Root/kernel/sys.c

1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
47#include <linux/kprobes.h>
48#include <linux/user_namespace.h>
49#include <linux/binfmts.h>
50
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
56#include <linux/kmsg_dump.h>
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
59
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a,b) (-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a,b) (-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a,b) (-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a,b) (-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a,b) (-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a,b) (-EINVAL)
81#endif
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a,b) (-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a,b) (-EINVAL)
87#endif
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
94
95/*
96 * this is where the system-wide overflow UID and GID are defined, for
97 * architectures that now have 32-bit UID/GID but didn't in the past
98 */
99
100int overflowuid = DEFAULT_OVERFLOWUID;
101int overflowgid = DEFAULT_OVERFLOWGID;
102
103EXPORT_SYMBOL(overflowuid);
104EXPORT_SYMBOL(overflowgid);
105
106/*
107 * the same as above, but for filesystems which can only store a 16-bit
108 * UID and GID. as such, this is needed on all architectures
109 */
110
111int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
112int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
113
114EXPORT_SYMBOL(fs_overflowuid);
115EXPORT_SYMBOL(fs_overflowgid);
116
117/*
118 * Returns true if current's euid is same as p's uid or euid,
119 * or has CAP_SYS_NICE to p's user_ns.
120 *
121 * Called with rcu_read_lock, creds are safe
122 */
123static bool set_one_prio_perm(struct task_struct *p)
124{
125    const struct cred *cred = current_cred(), *pcred = __task_cred(p);
126
127    if (uid_eq(pcred->uid, cred->euid) ||
128        uid_eq(pcred->euid, cred->euid))
129        return true;
130    if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
131        return true;
132    return false;
133}
134
135/*
136 * set the priority of a task
137 * - the caller must hold the RCU read lock
138 */
139static int set_one_prio(struct task_struct *p, int niceval, int error)
140{
141    int no_nice;
142
143    if (!set_one_prio_perm(p)) {
144        error = -EPERM;
145        goto out;
146    }
147    if (niceval < task_nice(p) && !can_nice(p, niceval)) {
148        error = -EACCES;
149        goto out;
150    }
151    no_nice = security_task_setnice(p, niceval);
152    if (no_nice) {
153        error = no_nice;
154        goto out;
155    }
156    if (error == -ESRCH)
157        error = 0;
158    set_user_nice(p, niceval);
159out:
160    return error;
161}
162
163SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
164{
165    struct task_struct *g, *p;
166    struct user_struct *user;
167    const struct cred *cred = current_cred();
168    int error = -EINVAL;
169    struct pid *pgrp;
170    kuid_t uid;
171
172    if (which > PRIO_USER || which < PRIO_PROCESS)
173        goto out;
174
175    /* normalize: avoid signed division (rounding problems) */
176    error = -ESRCH;
177    if (niceval < MIN_NICE)
178        niceval = MIN_NICE;
179    if (niceval > MAX_NICE)
180        niceval = MAX_NICE;
181
182    rcu_read_lock();
183    read_lock(&tasklist_lock);
184    switch (which) {
185        case PRIO_PROCESS:
186            if (who)
187                p = find_task_by_vpid(who);
188            else
189                p = current;
190            if (p)
191                error = set_one_prio(p, niceval, error);
192            break;
193        case PRIO_PGRP:
194            if (who)
195                pgrp = find_vpid(who);
196            else
197                pgrp = task_pgrp(current);
198            do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
199                error = set_one_prio(p, niceval, error);
200            } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
201            break;
202        case PRIO_USER:
203            uid = make_kuid(cred->user_ns, who);
204            user = cred->user;
205            if (!who)
206                uid = cred->uid;
207            else if (!uid_eq(uid, cred->uid) &&
208                 !(user = find_user(uid)))
209                goto out_unlock; /* No processes for this user */
210
211            do_each_thread(g, p) {
212                if (uid_eq(task_uid(p), uid))
213                    error = set_one_prio(p, niceval, error);
214            } while_each_thread(g, p);
215            if (!uid_eq(uid, cred->uid))
216                free_uid(user); /* For find_user() */
217            break;
218    }
219out_unlock:
220    read_unlock(&tasklist_lock);
221    rcu_read_unlock();
222out:
223    return error;
224}
225
226/*
227 * Ugh. To avoid negative return values, "getpriority()" will
228 * not return the normal nice-value, but a negated value that
229 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
230 * to stay compatible.
231 */
232SYSCALL_DEFINE2(getpriority, int, which, int, who)
233{
234    struct task_struct *g, *p;
235    struct user_struct *user;
236    const struct cred *cred = current_cred();
237    long niceval, retval = -ESRCH;
238    struct pid *pgrp;
239    kuid_t uid;
240
241    if (which > PRIO_USER || which < PRIO_PROCESS)
242        return -EINVAL;
243
244    rcu_read_lock();
245    read_lock(&tasklist_lock);
246    switch (which) {
247        case PRIO_PROCESS:
248            if (who)
249                p = find_task_by_vpid(who);
250            else
251                p = current;
252            if (p) {
253                niceval = 20 - task_nice(p);
254                if (niceval > retval)
255                    retval = niceval;
256            }
257            break;
258        case PRIO_PGRP:
259            if (who)
260                pgrp = find_vpid(who);
261            else
262                pgrp = task_pgrp(current);
263            do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
264                niceval = 20 - task_nice(p);
265                if (niceval > retval)
266                    retval = niceval;
267            } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
268            break;
269        case PRIO_USER:
270            uid = make_kuid(cred->user_ns, who);
271            user = cred->user;
272            if (!who)
273                uid = cred->uid;
274            else if (!uid_eq(uid, cred->uid) &&
275                 !(user = find_user(uid)))
276                goto out_unlock; /* No processes for this user */
277
278            do_each_thread(g, p) {
279                if (uid_eq(task_uid(p), uid)) {
280                    niceval = 20 - task_nice(p);
281                    if (niceval > retval)
282                        retval = niceval;
283                }
284            } while_each_thread(g, p);
285            if (!uid_eq(uid, cred->uid))
286                free_uid(user); /* for find_user() */
287            break;
288    }
289out_unlock:
290    read_unlock(&tasklist_lock);
291    rcu_read_unlock();
292
293    return retval;
294}
295
296/*
297 * Unprivileged users may change the real gid to the effective gid
298 * or vice versa. (BSD-style)
299 *
300 * If you set the real gid at all, or set the effective gid to a value not
301 * equal to the real gid, then the saved gid is set to the new effective gid.
302 *
303 * This makes it possible for a setgid program to completely drop its
304 * privileges, which is often a useful assertion to make when you are doing
305 * a security audit over a program.
306 *
307 * The general idea is that a program which uses just setregid() will be
308 * 100% compatible with BSD. A program which uses just setgid() will be
309 * 100% compatible with POSIX with saved IDs.
310 *
311 * SMP: There are not races, the GIDs are checked only by filesystem
312 * operations (as far as semantic preservation is concerned).
313 */
314SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
315{
316    struct user_namespace *ns = current_user_ns();
317    const struct cred *old;
318    struct cred *new;
319    int retval;
320    kgid_t krgid, kegid;
321
322    krgid = make_kgid(ns, rgid);
323    kegid = make_kgid(ns, egid);
324
325    if ((rgid != (gid_t) -1) && !gid_valid(krgid))
326        return -EINVAL;
327    if ((egid != (gid_t) -1) && !gid_valid(kegid))
328        return -EINVAL;
329
330    new = prepare_creds();
331    if (!new)
332        return -ENOMEM;
333    old = current_cred();
334
335    retval = -EPERM;
336    if (rgid != (gid_t) -1) {
337        if (gid_eq(old->gid, krgid) ||
338            gid_eq(old->egid, krgid) ||
339            ns_capable(old->user_ns, CAP_SETGID))
340            new->gid = krgid;
341        else
342            goto error;
343    }
344    if (egid != (gid_t) -1) {
345        if (gid_eq(old->gid, kegid) ||
346            gid_eq(old->egid, kegid) ||
347            gid_eq(old->sgid, kegid) ||
348            ns_capable(old->user_ns, CAP_SETGID))
349            new->egid = kegid;
350        else
351            goto error;
352    }
353
354    if (rgid != (gid_t) -1 ||
355        (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
356        new->sgid = new->egid;
357    new->fsgid = new->egid;
358
359    return commit_creds(new);
360
361error:
362    abort_creds(new);
363    return retval;
364}
365
366/*
367 * setgid() is implemented like SysV w/ SAVED_IDS
368 *
369 * SMP: Same implicit races as above.
