Root/
1 | #include <linux/kernel.h> |
2 | #include <linux/errno.h> |
3 | #include <linux/err.h> |
4 | #include <linux/spinlock.h> |
5 | |
6 | #include <linux/hugetlb.h> |
7 | #include <linux/mm.h> |
8 | #include <linux/pagemap.h> |
9 | #include <linux/rmap.h> |
10 | #include <linux/swap.h> |
11 | #include <linux/swapops.h> |
12 | |
13 | #include "internal.h" |
14 | |
15 | static struct page *no_page_table(struct vm_area_struct *vma, |
16 | unsigned int flags) |
17 | { |
18 | /* |
19 | * When core dumping an enormous anonymous area that nobody |
20 | * has touched so far, we don't want to allocate unnecessary pages or |
21 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
22 | * then get_dump_page() will return NULL to leave a hole in the dump. |
23 | * But we can only make this optimization where a hole would surely |
24 | * be zero-filled if handle_mm_fault() actually did handle it. |
25 | */ |
26 | if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) |
27 | return ERR_PTR(-EFAULT); |
28 | return NULL; |
29 | } |
30 | |
31 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
32 | unsigned long address, pmd_t *pmd, unsigned int flags) |
33 | { |
34 | struct mm_struct *mm = vma->vm_mm; |
35 | struct page *page; |
36 | spinlock_t *ptl; |
37 | pte_t *ptep, pte; |
38 | |
39 | retry: |
40 | if (unlikely(pmd_bad(*pmd))) |
41 | return no_page_table(vma, flags); |
42 | |
43 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
44 | pte = *ptep; |
45 | if (!pte_present(pte)) { |
46 | swp_entry_t entry; |
47 | /* |
48 | * KSM's break_ksm() relies upon recognizing a ksm page |
49 | * even while it is being migrated, so for that case we |
50 | * need migration_entry_wait(). |
51 | */ |
52 | if (likely(!(flags & FOLL_MIGRATION))) |
53 | goto no_page; |
54 | if (pte_none(pte) || pte_file(pte)) |
55 | goto no_page; |
56 | entry = pte_to_swp_entry(pte); |
57 | if (!is_migration_entry(entry)) |
58 | goto no_page; |
59 | pte_unmap_unlock(ptep, ptl); |
60 | migration_entry_wait(mm, pmd, address); |
61 | goto retry; |
62 | } |
63 | if ((flags & FOLL_NUMA) && pte_numa(pte)) |
64 | goto no_page; |
65 | if ((flags & FOLL_WRITE) && !pte_write(pte)) { |
66 | pte_unmap_unlock(ptep, ptl); |
67 | return NULL; |
68 | } |
69 | |
70 | page = vm_normal_page(vma, address, pte); |
71 | if (unlikely(!page)) { |
72 | if ((flags & FOLL_DUMP) || |
73 | !is_zero_pfn(pte_pfn(pte))) |
74 | goto bad_page; |
75 | page = pte_page(pte); |
76 | } |
77 | |
78 | if (flags & FOLL_GET) |
79 | get_page_foll(page); |
80 | if (flags & FOLL_TOUCH) { |
81 | if ((flags & FOLL_WRITE) && |
82 | !pte_dirty(pte) && !PageDirty(page)) |
83 | set_page_dirty(page); |
84 | /* |
85 | * pte_mkyoung() would be more correct here, but atomic care |
86 | * is needed to avoid losing the dirty bit: it is easier to use |
87 | * mark_page_accessed(). |
88 | */ |
89 | mark_page_accessed(page); |
90 | } |
91 | if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { |
92 | /* |
93 | * The preliminary mapping check is mainly to avoid the |
94 | * pointless overhead of lock_page on the ZERO_PAGE |
95 | * which might bounce very badly if there is contention. |
96 | * |
97 | * If the page is already locked, we don't need to |
98 | * handle it now - vmscan will handle it later if and |
99 | * when it attempts to reclaim the page. |
100 | */ |
101 | if (page->mapping && trylock_page(page)) { |
102 | lru_add_drain(); /* push cached pages to LRU */ |
103 | /* |
104 | * Because we lock page here, and migration is |
