock;
192    struct zbud_pool *pool;
193};
194
195static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
196
197/*********************************
198* zswap entry functions
199**********************************/
200static struct kmem_cache *zswap_entry_cache;
201
202static int zswap_entry_cache_create(void)
203{
204    zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
205    return (zswap_entry_cache == NULL);
206}
207
208static void zswap_entry_cache_destory(void)
209{
210    kmem_cache_destroy(zswap_entry_cache);
211}
212
213static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
214{
215    struct zswap_entry *entry;
216    entry = kmem_cache_alloc(zswap_entry_cache, gfp);
217    if (!entry)
218        return NULL;
219    entry->refcount = 1;
220    return entry;
221}
222
223static void zswap_entry_cache_free(struct zswap_entry *entry)
224{
225    kmem_cache_free(zswap_entry_cache, entry);
226}
227
228/* caller must hold the tree lock */
229static void zswap_entry_get(struct zswap_entry *entry)
230{
231    entry->refcount++;
232}
233
234/* caller must hold the tree lock */
235static int zswap_entry_put(struct zswap_entry *entry)
236{
237    entry->refcount--;
238    return entry->refcount;
239}
240
241/*********************************
242* rbtree functions
243**********************************/
244static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
245{
246    struct rb_node *node = root->rb_node;
247    struct zswap_entry *entry;
248
249    while (node) {
250        entry = rb_entry(node, struct zswap_entry, rbnode);
251        if (entry->offset > offset)
252            node = node->rb_left;
253        else if (entry->offset < offset)
254            node = node->rb_right;
255        else
256            return entry;
257    }
258    return NULL;
259}
260
261/*
262 * In the case that a entry with the same offset is found, a pointer to
263 * the existing entry is stored in dupentry and the function returns -EEXIST
264 */
265static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
266            struct zswap_entry **dupentry)
267{
268    struct rb_node **link = &root->rb_node, *parent = NULL;
269    struct zswap_entry *myentry;
270
271    while (*link) {
272        parent = *link;
273        myentry = rb_entry(parent, struct zswap_entry, rbnode);
274        if (myentry->offset > entry->offset)
275            link = &(*link)->rb_left;
276        else if (myentry->offset < entry->offset)
277            link = &(*link)->rb_right;
278        else {
279            *dupentry = myentry;
280            return -EEXIST;
281        }
282    }
283    rb_link_node(&entry->rbnode, parent, link);
284    rb_insert_color(&entry->rbnode, root);
285    return 0;
286}
287
288/*********************************
289* per-cpu code
290**********************************/
291static DEFINE_PER_CPU(u8 *, zswap_dstmem);
292
293static int __zswap_cpu_notifier(unsigned long action, unsigned long cpu)
294{
295    struct crypto_comp *tfm;
296    u8 *dst;
297
298    switch (action) {
299    case CPU_UP_PREPARE:
300        tfm = crypto_alloc_comp(zswap_compressor, 0, 0);
301        if (IS_ERR(tfm)) {
302            pr_err("can't allocate compressor transform\n");
303            return NOTIFY_BAD;
304        }
305        *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = tfm;
306        dst = kmalloc(PAGE_SIZE * 2, GFP_KERNEL);
307        if (!dst) {
308            pr_err("can't allocate compressor buffer\n");
309            crypto_free_comp(tfm);
310            *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
311            return NOTIFY_BAD;
312        }
313        per_cpu(zswap_dstmem, cpu) = dst;
314        break;
315    case CPU_DEAD:
316    case CPU_UP_CANCELED:
317        tfm = *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu);
318        if (tfm) {