370 */
371SYSCALL_DEFINE1(setgid, gid_t, gid)
372{
373    struct user_namespace *ns = current_user_ns();
374    const struct cred *old;
375    struct cred *new;
376    int retval;
377    kgid_t kgid;
378
379    kgid = make_kgid(ns, gid);
380    if (!gid_valid(kgid))
381        return -EINVAL;
382
383    new = prepare_creds();
384    if (!new)
385        return -ENOMEM;
386    old = current_cred();
387
388    retval = -EPERM;
389    if (ns_capable(old->user_ns, CAP_SETGID))
390        new->gid = new->egid = new->sgid = new->fsgid = kgid;
391    else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
392        new->egid = new->fsgid = kgid;
393    else
394        goto error;
395
396    return commit_creds(new);
397
398error:
399    abort_creds(new);
400    return retval;
401}
402
403/*
404 * change the user struct in a credentials set to match the new UID
405 */
406static int set_user(struct cred *new)
407{
408    struct user_struct *new_user;
409
410    new_user = alloc_uid(new->uid);
411    if (!new_user)
412        return -EAGAIN;
413
414    /*
415     * We don't fail in case of NPROC limit excess here because too many
416     * poorly written programs don't check set*uid() return code, assuming
417     * it never fails if called by root. We may still enforce NPROC limit
418     * for programs doing set*uid()+execve() by harmlessly deferring the
419     * failure to the execve() stage.
420     */
421    if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
422            new_user != INIT_USER)
423        current->flags |= PF_NPROC_EXCEEDED;
424    else
425        current->flags &= ~PF_NPROC_EXCEEDED;
426
427    free_uid(new->user);
428    new->user = new_user;
429    return 0;
430}
431
432/*
433 * Unprivileged users may change the real uid to the effective uid
434 * or vice versa. (BSD-style)
435 *
436 * If you set the real uid at all, or set the effective uid to a value not
437 * equal to the real uid, then the saved uid is set to the new effective uid.
438 *
439 * This makes it possible for a setuid program to completely drop its
440 * privileges, which is often a useful assertion to make when you are doing
441 * a security audit over a program.
442 *
443 * The general idea is that a program which uses just setreuid() will be
444 * 100% compatible with BSD. A program which uses just setuid() will be
445 * 100% compatible with POSIX with saved IDs.
446 */
447SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
448{
449    struct user_namespace *ns = current_user_ns();
450    const struct cred *old;
451    struct cred *new;
452    int retval;
453    kuid_t kruid, keuid;
454
455    kruid = make_kuid(ns, ruid);
456    keuid = make_kuid(ns, euid);
457
458    if ((ruid != (uid_t) -1) && !uid_valid(kruid))
459        return -EINVAL;
460    if ((euid != (uid_t) -1) && !uid_valid(keuid))
461        return -EINVAL;
462
463    new = prepare_creds();
464    if (!new)
465        return -ENOMEM;
466    old = current_cred();
467
468    retval = -EPERM;
469    if (ruid != (uid_t) -1) {
470        new->uid = kruid;
471        if (!uid_eq(old->uid, kruid) &&
472            !uid_eq(old->euid, kruid) &&
473            !ns_capable(old->user_ns, CAP_SETUID))
474            goto error;
475    }
476
477    if (euid != (uid_t) -1) {
478        new->euid = keuid;
479        if (!uid_eq(old->uid, keuid) &&
480            !uid_eq(old->euid, keuid) &&
481            !uid_eq(old->suid, keuid) &&
482            !ns_capable(old->user_ns, CAP_SETUID))
483            goto error;
484    }
485
486    if (!uid_eq(new->uid, old->uid)) {
487        retval = set_user(new);
488        if (retval < 0)
489            goto error;
490    }
491    if (ruid != (uid_t) -1 ||
492        (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
493        new->suid = new->euid;
494    new->fsuid = new->euid;
495
496    retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
497    if (retval < 0)
498        goto error;
499
500    return commit_creds(new);
501
502error:
503    abort_creds(new);
504    return retval;
505}
506        
507/*
508 * setuid() is implemented like SysV with SAVED_IDS
509 *
510 * Note that SAVED_ID's is deficient in that a setuid root program
511 * like sendmail, for example, cannot set its uid to be a normal
512 * user and then switch back, because if you're root, setuid() sets
513 * the saved uid too. If you don't like this, blame the bright people
514 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
515 * will allow a root program to temporarily drop privileges and be able to
516 * regain them by swapping the real and effective uid.
517 */
518SYSCALL_DEFINE1(setuid, uid_t, uid)
519{
520    struct user_namespace *ns = current_user_ns();
521    const struct cred *old;
522    struct cred *new;
523    int retval;
524    kuid_t kuid;
525
526    kuid = make_kuid(ns, uid);
527    if (!uid_valid(kuid))
528        return -EINVAL;
529
530    new = prepare_creds();
531    if (!new)
532        return -ENOMEM;
533    old = current_cred();
534
535    retval = -EPERM;
536    if (ns_capable(old->user_ns, CAP_SETUID)) {
537        new->suid = new->uid = kuid;
538        if (!uid_eq(kuid, old->uid)) {
539            retval = set_user(new);
540            if (retval < 0)
541                goto error;
542        }
543    } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
544        goto error;
545    }
546
547    new->fsuid = new->euid = kuid;
548
549    retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
550    if (retval < 0)
551        goto error;
552
553    return commit_creds(new);
554
555error:
556    abort_creds(new);
557    return retval;
558}
559
560
561/*
562 * This function implements a generic ability to update ruid, euid,
563 * and suid. This allows you to implement the 4.4 compatible seteuid().
564 */
565SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
566{
567    struct user_namespace *ns = current_user_ns();
568    const struct cred *old;
569    struct cred *new;
570    int retval;
571    kuid_t kruid, keuid, ksuid;
572
573    kruid = make_kuid(ns, ruid);
574    keuid = make_kuid(ns, euid);
575    ksuid = make_kuid(ns, suid);
576
577    if ((ruid != (uid_t) -1) && !uid_valid(kruid))
578        return -EINVAL;
579
580    if ((euid != (uid_t) -1) && !uid_valid(keuid))
581        return -EINVAL;
582
583    if ((suid != (uid_t) -1) && !uid_valid(ksuid))
584        return -EINVAL;
585
586    new = prepare_creds();
587    if (!new)
588        return -ENOMEM;
589
590    old = current_cred();
591
592    retval = -EPERM;
593    if (!ns_capable(old->user_ns, CAP_SETUID)) {
594        if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
595            !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
596            goto error;
597        if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
598            !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
599            goto error;
600        if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
601            !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
602            goto error;
603    }
604
605    if (ruid != (uid_t) -1) {
606        new->uid = kruid;
607        if (!uid_eq(kruid, old->uid)) {
608            retval = set_user(new);
609            if (retval < 0)
610                goto error;
611        }
612    }
613    if (euid != (uid_t) -1)
614        new->euid = keuid;
615    if (suid != (uid_t) -1)
616        new->suid = ksuid;
617    new->fsuid = new->euid;
618
619    retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
620    if (retval < 0)
621        goto error;
622
623    return commit_creds(new);
624
625error:
626    abort_creds(new);
627    return retval;
628}
629
630SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
631{
632    const struct cred *cred = current_cred();
633    int retval;
634    uid_t ruid, euid, suid;
635
636    ruid = from_kuid_munged(cred->user_ns, cred->uid);
637    euid = from_kuid_munged(cred->user_ns, cred->euid);
638    suid = from_kuid_munged(cred->user_ns, cred->suid);
639
640    if (!(retval = put_user(ruid, ruidp)) &&
641        !(retval = put_user(euid, euidp)))
642        retval = put_user(suid, suidp);
643
644    return retval;
645}
646
647/*
648 * Same as above, but for rgid, egid, sgid.
