Root/arch/avr32/kernel/setup.c

1/*
2 * Copyright (C) 2004-2006 Atmel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9#include <linux/clk.h>
10#include <linux/init.h>
11#include <linux/initrd.h>
12#include <linux/sched.h>
13#include <linux/console.h>
14#include <linux/ioport.h>
15#include <linux/bootmem.h>
16#include <linux/fs.h>
17#include <linux/module.h>
18#include <linux/pfn.h>
19#include <linux/root_dev.h>
20#include <linux/cpu.h>
21#include <linux/kernel.h>
22
23#include <asm/sections.h>
24#include <asm/processor.h>
25#include <asm/pgtable.h>
26#include <asm/setup.h>
27#include <asm/sysreg.h>
28
29#include <mach/board.h>
30#include <mach/init.h>
31
32extern int root_mountflags;
33
34/*
35 * Initialize loops_per_jiffy as 5000000 (500MIPS).
36 * Better make it too large than too small...
37 */
38struct avr32_cpuinfo boot_cpu_data = {
39    .loops_per_jiffy = 5000000
40};
41EXPORT_SYMBOL(boot_cpu_data);
42
43static char __initdata command_line[COMMAND_LINE_SIZE];
44
45/*
46 * Standard memory resources
47 */
48static struct resource __initdata kernel_data = {
49    .name = "Kernel data",
50    .start = 0,
51    .end = 0,
52    .flags = IORESOURCE_MEM,
53};
54static struct resource __initdata kernel_code = {
55    .name = "Kernel code",
56    .start = 0,
57    .end = 0,
58    .flags = IORESOURCE_MEM,
59    .sibling = &kernel_data,
60};
61
62/*
63 * Available system RAM and reserved regions as singly linked
64 * lists. These lists are traversed using the sibling pointer in
65 * struct resource and are kept sorted at all times.
66 */
67static struct resource *__initdata system_ram;
68static struct resource *__initdata reserved = &kernel_code;
69
70/*
71 * We need to allocate these before the bootmem allocator is up and
72 * running, so we need this "cache". 32 entries are probably enough
73 * for all but the most insanely complex systems.
74 */
75static struct resource __initdata res_cache[32];
76static unsigned int __initdata res_cache_next_free;
77
78static void __init resource_init(void)
79{
80    struct resource *mem, *res;
81    struct resource *new;
82
83    kernel_code.start = __pa(init_mm.start_code);
84
85    for (mem = system_ram; mem; mem = mem->sibling) {
86        new = alloc_bootmem_low(sizeof(struct resource));
87        memcpy(new, mem, sizeof(struct resource));
88
89        new->sibling = NULL;
90        if (request_resource(&iomem_resource, new))
91            printk(KERN_WARNING "Bad RAM resource %08x-%08x\n",
92                   mem->start, mem->end);
93    }
94
95    for (res = reserved; res; res = res->sibling) {
96        new = alloc_bootmem_low(sizeof(struct resource));
97        memcpy(new, res, sizeof(struct resource));
98
99        new->sibling = NULL;
100        if (insert_resource(&iomem_resource, new))
101            printk(KERN_WARNING
102                   "Bad reserved resource %s (%08x-%08x)\n",
103                   res->name, res->start, res->end);
104    }
105}
106
107static void __init
108add_physical_memory(resource_size_t start, resource_size_t end)
109{
110    struct resource *new, *next, **pprev;
111
112    for (pprev = &system_ram, next = system_ram; next;
113         pprev = &next->sibling, next = next->sibling) {
114        if (end < next->start)
115            break;
116        if (start <= next->end) {
117            printk(KERN_WARNING
118                   "Warning: Physical memory map is broken\n");
119            printk(KERN_WARNING
120                   "Warning: %08x-%08x overlaps %08x-%08x\n",
121                   start, end, next->start, next->end);
122            return;
123        }
124    }
125