105 | * blocked by the pte's page reference, and we |
106 | * know the page is still mapped, we don't even |
107 | * need to check for file-cache page truncation. |
108 | */ |
109 | mlock_vma_page(page); |
110 | unlock_page(page); |
111 | } |
112 | } |
113 | pte_unmap_unlock(ptep, ptl); |
114 | return page; |
115 | bad_page: |
116 | pte_unmap_unlock(ptep, ptl); |
117 | return ERR_PTR(-EFAULT); |
118 | |
119 | no_page: |
120 | pte_unmap_unlock(ptep, ptl); |
121 | if (!pte_none(pte)) |
122 | return NULL; |
123 | return no_page_table(vma, flags); |
124 | } |
125 | |
126 | /** |
127 | * follow_page_mask - look up a page descriptor from a user-virtual address |
128 | * @vma: vm_area_struct mapping @address |
129 | * @address: virtual address to look up |
130 | * @flags: flags modifying lookup behaviour |
131 | * @page_mask: on output, *page_mask is set according to the size of the page |
132 | * |
133 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> |
134 | * |
135 | * Returns the mapped (struct page *), %NULL if no mapping exists, or |
136 | * an error pointer if there is a mapping to something not represented |
137 | * by a page descriptor (see also vm_normal_page()). |
138 | */ |
139 | struct page *follow_page_mask(struct vm_area_struct *vma, |
140 | unsigned long address, unsigned int flags, |
141 | unsigned int *page_mask) |
142 | { |
143 | pgd_t *pgd; |
144 | pud_t *pud; |
145 | pmd_t *pmd; |
146 | spinlock_t *ptl; |
147 | struct page *page; |
148 | struct mm_struct *mm = vma->vm_mm; |
149 | |
150 | *page_mask = 0; |
151 | |
152 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
153 | if (!IS_ERR(page)) { |
154 | BUG_ON(flags & FOLL_GET); |
155 | return page; |
156 | } |
157 | |
158 | pgd = pgd_offset(mm, address); |
159 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) |
160 | return no_page_table(vma, flags); |
161 | |
162 | pud = pud_offset(pgd, address); |
163 | if (pud_none(*pud)) |
164 | return no_page_table(vma, flags); |
165 | if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { |
166 | if (flags & FOLL_GET) |
167 | return NULL; |
168 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); |
169 | return page; |
170 | } |
171 | if (unlikely(pud_bad(*pud))) |
172 | return no_page_table(vma, flags); |
173 | |
174 | pmd = pmd_offset(pud, address); |
175 | if (pmd_none(*pmd)) |
176 | return no_page_table(vma, flags); |
177 | if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { |
178 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); |
179 | if (flags & FOLL_GET) { |
180 | /* |
181 | * Refcount on tail pages are not well-defined and |
182 | * shouldn't be taken. The caller should handle a NULL |
183 | * return when trying to follow tail pages. |
184 | */ |
185 | if (PageHead(page)) |
186 | get_page(page); |
187 | else |
188 | page = NULL; |
189 | } |
190 | return page; |
191 | } |
192 | if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) |
193 | return no_page_table(vma, flags); |
194 | if (pmd_trans_huge(*pmd)) { |
195 | if (flags & FOLL_SPLIT) { |
196 | split_huge_page_pmd(vma, address, pmd); |
197 | return follow_page_pte(vma, address, pmd, flags); |
198 | } |
199 | ptl = pmd_lock(mm, pmd); |
200 | if (likely(pmd_trans_huge(*pmd))) { |
201 | if (unlikely(pmd_trans_splitting(*pmd))) { |
202 | spin_unlock(ptl); |
203 | wait_split_huge_page(vma->anon_vma, pmd); |
204 | } else { |
205 | page = follow_trans_huge_pmd(vma, address, |
206 | pmd, flags); |
207 | spin_unlock(ptl); |
208 | *page_mask = HPAGE_PMD_NR - 1; |
209 | return page; |