649 */
650SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
651{
652    struct user_namespace *ns = current_user_ns();
653    const struct cred *old;
654    struct cred *new;
655    int retval;
656    kgid_t krgid, kegid, ksgid;
657
658    krgid = make_kgid(ns, rgid);
659    kegid = make_kgid(ns, egid);
660    ksgid = make_kgid(ns, sgid);
661
662    if ((rgid != (gid_t) -1) && !gid_valid(krgid))
663        return -EINVAL;
664    if ((egid != (gid_t) -1) && !gid_valid(kegid))
665        return -EINVAL;
666    if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
667        return -EINVAL;
668
669    new = prepare_creds();
670    if (!new)
671        return -ENOMEM;
672    old = current_cred();
673
674    retval = -EPERM;
675    if (!ns_capable(old->user_ns, CAP_SETGID)) {
676        if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
677            !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
678            goto error;
679        if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
680            !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
681            goto error;
682        if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
683            !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
684            goto error;
685    }
686
687    if (rgid != (gid_t) -1)
688        new->gid = krgid;
689    if (egid != (gid_t) -1)
690        new->egid = kegid;
691    if (sgid != (gid_t) -1)
692        new->sgid = ksgid;
693    new->fsgid = new->egid;
694
695    return commit_creds(new);
696
697error:
698    abort_creds(new);
699    return retval;
700}
701
702SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
703{
704    const struct cred *cred = current_cred();
705    int retval;
706    gid_t rgid, egid, sgid;
707
708    rgid = from_kgid_munged(cred->user_ns, cred->gid);
709    egid = from_kgid_munged(cred->user_ns, cred->egid);
710    sgid = from_kgid_munged(cred->user_ns, cred->sgid);
711
712    if (!(retval = put_user(rgid, rgidp)) &&
713        !(retval = put_user(egid, egidp)))
714        retval = put_user(sgid, sgidp);
715
716    return retval;
717}
718
719
720/*
721 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
722 * is used for "access()" and for the NFS daemon (letting nfsd stay at
723 * whatever uid it wants to). It normally shadows "euid", except when
724 * explicitly set by setfsuid() or for access..
725 */
726SYSCALL_DEFINE1(setfsuid, uid_t, uid)
727{
728    const struct cred *old;
729    struct cred *new;
730    uid_t old_fsuid;
731    kuid_t kuid;
732
733    old = current_cred();
734    old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
735
736    kuid = make_kuid(old->user_ns, uid);
737    if (!uid_valid(kuid))
738        return old_fsuid;
739
740    new = prepare_creds();
741    if (!new)
742        return old_fsuid;
743
744    if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
745        uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
746        ns_capable(old->user_ns, CAP_SETUID)) {
747        if (!uid_eq(kuid, old->fsuid)) {
748            new->fsuid = kuid;
749            if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
750                goto change_okay;
751        }
752    }
753
754    abort_creds(new);
755    return old_fsuid;
756
757change_okay:
758    commit_creds(new);
759    return old_fsuid;
760}
761
762/*
763 * Samma på svenska..
764 */
765SYSCALL_DEFINE1(setfsgid, gid_t, gid)
766{
767    const struct cred *old;
768    struct cred *new;
769    gid_t old_fsgid;
770    kgid_t kgid;
771
772    old = current_cred();
773    old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
774
775    kgid = make_kgid(old->user_ns, gid);
776    if (!gid_valid(kgid))
777        return old_fsgid;
778
779    new = prepare_creds();
780    if (!new)
781        return old_fsgid;
782
783    if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
784        gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
785        ns_capable(old->user_ns, CAP_SETGID)) {
786        if (!gid_eq(kgid, old->fsgid)) {
787            new->fsgid = kgid;
788            goto change_okay;
789        }
790    }
791
792    abort_creds(new);
793    return old_fsgid;
794
795change_okay:
796    commit_creds(new);
797    return old_fsgid;
798}
799
800/**
801 * sys_getpid - return the thread group id of the current process
802 *
803 * Note, despite the name, this returns the tgid not the pid. The tgid and
804 * the pid are identical unless CLONE_THREAD was specified on clone() in
805 * which case the tgid is the same in all threads of the same group.
806 *
807 * This is SMP safe as current->tgid does not change.
808 */
809SYSCALL_DEFINE0(getpid)
810{
811    return task_tgid_vnr(current);
812}
813
814/* Thread ID - the internal kernel "pid" */
815SYSCALL_DEFINE0(gettid)
816{
817    return task_pid_vnr(current);
818}
819
820/*
821 * Accessing ->real_parent is not SMP-safe, it could
822 * change from under us. However, we can use a stale
823 * value of ->real_parent under rcu_read_lock(), see
824 * release_task()->call_rcu(delayed_put_task_struct).
825 */
826SYSCALL_DEFINE0(getppid)
827{
828    int pid;
829
830    rcu_read_lock();
831    pid = task_tgid_vnr(rcu_dereference(current->real_parent));
832    rcu_read_unlock();
833
834    return pid;
835}
836
837SYSCALL_DEFINE0(getuid)
838{
839    /* Only we change this so SMP safe */
840    return from_kuid_munged(current_user_ns(), current_uid());
841}
842
843SYSCALL_DEFINE0(geteuid)
844{
845    /* Only we change this so SMP safe */
846    return from_kuid_munged(current_user_ns(), current_euid());
847}
848
849SYSCALL_DEFINE0(getgid)
850{
851    /* Only we change this so SMP safe */
852    return from_kgid_munged(current_user_ns(), current_gid());
853}
854
855SYSCALL_DEFINE0(getegid)
856{
857    /* Only we change this so SMP safe */
858    return from_kgid_munged(current_user_ns(), current_egid());
859}
860
861void do_sys_times(struct tms *tms)
862{
863    cputime_t tgutime, tgstime, cutime, cstime;
864
865    spin_lock_irq(&current->sighand->siglock);
866    thread_group_cputime_adjusted(current, &tgutime, &tgstime);
867    cutime = current->signal->cutime;
868    cstime = current->signal->cstime;
869    spin_unlock_irq(&current->sighand->siglock);
870    tms->tms_utime = cputime_to_clock_t(tgutime);
871    tms->tms_stime = cputime_to_clock_t(tgstime);
872    tms->tms_cutime = cputime_to_clock_t(cutime);
873    tms->tms_cstime = cputime_to_clock_t(cstime);
874}
875
876SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
877{
878    if (tbuf) {
879        struct tms tmp;
880
881        do_sys_times(&tmp);
882        if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
883            return -EFAULT;
884    }
885    force_successful_syscall_return();
886    return (long) jiffies_64_to_clock_t(get_jiffies_64());
887}
888
889/*
890 * This needs some heavy checking ...
891 * I just haven't the stomach for it. I also don't fully
892 * understand sessions/pgrp etc. Let somebody who does explain it.
893 *
894 * OK, I think I have the protection semantics right.... this is really
895 * only important on a multi-user system anyway, to make sure one user
896 * can't send a signal to a process owned by another. -TYT, 12/12/91
897 *
898 * !PF_FORKNOEXEC check to conform completely to POSIX.
