Root/mm/slab_common.c

1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
21#include <linux/memcontrol.h>
22#include <trace/events/kmem.h>
23
24#include "slab.h"
25
26enum slab_state slab_state;
27LIST_HEAD(slab_caches);
28DEFINE_MUTEX(slab_mutex);
29struct kmem_cache *kmem_cache;
30
31#ifdef CONFIG_DEBUG_VM
32static int kmem_cache_sanity_check(const char *name, size_t size)
33{
34    struct kmem_cache *s = NULL;
35
36    if (!name || in_interrupt() || size < sizeof(void *) ||
37        size > KMALLOC_MAX_SIZE) {
38        pr_err("kmem_cache_create(%s) integrity check failed\n", name);
39        return -EINVAL;
40    }
41
42    list_for_each_entry(s, &slab_caches, list) {
43        char tmp;
44        int res;
45
46        /*
47         * This happens when the module gets unloaded and doesn't
48         * destroy its slab cache and no-one else reuses the vmalloc
49         * area of the module. Print a warning.
50         */
51        res = probe_kernel_address(s->name, tmp);
52        if (res) {
53            pr_err("Slab cache with size %d has lost its name\n",
54                   s->object_size);
55            continue;
56        }
57
58#if !defined(CONFIG_SLUB)
59        if (!strcmp(s->name, name)) {
60            pr_err("%s (%s): Cache name already exists.\n",
61                   __func__, name);
62            dump_stack();
63            s = NULL;
64            return -EINVAL;
65        }
66#endif
67    }
68
69    WARN_ON(strchr(name, ' ')); /* It confuses parsers */
70    return 0;
71}
72#else
73static inline int kmem_cache_sanity_check(const char *name, size_t size)
74{
75    return 0;
76}
77#endif
78
79#ifdef CONFIG_MEMCG_KMEM
80int memcg_update_all_caches(int num_memcgs)
81{
82    struct kmem_cache *s;
83    int ret = 0;
84    mutex_lock(&slab_mutex);
85
86    list_for_each_entry(s, &slab_caches, list) {
87        if (!is_root_cache(s))
88            continue;
89
90        ret = memcg_update_cache_size(s, num_memcgs);
91        /*
92         * See comment in memcontrol.c, memcg_update_cache_size:
93         * Instead of freeing the memory, we'll just leave the caches
94         * up to this point in an updated state.
95         */
96        if (ret)
97            goto out;
98    }
99
100    memcg_update_array_size(num_memcgs);
101out:
102    mutex_unlock(&slab_mutex);
103    return ret;
104}
105#endif
106
107/*
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
110 */
111unsigned long calculate_alignment(unsigned long flags,
112        unsigned long align, unsigned long size)
113{
114    /*
115     * If the user wants hardware cache aligned objects then follow that
116     * suggestion if the object is sufficiently large.
117     *
118     * The hardware cache alignment cannot override the specified
119     * alignment though. If that is greater then use it.
120     */
121    if (flags & SLAB_HWCACHE_ALIGN) {
122        unsigned long ralign = cache_line_size();
123        while (size <= ralign / 2)
124            ralign /= 2;
125        align = max(align, ralign);
126    }
127
128    if (align < ARCH_SLAB_MINALIGN)
129        align = ARCH_SLAB_MINALIGN;
130
131    return ALIGN(align, sizeof(void *));
132}
133
134static struct kmem_cache *
135do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
136             unsigned long flags, void (*ctor)(void *),
137             struct mem_cgroup *memcg, struct kmem_cache *root_cache)
138{
139    struct kmem_cache *s;
140    int err;
141
142    err = -ENOMEM;
143    s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
144    if (!s)
145        goto out;
146
147    s->name = name;
148    s->object_size = object_size;
149    s->size = size;
150    s->align = align;
151    s->ctor = ctor;
152
153    err = memcg_alloc_cache_params(memcg, s, root_cache);
154    if (err)
155        goto out_free_cache;
156
157    err = __kmem_cache_create(s, flags);
158    if (err)
159        goto out_free_cache;
160
161    s->refcount = 1;
162    list_add(&s->list, &slab_caches);
163out:
164    if (err)
165        return ERR_PTR(err);
166    return s;
167
168out_free_cache:
169    memcg_free_cache_params(s);
170    kfree(s);
171    goto out;
172}
173
174/*
175 * kmem_cache_create - Create a cache.