126    if (res_cache_next_free >= ARRAY_SIZE(res_cache)) {
127        printk(KERN_WARNING
128               "Warning: Failed to add physical memory %08x-%08x\n",
129               start, end);
130        return;
131    }
132
133    new = &res_cache[res_cache_next_free++];
134    new->start = start;
135    new->end = end;
136    new->name = "System RAM";
137    new->flags = IORESOURCE_MEM;
138
139    *pprev = new;
140}
141
142static int __init
143add_reserved_region(resource_size_t start, resource_size_t end,
144            const char *name)
145{
146    struct resource *new, *next, **pprev;
147
148    if (end < start)
149        return -EINVAL;
150
151    if (res_cache_next_free >= ARRAY_SIZE(res_cache))
152        return -ENOMEM;
153
154    for (pprev = &reserved, next = reserved; next;
155         pprev = &next->sibling, next = next->sibling) {
156        if (end < next->start)
157            break;
158        if (start <= next->end)
159            return -EBUSY;
160    }
161
162    new = &res_cache[res_cache_next_free++];
163    new->start = start;
164    new->end = end;
165    new->name = name;
166    new->sibling = next;
167    new->flags = IORESOURCE_MEM;
168
169    *pprev = new;
170
171    return 0;
172}
173
174static unsigned long __init
175find_free_region(const struct resource *mem, resource_size_t size,
176         resource_size_t align)
177{
178    struct resource *res;
179    unsigned long target;
180
181    target = ALIGN(mem->start, align);
182    for (res = reserved; res; res = res->sibling) {
183        if ((target + size) <= res->start)
184            break;
185        if (target <= res->end)
186            target = ALIGN(res->end + 1, align);
187    }
188
189    if ((target + size) > (mem->end + 1))
190        return mem->end + 1;
191
192    return target;
193}
194
195static int __init
196alloc_reserved_region(resource_size_t *start, resource_size_t size,
197              resource_size_t align, const char *name)
198{
199    struct resource *mem;
200    resource_size_t target;
201    int ret;
202
203    for (mem = system_ram; mem; mem = mem->sibling) {
204        target = find_free_region(mem, size, align);
205        if (target <= mem->end) {
206            ret = add_reserved_region(target, target + size - 1,
207                          name);
208            if (!ret)
209                *start = target;
210            return ret;
211        }
212    }
213
214    return -ENOMEM;
215}
216
217/*
218 * Early framebuffer allocation. Works as follows:
219 * - If fbmem_size is zero, nothing will be allocated or reserved.
220 * - If fbmem_start is zero when setup_bootmem() is called,
221 * a block of fbmem_size bytes will be reserved before bootmem
222 * initialization. It will be aligned to the largest page size
223 * that fbmem_size is a multiple of.
224 * - If fbmem_start is nonzero, an area of size fbmem_size will be
225 * reserved at the physical address fbmem_start if possible. If
226 * it collides with other reserved memory, a different block of
227 * same size will be allocated, just as if fbmem_start was zero.
228 *
229 * Board-specific code may use these variables to set up platform data
230 * for the framebuffer driver if fbmem_size is nonzero.
231 */
232resource_size_t __initdata fbmem_start;
233resource_size_t __initdata fbmem_size;
234
235/*
236 * "fbmem=xxx[kKmM]" allocates the specified amount of boot memory for
237 * use as framebuffer.
238 *
239 * "fbmem=xxx[kKmM]@yyy[kKmM]" defines a memory region of size xxx and
240 * starting at yyy to be reserved for use as framebuffer.
241 *
242 * The kernel won't verify that the memory region starting at yyy
243 * actually contains usable RAM.