899 */
900SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
901{
902    struct task_struct *p;
903    struct task_struct *group_leader = current->group_leader;
904    struct pid *pgrp;
905    int err;
906
907    if (!pid)
908        pid = task_pid_vnr(group_leader);
909    if (!pgid)
910        pgid = pid;
911    if (pgid < 0)
912        return -EINVAL;
913    rcu_read_lock();
914
915    /* From this point forward we keep holding onto the tasklist lock
916     * so that our parent does not change from under us. -DaveM
917     */
918    write_lock_irq(&tasklist_lock);
919
920    err = -ESRCH;
921    p = find_task_by_vpid(pid);
922    if (!p)
923        goto out;
924
925    err = -EINVAL;
926    if (!thread_group_leader(p))
927        goto out;
928
929    if (same_thread_group(p->real_parent, group_leader)) {
930        err = -EPERM;
931        if (task_session(p) != task_session(group_leader))
932            goto out;
933        err = -EACCES;
934        if (!(p->flags & PF_FORKNOEXEC))
935            goto out;
936    } else {
937        err = -ESRCH;
938        if (p != group_leader)
939            goto out;
940    }
941
942    err = -EPERM;
943    if (p->signal->leader)
944        goto out;
945
946    pgrp = task_pid(p);
947    if (pgid != pid) {
948        struct task_struct *g;
949
950        pgrp = find_vpid(pgid);
951        g = pid_task(pgrp, PIDTYPE_PGID);
952        if (!g || task_session(g) != task_session(group_leader))
953            goto out;
954    }
955
956    err = security_task_setpgid(p, pgid);
957    if (err)
958        goto out;
959
960    if (task_pgrp(p) != pgrp)
961        change_pid(p, PIDTYPE_PGID, pgrp);
962
963    err = 0;
964out:
965    /* All paths lead to here, thus we are safe. -DaveM */
966    write_unlock_irq(&tasklist_lock);
967    rcu_read_unlock();
968    return err;
969}
970
971SYSCALL_DEFINE1(getpgid, pid_t, pid)
972{
973    struct task_struct *p;
974    struct pid *grp;
975    int retval;
976
977    rcu_read_lock();
978    if (!pid)
979        grp = task_pgrp(current);
980    else {
981        retval = -ESRCH;
982        p = find_task_by_vpid(pid);
983        if (!p)
984            goto out;
985        grp = task_pgrp(p);
986        if (!grp)
987            goto out;
988
989        retval = security_task_getpgid(p);
990        if (retval)
991            goto out;
992    }
993    retval = pid_vnr(grp);
994out:
995    rcu_read_unlock();
996    return retval;
997}
998
999#ifdef __ARCH_WANT_SYS_GETPGRP
1000
1001SYSCALL_DEFINE0(getpgrp)
1002{
1003    return sys_getpgid(0);
1004}
1005
1006#endif
1007
1008SYSCALL_DEFINE1(getsid, pid_t, pid)
1009{
1010    struct task_struct *p;
1011    struct pid *sid;
1012    int retval;
1013
1014    rcu_read_lock();
1015    if (!pid)
1016        sid = task_session(current);
1017    else {
1018        retval = -ESRCH;
1019        p = find_task_by_vpid(pid);
1020        if (!p)
1021            goto out;
1022        sid = task_session(p);
1023        if (!sid)
1024            goto out;
1025
1026        retval = security_task_getsid(p);
1027        if (retval)
1028            goto out;
1029    }
1030    retval = pid_vnr(sid);
1031out:
1032    rcu_read_unlock();
1033    return retval;
1034}
1035
1036static void set_special_pids(struct pid *pid)
1037{
1038    struct task_struct *curr = current->group_leader;
1039
1040    if (task_session(curr) != pid)
1041        change_pid(curr, PIDTYPE_SID, pid);
1042
1043    if (task_pgrp(curr) != pid)
1044        change_pid(curr, PIDTYPE_PGID, pid);
1045}
1046
1047SYSCALL_DEFINE0(setsid)
1048{
1049    struct task_struct *group_leader = current->group_leader;
1050    struct pid *sid = task_pid(group_leader);
1051    pid_t session = pid_vnr(sid);
1052    int err = -EPERM;
1053
1054    write_lock_irq(&tasklist_lock);
1055    /* Fail if I am already a session leader */
1056    if (group_leader->signal->leader)
1057        goto out;
1058
1059    /* Fail if a process group id already exists that equals the
1060     * proposed session id.
1061     */
1062    if (pid_task(sid, PIDTYPE_PGID))
1063        goto out;
1064
1065    group_leader->signal->leader = 1;
1066    set_special_pids(sid);
1067
1068    proc_clear_tty(group_leader);
1069
1070    err = session;
1071out:
1072    write_unlock_irq(&tasklist_lock);
1073    if (err > 0) {
1074        proc_sid_connector(group_leader);
1075        sched_autogroup_create_attach(group_leader);
1076    }
1077    return err;
1078}
1079
1080DECLARE_RWSEM(uts_sem);
1081
1082#ifdef COMPAT_UTS_MACHINE
1083#define override_architecture(name) \
1084    (personality(current->personality) == PER_LINUX32 && \
1085     copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1086              sizeof(COMPAT_UTS_MACHINE)))
1087#else
1088#define override_architecture(name) 0
1089#endif
1090
1091/*
1092 * Work around broken programs that cannot handle "Linux 3.0".
1093 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1094 */
1095static int override_release(char __user *release, size_t len)
1096{
1097    int ret = 0;
1098
1099    if (current->personality & UNAME26) {
1100        const char *rest = UTS_RELEASE;
1101        char buf[65] = { 0 };
1102        int ndots = 0;
1103        unsigned v;
1104        size_t copy;
1105
1106        while (*rest) {
1107            if (*rest == '.' && ++ndots >= 3)
1108                break;
1109            if (!isdigit(*rest) && *rest != '.')
1110                break;
1111            rest++;
1112        }
1113        v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1114        copy = clamp_t(size_t, len, 1, sizeof(buf));
1115        copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1116        ret = copy_to_user(release, buf, copy + 1);
1117    }
1118    return ret;
1119}
1120
1121SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1122{
1123    int errno = 0;
1124
1125    down_read(&uts_sem);
1126    if (copy_to_user(name, utsname(), sizeof *name))
1127        errno = -EFAULT;
1128    up_read(&uts_sem);
1129
1130    if (!errno && override_release(name->release, sizeof(name->release)))
1131        errno = -EFAULT;
1132    if (!errno && override_architecture(name))
1133        errno = -EFAULT;
1134    return errno;
1135}
1136
1137#ifdef __ARCH_WANT_SYS_OLD_UNAME
1138/*
1139 * Old cruft
1140 */
1141SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1142{
1143    int error = 0;
1144
1145    if (!name)
1146        return -EFAULT;
1147
1148    down_read(&uts_sem);
1149    if (copy_to_user(name, utsname(), sizeof(*name)))
1150        error = -EFAULT;
1151    up_read(&uts_sem);
1152
1153    if (!error && override_release(name->release, sizeof(name->release)))
1154        error = -EFAULT;
1155    if (!error && override_architecture(name))
1156        error = -EFAULT;
1157    return error;
1158}
1159
1160SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1161{
1162    int error;
1163
1164    if (!name)
1165        return -EFAULT;
1166    if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1167        return -EFAULT;
1168
1169    down_read(&uts_sem);
1170    error = __copy_to_user(&name->sysname, &utsname()->sysname,
1171                   __OLD_UTS_LEN);
1172    error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1173    error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1174                __OLD_UTS_LEN);
1175    error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1176    error |= __copy_to_user(&name->release, &utsname()->release,
1177                __OLD_UTS_LEN);
1178    error |= __put_user(0, name->release + __OLD_UTS_LEN);
1179    error |= __copy_to_user(&name->version, &utsname()->version,
1180                __OLD_UTS_LEN);
1181    error |= __put_user(0, name->version + __OLD_UTS_LEN);
1182    error |= __copy_to_user(&name->machine, &utsname()->machine,
1183                __OLD_UTS_LEN);
1184    error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1185    up_read(&uts_sem);
1186
1187    if (!error && override_architecture(name))
1188        error = -EFAULT;
1189    if (!error && override_release(name->release, sizeof(name->release)))
1190        error = -EFAULT;
1191    return error ? -EFAULT : 0;
1192}
1193#endif
1194
1195SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1196{
1197    int errno;
1198    char tmp[__NEW_UTS_LEN];
1199
1200    if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1201        return -EPERM;
1202
1203    if (len < 0 || len > __NEW_UTS_LEN)
1204        return -EINVAL;
1205    down_write(&uts_sem);
1206    errno = -EFAULT;
1207    if (!copy_from_user(tmp, name, len)) {
1208        struct new_utsname *u = utsname();
1209
1210        memcpy(u->nodename, tmp, len);
1211        memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1212        errno = 0;
1213        uts_proc_notify(UTS_PROC_HOSTNAME);
1214    }
1215    up_write(&uts_sem);
1216    return errno;
1217}
1218
1219#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1220
1221SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1222{
1223    int i, errno;
1224    struct new_utsname *u;
1225
1226    if (len < 0)
1227        return -EINVAL;
1228    down_read(&uts_sem);
1229    u = utsname();
1230    i = 1 + strlen(u->nodename);
1231    if (i > len)
1232        i = len;
1233    errno = 0;
1234    if (copy_to_user(name, u->nodename, i))
1235        errno = -EFAULT;
1236    up_read(&uts_sem);
1237    return errno;
1238}
1239
1240#endif
1241
1242/*
1243 * Only setdomainname; getdomainname can be implemented by calling
1244 * uname()
1245 */
1246SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1247{
1248    int errno;
1249    char tmp[__NEW_UTS_LEN];
1250
1251    if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1252        return -EPERM;
1253    if (len < 0 || len > __NEW_UTS_LEN)
1254        return -EINVAL;
1255
1256    down_write(&uts_sem);
1257    errno = -EFAULT;
1258    if (!copy_from_user(tmp, name, len)) {
1259        struct new_utsname *u = utsname();
1260
1261        memcpy(u->domainname, tmp, len);
1262        memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1263        errno = 0;
1264        uts_proc_notify(UTS_PROC_DOMAINNAME);
1265    }
1266    up_write(&uts_sem);
1267    return errno;
1268}
1269
1270SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1271{
1272    struct rlimit value;
1273    int ret;
1274
1275    ret = do_prlimit(current, resource, NULL, &value);
1276    if (!ret)
1277        ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1278
1279    return ret;
1280}
1281
1282#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1283
1284/*
1285 * Back compatibility for getrlimit. Needed for some apps.