176 * @name: A string which is used in /proc/slabinfo to identify this cache.
177 * @size: The size of objects to be created in this cache.
178 * @align: The required alignment for the objects.
179 * @flags: SLAB flags
180 * @ctor: A constructor for the objects.
181 *
182 * Returns a ptr to the cache on success, NULL on failure.
183 * Cannot be called within a interrupt, but can be interrupted.
184 * The @ctor is run when new pages are allocated by the cache.
185 *
186 * The flags are
187 *
188 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
189 * to catch references to uninitialised memory.
190 *
191 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
192 * for buffer overruns.
193 *
194 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
195 * cacheline. This can be beneficial if you're counting cycles as closely
196 * as davem.
197 */
198struct kmem_cache *
199kmem_cache_create(const char *name, size_t size, size_t align,
200          unsigned long flags, void (*ctor)(void *))
201{
202    struct kmem_cache *s;
203    char *cache_name;
204    int err;
205
206    get_online_cpus();
207    get_online_mems();
208
209    mutex_lock(&slab_mutex);
210
211    err = kmem_cache_sanity_check(name, size);
212    if (err)
213        goto out_unlock;
214
215    /*
216     * Some allocators will constraint the set of valid flags to a subset
217     * of all flags. We expect them to define CACHE_CREATE_MASK in this
218     * case, and we'll just provide them with a sanitized version of the
219     * passed flags.
220     */
221    flags &= CACHE_CREATE_MASK;
222
223    s = __kmem_cache_alias(name, size, align, flags, ctor);
224    if (s)
225        goto out_unlock;
226
227    cache_name = kstrdup(name, GFP_KERNEL);
228    if (!cache_name) {
229        err = -ENOMEM;
230        goto out_unlock;
231    }
232
233    s = do_kmem_cache_create(cache_name, size, size,
234                 calculate_alignment(flags, align, size),
235                 flags, ctor, NULL, NULL);
236    if (IS_ERR(s)) {
237        err = PTR_ERR(s);
238        kfree(cache_name);
239    }
240
241out_unlock:
242    mutex_unlock(&slab_mutex);
243
244    put_online_mems();
245    put_online_cpus();
246
247    if (err) {
248        if (flags & SLAB_PANIC)
249            panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
250                name, err);
251        else {
252            printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
253                name, err);
254            dump_stack();
255        }
256        return NULL;
257    }
258    return s;
259}
260EXPORT_SYMBOL(kmem_cache_create);
261
262#ifdef CONFIG_MEMCG_KMEM
263/*
264 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
265 * @memcg: The memory cgroup the new cache is for.
266 * @root_cache: The parent of the new cache.
267 * @memcg_name: The name of the memory cgroup (used for naming the new cache).
268 *
269 * This function attempts to create a kmem cache that will serve allocation
270 * requests going from @memcg to @root_cache. The new cache inherits properties
271 * from its parent.
272 */
273struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
274                       struct kmem_cache *root_cache,
275                       const char *memcg_name)
276{
277    struct kmem_cache *s = NULL;
278    char *cache_name;
279
280    get_online_cpus();
281    get_online_mems();
282
283    mutex_lock(&slab_mutex);
284
285    cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
286                   memcg_cache_id(memcg), memcg_name);
287    if (!cache_name)
288        goto out_unlock;
289
290    s = do_kmem_cache_create(cache_name, root_cache->object_size,
291                 root_cache->size, root_cache->align,
292                 root_cache->flags, root_cache->ctor,
293                 memcg, root_cache);
294    if (IS_ERR(s)) {