210 | } |
211 | } else |
212 | spin_unlock(ptl); |
213 | } |
214 | return follow_page_pte(vma, address, pmd, flags); |
215 | } |
216 | |
217 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
218 | unsigned int gup_flags, struct vm_area_struct **vma, |
219 | struct page **page) |
220 | { |
221 | pgd_t *pgd; |
222 | pud_t *pud; |
223 | pmd_t *pmd; |
224 | pte_t *pte; |
225 | int ret = -EFAULT; |
226 | |
227 | /* user gate pages are read-only */ |
228 | if (gup_flags & FOLL_WRITE) |
229 | return -EFAULT; |
230 | if (address > TASK_SIZE) |
231 | pgd = pgd_offset_k(address); |
232 | else |
233 | pgd = pgd_offset_gate(mm, address); |
234 | BUG_ON(pgd_none(*pgd)); |
235 | pud = pud_offset(pgd, address); |
236 | BUG_ON(pud_none(*pud)); |
237 | pmd = pmd_offset(pud, address); |
238 | if (pmd_none(*pmd)) |
239 | return -EFAULT; |
240 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
241 | pte = pte_offset_map(pmd, address); |
242 | if (pte_none(*pte)) |
243 | goto unmap; |
244 | *vma = get_gate_vma(mm); |
245 | if (!page) |
246 | goto out; |
247 | *page = vm_normal_page(*vma, address, *pte); |
248 | if (!*page) { |
249 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) |
250 | goto unmap; |
251 | *page = pte_page(*pte); |
252 | } |
253 | get_page(*page); |
254 | out: |
255 | ret = 0; |
256 | unmap: |
257 | pte_unmap(pte); |
258 | return ret; |
259 | } |
260 | |
261 | static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, |
262 | unsigned long address, unsigned int *flags, int *nonblocking) |
263 | { |
264 | struct mm_struct *mm = vma->vm_mm; |
265 | unsigned int fault_flags = 0; |
266 | int ret; |
267 | |
268 | /* For mlock, just skip the stack guard page. */ |
269 | if ((*flags & FOLL_MLOCK) && |
270 | (stack_guard_page_start(vma, address) || |
271 | stack_guard_page_end(vma, address + PAGE_SIZE))) |
272 | return -ENOENT; |
273 | if (*flags & FOLL_WRITE) |
274 | fault_flags |= FAULT_FLAG_WRITE; |
275 | if (nonblocking) |
276 | fault_flags |= FAULT_FLAG_ALLOW_RETRY; |
277 | if (*flags & FOLL_NOWAIT) |
278 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; |
279 | |
280 | ret = handle_mm_fault(mm, vma, address, fault_flags); |
281 | if (ret & VM_FAULT_ERROR) { |
282 | if (ret & VM_FAULT_OOM) |
283 | return -ENOMEM; |
284 | if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
285 | return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; |
286 | if (ret & VM_FAULT_SIGBUS) |
287 | return -EFAULT; |
288 | BUG(); |
289 | } |
290 | |
291 | if (tsk) { |
292 | if (ret & VM_FAULT_MAJOR) |
293 | tsk->maj_flt++; |
294 | else |
295 | tsk->min_flt++; |
296 | } |
297 | |
298 | if (ret & VM_FAULT_RETRY) { |
299 | if (nonblocking) |
300 | *nonblocking = 0; |
301 | return -EBUSY; |
302 | } |
303 | |
304 | /* |
305 | * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when |
306 | * necessary, even if maybe_mkwrite decided not to set pte_write. We |
307 | * can thus safely do subsequent page lookups as if they were reads. |
308 | * But only do so when looping for pte_write is futile: in some cases |
309 | * userspace may also be wanting to write to the gotten user page, |
310 | * which a read fault here might prevent (a readonly page might get |
311 | * reCOWed by userspace write). |
312 | */ |
313 | if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) |
314 | *flags &= ~FOLL_WRITE; |
315 | return 0; |
316 | } |
317 | |
318 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
319 | { |
320 | vm_flags_t vm_flags = vma->vm_flags; |
321 | |