1286 */
1287 
1288SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1289        struct rlimit __user *, rlim)
1290{
1291    struct rlimit x;
1292    if (resource >= RLIM_NLIMITS)
1293        return -EINVAL;
1294
1295    task_lock(current->group_leader);
1296    x = current->signal->rlim[resource];
1297    task_unlock(current->group_leader);
1298    if (x.rlim_cur > 0x7FFFFFFF)
1299        x.rlim_cur = 0x7FFFFFFF;
1300    if (x.rlim_max > 0x7FFFFFFF)
1301        x.rlim_max = 0x7FFFFFFF;
1302    return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1303}
1304
1305#endif
1306
1307static inline bool rlim64_is_infinity(__u64 rlim64)
1308{
1309#if BITS_PER_LONG < 64
1310    return rlim64 >= ULONG_MAX;
1311#else
1312    return rlim64 == RLIM64_INFINITY;
1313#endif
1314}
1315
1316static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1317{
1318    if (rlim->rlim_cur == RLIM_INFINITY)
1319        rlim64->rlim_cur = RLIM64_INFINITY;
1320    else
1321        rlim64->rlim_cur = rlim->rlim_cur;
1322    if (rlim->rlim_max == RLIM_INFINITY)
1323        rlim64->rlim_max = RLIM64_INFINITY;
1324    else
1325        rlim64->rlim_max = rlim->rlim_max;
1326}
1327
1328static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1329{
1330    if (rlim64_is_infinity(rlim64->rlim_cur))
1331        rlim->rlim_cur = RLIM_INFINITY;
1332    else
1333        rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1334    if (rlim64_is_infinity(rlim64->rlim_max))
1335        rlim->rlim_max = RLIM_INFINITY;
1336    else
1337        rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1338}
1339
1340/* make sure you are allowed to change @tsk limits before calling this */
1341int do_prlimit(struct task_struct *tsk, unsigned int resource,
1342        struct rlimit *new_rlim, struct rlimit *old_rlim)
1343{
1344    struct rlimit *rlim;
1345    int retval = 0;
1346
1347    if (resource >= RLIM_NLIMITS)
1348        return -EINVAL;
1349    if (new_rlim) {
1350        if (new_rlim->rlim_cur > new_rlim->rlim_max)
1351            return -EINVAL;
1352        if (resource == RLIMIT_NOFILE &&
1353                new_rlim->rlim_max > sysctl_nr_open)
1354            return -EPERM;
1355    }
1356
1357    /* protect tsk->signal and tsk->sighand from disappearing */
1358    read_lock(&tasklist_lock);
1359    if (!tsk->sighand) {
1360        retval = -ESRCH;
1361        goto out;
1362    }
1363
1364    rlim = tsk->signal->rlim + resource;
1365    task_lock(tsk->group_leader);
1366    if (new_rlim) {
1367        /* Keep the capable check against init_user_ns until
1368           cgroups can contain all limits */
1369        if (new_rlim->rlim_max > rlim->rlim_max &&
1370                !capable(CAP_SYS_RESOURCE))
1371            retval = -EPERM;
1372        if (!retval)
1373            retval = security_task_setrlimit(tsk->group_leader,
1374                    resource, new_rlim);
1375        if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1376            /*
1377             * The caller is asking for an immediate RLIMIT_CPU
1378             * expiry. But we use the zero value to mean "it was
1379             * never set". So let's cheat and make it one second
1380             * instead
1381             */
1382            new_rlim->rlim_cur = 1;
1383        }
1384    }
1385    if (!retval) {
1386        if (old_rlim)
1387            *old_rlim = *rlim;
1388        if (new_rlim)
1389            *rlim = *new_rlim;
1390    }
1391    task_unlock(tsk->group_leader);
1392
1393    /*
1394     * RLIMIT_CPU handling. Note that the kernel fails to return an error
1395     * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1396     * very long-standing error, and fixing it now risks breakage of
1397     * applications, so we live with it
1398     */
1399     if (!retval && new_rlim && resource == RLIMIT_CPU &&
1400             new_rlim->rlim_cur != RLIM_INFINITY)
1401        update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1402out:
1403    read_unlock(&tasklist_lock);
1404    return retval;
1405}
1406
1407/* rcu lock must be held */
1408static int check_prlimit_permission(struct task_struct *task)
1409{
1410    const struct cred *cred = current_cred(), *tcred;
1411
1412    if (current == task)
1413        return 0;
1414
1415    tcred = __task_cred(task);
1416    if (uid_eq(cred->uid, tcred->euid) &&
1417        uid_eq(cred->uid, tcred->suid) &&
1418        uid_eq(cred->uid, tcred->uid) &&
1419        gid_eq(cred->gid, tcred->egid) &&
1420        gid_eq(cred->gid, tcred->sgid) &&
1421        gid_eq(cred->gid, tcred->gid))
1422        return 0;
1423    if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1424        return 0;
1425
1426    return -EPERM;
1427}
1428
1429SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1430        const struct rlimit64 __user *, new_rlim,
1431        struct rlimit64 __user *, old_rlim)
1432{
1433    struct rlimit64 old64, new64;
1434    struct rlimit old, new;
1435    struct task_struct *tsk;
1436    int ret;
1437
1438    if (new_rlim) {
1439        if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1440            return -EFAULT;
1441        rlim64_to_rlim(&new64, &new);
1442    }
1443
1444    rcu_read_lock();
1445    tsk = pid ? find_task_by_vpid(pid) : current;
1446    if (!tsk) {
1447        rcu_read_unlock();
1448        return -ESRCH;
1449    }
1450    ret = check_prlimit_permission(tsk);
1451    if (ret) {
1452        rcu_read_unlock();
1453        return ret;
1454    }
1455    get_task_struct(tsk);
1456    rcu_read_unlock();
1457
1458    ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1459            old_rlim ? &old : NULL);
1460
1461    if (!ret && old_rlim) {
1462        rlim_to_rlim64(&old, &old64);
1463        if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1464            ret = -EFAULT;
1465    }
1466
1467    put_task_struct(tsk);
1468    return ret;
1469}
1470
1471SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1472{
1473    struct rlimit new_rlim;
1474
1475    if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1476        return -EFAULT;
1477    return do_prlimit(current, resource, &new_rlim, NULL);
1478}
1479
1480/*
1481 * It would make sense to put struct rusage in the task_struct,
1482 * except that would make the task_struct be *really big*. After
1483 * task_struct gets moved into malloc'ed memory, it would
1484 * make sense to do this. It will make moving the rest of the information
1485 * a lot simpler! (Which we're not doing right now because we're not
1486 * measuring them yet).