295        kfree(cache_name);
296        s = NULL;
297    }
298
299out_unlock:
300    mutex_unlock(&slab_mutex);
301
302    put_online_mems();
303    put_online_cpus();
304
305    return s;
306}
307
308static int memcg_cleanup_cache_params(struct kmem_cache *s)
309{
310    int rc;
311
312    if (!s->memcg_params ||
313        !s->memcg_params->is_root_cache)
314        return 0;
315
316    mutex_unlock(&slab_mutex);
317    rc = __memcg_cleanup_cache_params(s);
318    mutex_lock(&slab_mutex);
319
320    return rc;
321}
322#else
323static int memcg_cleanup_cache_params(struct kmem_cache *s)
324{
325    return 0;
326}
327#endif /* CONFIG_MEMCG_KMEM */
328
329void slab_kmem_cache_release(struct kmem_cache *s)
330{
331    kfree(s->name);
332    kmem_cache_free(kmem_cache, s);
333}
334
335void kmem_cache_destroy(struct kmem_cache *s)
336{
337    get_online_cpus();
338    get_online_mems();
339
340    mutex_lock(&slab_mutex);
341
342    s->refcount--;
343    if (s->refcount)
344        goto out_unlock;
345
346    if (memcg_cleanup_cache_params(s) != 0)
347        goto out_unlock;
348
349    if (__kmem_cache_shutdown(s) != 0) {
350        printk(KERN_ERR "kmem_cache_destroy %s: "
351               "Slab cache still has objects\n", s->name);
352        dump_stack();
353        goto out_unlock;
354    }
355
356    list_del(&s->list);
357
358    mutex_unlock(&slab_mutex);
359    if (s->flags & SLAB_DESTROY_BY_RCU)
360        rcu_barrier();
361
362    memcg_free_cache_params(s);
363#ifdef SLAB_SUPPORTS_SYSFS
364    sysfs_slab_remove(s);
365#else
366    slab_kmem_cache_release(s);
367#endif
368    goto out;
369
370out_unlock:
371    mutex_unlock(&slab_mutex);
372out:
373    put_online_mems();
374    put_online_cpus();
375}
376EXPORT_SYMBOL(kmem_cache_destroy);
377
378/**
379 * kmem_cache_shrink - Shrink a cache.
380 * @cachep: The cache to shrink.
381 *
382 * Releases as many slabs as possible for a cache.
383 * To help debugging, a zero exit status indicates all slabs were released.
384 */
385int kmem_cache_shrink(struct kmem_cache *cachep)
386{
387    int ret;
388
389    get_online_cpus();
390    get_online_mems();
391    ret = __kmem_cache_shrink(cachep);
392    put_online_mems();
393    put_online_cpus();
394    return ret;
395}
396EXPORT_SYMBOL(kmem_cache_shrink);
397
398int slab_is_available(void)
399{
400    return slab_state >= UP;
401}
402
403#ifndef CONFIG_SLOB
404/* Create a cache during boot when no slab services are available yet */
405void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
406        unsigned long flags)
407{
408    int err;
409
410    s->name = name;
411    s->size = s->object_size = size;
412    s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
413    err = __kmem_cache_create(s, flags);
414
415    if (err)
416        panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
417                    name, size, err);
418
419    s->refcount = -1; /* Exempt from merging for now */
420}
421
422struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
423                unsigned long flags)
424{
425    struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
426
427    if (!s)
428        panic("Out of memory when creating slab %s\n", name);
429
430    create_boot_cache(s, name, size, flags);
431    list_add(&s->list, &slab_caches);
432    s->refcount = 1;
433    return s;
434}
435
436struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
437EXPORT_SYMBOL(kmalloc_caches);
438
439#ifdef CONFIG_ZONE_DMA
440struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
441EXPORT_SYMBOL(kmalloc_dma_caches);
442#endif
443
444/*
445 * Conversion table for small slabs sizes / 8 to the index in the
446 * kmalloc array. This is necessary for slabs < 192 since we have non power
447 * of two cache sizes there. The size of larger slabs can be determined using
448 * fls.