319            crypto_free_comp(tfm);
320            *per_cpu_ptr(zswap_comp_pcpu_tfms, cpu) = NULL;
321        }
322        dst = per_cpu(zswap_dstmem, cpu);
323        kfree(dst);
324        per_cpu(zswap_dstmem, cpu) = NULL;
325        break;
326    default:
327        break;
328    }
329    return NOTIFY_OK;
330}
331
332static int zswap_cpu_notifier(struct notifier_block *nb,
333                unsigned long action, void *pcpu)
334{
335    unsigned long cpu = (unsigned long)pcpu;
336    return __zswap_cpu_notifier(action, cpu);
337}
338
339static struct notifier_block zswap_cpu_notifier_block = {
340    .notifier_call = zswap_cpu_notifier
341};
342
343static int zswap_cpu_init(void)
344{
345    unsigned long cpu;
346
347    get_online_cpus();
348    for_each_online_cpu(cpu)
349        if (__zswap_cpu_notifier(CPU_UP_PREPARE, cpu) != NOTIFY_OK)
350            goto cleanup;
351    register_cpu_notifier(&zswap_cpu_notifier_block);
352    put_online_cpus();
353    return 0;
354
355cleanup:
356    for_each_online_cpu(cpu)
357        __zswap_cpu_notifier(CPU_UP_CANCELED, cpu);
358    put_online_cpus();
359    return -ENOMEM;
360}
361
362/*********************************
363* helpers
364**********************************/
365static bool zswap_is_full(void)
366{
367    return (totalram_pages * zswap_max_pool_percent / 100 <
368        zswap_pool_pages);
369}
370
371/*
372 * Carries out the common pattern of freeing and entry's zsmalloc allocation,
373 * freeing the entry itself, and decrementing the number of stored pages.
374 */
375static void zswap_free_entry(struct zswap_tree *tree, struct zswap_entry *entry)
376{
377    zbud_free(tree->pool, entry->handle);
378    zswap_entry_cache_free(entry);
379    atomic_dec(&zswap_stored_pages);
380    zswap_pool_pages = zbud_get_pool_size(tree->pool);
381}
382
383/*********************************
384* writeback code
385**********************************/
386/* return enum for zswap_get_swap_cache_page */
387enum zswap_get_swap_ret {
388    ZSWAP_SWAPCACHE_NEW,
389    ZSWAP_SWAPCACHE_EXIST,
390    ZSWAP_SWAPCACHE_NOMEM
391};
392
393/*
394 * zswap_get_swap_cache_page
395 *
396 * This is an adaption of read_swap_cache_async()
397 *
398 * This function tries to find a page with the given swap entry
399 * in the swapper_space address space (the swap cache). If the page
400 * is found, it is returned in retpage. Otherwise, a page is allocated,
401 * added to the swap cache, and returned in retpage.
402 *
403 * If success, the swap cache page is returned in retpage
404 * Returns 0 if page was already in the swap cache, page is not locked
405 * Returns 1 if the new page needs to be populated, page is locked
406 * Returns <0 on error
407 */
408static int zswap_get_swap_cache_page(swp_entry_t entry,
409                struct page **retpage)
410{
411    struct page *found_page, *new_page = NULL;
412    struct address_space *swapper_space = swap_address_space(entry);
413    int err;
414
415    *retpage = NULL;
416    do {
417        /*
418         * First check the swap cache. Since this is normally
419         * called after lookup_swap_cache() failed, re-calling
420         * that would confuse statistics.
421         */
422        found_page = find_get_page(swapper_space, entry.val);
423        if (found_page)
424            break;
425
426        /*
427         * Get a new page to read into from swap.
428         */
429        if (!new_page) {
430            new_page = alloc_page(GFP_KERNEL);
431            if (!new_page)
432                break; /* Out of memory */
433        }
434
435        /*
436         * call radix_tree_preload() while we can wait.
437         */
438        err = radix_tree_preload(GFP_KERNEL);
439        if (err)
440            break;
441
442        /*
443         * Swap entry may have been freed since our caller observed it.
