Root/crypto/mcryptd.c

1/*
2 * Software multibuffer async crypto daemon.
3 *
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5 *
6 * Adapted from crypto daemon.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 */
14
15#include <crypto/algapi.h>
16#include <crypto/internal/hash.h>
17#include <crypto/internal/aead.h>
18#include <crypto/mcryptd.h>
19#include <crypto/crypto_wq.h>
20#include <linux/err.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/sched.h>
27#include <linux/slab.h>
28#include <linux/hardirq.h>
29
30#define MCRYPTD_MAX_CPU_QLEN 100
31#define MCRYPTD_BATCH 9
32
33static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34                   unsigned int tail);
35
36struct mcryptd_flush_list {
37    struct list_head list;
38    struct mutex lock;
39};
40
41static struct mcryptd_flush_list __percpu *mcryptd_flist;
42
43struct hashd_instance_ctx {
44    struct crypto_shash_spawn spawn;
45    struct mcryptd_queue *queue;
46};
47
48static void mcryptd_queue_worker(struct work_struct *work);
49
50void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51{
52    struct mcryptd_flush_list *flist;
53
54    if (!cstate->flusher_engaged) {
55        /* put the flusher on the flush list */
56        flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57        mutex_lock(&flist->lock);
58        list_add_tail(&cstate->flush_list, &flist->list);
59        cstate->flusher_engaged = true;
60        cstate->next_flush = jiffies + delay;
61        queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62            &cstate->flush, delay);
63        mutex_unlock(&flist->lock);
64    }
65}
66EXPORT_SYMBOL(mcryptd_arm_flusher);
67
68static int mcryptd_init_queue(struct mcryptd_queue *queue,
69                 unsigned int max_cpu_qlen)
70{
71    int cpu;
72    struct mcryptd_cpu_queue *cpu_queue;
73
74    queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75    pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76    if (!queue->cpu_queue)
77        return -ENOMEM;
78    for_each_possible_cpu(cpu) {
79        cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80        pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81        crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82        INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83    }
84    return 0;
85}
86
87static void mcryptd_fini_queue(struct mcryptd_queue *queue)
88{
89    int cpu;
90    struct mcryptd_cpu_queue *cpu_queue;
91
92    for_each_possible_cpu(cpu) {
93        cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94        BUG_ON(cpu_queue->queue.qlen);
95    }
96    free_percpu(queue->cpu_queue);
97}
98
99static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100                  struct crypto_async_request *request,
101                  struct mcryptd_hash_request_ctx *rctx)
102{
103    int cpu, err;
104    struct mcryptd_cpu_queue *cpu_queue;
105
106    cpu = get_cpu();
107    cpu_queue = this_cpu_ptr(queue->cpu_queue);
108    rctx->tag.cpu = cpu;
109
110    err = crypto_enqueue_request(&cpu_queue->queue, request);
111    pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112         cpu, cpu_queue, request);
113    queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114    put_cpu();
115
116    return err;
117}
118
119/*
120 * Try to opportunisticlly flush the partially completed jobs if
121 * crypto daemon is the only task running.
122 */
123static void mcryptd_opportunistic_flush(void)
124{
125    struct mcryptd_flush_list *flist;
126    struct mcryptd_alg_cstate *cstate;
127
128    flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129    while (single_task_running()) {
130        mutex_lock(&flist->lock);
131        if (list_empty(&flist->list)) {
132            mutex_unlock(&flist->lock);
133            return;
134        }
135        cstate = list_entry(flist->list.next,
136                struct mcryptd_alg_cstate, flush_list);
137        if (!cstate->flusher_engaged) {
138            mutex_unlock(&flist->lock);
139            return;
140        }
141        list_del(&cstate->flush_list);
142        cstate->flusher_engaged = false;
143        mutex_unlock(&flist->lock);
144        cstate->alg_state->flusher(cstate);
145    }
146}
147
148/*
149 * Called in workqueue context, do one real cryption work (via
150 * req->complete) and reschedule itself if there are more work to
151 * do.
152 */
153static void mcryptd_queue_worker(struct work_struct *work)
154{
155    struct mcryptd_cpu_queue *cpu_queue;
156    struct crypto_async_request *req, *backlog;
157    int i;
158
159    /*
160     * Need to loop through more than once for multi-buffer to
161     * be effective.