322 | if (vm_flags & (VM_IO | VM_PFNMAP)) |
323 | return -EFAULT; |
324 | |
325 | if (gup_flags & FOLL_WRITE) { |
326 | if (!(vm_flags & VM_WRITE)) { |
327 | if (!(gup_flags & FOLL_FORCE)) |
328 | return -EFAULT; |
329 | /* |
330 | * We used to let the write,force case do COW in a |
331 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could |
332 | * set a breakpoint in a read-only mapping of an |
333 | * executable, without corrupting the file (yet only |
334 | * when that file had been opened for writing!). |
335 | * Anon pages in shared mappings are surprising: now |
336 | * just reject it. |
337 | */ |
338 | if (!is_cow_mapping(vm_flags)) { |
339 | WARN_ON_ONCE(vm_flags & VM_MAYWRITE); |
340 | return -EFAULT; |
341 | } |
342 | } |
343 | } else if (!(vm_flags & VM_READ)) { |
344 | if (!(gup_flags & FOLL_FORCE)) |
345 | return -EFAULT; |
346 | /* |
347 | * Is there actually any vma we can reach here which does not |
348 | * have VM_MAYREAD set? |
349 | */ |
350 | if (!(vm_flags & VM_MAYREAD)) |
351 | return -EFAULT; |
352 | } |
353 | return 0; |
354 | } |
355 | |
356 | /** |
357 | * __get_user_pages() - pin user pages in memory |
358 | * @tsk: task_struct of target task |
359 | * @mm: mm_struct of target mm |
360 | * @start: starting user address |
361 | * @nr_pages: number of pages from start to pin |
362 | * @gup_flags: flags modifying pin behaviour |
363 | * @pages: array that receives pointers to the pages pinned. |
364 | * Should be at least nr_pages long. Or NULL, if caller |
365 | * only intends to ensure the pages are faulted in. |
366 | * @vmas: array of pointers to vmas corresponding to each page. |
367 | * Or NULL if the caller does not require them. |
368 | * @nonblocking: whether waiting for disk IO or mmap_sem contention |
369 | * |
370 | * Returns number of pages pinned. This may be fewer than the number |
371 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
372 | * were pinned, returns -errno. Each page returned must be released |
373 | * with a put_page() call when it is finished with. vmas will only |
374 | * remain valid while mmap_sem is held. |
375 | * |
376 | * Must be called with mmap_sem held for read or write. |
377 | * |
378 | * __get_user_pages walks a process's page tables and takes a reference to |
379 | * each struct page that each user address corresponds to at a given |
380 | * instant. That is, it takes the page that would be accessed if a user |
381 | * thread accesses the given user virtual address at that instant. |
382 | * |
383 | * This does not guarantee that the page exists in the user mappings when |
384 | * __get_user_pages returns, and there may even be a completely different |
385 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
386 | * and subsequently re faulted). However it does guarantee that the page |
387 | * won't be freed completely. And mostly callers simply care that the page |
388 | * contains data that was valid *at some point in time*. Typically, an IO |
389 | * or similar operation cannot guarantee anything stronger anyway because |
390 | * locks can't be held over the syscall boundary. |
391 | * |
392 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If |
393 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as |
394 | * appropriate) must be called after the page is finished with, and |
395 | * before put_page is called. |
396 | * |
397 | * If @nonblocking != NULL, __get_user_pages will not wait for disk IO |
398 | * or mmap_sem contention, and if waiting is needed to pin all pages, |