444         */
445        err = swapcache_prepare(entry);
446        if (err == -EEXIST) { /* seems racy */
447            radix_tree_preload_end();
448            continue;
449        }
450        if (err) { /* swp entry is obsolete ? */
451            radix_tree_preload_end();
452            break;
453        }
454
455        /* May fail (-ENOMEM) if radix-tree node allocation failed. */
456        __set_page_locked(new_page);
457        SetPageSwapBacked(new_page);
458        err = __add_to_swap_cache(new_page, entry);
459        if (likely(!err)) {
460            radix_tree_preload_end();
461            lru_cache_add_anon(new_page);
462            *retpage = new_page;
463            return ZSWAP_SWAPCACHE_NEW;
464        }
465        radix_tree_preload_end();
466        ClearPageSwapBacked(new_page);
467        __clear_page_locked(new_page);
468        /*
469         * add_to_swap_cache() doesn't return -EEXIST, so we can safely
470         * clear SWAP_HAS_CACHE flag.
471         */
472        swapcache_free(entry, NULL);
473    } while (err != -ENOMEM);
474
475    if (new_page)
476        page_cache_release(new_page);
477    if (!found_page)
478        return ZSWAP_SWAPCACHE_NOMEM;
479    *retpage = found_page;
480    return ZSWAP_SWAPCACHE_EXIST;
481}
482
483/*
484 * Attempts to free an entry by adding a page to the swap cache,
485 * decompressing the entry data into the page, and issuing a
486 * bio write to write the page back to the swap device.
487 *
488 * This can be thought of as a "resumed writeback" of the page
489 * to the swap device. We are basically resuming the same swap
490 * writeback path that was intercepted with the frontswap_store()
491 * in the first place. After the page has been decompressed into
492 * the swap cache, the compressed version stored by zswap can be
493 * freed.
494 */
495static int zswap_writeback_entry(struct zbud_pool *pool, unsigned long handle)
496{
497    struct zswap_header *zhdr;
498    swp_entry_t swpentry;
499    struct zswap_tree *tree;
500    pgoff_t offset;
501    struct zswap_entry *entry;
502    struct page *page;
503    u8 *src, *dst;
504    unsigned int dlen;
505    int ret, refcount;
506    struct writeback_control wbc = {
507        .sync_mode = WB_SYNC_NONE,
508    };
509
510    /* extract swpentry from data */
511    zhdr = zbud_map(pool, handle);
512    swpentry = zhdr->swpentry; /* here */
513    zbud_unmap(pool, handle);
514    tree = zswap_trees[swp_type(swpentry)];
515    offset = swp_offset(swpentry);
516    BUG_ON(pool != tree->pool);
517
518    /* find and ref zswap entry */
519    spin_lock(&tree->lock);
520    entry = zswap_rb_search(&tree->rbroot, offset);
521    if (!entry) {
522        /* entry was invalidated */
523        spin_unlock(&tree->lock);
524        return 0;
525    }
526    zswap_entry_get(entry);
527    spin_unlock(&tree->lock);
528    BUG_ON(offset != entry->offset);
529
530    /* try to allocate swap cache page */
531    switch (zswap_get_swap_cache_page(swpentry, &page)) {
532    case ZSWAP_SWAPCACHE_NOMEM: /* no memory */
533        ret = -ENOMEM;
534        goto fail;
535
536    case ZSWAP_SWAPCACHE_EXIST: /* page is unlocked */
537        /* page is already in the swap cache, ignore for now */
538        page_cache_release(page);
539        ret = -EEXIST;
540        goto fail;
541
542    case ZSWAP_SWAPCACHE_NEW: /* page is locked */
543        /* decompress */
544        dlen = PAGE_SIZE;
545        src = (u8 *)zbud_map(tree->pool, entry->handle) +
546            sizeof(struct zswap_header);
547        dst = kmap_atomic(page);
548        ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src,
549                entry->length, dst, &dlen);
550        kunmap_atomic(dst);
551        zbud_unmap(tree->pool, entry->handle);