449 */
450static s8 size_index[24] = {
451    3, /* 8 */
452    4, /* 16 */
453    5, /* 24 */
454    5, /* 32 */
455    6, /* 40 */
456    6, /* 48 */
457    6, /* 56 */
458    6, /* 64 */
459    1, /* 72 */
460    1, /* 80 */
461    1, /* 88 */
462    1, /* 96 */
463    7, /* 104 */
464    7, /* 112 */
465    7, /* 120 */
466    7, /* 128 */
467    2, /* 136 */
468    2, /* 144 */
469    2, /* 152 */
470    2, /* 160 */
471    2, /* 168 */
472    2, /* 176 */
473    2, /* 184 */
474    2 /* 192 */
475};
476
477static inline int size_index_elem(size_t bytes)
478{
479    return (bytes - 1) / 8;
480}
481
482/*
483 * Find the kmem_cache structure that serves a given size of
484 * allocation
485 */
486struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
487{
488    int index;
489
490    if (unlikely(size > KMALLOC_MAX_SIZE)) {
491        WARN_ON_ONCE(!(flags & __GFP_NOWARN));
492        return NULL;
493    }
494
495    if (size <= 192) {
496        if (!size)
497            return ZERO_SIZE_PTR;
498
499        index = size_index[size_index_elem(size)];
500    } else
501        index = fls(size - 1);
502
503#ifdef CONFIG_ZONE_DMA
504    if (unlikely((flags & GFP_DMA)))
505        return kmalloc_dma_caches[index];
506
507#endif
508    return kmalloc_caches[index];
509}
510
511/*
512 * Create the kmalloc array. Some of the regular kmalloc arrays
513 * may already have been created because they were needed to
514 * enable allocations for slab creation.
515 */
516void __init create_kmalloc_caches(unsigned long flags)
517{
518    int i;
519
520    /*
521     * Patch up the size_index table if we have strange large alignment
522     * requirements for the kmalloc array. This is only the case for
523     * MIPS it seems. The standard arches will not generate any code here.
524     *
525     * Largest permitted alignment is 256 bytes due to the way we
526     * handle the index determination for the smaller caches.
527     *
528     * Make sure that nothing crazy happens if someone starts tinkering
529     * around with ARCH_KMALLOC_MINALIGN
530     */
531    BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
532        (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
533
534    for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
535        int elem = size_index_elem(i);
536
537        if (elem >= ARRAY_SIZE(size_index))
538            break;
539        size_index[elem] = KMALLOC_SHIFT_LOW;
540    }
541
542    if (KMALLOC_MIN_SIZE >= 64) {
543        /*
544         * The 96 byte size cache is not used if the alignment
545         * is 64 byte.
546         */
547        for (i = 64 + 8; i <= 96; i += 8)
548            size_index[size_index_elem(i)] = 7;
549
550    }
551
552    if (KMALLOC_MIN_SIZE >= 128) {
553        /*
554         * The 192 byte sized cache is not used if the alignment
555         * is 128 byte. Redirect kmalloc to use the 256 byte cache
556         * instead.
557         */
558        for (i = 128 + 8; i <= 192; i += 8)
559            size_index[size_index_elem(i)] = 8;
560    }
561    for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
562        if (!kmalloc_caches[i]) {
563            kmalloc_caches[i] = create_kmalloc_cache(NULL,
564                            1 << i, flags);
565        }
566
567        /*
568         * Caches that are not of the two-to-the-power-of size.
569         * These have to be created immediately after the
570         * earlier power of two caches
571         */
572        if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
573            kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
574
575        if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
576            kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
577    }
578
579    /* Kmalloc array is now usable */
580    slab_state = UP;
581
582    for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
583        struct kmem_cache *s = kmalloc_caches[i];
584        char *n;
585
586        if (s) {
587            n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
588
589            BUG_ON(!n);
590            s->name = n;
591        }
592    }
593
594#ifdef CONFIG_ZONE_DMA
595    for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
596        struct kmem_cache *s = kmalloc_caches[i];
597
598        if (s) {
599            int size = kmalloc_size(i);
600            char *n = kasprintf(GFP_NOWAIT,
601                 "dma-kmalloc-%d", size);
602
603            BUG_ON(!n);
604            kmalloc_dma_caches[i] = create_kmalloc_cache(n,
605                size, SLAB_CACHE_DMA | flags);
606        }
607    }
608#endif
609}
610#endif /* !CONFIG_SLOB */
611
612/*
613 * To avoid unnecessary overhead, we pass through large allocation requests
614 * directly to the page allocator. We use __GFP_COMP, because we will need to
615 * know the allocation order to free the pages properly in kfree.