1487 *
1488 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1489 * races with threads incrementing their own counters. But since word
1490 * reads are atomic, we either get new values or old values and we don't
1491 * care which for the sums. We always take the siglock to protect reading
1492 * the c* fields from p->signal from races with exit.c updating those
1493 * fields when reaping, so a sample either gets all the additions of a
1494 * given child after it's reaped, or none so this sample is before reaping.
1495 *
1496 * Locking:
1497 * We need to take the siglock for CHILDEREN, SELF and BOTH
1498 * for the cases current multithreaded, non-current single threaded
1499 * non-current multithreaded. Thread traversal is now safe with
1500 * the siglock held.
1501 * Strictly speaking, we donot need to take the siglock if we are current and
1502 * single threaded, as no one else can take our signal_struct away, no one
1503 * else can reap the children to update signal->c* counters, and no one else
1504 * can race with the signal-> fields. If we do not take any lock, the
1505 * signal-> fields could be read out of order while another thread was just
1506 * exiting. So we should place a read memory barrier when we avoid the lock.
1507 * On the writer side, write memory barrier is implied in __exit_signal
1508 * as __exit_signal releases the siglock spinlock after updating the signal->
1509 * fields. But we don't do this yet to keep things simple.
1510 *
1511 */
1512
1513static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1514{
1515    r->ru_nvcsw += t->nvcsw;
1516    r->ru_nivcsw += t->nivcsw;
1517    r->ru_minflt += t->min_flt;
1518    r->ru_majflt += t->maj_flt;
1519    r->ru_inblock += task_io_get_inblock(t);
1520    r->ru_oublock += task_io_get_oublock(t);
1521}
1522
1523static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1524{
1525    struct task_struct *t;
1526    unsigned long flags;
1527    cputime_t tgutime, tgstime, utime, stime;
1528    unsigned long maxrss = 0;
1529
1530    memset((char *) r, 0, sizeof *r);
1531    utime = stime = 0;
1532
1533    if (who == RUSAGE_THREAD) {
1534        task_cputime_adjusted(current, &utime, &stime);
1535        accumulate_thread_rusage(p, r);
1536        maxrss = p->signal->maxrss;
1537        goto out;
1538    }
1539
1540    if (!lock_task_sighand(p, &flags))
1541        return;
1542
1543    switch (who) {
1544        case RUSAGE_BOTH:
1545        case RUSAGE_CHILDREN:
1546            utime = p->signal->cutime;
1547            stime = p->signal->cstime;
1548            r->ru_nvcsw = p->signal->cnvcsw;
1549            r->ru_nivcsw = p->signal->cnivcsw;
1550            r->ru_minflt = p->signal->cmin_flt;
1551            r->ru_majflt = p->signal->cmaj_flt;
1552            r->ru_inblock = p->signal->cinblock;
1553            r->ru_oublock = p->signal->coublock;
1554            maxrss = p->signal->cmaxrss;
1555
1556            if (who == RUSAGE_CHILDREN)
1557                break;
1558
1559        case RUSAGE_SELF:
1560            thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1561            utime += tgutime;
1562            stime += tgstime;
1563            r->ru_nvcsw += p->signal->nvcsw;
1564            r->ru_nivcsw += p->signal->nivcsw;
1565            r->ru_minflt += p->signal->min_flt;
1566            r->ru_majflt += p->signal->maj_flt;
1567            r->ru_inblock += p->signal->inblock;
1568            r->ru_oublock += p->signal->oublock;
1569            if (maxrss < p->signal->maxrss)
1570                maxrss = p->signal->maxrss;
1571            t = p;
1572            do {
1573                accumulate_thread_rusage(t, r);
1574            } while_each_thread(p, t);
1575            break;
1576
1577        default:
1578            BUG();
1579    }
1580    unlock_task_sighand(p, &flags);
1581
1582out:
1583    cputime_to_timeval(utime, &r->ru_utime);
1584    cputime_to_timeval(stime, &r->ru_stime);
1585
1586    if (who != RUSAGE_CHILDREN) {
1587        struct mm_struct *mm = get_task_mm(p);
1588        if (mm) {
1589            setmax_mm_hiwater_rss(&maxrss, mm);
1590            mmput(mm);
1591        }
1592    }
1593    r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1594}
1595
1596int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1597{
1598    struct rusage r;
1599    k_getrusage(p, who, &r);
1600    return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1601}
1602
1603SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1604{
1605    if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1606        who != RUSAGE_THREAD)
1607        return -EINVAL;
1608    return getrusage(current, who, ru);
1609}
1610
1611#ifdef CONFIG_COMPAT
1612COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1613{
1614    struct rusage r;
1615
1616    if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1617        who != RUSAGE_THREAD)
1618        return -EINVAL;
1619
1620    k_getrusage(current, who, &r);
1621    return put_compat_rusage(&r, ru);
1622}
1623#endif
1624
1625SYSCALL_DEFINE1(umask, int, mask)
1626{
1627    mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1628    return mask;
1629}
1630
1631static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1632{
1633    struct fd exe;
1634    struct inode *inode;
1635    int err;
1636
1637    exe = fdget(fd);
1638    if (!exe.file)
1639        return -EBADF;
1640
1641    inode = file_inode(exe.file);
1642
1643    /*
1644     * Because the original mm->exe_file points to executable file, make
1645     * sure that this one is executable as well, to avoid breaking an
1646     * overall picture.
1647     */
1648    err = -EACCES;
1649    if (!S_ISREG(inode->i_mode) ||
1650        exe.file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1651        goto exit;
1652
1653    err = inode_permission(inode, MAY_EXEC);
1654    if (err)
1655        goto exit;
1656
1657    down_write(&mm->mmap_sem);
1658
1659    /*
1660     * Forbid mm->exe_file change if old file still mapped.
1661     */
1662    err = -EBUSY;
1663    if (mm->exe_file) {
1664        struct vm_area_struct *vma;
1665
1666        for (vma = mm->mmap; vma; vma = vma->vm_next)
1667            if (vma->vm_file &&
1668                path_equal(&vma->vm_file->f_path,
1669                       &mm->exe_file->f_path))
1670                goto exit_unlock;
1671    }
1672
1673    /*
1674     * The symlink can be changed only once, just to disallow arbitrary
1675     * transitions malicious software might bring in. This means one
1676     * could make a snapshot over all processes running and monitor
1677     * /proc/pid/exe changes to notice unusual activity if needed.