552        BUG_ON(ret);
553        BUG_ON(dlen != PAGE_SIZE);
554
555        /* page is up to date */
556        SetPageUptodate(page);
557    }
558
559    /* start writeback */
560    __swap_writepage(page, &wbc, end_swap_bio_write);
561    page_cache_release(page);
562    zswap_written_back_pages++;
563
564    spin_lock(&tree->lock);
565
566    /* drop local reference */
567    zswap_entry_put(entry);
568    /* drop the initial reference from entry creation */
569    refcount = zswap_entry_put(entry);
570
571    /*
572     * There are three possible values for refcount here:
573     * (1) refcount is 1, load is in progress, unlink from rbtree,
574     * load will free
575     * (2) refcount is 0, (normal case) entry is valid,
576     * remove from rbtree and free entry
577     * (3) refcount is -1, invalidate happened during writeback,
578     * free entry
579     */
580    if (refcount >= 0) {
581        /* no invalidate yet, remove from rbtree */
582        rb_erase(&entry->rbnode, &tree->rbroot);
583    }
584    spin_unlock(&tree->lock);
585    if (refcount <= 0) {
586        /* free the entry */
587        zswap_free_entry(tree, entry);
588        return 0;
589    }
590    return -EAGAIN;
591
592fail:
593    spin_lock(&tree->lock);
594    zswap_entry_put(entry);
595    spin_unlock(&tree->lock);
596    return ret;
597}
598
599/*********************************
600* frontswap hooks
601**********************************/
602/* attempts to compress and store an single page */
603static int zswap_frontswap_store(unsigned type, pgoff_t offset,
604                struct page *page)
605{
606    struct zswap_tree *tree = zswap_trees[type];
607    struct zswap_entry *entry, *dupentry;
608    int ret;
609    unsigned int dlen = PAGE_SIZE, len;
610    unsigned long handle;
611    char *buf;
612    u8 *src, *dst;
613    struct zswap_header *zhdr;
614
615    if (!tree) {
616        ret = -ENODEV;
617        goto reject;
618    }
619
620    /* reclaim space if needed */
621    if (zswap_is_full()) {
622        zswap_pool_limit_hit++;
623        if (zbud_reclaim_page(tree->pool, 8)) {
624            zswap_reject_reclaim_fail++;
625            ret = -ENOMEM;
626            goto reject;
627        }
628    }
629
630    /* allocate entry */
631    entry = zswap_entry_cache_alloc(GFP_KERNEL);
632    if (!entry) {
633        zswap_reject_kmemcache_fail++;
634        ret = -ENOMEM;
635        goto reject;
636    }
637
638    /* compress */
639    dst = get_cpu_var(zswap_dstmem);
640    src = kmap_atomic(page);
641    ret = zswap_comp_op(ZSWAP_COMPOP_COMPRESS, src, PAGE_SIZE, dst, &dlen);
642    kunmap_atomic(src);
643    if (ret) {
644        ret = -EINVAL;
645        goto freepage;
646    }
647
648    /* store */
649    len = dlen + sizeof(struct zswap_header);
650    ret = zbud_alloc(tree->pool, len, __GFP_NORETRY | __GFP_NOWARN,
651        &handle);
652    if (ret == -ENOSPC) {
653        zswap_reject_compress_poor++;
654        goto freepage;
655    }
656    if (ret) {
657        zswap_reject_alloc_fail++;
658        goto freepage;
659    }
660    zhdr = zbud_map(tree->pool, handle);
661    zhdr->swpentry = swp_entry(type, offset);
662    buf = (u8 *)(zhdr + 1);
663    memcpy(buf, dst, dlen);
664    zbud_unmap(tree->pool, handle);
665    put_cpu_var(zswap_dstmem);
666
667    /* populate entry */
668    entry->offset = offset;
669    entry->handle = handle;
670    entry->length = dlen;
671
672    /* map */
673    spin_lock(&tree->lock);
674    do {
675        ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
676        if (ret == -EEXIST) {
677            zswap_duplicate_entry++;
678            /* remove from rbtree */
679            rb_erase(&dupentry->rbnode, &tree->rbroot);