616 */
617void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
618{
619    void *ret;
620    struct page *page;
621
622    flags |= __GFP_COMP;
623    page = alloc_kmem_pages(flags, order);
624    ret = page ? page_address(page) : NULL;
625    kmemleak_alloc(ret, size, 1, flags);
626    return ret;
627}
628EXPORT_SYMBOL(kmalloc_order);
629
630#ifdef CONFIG_TRACING
631void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
632{
633    void *ret = kmalloc_order(size, flags, order);
634    trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
635    return ret;
636}
637EXPORT_SYMBOL(kmalloc_order_trace);
638#endif
639
640#ifdef CONFIG_SLABINFO
641
642#ifdef CONFIG_SLAB
643#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
644#else
645#define SLABINFO_RIGHTS S_IRUSR
646#endif
647
648void print_slabinfo_header(struct seq_file *m)
649{
650    /*
651     * Output format version, so at least we can change it
652     * without _too_ many complaints.
653     */
654#ifdef CONFIG_DEBUG_SLAB
655    seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
656#else
657    seq_puts(m, "slabinfo - version: 2.1\n");
658#endif
659    seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
660         "<objperslab> <pagesperslab>");
661    seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
662    seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
663#ifdef CONFIG_DEBUG_SLAB
664    seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
665         "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
666    seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
667#endif
668    seq_putc(m, '\n');
669}
670
671static void *s_start(struct seq_file *m, loff_t *pos)
672{
673    loff_t n = *pos;
674
675    mutex_lock(&slab_mutex);
676    if (!n)
677        print_slabinfo_header(m);
678
679    return seq_list_start(&slab_caches, *pos);
680}
681
682void *slab_next(struct seq_file *m, void *p, loff_t *pos)
683{
684    return seq_list_next(p, &slab_caches, pos);
685}
686
687void slab_stop(struct seq_file *m, void *p)
688{
689    mutex_unlock(&slab_mutex);
690}
691
692static void
693memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
694{
695    struct kmem_cache *c;
696    struct slabinfo sinfo;
697    int i;
698
699    if (!is_root_cache(s))
700        return;
701
702    for_each_memcg_cache_index(i) {
703        c = cache_from_memcg_idx(s, i);
704        if (!c)
705            continue;
706
707        memset(&sinfo, 0, sizeof(sinfo));
708        get_slabinfo(c, &sinfo);
709
710        info->active_slabs += sinfo.active_slabs;
711        info->num_slabs += sinfo.num_slabs;
712        info->shared_avail += sinfo.shared_avail;
713        info->active_objs += sinfo.active_objs;
714        info->num_objs += sinfo.num_objs;
715    }
716}
717
718int cache_show(struct kmem_cache *s, struct seq_file *m)
719{
720    struct slabinfo sinfo;
721
722    memset(&sinfo, 0, sizeof(sinfo));
723    get_slabinfo(s, &sinfo);
724
725    memcg_accumulate_slabinfo(s, &sinfo);
726
727    seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
728           cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
729           sinfo.objects_per_slab, (1 << sinfo.cache_order));
730
731    seq_printf(m, " : tunables %4u %4u %4u",
732           sinfo.limit, sinfo.batchcount, sinfo.shared);
733    seq_printf(m, " : slabdata %6lu %6lu %6lu",
734           sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
735    slabinfo_show_stats(m, s);
736    seq_putc(m, '\n');
737    return 0;
738}
739
740static int s_show(struct seq_file *m, void *p)
741{
742    struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
743
744    if (!is_root_cache(s))
745        return 0;
746    return cache_show(s, m);
747}
748
749/*
750 * slabinfo_op - iterator that generates /proc/slabinfo
751 *
752 * Output layout:
753 * cache-name
754 * num-active-objs
755 * total-objs
756 * object size
757 * num-active-slabs
758 * total-slabs
759 * num-pages-per-slab
760 * + further values on SMP and with statistics enabled
761 */
762static const struct seq_operations slabinfo_op = {
763    .start = s_start,
764    .next = slab_next,
765    .stop = slab_stop,
766    .show = s_show,
767};
768
769static int slabinfo_open(struct inode *inode, struct file *file)
770{
771    return seq_open(file, &slabinfo_op);
772}
773
774static const struct file_operations proc_slabinfo_operations = {
775    .open = slabinfo_open,
776    .read = seq_read,
777    .write = slabinfo_write,
778    .llseek = seq_lseek,
779    .release = seq_release,
780};
781
782static int __init slab_proc_init(void)
783{
784    proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
785                        &proc_slabinfo_operations);
786    return 0;
787}
788module_init(slab_proc_init);
789#endif /* CONFIG_SLABINFO */
790

Archive Download this file



interactive