1678     */
1679    err = -EPERM;
1680    if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1681        goto exit_unlock;
1682
1683    err = 0;
1684    set_mm_exe_file(mm, exe.file); /* this grabs a reference to exe.file */
1685exit_unlock:
1686    up_write(&mm->mmap_sem);
1687
1688exit:
1689    fdput(exe);
1690    return err;
1691}
1692
1693static int prctl_set_mm(int opt, unsigned long addr,
1694            unsigned long arg4, unsigned long arg5)
1695{
1696    unsigned long rlim = rlimit(RLIMIT_DATA);
1697    struct mm_struct *mm = current->mm;
1698    struct vm_area_struct *vma;
1699    int error;
1700
1701    if (arg5 || (arg4 && opt != PR_SET_MM_AUXV))
1702        return -EINVAL;
1703
1704    if (!capable(CAP_SYS_RESOURCE))
1705        return -EPERM;
1706
1707    if (opt == PR_SET_MM_EXE_FILE)
1708        return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1709
1710    if (addr >= TASK_SIZE || addr < mmap_min_addr)
1711        return -EINVAL;
1712
1713    error = -EINVAL;
1714
1715    down_read(&mm->mmap_sem);
1716    vma = find_vma(mm, addr);
1717
1718    switch (opt) {
1719    case PR_SET_MM_START_CODE:
1720        mm->start_code = addr;
1721        break;
1722    case PR_SET_MM_END_CODE:
1723        mm->end_code = addr;
1724        break;
1725    case PR_SET_MM_START_DATA:
1726        mm->start_data = addr;
1727        break;
1728    case PR_SET_MM_END_DATA:
1729        mm->end_data = addr;
1730        break;
1731
1732    case PR_SET_MM_START_BRK:
1733        if (addr <= mm->end_data)
1734            goto out;
1735
1736        if (rlim < RLIM_INFINITY &&
1737            (mm->brk - addr) +
1738            (mm->end_data - mm->start_data) > rlim)
1739            goto out;
1740
1741        mm->start_brk = addr;
1742        break;
1743
1744    case PR_SET_MM_BRK:
1745        if (addr <= mm->end_data)
1746            goto out;
1747
1748        if (rlim < RLIM_INFINITY &&
1749            (addr - mm->start_brk) +
1750            (mm->end_data - mm->start_data) > rlim)
1751            goto out;
1752
1753        mm->brk = addr;
1754        break;
1755
1756    /*
1757     * If command line arguments and environment
1758     * are placed somewhere else on stack, we can
1759     * set them up here, ARG_START/END to setup
1760     * command line argumets and ENV_START/END
1761     * for environment.
1762     */
1763    case PR_SET_MM_START_STACK:
1764    case PR_SET_MM_ARG_START:
1765    case PR_SET_MM_ARG_END:
1766    case PR_SET_MM_ENV_START:
1767    case PR_SET_MM_ENV_END:
1768        if (!vma) {
1769            error = -EFAULT;
1770            goto out;
1771        }
1772        if (opt == PR_SET_MM_START_STACK)
1773            mm->start_stack = addr;
1774        else if (opt == PR_SET_MM_ARG_START)
1775            mm->arg_start = addr;
1776        else if (opt == PR_SET_MM_ARG_END)
1777            mm->arg_end = addr;
1778        else if (opt == PR_SET_MM_ENV_START)
1779            mm->env_start = addr;
1780        else if (opt == PR_SET_MM_ENV_END)
1781            mm->env_end = addr;
1782        break;
1783
1784    /*
1785     * This doesn't move auxiliary vector itself
1786     * since it's pinned to mm_struct, but allow
1787     * to fill vector with new values. It's up
1788     * to a caller to provide sane values here
1789     * otherwise user space tools which use this
1790     * vector might be unhappy.
1791     */
1792    case PR_SET_MM_AUXV: {
1793        unsigned long user_auxv[AT_VECTOR_SIZE];
1794
1795        if (arg4 > sizeof(user_auxv))
1796            goto out;
1797        up_read(&mm->mmap_sem);
1798
1799        if (copy_from_user(user_auxv, (const void __user *)addr, arg4))
1800            return -EFAULT;
1801
1802        /* Make sure the last entry is always AT_NULL */
1803        user_auxv[AT_VECTOR_SIZE - 2] = 0;
1804        user_auxv[AT_VECTOR_SIZE - 1] = 0;
1805
1806        BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1807
1808        task_lock(current);
1809        memcpy(mm->saved_auxv, user_auxv, arg4);
1810        task_unlock(current);
1811
1812        return 0;
1813    }
1814    default:
1815        goto out;
1816    }
1817
1818    error = 0;
1819out:
1820    up_read(&mm->mmap_sem);
1821    return error;
1822}
1823
1824#ifdef CONFIG_CHECKPOINT_RESTORE
1825static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1826{
1827    return put_user(me->clear_child_tid, tid_addr);
1828}
1829#else
1830static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
1831{
1832    return -EINVAL;
1833}
1834#endif
1835
1836SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1837        unsigned long, arg4, unsigned long, arg5)
1838{
1839    struct task_struct *me = current;
1840    unsigned char comm[sizeof(me->comm)];
1841    long error;
1842
1843    error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1844    if (error != -ENOSYS)
1845        return error;
1846
1847    error = 0;
1848    switch (option) {
1849    case PR_SET_PDEATHSIG:
1850        if (!valid_signal(arg2)) {
1851            error = -EINVAL;
1852            break;
1853        }
1854        me->pdeath_signal = arg2;
1855        break;
1856    case PR_GET_PDEATHSIG:
1857        error = put_user(me->pdeath_signal, (int __user *)arg2);
1858        break;
1859    case PR_GET_DUMPABLE:
1860        error = get_dumpable(me->mm);
1861        break;
1862    case PR_SET_DUMPABLE:
1863        if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
1864            error = -EINVAL;
1865            break;
1866        }
1867        set_dumpable(me->mm, arg2);
1868        break;
1869
1870    case PR_SET_UNALIGN:
1871        error = SET_UNALIGN_CTL(me, arg2);
1872        break;
1873    case PR_GET_UNALIGN:
1874        error = GET_UNALIGN_CTL(me, arg2);
1875        break;
1876    case PR_SET_FPEMU:
1877        error = SET_FPEMU_CTL(me, arg2);
1878        break;
1879    case PR_GET_FPEMU:
1880        error = GET_FPEMU_CTL(me, arg2);
1881        break;
1882    case PR_SET_FPEXC:
1883        error = SET_FPEXC_CTL(me, arg2);
1884        break;
1885    case PR_GET_FPEXC:
1886        error = GET_FPEXC_CTL(me, arg2);
1887        break;
1888    case PR_GET_TIMING:
1889        error = PR_TIMING_STATISTICAL;
1890        break;
1891    case PR_SET_TIMING:
1892        if (arg2 != PR_TIMING_STATISTICAL)
1893            error = -EINVAL;
1894        break;
1895    case PR_SET_NAME:
1896        comm[sizeof(me->comm) - 1] = 0;
1897        if (strncpy_from_user(comm, (char __user *)arg2,
1898                      sizeof(me->comm) - 1) < 0)
1899            return -EFAULT;
1900        set_task_comm(me, comm);
1901        proc_comm_connector(me);
1902        break;
1903    case PR_GET_NAME:
1904        get_task_comm(comm, me);
1905        if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
1906            return -EFAULT;
1907        break;
1908    case PR_GET_ENDIAN:
1909        error = GET_ENDIAN(me, arg2);
1910        break;
1911    case PR_SET_ENDIAN:
1912        error = SET_ENDIAN(me, arg2);
1913        break;
1914    case PR_GET_SECCOMP:
1915        error = prctl_get_seccomp();
1916        break;
1917    case PR_SET_SECCOMP:
1918        error = prctl_set_seccomp(arg2, (char __user *)arg3);
1919        break;
1920    case PR_GET_TSC:
1921        error = GET_TSC_CTL(arg2);
1922        break;
1923    case PR_SET_TSC:
1924        error = SET_TSC_CTL(arg2);
1925        break;
1926    case PR_TASK_PERF_EVENTS_DISABLE:
1927        error = perf_event_task_disable();
1928        break;
1929    case PR_TASK_PERF_EVENTS_ENABLE:
1930        error = perf_event_task_enable();
1931        break;
1932    case PR_GET_TIMERSLACK:
1933        error = current->timer_slack_ns;
1934        break;
1935    case PR_SET_TIMERSLACK:
1936        if (arg2 <= 0)
1937            current->timer_slack_ns =
1938                    current->default_timer_slack_ns;
1939        else
1940            current->timer_slack_ns = arg2;
1941        break;
1942    case PR_MCE_KILL:
1943        if (arg4 | arg5)
1944            return -EINVAL;
1945        switch (arg2) {
1946        case PR_MCE_KILL_CLEAR:
1947            if (arg3 != 0)
1948                return -EINVAL;
1949            current->flags &= ~PF_MCE_PROCESS;
1950            break;
1951        case PR_MCE_KILL_SET:
1952            current->flags |= PF_MCE_PROCESS;
1953            if (arg3 == PR_MCE_KILL_EARLY)
1954                current->flags |= PF_MCE_EARLY;
1955            else if (arg3 == PR_MCE_KILL_LATE)
1956                current->flags &= ~PF_MCE_EARLY;
1957            else if (arg3 == PR_MCE_KILL_DEFAULT)
1958                current->flags &=
1959                        ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1960            else
1961                return -EINVAL;
1962            break;
1963        default:
1964            return -EINVAL;
1965        }
1966        break;
1967    case PR_MCE_KILL_GET:
1968        if (arg2 | arg3 | arg4 | arg5)
1969            return -EINVAL;
1970        if (current->flags & PF_MCE_PROCESS)
1971            error = (current->flags & PF_MCE_EARLY) ?