680            if (!zswap_entry_put(dupentry)) {
681                /* free */
682                zswap_free_entry(tree, dupentry);
683            }
684        }
685    } while (ret == -EEXIST);
686    spin_unlock(&tree->lock);
687
688    /* update stats */
689    atomic_inc(&zswap_stored_pages);
690    zswap_pool_pages = zbud_get_pool_size(tree->pool);
691
692    return 0;
693
694freepage:
695    put_cpu_var(zswap_dstmem);
696    zswap_entry_cache_free(entry);
697reject:
698    return ret;
699}
700
701/*
702 * returns 0 if the page was successfully decompressed
703 * return -1 on entry not found or error
704*/
705static int zswap_frontswap_load(unsigned type, pgoff_t offset,
706                struct page *page)
707{
708    struct zswap_tree *tree = zswap_trees[type];
709    struct zswap_entry *entry;
710    u8 *src, *dst;
711    unsigned int dlen;
712    int refcount, ret;
713
714    /* find */
715    spin_lock(&tree->lock);
716    entry = zswap_rb_search(&tree->rbroot, offset);
717    if (!entry) {
718        /* entry was written back */
719        spin_unlock(&tree->lock);
720        return -1;
721    }
722    zswap_entry_get(entry);
723    spin_unlock(&tree->lock);
724
725    /* decompress */
726    dlen = PAGE_SIZE;
727    src = (u8 *)zbud_map(tree->pool, entry->handle) +
728            sizeof(struct zswap_header);
729    dst = kmap_atomic(page);
730    ret = zswap_comp_op(ZSWAP_COMPOP_DECOMPRESS, src, entry->length,
731        dst, &dlen);
732    kunmap_atomic(dst);
733    zbud_unmap(tree->pool, entry->handle);
734    BUG_ON(ret);
735
736    spin_lock(&tree->lock);
737    refcount = zswap_entry_put(entry);
738    if (likely(refcount)) {
739        spin_unlock(&tree->lock);
740        return 0;
741    }
742    spin_unlock(&tree->lock);
743
744    /*
745     * We don't have to unlink from the rbtree because
746     * zswap_writeback_entry() or zswap_frontswap_invalidate page()
747     * has already done this for us if we are the last reference.
748     */
749    /* free */
750
751    zswap_free_entry(tree, entry);
752
753    return 0;
754}
755
756/* frees an entry in zswap */
757static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
758{
759    struct zswap_tree *tree = zswap_trees[type];
760    struct zswap_entry *entry;
761    int refcount;
762
763    /* find */
764    spin_lock(&tree->lock);
765    entry = zswap_rb_search(&tree->rbroot, offset);
766    if (!entry) {
767        /* entry was written back */
768        spin_unlock(&tree->lock);
769        return;
770    }
771
772    /* remove from rbtree */
773    rb_erase(&entry->rbnode, &tree->rbroot);
774
775    /* drop the initial reference from entry creation */
776    refcount = zswap_entry_put(entry);
777
778    spin_unlock(&tree->lock);
779
780    if (refcount) {
781        /* writeback in progress, writeback will free */
782        return;
783    }
784
785    /* free */
786    zswap_free_entry(tree, entry);
787}
788
789/* frees all zswap entries for the given swap type */
790static void zswap_frontswap_invalidate_area(unsigned type)
791{
792    struct zswap_tree *tree = zswap_trees[type];
793    struct zswap_entry *entry, *n;
794
795    if (!tree)
796        return;
797
798    /* walk the tree and free everything */
799    spin_lock(&tree->lock);
800    rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) {
801        zbud_free(tree->pool, entry->handle);
802        zswap_entry_cache_free(entry);
803        atomic_dec(&zswap_stored_pages);
804    }
805    tree->rbroot = RB_ROOT;
806    spin_unlock(&tree->lock);
807
808    zbud_destroy_pool(tree->pool);
809    kfree(tree);
810    zswap_trees[type] = NULL;
811}
812
813static struct zbud_ops zswap_zbud_ops = {
814    .evict = zswap_writeback_entry
815};
816
817static void zswap_frontswap_init(unsigned type)