244 */
245static int __init early_parse_fbmem(char *p)
246{
247    int ret;
248    unsigned long align;
249
250    fbmem_size = memparse(p, &p);
251    if (*p == '@') {
252        fbmem_start = memparse(p + 1, &p);
253        ret = add_reserved_region(fbmem_start,
254                      fbmem_start + fbmem_size - 1,
255                      "Framebuffer");
256        if (ret) {
257            printk(KERN_WARNING
258                   "Failed to reserve framebuffer memory\n");
259            fbmem_start = 0;
260        }
261    }
262
263    if (!fbmem_start) {
264        if ((fbmem_size & 0x000fffffUL) == 0)
265            align = 0x100000; /* 1 MiB */
266        else if ((fbmem_size & 0x0000ffffUL) == 0)
267            align = 0x10000; /* 64 KiB */
268        else
269            align = 0x1000; /* 4 KiB */
270
271        ret = alloc_reserved_region(&fbmem_start, fbmem_size,
272                        align, "Framebuffer");
273        if (ret) {
274            printk(KERN_WARNING
275                   "Failed to allocate framebuffer memory\n");
276            fbmem_size = 0;
277        } else {
278            memset(__va(fbmem_start), 0, fbmem_size);
279        }
280    }
281
282    return 0;
283}
284early_param("fbmem", early_parse_fbmem);
285
286/*
287 * Pick out the memory size. We look for mem=size@start,
288 * where start and size are "size[KkMmGg]"
289 */
290static int __init early_mem(char *p)
291{
292    resource_size_t size, start;
293
294    start = system_ram->start;
295    size = memparse(p, &p);
296    if (*p == '@')
297        start = memparse(p + 1, &p);
298
299    system_ram->start = start;
300    system_ram->end = system_ram->start + size - 1;
301    return 0;
302}
303early_param("mem", early_mem);
304
305static int __init parse_tag_core(struct tag *tag)
306{
307    if (tag->hdr.size > 2) {
308        if ((tag->u.core.flags & 1) == 0)
309            root_mountflags &= ~MS_RDONLY;
310        ROOT_DEV = new_decode_dev(tag->u.core.rootdev);
311    }
312    return 0;
313}
314__tagtable(ATAG_CORE, parse_tag_core);
315
316static int __init parse_tag_mem(struct tag *tag)
317{
318    unsigned long start, end;
319
320    /*
321     * Ignore zero-sized entries. If we're running standalone, the
322     * SDRAM code may emit such entries if something goes
323     * wrong...
324     */
325    if (tag->u.mem_range.size == 0)
326        return 0;
327
328    start = tag->u.mem_range.addr;
329    end = tag->u.mem_range.addr + tag->u.mem_range.size - 1;
330
331    add_physical_memory(start, end);
332    return 0;
333}
334__tagtable(ATAG_MEM, parse_tag_mem);
335
336static int __init parse_tag_rdimg(struct tag *tag)
337{
338#ifdef CONFIG_BLK_DEV_INITRD
339    struct tag_mem_range *mem = &tag->u.mem_range;
340    int ret;
341
342    if (initrd_start) {
343        printk(KERN_WARNING
344               "Warning: Only the first initrd image will be used\n");
345        return 0;
346    }
347
348    ret = add_reserved_region(mem->addr, mem->addr + mem->size - 1,
349                  "initrd");
350    if (ret) {
351        printk(KERN_WARNING
352               "Warning: Failed to reserve initrd memory\n");
353        return ret;
354    }
355
356    initrd_start = (unsigned long)__va(mem->addr);
357    initrd_end = initrd_start + mem->size;
358#else
359    printk(KERN_WARNING "RAM disk image present, but "
360           "no initrd support in kernel, ignoring\n");
361#endif
362
363    return 0;
364}
365__tagtable(ATAG_RDIMG, parse_tag_rdimg);
366
367static int __init parse_tag_rsvd_mem(struct tag *tag)
368{
369    struct tag_mem_range *mem = &tag->u.mem_range;
370
371    return add_reserved_region(mem->addr, mem->addr + mem->size - 1,
372                   "Reserved");
373}
374__tagtable(ATAG_RSVD_MEM, parse_tag_rsvd_mem);
375
376static int __init parse_tag_cmdline(struct tag *tag)
377{
378    strlcpy(boot_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
379    return 0;
380}
381__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
382
383static int __init parse_tag_clock(struct tag *tag)
384{
385    /*
386     * We'll figure out the clocks by peeking at the system
387     * manager regs directly.