399 | * *@nonblocking will be set to 0. |
400 | * |
401 | * In most cases, get_user_pages or get_user_pages_fast should be used |
402 | * instead of __get_user_pages. __get_user_pages should be used only if |
403 | * you need some special @gup_flags. |
404 | */ |
405 | long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
406 | unsigned long start, unsigned long nr_pages, |
407 | unsigned int gup_flags, struct page **pages, |
408 | struct vm_area_struct **vmas, int *nonblocking) |
409 | { |
410 | long i = 0; |
411 | unsigned int page_mask; |
412 | struct vm_area_struct *vma = NULL; |
413 | |
414 | if (!nr_pages) |
415 | return 0; |
416 | |
417 | VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); |
418 | |
419 | /* |
420 | * If FOLL_FORCE is set then do not force a full fault as the hinting |
421 | * fault information is unrelated to the reference behaviour of a task |
422 | * using the address space |
423 | */ |
424 | if (!(gup_flags & FOLL_FORCE)) |
425 | gup_flags |= FOLL_NUMA; |
426 | |
427 | do { |
428 | struct page *page; |
429 | unsigned int foll_flags = gup_flags; |
430 | unsigned int page_increm; |
431 | |
432 | /* first iteration or cross vma bound */ |
433 | if (!vma || start >= vma->vm_end) { |
434 | vma = find_extend_vma(mm, start); |
435 | if (!vma && in_gate_area(mm, start)) { |
436 | int ret; |
437 | ret = get_gate_page(mm, start & PAGE_MASK, |
438 | gup_flags, &vma, |
439 | pages ? &pages[i] : NULL); |
440 | if (ret) |
441 | return i ? : ret; |
442 | page_mask = 0; |
443 | goto next_page; |
444 | } |
445 | |
446 | if (!vma || check_vma_flags(vma, gup_flags)) |
447 | return i ? : -EFAULT; |
448 | if (is_vm_hugetlb_page(vma)) { |
449 | i = follow_hugetlb_page(mm, vma, pages, vmas, |
450 | &start, &nr_pages, i, |
451 | gup_flags); |
452 | continue; |
453 | } |
454 | } |
455 | retry: |
456 | /* |
457 | * If we have a pending SIGKILL, don't keep faulting pages and |
458 | * potentially allocating memory. |
459 | */ |
460 | if (unlikely(fatal_signal_pending(current))) |
461 | return i ? i : -ERESTARTSYS; |
462 | cond_resched(); |
463 | page = follow_page_mask(vma, start, foll_flags, &page_mask); |
464 | if (!page) { |
465 | int ret; |
466 | ret = faultin_page(tsk, vma, start, &foll_flags, |
467 | nonblocking); |
468 | switch (ret) { |
469 | case 0: |
470 | goto retry; |
471 | case -EFAULT: |
472 | case -ENOMEM: |
473 | case -EHWPOISON: |
474 | return i ? i : ret; |
475 | case -EBUSY: |
476 | return i; |
477 | case -ENOENT: |
478 | goto next_page; |
479 | } |
480 | BUG(); |
481 | } |
482 | if (IS_ERR(page)) |
483 | return i ? i : PTR_ERR(page); |
484 | if (pages) { |
485 | pages[i] = page; |
486 | flush_anon_page(vma, page, start); |
487 | flush_dcache_page(page); |
488 | page_mask = 0; |
489 | } |
490 | next_page: |
491 | if (vmas) { |
492 | vmas[i] = vma; |
493 | page_mask = 0; |
494 | } |
495 | page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); |
496 | if (page_increm > nr_pages) |
497 | page_increm = nr_pages; |
498 | i += page_increm; |
499 | start += page_increm * PAGE_SIZE; |
500 | nr_pages -= page_increm; |
501 | } while (nr_pages); |
502 | return i; |
503 | } |
504 | EXPORT_SYMBOL(__get_user_pages); |
505 | |
506 | /* |
507 | * fixup_user_fault() - manually resolve a user page fault |
508 | * @tsk: the task_struct to use for page fault accounting, or |
509 | * NULL if faults are not to be recorded. |
510 | * @mm: mm_struct of target mm |
511 | * @address: user address |
512 | * @fault_flags:flags to pass down to handle_mm_fault() |