818{
819    struct zswap_tree *tree;
820
821    tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL);
822    if (!tree)
823        goto err;
824    tree->pool = zbud_create_pool(GFP_KERNEL, &zswap_zbud_ops);
825    if (!tree->pool)
826        goto freetree;
827    tree->rbroot = RB_ROOT;
828    spin_lock_init(&tree->lock);
829    zswap_trees[type] = tree;
830    return;
831
832freetree:
833    kfree(tree);
834err:
835    pr_err("alloc failed, zswap disabled for swap type %d\n", type);
836}
837
838static struct frontswap_ops zswap_frontswap_ops = {
839    .store = zswap_frontswap_store,
840    .load = zswap_frontswap_load,
841    .invalidate_page = zswap_frontswap_invalidate_page,
842    .invalidate_area = zswap_frontswap_invalidate_area,
843    .init = zswap_frontswap_init
844};
845
846/*********************************
847* debugfs functions
848**********************************/
849#ifdef CONFIG_DEBUG_FS
850#include <linux/debugfs.h>
851
852static struct dentry *zswap_debugfs_root;
853
854static int __init zswap_debugfs_init(void)
855{
856    if (!debugfs_initialized())
857        return -ENODEV;
858
859    zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
860    if (!zswap_debugfs_root)
861        return -ENOMEM;
862
863    debugfs_create_u64("pool_limit_hit", S_IRUGO,
864            zswap_debugfs_root, &zswap_pool_limit_hit);
865    debugfs_create_u64("reject_reclaim_fail", S_IRUGO,
866            zswap_debugfs_root, &zswap_reject_reclaim_fail);
867    debugfs_create_u64("reject_alloc_fail", S_IRUGO,
868            zswap_debugfs_root, &zswap_reject_alloc_fail);
869    debugfs_create_u64("reject_kmemcache_fail", S_IRUGO,
870            zswap_debugfs_root, &zswap_reject_kmemcache_fail);
871    debugfs_create_u64("reject_compress_poor", S_IRUGO,
872            zswap_debugfs_root, &zswap_reject_compress_poor);
873    debugfs_create_u64("written_back_pages", S_IRUGO,
874            zswap_debugfs_root, &zswap_written_back_pages);
875    debugfs_create_u64("duplicate_entry", S_IRUGO,
876            zswap_debugfs_root, &zswap_duplicate_entry);
877    debugfs_create_u64("pool_pages", S_IRUGO,
878            zswap_debugfs_root, &zswap_pool_pages);
879    debugfs_create_atomic_t("stored_pages", S_IRUGO,
880            zswap_debugfs_root, &zswap_stored_pages);
881
882    return 0;
883}
884
885static void __exit zswap_debugfs_exit(void)
886{
887    debugfs_remove_recursive(zswap_debugfs_root);
888}
889#else
890static int __init zswap_debugfs_init(void)
891{
892    return 0;
893}
894
895static void __exit zswap_debugfs_exit(void) { }
896#endif
897
898/*********************************
899* module init and exit
900**********************************/
901static int __init init_zswap(void)
902{
903    if (!zswap_enabled)
904        return 0;
905
906    pr_info("loading zswap\n");
907    if (zswap_entry_cache_create()) {
908        pr_err("entry cache creation failed\n");
909        goto error;
910    }
911    if (zswap_comp_init()) {
912        pr_err("compressor initialization failed\n");
913        goto compfail;
914    }
915    if (zswap_cpu_init()) {
916        pr_err("per-cpu initialization failed\n");
917        goto pcpufail;
918    }
919    frontswap_register_ops(&zswap_frontswap_ops);
920    if (zswap_debugfs_init())
921        pr_warn("debugfs initialization failed\n");
922    return 0;
923pcpufail:
924    zswap_comp_exit();
925compfail:
926    zswap_entry_cache_destory();
927error:
928    return -ENOMEM;
929}
930/* must be late so crypto has time to come up */
931late_initcall(init_zswap);
932
933MODULE_LICENSE("GPL");
934MODULE_AUTHOR("Seth Jennings <sjenning@linux.vnet.ibm.com>");
935MODULE_DESCRIPTION("Compressed cache for swap pages");
936

Archive Download this file



interactive