1972                PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1973        else
1974            error = PR_MCE_KILL_DEFAULT;
1975        break;
1976    case PR_SET_MM:
1977        error = prctl_set_mm(arg2, arg3, arg4, arg5);
1978        break;
1979    case PR_GET_TID_ADDRESS:
1980        error = prctl_get_tid_address(me, (int __user **)arg2);
1981        break;
1982    case PR_SET_CHILD_SUBREAPER:
1983        me->signal->is_child_subreaper = !!arg2;
1984        break;
1985    case PR_GET_CHILD_SUBREAPER:
1986        error = put_user(me->signal->is_child_subreaper,
1987                 (int __user *)arg2);
1988        break;
1989    case PR_SET_NO_NEW_PRIVS:
1990        if (arg2 != 1 || arg3 || arg4 || arg5)
1991            return -EINVAL;
1992
1993        current->no_new_privs = 1;
1994        break;
1995    case PR_GET_NO_NEW_PRIVS:
1996        if (arg2 || arg3 || arg4 || arg5)
1997            return -EINVAL;
1998        return current->no_new_privs ? 1 : 0;
1999    case PR_GET_THP_DISABLE:
2000        if (arg2 || arg3 || arg4 || arg5)
2001            return -EINVAL;
2002        error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2003        break;
2004    case PR_SET_THP_DISABLE:
2005        if (arg3 || arg4 || arg5)
2006            return -EINVAL;
2007        down_write(&me->mm->mmap_sem);
2008        if (arg2)
2009            me->mm->def_flags |= VM_NOHUGEPAGE;
2010        else
2011            me->mm->def_flags &= ~VM_NOHUGEPAGE;
2012        up_write(&me->mm->mmap_sem);
2013        break;
2014    default:
2015        error = -EINVAL;
2016        break;
2017    }
2018    return error;
2019}
2020
2021SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2022        struct getcpu_cache __user *, unused)
2023{
2024    int err = 0;
2025    int cpu = raw_smp_processor_id();
2026    if (cpup)
2027        err |= put_user(cpu, cpup);
2028    if (nodep)
2029        err |= put_user(cpu_to_node(cpu), nodep);
2030    return err ? -EFAULT : 0;
2031}
2032
2033/**
2034 * do_sysinfo - fill in sysinfo struct
2035 * @info: pointer to buffer to fill
2036 */
2037static int do_sysinfo(struct sysinfo *info)
2038{
2039    unsigned long mem_total, sav_total;
2040    unsigned int mem_unit, bitcount;
2041    struct timespec tp;
2042
2043    memset(info, 0, sizeof(struct sysinfo));
2044
2045    get_monotonic_boottime(&tp);
2046    info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2047
2048    get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2049
2050    info->procs = nr_threads;
2051
2052    si_meminfo(info);
2053    si_swapinfo(info);
2054
2055    /*
2056     * If the sum of all the available memory (i.e. ram + swap)
2057     * is less than can be stored in a 32 bit unsigned long then
2058     * we can be binary compatible with 2.2.x kernels. If not,
2059     * well, in that case 2.2.x was broken anyways...
2060     *
2061     * -Erik Andersen <andersee@debian.org>
2062     */
2063
2064    mem_total = info->totalram + info->totalswap;
2065    if (mem_total < info->totalram || mem_total < info->totalswap)
2066        goto out;
2067    bitcount = 0;
2068    mem_unit = info->mem_unit;
2069    while (mem_unit > 1) {
2070        bitcount++;
2071        mem_unit >>= 1;
2072        sav_total = mem_total;
2073        mem_total <<= 1;
2074        if (mem_total < sav_total)
2075            goto out;
2076    }
2077
2078    /*
2079     * If mem_total did not overflow, multiply all memory values by
2080     * info->mem_unit and set it to 1. This leaves things compatible
2081     * with 2.2.x, and also retains compatibility with earlier 2.4.x
2082     * kernels...
2083     */
2084
2085    info->mem_unit = 1;
2086    info->totalram <<= bitcount;
2087    info->freeram <<= bitcount;
2088    info->sharedram <<= bitcount;
2089    info->bufferram <<= bitcount;
2090    info->totalswap <<= bitcount;
2091    info->freeswap <<= bitcount;
2092    info->totalhigh <<= bitcount;
2093    info->freehigh <<= bitcount;
2094
2095out:
2096    return 0;
2097}
2098
2099SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2100{
2101    struct sysinfo val;
2102
2103    do_sysinfo(&val);
2104
2105    if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2106        return -EFAULT;
2107
2108    return 0;
2109}
2110
2111#ifdef CONFIG_COMPAT
2112struct compat_sysinfo {
2113    s32 uptime;
2114    u32 loads[3];
2115    u32 totalram;
2116    u32 freeram;
2117    u32 sharedram;
2118    u32 bufferram;
2119    u32 totalswap;
2120    u32 freeswap;
2121    u16 procs;
2122    u16 pad;
2123    u32 totalhigh;
2124    u32 freehigh;
2125    u32 mem_unit;
2126    char _f[20-2*sizeof(u32)-sizeof(int)];
2127};
2128
2129COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2130{
2131    struct sysinfo s;
2132
2133    do_sysinfo(&s);
2134
2135    /* Check to see if any memory value is too large for 32-bit and scale
2136     * down if needed
2137     */
2138    if ((s.totalram >> 32) || (s.totalswap >> 32)) {
2139        int bitcount = 0;
2140
2141        while (s.mem_unit < PAGE_SIZE) {
2142            s.mem_unit <<= 1;
2143            bitcount++;
2144        }
2145
2146        s.totalram >>= bitcount;
2147        s.freeram >>= bitcount;
2148        s.sharedram >>= bitcount;
2149        s.bufferram >>= bitcount;
2150        s.totalswap >>= bitcount;
2151        s.freeswap >>= bitcount;
2152        s.totalhigh >>= bitcount;
2153        s.freehigh >>= bitcount;
2154    }
2155
2156    if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2157        __put_user(s.uptime, &info->uptime) ||
2158        __put_user(s.loads[0], &info->loads[0]) ||
2159        __put_user(s.loads[1], &info->loads[1]) ||
2160        __put_user(s.loads[2], &info->loads[2]) ||
2161        __put_user(s.totalram, &info->totalram) ||
2162        __put_user(s.freeram, &info->freeram) ||
2163        __put_user(s.sharedram, &info->sharedram) ||
2164        __put_user(s.bufferram, &info->bufferram) ||
2165        __put_user(s.totalswap, &info->totalswap) ||
2166        __put_user(s.freeswap, &info->freeswap) ||
2167        __put_user(s.procs, &info->procs) ||
2168        __put_user(s.totalhigh, &info->totalhigh) ||
2169        __put_user(s.freehigh, &info->freehigh) ||
2170        __put_user(s.mem_unit, &info->mem_unit))
2171        return -EFAULT;
2172
2173    return 0;
2174}
2175#endif /* CONFIG_COMPAT */
2176

Archive Download this file



interactive