513 | * |
514 | * This is meant to be called in the specific scenario where for locking reasons |
515 | * we try to access user memory in atomic context (within a pagefault_disable() |
516 | * section), this returns -EFAULT, and we want to resolve the user fault before |
517 | * trying again. |
518 | * |
519 | * Typically this is meant to be used by the futex code. |
520 | * |
521 | * The main difference with get_user_pages() is that this function will |
522 | * unconditionally call handle_mm_fault() which will in turn perform all the |
523 | * necessary SW fixup of the dirty and young bits in the PTE, while |
524 | * handle_mm_fault() only guarantees to update these in the struct page. |
525 | * |
526 | * This is important for some architectures where those bits also gate the |
527 | * access permission to the page because they are maintained in software. On |
528 | * such architectures, gup() will not be enough to make a subsequent access |
529 | * succeed. |
530 | * |
531 | * This should be called with the mm_sem held for read. |
532 | */ |
533 | int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, |
534 | unsigned long address, unsigned int fault_flags) |
535 | { |
536 | struct vm_area_struct *vma; |
537 | vm_flags_t vm_flags; |
538 | int ret; |
539 | |
540 | vma = find_extend_vma(mm, address); |
541 | if (!vma || address < vma->vm_start) |
542 | return -EFAULT; |
543 | |
544 | vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; |
545 | if (!(vm_flags & vma->vm_flags)) |
546 | return -EFAULT; |
547 | |
548 | ret = handle_mm_fault(mm, vma, address, fault_flags); |
549 | if (ret & VM_FAULT_ERROR) { |
550 | if (ret & VM_FAULT_OOM) |
551 | return -ENOMEM; |
552 | if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) |
553 | return -EHWPOISON; |
554 | if (ret & VM_FAULT_SIGBUS) |
555 | return -EFAULT; |
556 | BUG(); |
557 | } |
558 | if (tsk) { |
559 | if (ret & VM_FAULT_MAJOR) |
560 | tsk->maj_flt++; |
561 | else |
562 | tsk->min_flt++; |
563 | } |
564 | return 0; |
565 | } |
566 | |
567 | /* |
568 | * get_user_pages() - pin user pages in memory |
569 | * @tsk: the task_struct to use for page fault accounting, or |
570 | * NULL if faults are not to be recorded. |
571 | * @mm: mm_struct of target mm |
572 | * @start: starting user address |
573 | * @nr_pages: number of pages from start to pin |
574 | * @write: whether pages will be written to by the caller |
575 | * @force: whether to force access even when user mapping is currently |
576 | * protected (but never forces write access to shared mapping). |
577 | * @pages: array that receives pointers to the pages pinned. |
578 | * Should be at least nr_pages long. Or NULL, if caller |
579 | * only intends to ensure the pages are faulted in. |
580 | * @vmas: array of pointers to vmas corresponding to each page. |
581 | * Or NULL if the caller does not require them. |
582 | * |
583 | * Returns number of pages pinned. This may be fewer than the number |
584 | * requested. If nr_pages is 0 or negative, returns 0. If no pages |
585 | * were pinned, returns -errno. Each page returned must be released |
586 | * with a put_page() call when it is finished with. vmas will only |
587 | * remain valid while mmap_sem is held. |
588 | * |
589 | * Must be called with mmap_sem held for read or write. |
590 | * |
591 | * get_user_pages walks a process's page tables and takes a reference to |
592 | * each struct page that each user address corresponds to at a given |
593 | * instant. That is, it takes the page that would be accessed if a user |