162     */
163
164    cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
165    i = 0;
166    while (i < MCRYPTD_BATCH || single_task_running()) {
167        /*
168         * preempt_disable/enable is used to prevent
169         * being preempted by mcryptd_enqueue_request()
170         */
171        local_bh_disable();
172        preempt_disable();
173        backlog = crypto_get_backlog(&cpu_queue->queue);
174        req = crypto_dequeue_request(&cpu_queue->queue);
175        preempt_enable();
176        local_bh_enable();
177
178        if (!req) {
179            mcryptd_opportunistic_flush();
180            return;
181        }
182
183        if (backlog)
184            backlog->complete(backlog, -EINPROGRESS);
185        req->complete(req, 0);
186        if (!cpu_queue->queue.qlen)
187            return;
188        ++i;
189    }
190    if (cpu_queue->queue.qlen)
191        queue_work(kcrypto_wq, &cpu_queue->work);
192}
193
194void mcryptd_flusher(struct work_struct *__work)
195{
196    struct mcryptd_alg_cstate *alg_cpu_state;
197    struct mcryptd_alg_state *alg_state;
198    struct mcryptd_flush_list *flist;
199    int cpu;
200
201    cpu = smp_processor_id();
202    alg_cpu_state = container_of(to_delayed_work(__work),
203                     struct mcryptd_alg_cstate, flush);
204    alg_state = alg_cpu_state->alg_state;
205    if (alg_cpu_state->cpu != cpu)
206        pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
207                cpu, alg_cpu_state->cpu);
208
209    if (alg_cpu_state->flusher_engaged) {
210        flist = per_cpu_ptr(mcryptd_flist, cpu);
211        mutex_lock(&flist->lock);
212        list_del(&alg_cpu_state->flush_list);
213        alg_cpu_state->flusher_engaged = false;
214        mutex_unlock(&flist->lock);
215        alg_state->flusher(alg_cpu_state);
216    }
217}
218EXPORT_SYMBOL_GPL(mcryptd_flusher);
219
220static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
221{
222    struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
223    struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
224
225    return ictx->queue;
226}
227
228static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
229                   unsigned int tail)
230{
231    char *p;
232    struct crypto_instance *inst;
233    int err;
234
235    p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
236    if (!p)
237        return ERR_PTR(-ENOMEM);
238
239    inst = (void *)(p + head);
240
241    err = -ENAMETOOLONG;
242    if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
243            "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
244        goto out_free_inst;
245
246    memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
247
248    inst->alg.cra_priority = alg->cra_priority + 50;
249    inst->alg.cra_blocksize = alg->cra_blocksize;
250    inst->alg.cra_alignmask = alg->cra_alignmask;
251
252out:
253    return p;
254
255out_free_inst:
256    kfree(p);
257    p = ERR_PTR(err);
258    goto out;
259}
260
261static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
262{
263    struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
264    struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
265    struct crypto_shash_spawn *spawn = &ictx->spawn;
266    struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
267    struct crypto_shash *hash;
268
269    hash = crypto_spawn_shash(spawn);
270    if (IS_ERR(hash))
271        return PTR_ERR(hash);
272
273    ctx->child = hash;
274    crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
275                 sizeof(struct mcryptd_hash_request_ctx) +
276                 crypto_shash_descsize(hash));
277    return 0;
278}
279
280static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
281{
282    struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
283
284    crypto_free_shash(ctx->child);
285}
286
287static int mcryptd_hash_setkey(struct crypto_ahash *parent,
288                   const u8 *key, unsigned int keylen)
289{
290    struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
291    struct crypto_shash *child = ctx->child;
292    int err;
293
294    crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
295    crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
296                      CRYPTO_TFM_REQ_MASK);
297    err = crypto_shash_setkey(child, key, keylen);
298    crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
299                       CRYPTO_TFM_RES_MASK);
300    return err;
301}
302
303static int mcryptd_hash_enqueue(struct ahash_request *req,
304                crypto_completion_t complete)
305{
306    int ret;
307
308    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
309    struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
310    struct mcryptd_queue *queue =
311        mcryptd_get_queue(crypto_ahash_tfm(tfm));
312
313    rctx->complete = req->base.complete;
314    req->base.complete = complete;
315
316    ret = mcryptd_enqueue_request(queue, &req->base, rctx);
317
318    return ret;
319}
320
321static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
322{
323    struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
324    struct crypto_shash *child = ctx->child;
325    struct ahash_request *req = ahash_request_cast(req_async);
326    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
327    struct shash_desc *desc = &rctx->desc;
328
329    if (unlikely(err == -EINPROGRESS))
330        goto out;