388     */
389    return 0;
390}
391__tagtable(ATAG_CLOCK, parse_tag_clock);
392
393/*
394 * The board_number correspond to the bd->bi_board_number in U-Boot. This
395 * parameter is only available during initialisation and can be used in some
396 * kind of board identification.
397 */
398u32 __initdata board_number;
399
400static int __init parse_tag_boardinfo(struct tag *tag)
401{
402    board_number = tag->u.boardinfo.board_number;
403
404    return 0;
405}
406__tagtable(ATAG_BOARDINFO, parse_tag_boardinfo);
407
408/*
409 * Scan the tag table for this tag, and call its parse function. The
410 * tag table is built by the linker from all the __tagtable
411 * declarations.
412 */
413static int __init parse_tag(struct tag *tag)
414{
415    extern struct tagtable __tagtable_begin, __tagtable_end;
416    struct tagtable *t;
417
418    for (t = &__tagtable_begin; t < &__tagtable_end; t++)
419        if (tag->hdr.tag == t->tag) {
420            t->parse(tag);
421            break;
422        }
423
424    return t < &__tagtable_end;
425}
426
427/*
428 * Parse all tags in the list we got from the boot loader
429 */
430static void __init parse_tags(struct tag *t)
431{
432    for (; t->hdr.tag != ATAG_NONE; t = tag_next(t))
433        if (!parse_tag(t))
434            printk(KERN_WARNING
435                   "Ignoring unrecognised tag 0x%08x\n",
436                   t->hdr.tag);
437}
438
439/*
440 * Find a free memory region large enough for storing the
441 * bootmem bitmap.
442 */
443static unsigned long __init
444find_bootmap_pfn(const struct resource *mem)
445{
446    unsigned long bootmap_pages, bootmap_len;
447    unsigned long node_pages = PFN_UP(resource_size(mem));
448    unsigned long bootmap_start;
449
450    bootmap_pages = bootmem_bootmap_pages(node_pages);
451    bootmap_len = bootmap_pages << PAGE_SHIFT;
452
453    /*
454     * Find a large enough region without reserved pages for
455     * storing the bootmem bitmap. We can take advantage of the
456     * fact that all lists have been sorted.
457     *
458     * We have to check that we don't collide with any reserved
459     * regions, which includes the kernel image and any RAMDISK
460     * images.
461     */
462    bootmap_start = find_free_region(mem, bootmap_len, PAGE_SIZE);
463
464    return bootmap_start >> PAGE_SHIFT;
465}
466
467#define MAX_LOWMEM HIGHMEM_START
468#define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM)
469
470static void __init setup_bootmem(void)
471{
472    unsigned bootmap_size;
473    unsigned long first_pfn, bootmap_pfn, pages;
474    unsigned long max_pfn, max_low_pfn;
475    unsigned node = 0;
476    struct resource *res;
477
478    printk(KERN_INFO "Physical memory:\n");
479    for (res = system_ram; res; res = res->sibling)
480        printk(" %08x-%08x\n", res->start, res->end);
481    printk(KERN_INFO "Reserved memory:\n");
482    for (res = reserved; res; res = res->sibling)
483        printk(" %08x-%08x: %s\n",
484               res->start, res->end, res->name);
485
486    nodes_clear(node_online_map);
487
488    if (system_ram->sibling)
489        printk(KERN_WARNING "Only using first memory bank\n");
490
491    for (res = system_ram; res; res = NULL) {
492        first_pfn = PFN_UP(res->start);
493        max_low_pfn = max_pfn = PFN_DOWN(res->end + 1);
494        bootmap_pfn = find_bootmap_pfn(res);
495        if (bootmap_pfn > max_pfn)
496            panic("No space for bootmem bitmap!\n");
497
498        if (max_low_pfn > MAX_LOWMEM_PFN) {
499            max_low_pfn = MAX_LOWMEM_PFN;
500#ifndef CONFIG_HIGHMEM
501            /*
502             * Lowmem is memory that can be addressed
503             * directly through P1/P2
504             */
505            printk(KERN_WARNING
506                   "Node %u: Only %ld MiB of memory will be used.\n",
507                   node, MAX_LOWMEM >> 20);
508            printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
509#else
510#error HIGHMEM is not supported by AVR32 yet
511#endif
512        }
513
514        /* Initialize the boot-time allocator with low memory only. */
515        bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn,
516                         first_pfn, max_low_pfn);
517
518        /*
519         * Register fully available RAM pages with the bootmem
520         * allocator.