594 | * thread accesses the given user virtual address at that instant. |
595 | * |
596 | * This does not guarantee that the page exists in the user mappings when |
597 | * get_user_pages returns, and there may even be a completely different |
598 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
599 | * and subsequently re faulted). However it does guarantee that the page |
600 | * won't be freed completely. And mostly callers simply care that the page |
601 | * contains data that was valid *at some point in time*. Typically, an IO |
602 | * or similar operation cannot guarantee anything stronger anyway because |
603 | * locks can't be held over the syscall boundary. |
604 | * |
605 | * If write=0, the page must not be written to. If the page is written to, |
606 | * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called |
607 | * after the page is finished with, and before put_page is called. |
608 | * |
609 | * get_user_pages is typically used for fewer-copy IO operations, to get a |
610 | * handle on the memory by some means other than accesses via the user virtual |
611 | * addresses. The pages may be submitted for DMA to devices or accessed via |
612 | * their kernel linear mapping (via the kmap APIs). Care should be taken to |
613 | * use the correct cache flushing APIs. |
614 | * |
615 | * See also get_user_pages_fast, for performance critical applications. |
616 | */ |
617 | long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
618 | unsigned long start, unsigned long nr_pages, int write, |
619 | int force, struct page **pages, struct vm_area_struct **vmas) |
620 | { |
621 | int flags = FOLL_TOUCH; |
622 | |
623 | if (pages) |
624 | flags |= FOLL_GET; |
625 | if (write) |
626 | flags |= FOLL_WRITE; |
627 | if (force) |
628 | flags |= FOLL_FORCE; |
629 | |
630 | return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, |
631 | NULL); |
632 | } |
633 | EXPORT_SYMBOL(get_user_pages); |
634 | |
635 | /** |
636 | * get_dump_page() - pin user page in memory while writing it to core dump |
637 | * @addr: user address |
638 | * |
639 | * Returns struct page pointer of user page pinned for dump, |
640 | * to be freed afterwards by page_cache_release() or put_page(). |
641 | * |
642 | * Returns NULL on any kind of failure - a hole must then be inserted into |
643 | * the corefile, to preserve alignment with its headers; and also returns |
644 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - |
645 | * allowing a hole to be left in the corefile to save diskspace. |
646 | * |
647 | * Called without mmap_sem, but after all other threads have been killed. |
648 | */ |
649 | #ifdef CONFIG_ELF_CORE |
650 | struct page *get_dump_page(unsigned long addr) |
651 | { |
652 | struct vm_area_struct *vma; |
653 | struct page *page; |
654 | |
655 | if (__get_user_pages(current, current->mm, addr, 1, |
656 | FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, |
657 | NULL) < 1) |
658 | return NULL; |
659 | flush_cache_page(vma, addr, page_to_pfn(page)); |
660 | return page; |
661 | } |
662 | #endif /* CONFIG_ELF_CORE */ |
663 |
Branches:
ben-wpan
ben-wpan-stefan
javiroman/ks7010
jz-2.6.34
jz-2.6.34-rc5
jz-2.6.34-rc6
jz-2.6.34-rc7
jz-2.6.35
jz-2.6.36
jz-2.6.37
jz-2.6.38
jz-2.6.39
jz-3.0
jz-3.1
jz-3.11
jz-3.12
jz-3.13
jz-3.15
jz-3.16
jz-3.18-dt
jz-3.2
jz-3.3
jz-3.4
jz-3.5
jz-3.6
jz-3.6-rc2-pwm
jz-3.9
jz-3.9-clk
jz-3.9-rc8
jz47xx
jz47xx-2.6.38
master
Tags:
od-2011-09-04
od-2011-09-18
v2.6.34-rc5
v2.6.34-rc6
v2.6.34-rc7
v3.9