331
332    desc->tfm = child;
333    desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
334
335    err = crypto_shash_init(desc);
336
337    req->base.complete = rctx->complete;
338
339out:
340    local_bh_disable();
341    rctx->complete(&req->base, err);
342    local_bh_enable();
343}
344
345static int mcryptd_hash_init_enqueue(struct ahash_request *req)
346{
347    return mcryptd_hash_enqueue(req, mcryptd_hash_init);
348}
349
350static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
351{
352    struct ahash_request *req = ahash_request_cast(req_async);
353    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
354
355    if (unlikely(err == -EINPROGRESS))
356        goto out;
357
358    err = shash_ahash_mcryptd_update(req, &rctx->desc);
359    if (err) {
360        req->base.complete = rctx->complete;
361        goto out;
362    }
363
364    return;
365out:
366    local_bh_disable();
367    rctx->complete(&req->base, err);
368    local_bh_enable();
369}
370
371static int mcryptd_hash_update_enqueue(struct ahash_request *req)
372{
373    return mcryptd_hash_enqueue(req, mcryptd_hash_update);
374}
375
376static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
377{
378    struct ahash_request *req = ahash_request_cast(req_async);
379    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
380
381    if (unlikely(err == -EINPROGRESS))
382        goto out;
383
384    err = shash_ahash_mcryptd_final(req, &rctx->desc);
385    if (err) {
386        req->base.complete = rctx->complete;
387        goto out;
388    }
389
390    return;
391out:
392    local_bh_disable();
393    rctx->complete(&req->base, err);
394    local_bh_enable();
395}
396
397static int mcryptd_hash_final_enqueue(struct ahash_request *req)
398{
399    return mcryptd_hash_enqueue(req, mcryptd_hash_final);
400}
401
402static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
403{
404    struct ahash_request *req = ahash_request_cast(req_async);
405    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
406
407    if (unlikely(err == -EINPROGRESS))
408        goto out;
409
410    err = shash_ahash_mcryptd_finup(req, &rctx->desc);
411
412    if (err) {
413        req->base.complete = rctx->complete;
414        goto out;
415    }
416
417    return;
418out:
419    local_bh_disable();
420    rctx->complete(&req->base, err);
421    local_bh_enable();
422}
423
424static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
425{
426    return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
427}
428
429static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
430{
431    struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
432    struct crypto_shash *child = ctx->child;
433    struct ahash_request *req = ahash_request_cast(req_async);
434    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
435    struct shash_desc *desc = &rctx->desc;
436
437    if (unlikely(err == -EINPROGRESS))
438        goto out;
439
440    desc->tfm = child;
441    desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */
442
443    err = shash_ahash_mcryptd_digest(req, desc);
444
445    if (err) {
446        req->base.complete = rctx->complete;
447        goto out;
448    }
449
450    return;
451out:
452    local_bh_disable();
453    rctx->complete(&req->base, err);
454    local_bh_enable();
455}
456
457static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
458{
459    return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
460}
461
462static int mcryptd_hash_export(struct ahash_request *req, void *out)
463{
464    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
465
466    return crypto_shash_export(&rctx->desc, out);
467}
468
469static int mcryptd_hash_import(struct ahash_request *req, const void *in)
470{
471    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
472
473    return crypto_shash_import(&rctx->desc, in);
474}
475
476static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
477                  struct mcryptd_queue *queue)
478{
479    struct hashd_instance_ctx *ctx;
480    struct ahash_instance *inst;
481    struct shash_alg *salg;
482    struct crypto_alg *alg;
483    int err;
484
485    salg = shash_attr_alg(tb[1], 0, 0);
486    if (IS_ERR(salg))
487        return PTR_ERR(salg);
488
489    alg = &salg->base;
490    pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
491    inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
492                    sizeof(*ctx));
493    err = PTR_ERR(inst);
494    if (IS_ERR(inst))
495        goto out_put_alg;
496
497    ctx = ahash_instance_ctx(inst);
498    ctx->queue = queue;
499
500    err = crypto_init_shash_spawn(&ctx->spawn, salg,
501                      ahash_crypto_instance(inst));
502    if (err)
503        goto out_free_inst;
504
505    inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC;
506
507    inst->alg.halg.digestsize = salg->digestsize;
508    inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
509
510    inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
511    inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
512
513    inst->alg.init = mcryptd_hash_init_enqueue;
514    inst->alg.update = mcryptd_hash_update_enqueue;
515    inst->alg.final = mcryptd_hash_final_enqueue;
516    inst->alg.finup = mcryptd_hash_finup_enqueue;
517    inst->alg.export = mcryptd_hash_export;
518    inst->alg.import = mcryptd_hash_import;
519    inst->alg.setkey = mcryptd_hash_setkey;