521         */
522        pages = max_low_pfn - first_pfn;
523        free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn),
524                   PFN_PHYS(pages));
525
526        /* Reserve space for the bootmem bitmap... */
527        reserve_bootmem_node(NODE_DATA(node),
528                     PFN_PHYS(bootmap_pfn),
529                     bootmap_size,
530                     BOOTMEM_DEFAULT);
531
532        /* ...and any other reserved regions. */
533        for (res = reserved; res; res = res->sibling) {
534            if (res->start > PFN_PHYS(max_pfn))
535                break;
536
537            /*
538             * resource_init will complain about partial
539             * overlaps, so we'll just ignore such
540             * resources for now.
541             */
542            if (res->start >= PFN_PHYS(first_pfn)
543                && res->end < PFN_PHYS(max_pfn))
544                reserve_bootmem_node(NODE_DATA(node),
545                             res->start,
546                             resource_size(res),
547                             BOOTMEM_DEFAULT);
548        }
549
550        node_set_online(node);
551    }
552}
553
554void __init setup_arch (char **cmdline_p)
555{
556    struct clk *cpu_clk;
557
558    init_mm.start_code = (unsigned long)_stext;
559    init_mm.end_code = (unsigned long)_etext;
560    init_mm.end_data = (unsigned long)_edata;
561    init_mm.brk = (unsigned long)_end;
562
563    /*
564     * Include .init section to make allocations easier. It will
565     * be removed before the resource is actually requested.
566     */
567    kernel_code.start = __pa(__init_begin);
568    kernel_code.end = __pa(init_mm.end_code - 1);
569    kernel_data.start = __pa(init_mm.end_code);
570    kernel_data.end = __pa(init_mm.brk - 1);
571
572    parse_tags(bootloader_tags);
573
574    setup_processor();
575    setup_platform();
576    setup_board();
577
578    cpu_clk = clk_get(NULL, "cpu");
579    if (IS_ERR(cpu_clk)) {
580        printk(KERN_WARNING "Warning: Unable to get CPU clock\n");
581    } else {
582        unsigned long cpu_hz = clk_get_rate(cpu_clk);
583
584        /*
585         * Well, duh, but it's probably a good idea to
586         * increment the use count.
587         */
588        clk_enable(cpu_clk);
589
590        boot_cpu_data.clk = cpu_clk;
591        boot_cpu_data.loops_per_jiffy = cpu_hz * 4;
592        printk("CPU: Running at %lu.%03lu MHz\n",
593               ((cpu_hz + 500) / 1000) / 1000,
594               ((cpu_hz + 500) / 1000) % 1000);
595    }
596
597    strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
598    *cmdline_p = command_line;
599    parse_early_param();
600
601    setup_bootmem();
602
603#ifdef CONFIG_VT
604    conswitchp = &dummy_con;
605#endif
606
607    paging_init();
608    resource_init();
609}
610

Archive Download this file



interactive