520    inst->alg.digest = mcryptd_hash_digest_enqueue;
521
522    err = ahash_register_instance(tmpl, inst);
523    if (err) {
524        crypto_drop_shash(&ctx->spawn);
525out_free_inst:
526        kfree(inst);
527    }
528
529out_put_alg:
530    crypto_mod_put(alg);
531    return err;
532}
533
534static struct mcryptd_queue mqueue;
535
536static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
537{
538    struct crypto_attr_type *algt;
539
540    algt = crypto_get_attr_type(tb);
541    if (IS_ERR(algt))
542        return PTR_ERR(algt);
543
544    switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
545    case CRYPTO_ALG_TYPE_DIGEST:
546        return mcryptd_create_hash(tmpl, tb, &mqueue);
547    break;
548    }
549
550    return -EINVAL;
551}
552
553static void mcryptd_free(struct crypto_instance *inst)
554{
555    struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
556    struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
557
558    switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
559    case CRYPTO_ALG_TYPE_AHASH:
560        crypto_drop_shash(&hctx->spawn);
561        kfree(ahash_instance(inst));
562        return;
563    default:
564        crypto_drop_spawn(&ctx->spawn);
565        kfree(inst);
566    }
567}
568
569static struct crypto_template mcryptd_tmpl = {
570    .name = "mcryptd",
571    .create = mcryptd_create,
572    .free = mcryptd_free,
573    .module = THIS_MODULE,
574};
575
576struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
577                    u32 type, u32 mask)
578{
579    char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
580    struct crypto_ahash *tfm;
581
582    if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
583             "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
584        return ERR_PTR(-EINVAL);
585    tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
586    if (IS_ERR(tfm))
587        return ERR_CAST(tfm);
588    if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
589        crypto_free_ahash(tfm);
590        return ERR_PTR(-EINVAL);
591    }
592
593    return __mcryptd_ahash_cast(tfm);
594}
595EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
596
597int shash_ahash_mcryptd_digest(struct ahash_request *req,
598                   struct shash_desc *desc)
599{
600    int err;
601
602    err = crypto_shash_init(desc) ?:
603          shash_ahash_mcryptd_finup(req, desc);
604
605    return err;
606}
607EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
608
609int shash_ahash_mcryptd_update(struct ahash_request *req,
610                   struct shash_desc *desc)
611{
612    struct crypto_shash *tfm = desc->tfm;
613    struct shash_alg *shash = crypto_shash_alg(tfm);
614
615    /* alignment is to be done by multi-buffer crypto algorithm if needed */
616
617    return shash->update(desc, NULL, 0);
618}
619EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
620
621int shash_ahash_mcryptd_finup(struct ahash_request *req,
622                  struct shash_desc *desc)
623{
624    struct crypto_shash *tfm = desc->tfm;
625    struct shash_alg *shash = crypto_shash_alg(tfm);
626
627    /* alignment is to be done by multi-buffer crypto algorithm if needed */
628
629    return shash->finup(desc, NULL, 0, req->result);
630}
631EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
632
633int shash_ahash_mcryptd_final(struct ahash_request *req,
634                  struct shash_desc *desc)
635{
636    struct crypto_shash *tfm = desc->tfm;
637    struct shash_alg *shash = crypto_shash_alg(tfm);
638
639    /* alignment is to be done by multi-buffer crypto algorithm if needed */
640
641    return shash->final(desc, req->result);
642}
643EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
644
645struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
646{
647    struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
648
649    return ctx->child;
650}
651EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
652
653struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
654{
655    struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
656    return &rctx->desc;
657}
658EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
659
660void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
661{
662    crypto_free_ahash(&tfm->base);
663}
664EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
665
666
667static int __init mcryptd_init(void)
668{
669    int err, cpu;
670    struct mcryptd_flush_list *flist;
671
672    mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
673    for_each_possible_cpu(cpu) {
674        flist = per_cpu_ptr(mcryptd_flist, cpu);
675        INIT_LIST_HEAD(&flist->list);
676        mutex_init(&flist->lock);
677    }
678
679    err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
680    if (err) {
681        free_percpu(mcryptd_flist);
682        return err;
683    }
684
685    err = crypto_register_template(&mcryptd_tmpl);
686    if (err) {
687        mcryptd_fini_queue(&mqueue);
688        free_percpu(mcryptd_flist);
689    }
690
691    return err;
692}
693
694static void __exit mcryptd_exit(void)
695{
696    mcryptd_fini_queue(&mqueue);
697    crypto_unregister_template(&mcryptd_tmpl);
698    free_percpu(mcryptd_flist);
699}
700
701subsys_initcall(mcryptd_init);
702module_exit(mcryptd_exit);
703
704MODULE_LICENSE("GPL");
705MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
706

Archive Download this file



interactive